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1 Lecture - 09/11/2014
Fix a finite field Fq of characteristic p, prime number ` 6= p, let X/Fq be a smooth projective geometrically
connected curve. Let F = Fq(X) be the function field of the curve. For every closed point v ∈ |X|, i.e. place
of F , have completion Fv with ring of integers Ov. Set O =

∏
v∈|X|Ov and A =

∏′
v∈|X| Fv. Fix a split

connected reductive group G over Fq (e.g. G = GLn,SLn,SOn,Sp2n,... - but not unitary ones because they
aren’t split).

Cuspidal automorphic forms: Fix a finite closed subscheme N of X (the level). Let KN = kerG(O) →
G(ON ), an open compact subgroup in G(A). Also, for technical purposes fix a cocompact lattice Ξ in
Z(F )\Z(A). Let

HN = Cc(KN\G(A)/KN ,Q`),

be the global Hecke algebra, with convolution product, for Haar measure with vol(KN ) = 1 and thus 1KN is
the identity of this associative algebra. This acts by right convolution on

Cc(G(F )\G(A)/ΞKN ,Q`),

where the Ξ is there to make the space have finite volume (so can take it to be trivial if G is semisimple).
Some elements of this space are our automorphic forms, but we need to add a cuspidality condition. Let

F be such a form; say it’s cuspidal if for every parabolic subgroup P ( G with unipotent radical U , then
the constant term

g 7→
∫
U(F )\U(A)

f(ng)dn

is zero. So get a subspace of cuspidal automorphic forms

Ccusp
c (G(F )\G(A)/ΞKN ,Q`).

(Remark: Usually there’s other conditions for “automorphic forms”, but a non-trivial fact that they’re implied
by the cuspidality condition in this situation). Another nontrivial fact: Ccusp

c is a finite-dimensional space,
stable under the action of HN . The representations that appear in this are called the cuspidal automorphic
ones. (Remark: limCcusp

c over all levels N has an action of G(A), with its irreducible constituents all of the
cuspidal automorphic representations. If N is fixed, irreducible HN -submodules are the same as irreducible
cuspidal automorphic representations with KN -fixed vectors).

Main theorem (V. Lafforgue): There exists a canonical HN -equivariant decomposition

Ccusp
c (G(F )\G(A)/ΞKN ,Q`) =

⊕
σ

hσ

where σ runs over Langlands parameters: continuous semisimple homomorphisms Gal(F/F )→ Ĝ(Q`) which
are unramified outside of N . This decomposition is compatible with the Satake isomorphism at places v - |N |.
(Remark this does not determine the decomposition in general - for GLn it does but for other groups strong
multiplicity one can fail).

Here, Ĝ is the dual group of G (invert the roots). Have GLn,SO2n are self-dual, Sp2n,SO2n+1 are dual,
SLn,PGLn are dual, etc. Semisimple means Imσ (taking the Zariski closure) is reductive. Unramified outside
of N means for all v /∈ |N |, σ|Gal(Fv/Fv) is trivial on inertia, so σ(Frobv) is well-defined as a conjugacy class.

What is the Satake isomorphism? Write KN =
∏
vKv where Kv ⊆ G(Ov0 is such that if v /∈ |N | then

Kv = G(Ov). So HN =
⊗′Hv for Hv = Cc(Kv\G(Fv)/Kv,Q`). Then if v /∈ |N | there is a canonical

Q`-algebra isomorphism (the Satake isomorphism) between Hv and K(RepĜ) ⊗ Q`, where RepĜ is the
category of algebraic representations of Ĝ, and K is the Grothendieck group with multiplication coming
from tensor product. In particular, Hv is commutative. We also get characters of Hv → Q` is in bijection
with characters of K(RepĜ) ⊗ Q`, which is in bijection with semisimple elements Ĝ(Q`) up to conjugacy.
Example: If G = GLn,

K(RepĜ) ∼= Q`[X±1
1 , . . . , X±1

n ]Sn .
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What do we mean that the isomorphism is compatible with Satake isomorphism outside N? For all σ
and all v ∈ |N |, Hv acts on hσ via multiplication by the character corresponding to σ(Frobv).

Very vague idea of proof: For every finite set I and every W ∈ RepĜI , we can define a moduli stack
ChtN, I,W → (X \N)I of G-shtuka. A G-shtuka on S/Fq is a G-bundle G on X × S with an isomorphism

ϕ : GX×S\⋃i∈I Γxi
→
(
(idX ×FrobS)∗G

)
X×S\

⋃
i∈I Γxi

,

where (xi)i∈I ∈ X(S) are the “legs of the shtuka”, W bounds how far ϕ is from an isomorphism at the xi,
and we have a level N structure, i.e. a trivialization of (G, ϕ) on N × S.

Have that ChtN,I,W is a Deligne-Mumford stack, and if I = ∅ then Chtϕ,I,1 is a discrete stack with points
G(F )\G(A)/KN . Lafforgue defines a subspaceHI,W ofH∗(ChtN,I,W ,Q`) (actually intersection cohomology)
that admits an action of HN ×Gal(F/F )I , with

H∅,1 = Ccusp
c (G(F )\G(A)/KNΞ,Q`).

Properties: W 7→ HI,W is functorial in W ∈ RepĜI (comes from geometric Satake). By coalescing and
separating the legs, get for all ξ : I → J , an isomorphism HI,W

∼= HJ,W ξ .
Lafforgue uses these to construct “excursion operators” H∅,1 → H∅,1 (depending on I,W, x ∈ W, ξ ∈

W ∗, (γi)i∈I with γi ∈ Gal(F/F )). These operators generate a commutative subalgebra B of End(H∅,1) and
get the decomposition of Ccusp

c
∼= H∅,1 by taking the generalized eigenspace decomposition of B. (Initially

this decomposition is indexed by characters of B, but these give parameters σ by Lafforgue’s generalization
of pseudo-representations). Finally, for v /∈ |N | we have a basis consisting of excursion operators.

So that’s the outline - lots of steps. The first will be to define the moduli stacks, but we first need to
define algebraic stacks.

Fix a base scheme S, let AffS be the category of affine schemes over S. We consider four Grothendieck
topologies on this category:

1. Zariski topology, AffS,Zar: A covering is a family (Ui → U)i∈I such that each Ui → U is an open
embedding (of each connected component) and U =

⋃
img(Ui).

2. Étale topology, AffS,ét: A covering family (fi : Ui → U) is one such that each fi : Ui → U is étale and
U =

⋃
f [Ui].

3. Fppf topology, AffS,fppf : A covering family (fi : Ui → U) is one such that each fi : Ui → U is fppf flat
of finite presentation and U =

⋃
f [Ui].

4. Fpqc topology, AffS,fpqc: A covering family (fi : Ui → U) is one such that each fi : Ui → U is flat and
there exists J ⊆ I with U =

⋃
j∈J fj [Uj ].

Definitions: A presheaf of sets on AffS is a functor F : Affop
S → Set. If f : U → V the map F(V )→ F(U)

is called s 7→ f∗s, or s 7→ s|U . Let Psh(AffS) be the category of presheaves, which has all inductive and
projective limits (calculated term by term).

For a sheaf, you need a topology top (one of the four just defined). Then a presheaf F on AffS is called
a sheaf for top (a top-sheaf) if, for every covering family fi : Ui → U , we have that F(U) →

∏
F(Ui) is

injective, and the image of this map is the set of tuples (si) with si|Ui×UUj = sj |Ui×UUj for all i, j. (A
“separating presheaf” is one such that F(U)→

∏
F(Ui) is injective).

The map Sh(AffS,top) ↪→ Psh(AffS) is full. This embedding has a left adjoint F 7→ Fsh called sheafi-
fication. Note Sh(AffS,top) has all inductive and projective limits. Projective limits and filtered inductive
limits are calculated term by term. Other inductive limits are sheafifications of the limit in the category of
presheaves.
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2 Lecture - 09/16/2014
S a scheme, AffS the category of affine schemes over S (affine scheme with map to S) and SchS the category
of schemes over S. Last time defined four sites, AffS,Zar, AffS,ét, AffS,fppf , AffS,fpqc. (Remark: for fpqc
topology have some set-theoretic issues; need to fix a universe, and things depened on that).

Defined Psh(AffS) and Sh(AffS,top); have two functors, Sh ↪→ Psh the fully faithful embedding, and
the sheafification functor that’s a left adjoint. Yoneda embedding: For X ∈ SchS , get X ∈ Psh(AffS)
defined by X(U) = Hom(U,X). This gives a fully faithful functor SchS → Psh(AffS). (Often just write X
for X, identifying SchS as a subcategory of (pre)sheaves).

Theorem (Grothendieck): For any X ∈ SchS , X is a fpqc sheaf, so we get a fully faithful embedding
SchS → Sh(AffS,fpqc). (And since our topologies are linearly ordered by coarseness, being an fpqc sheaf is
the strongest condition, so get SchS → Sh(AffS,top) for any of the four topologies).

Definition: An S-space is a fppf sheaf on AffS . An S-space is representable by a scheme (or even “is a
scheme”) if it is isomorphic to some X.

This point of view is nice if we want a natural way to define a scheme via its functors of points, e.g.
moduli problems. For instance:

• Algebraic groups.

• Grassmannians: If E is a quasicoherent sheaf on S and r ∈ N, set Gr(r, E) to be the sheaf taking U
to the set of surjective maps E ⊗OS OU � F with F a locally free OU -module with rank r. This is
representable.

• In case S = SpecQ, take sheaf F mapping U to the set of relative elliptic curves E → U together with
P ∈ E(U) of order 4 modulo equivalence; this is representable.

• Non-example: S = SpecQ and F like above, but maps U just to the set of relative elliptic curves
E → U modulo equivalence. Unfortunately this isn’t even an étale sheaf! There exist nonisomorphic
elliptic curves E,E′/Q that become isomorphic over a number field (so this isn’t separated, because a
number field is an étale cover of Q). This comes from the fact that H1(GQ,Aut(E)) 6= 1.

So the problem in the last case is that some elliptic curves have too many isomorphisms, but we’re naively
taking equivalence classes anyway. A few ways to fix the problem: we can rigidify the problem (i.e. like in
the example above it). Alternatively, and perhaps more natural (at the expense of lots of technical stuff):
Get rid of the equivalence, and instead look at a sheaf of categories.

How do we make sense of a “presheaf of categories”. Want to say this is a functor SchS → Cat, but
Cat is really a 2-category so it isn’t really reasonable to ask for this. For instance, we could try to define
a presheaf by mapping U to the category of vector bundles on U , but we only have (f ◦ g)∗ ∼= g∗ ◦ f∗,
rather than equality - so this isn’t actually a functor. Instead it’s a pseudofunctor, which we could use as
our definition (but becomes a pain given the compatibility conditions we need to carry around).

Another point of view: filtered categories. Let C be a category and p : F → C a functor. An arrow
ϕ : E → F in F is Cartesian if, for every ψ : E′ → F in F and every h : p(E′)→ p(E) with p(ϕ) ◦ h = p(ψ)
there’s a unique χ : E′ → E with ϕ ◦ χ = ψ and p(χ) = h.

Example: Take C = AffS , and F having objects given by maps E → U with U ∈ AffS and E → U a
vector bundle, and morphisms (E → U) to (F → V ) being commutative diagrams

E F

Y V

S

ϕ

f
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such that E → U ×V F is a map of vector bundles over U . Define p : F → C by mapping p(E → U) to U
and p of a diagram to f . Then a diagram as above is a Cartesian arrow in F iff it’s a Cartesian square.

Remarks: Let f : U → V be a morphism in C, F an object in F with p(F ) = V . If ϕ : E → F and
ϕ′ : E′ toF are Cartesian arrows in F are such that p(E) = p(E′) = U and p(ϕ) = p(ϕ′) = f then there
exists a unique θ : E → E′ with p(θ) = idU . We call E the pullback of F to U . (Pullbacks are unique up to
unique isomorphism).

Back to general case: If ϕ : E → F and ψ : F → G are arrows in F with ψ Cartesian, then ϕ is Cartesian
iff ψ ◦ ϕ is Cartesian. If ϕ : E → F is in F is such that p(ϕ) is an isomorphism, then ϕ is Cartesian iff it’s
an isomorphism.

Definition. We say p : F→ C is a fibered category over C if pullbacks always exist: For every morphism
f : U → V in C and every object F in F with p(F ) = V , there exists a Cartesian arrow ϕ : E → F with
p(ϕ) = f (which includes p(E) = U). (So the example above is a fibered category).

Definition: If p : F→ C is fibered, the fiber over an object U of C is the category F(U) with objects E
of F with p(E) = U , and morphisms E → E′ given by morphisms E → E′ from F such that p(E) = idU . In
our example, F (U) is the category of vector bundles over U .

In general, fibered categories over C form a 2-category. A morphism of fibered categories (i.e. a 1-
morphism) from p : F → C to p′ : F′ → C is a functor F : F → F′ such that p′ ◦ F = p, which sends
Cartesian arrows to Cartesian arrows. (Note: This equality of composition of functors is actually a equality,
not an isomorphism!). A 2-morphism between F,G : F → F′ is a natural transformation α : F → G such
that for every E ∈ F the morphism αE : F (E) → G(E) satisfies p′(αE) = idp(E). (Note p′(αE) maps from
p′(F (E)) = p(E) to p′(G(E)) = p(E) via the equalities p′ ◦ F = p = p′ ◦G).

Let p : F → C be a fibered category. A cleavage of p is a class K of arrows of F such that for all
f : U → V in C and every F in F with p(F ) = V , there exists a unique ϕ : E → F in K with ϕ Cartesian
and p(ϕ) = f . (Remark: cleavages always exist by the axiom of choice).

So let K be a cleavage. For f : U → V in C, get a functor f∗ : F(V )→ F(U): if F is an object in F(V ),
then there exists a unique ϕ : E → F as before so we can take f∗(F ) = E; and if ϕ : F → F ′ is a map
in F(V ) then by Cartesianness there exists a unique f∗(ψ) : f∗(F ) → f∗(F ′) which makes the appropriate
square commute and such that p(f∗(ψ)) = idU . Also, get isomorphisms of functors (idU )∗ ∼= idF(U) and
f ◦ g)∗ ∼= g∗ ◦ f∗, plus a bunch of compatibility conditions. This defines a contravariant pseudofunctor
C→ Cat (by U 7→ F(U) and f 7→ f∗). Conversely, a contravariant pseudofunctor C→ Cat gives a fibered
category.

So, have defined fibered categories, and mentioned that they corresponded to pseudo-functors and thus
to “presheaves of categories”. Now can move on to stacks, which will be “sheaves of categories”. How does
the sheaf condition translate? Let p : F → C be a fibered category where C is a site. (The only examples
we really care about are AffS,top). Fix a cleavage of p. Let U = {fi : Ui → U} be a covering family in C.
The category of descent data for U , DD(U), is:

• The objects of DD(U) is the collection of families (Ei, ϕij)i,j∈I with Ei ∈ F(Ui) and ϕij : π∗iEi
∼= π∗jEj

in F(Ui×UUj), satisfying the cocycle condition (for Ei, Ej , Ek we pull back ϕij , ϕjk, ϕik to Ui×Uj×Uk
and demand compatibility there once we put in all of the canonical isomorphisms).

• Morphisms between (Ei, ϕij) and (E′i, ϕ
′
ij) are families (ψi) with ψi : Ei → E′i that are compatible

with the ϕij and ϕ′ij in the obvious way.

Given this definition, we have a functor F(U)→ DD(U) via E 7→ (π∗iE, id) for any cover U of U .
What’s a stack? We say p : F → C is a prestack (respectively a stack) if, for every covering family U

of U , the functor F(U) → DD(U) is fully faithful (respectively an equivalence of categories). Example: U
mapping to vector bundles over U is a fppf stack.
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3 Lecture - 09/18/2014
Last time: defined filtered category p : F → C; talked about how it corresponded to a pseudo-functor
Cop → Cat, which is what we want to call a presheaf of categories in C. If C is a site can make sense of the
sheaf axioms, and call the resulting presheaves a stack. Formalize this by defining, for each covering family
U of U , a category of descent data DD(U), and a functor F(U)→ DD(U). (If F is a presheaf of sets, then
DD(U) is the set of tuples (si) with si ∈ F(Ui) such that si|Ui×UUj = sj |Ui×Uj ). Then p : F→ C is a prestack
of categories if F(U)→ DD(U) is fully faithful for all U , and a stack of categories if F(U)→ DD(U) is an
equivalence of categories for all U . (For presheaves of sets, these conditions are exactly “separated presheaf”
and “presheaf”).

Definition: A category is called:

• A set (or discrete) if the only morphisms are identity morphisms.

• A groupoid if every morphism is an isomorphism.

• An equivalence relation if it’s a groupoid, and if Hom(A,B) ≤ 1 for all A,B (equivalently, if it’s
equivalent to a set).

Definition: We say that a fibered category F → C is fibered in sets/equivalence relations/groupoids if all of
its fibers are of the appropriate type of category. Exercise: F → C is fibered in groupoids iff every map in
F is Cartesian.

Definition: We say that F→ C is a (pre)stack in sets/equivalence relations/groupoids if it’s a (pre)stack
and fibered in sets/equivalence relations/groupoids. Convention for the rest of the semester: “(pre)stacks”
are always in groupoids. (Remark: from above, prestacks/stacks in sets are just separated presheaves /
sheaves).

Remarks: Have 2-categories Prestack(C) and Stack(C) of (pre)stacks in groupoids lying over C. Have
a fully faithful functor Sh(C)→ Stack(C), by identifying sheaf with the corresponding stack in sets, which
has essential image equal to stacks in equivalence relations. Have 2-Yoneda lemma: for any of our 4 usual
topologies top, we get a fully faithful embedding

SchS → Sh(AffS,top)→ Stacks(AffS,top).

What’s the stack corresponding to a scheme X/S? Well, the sheaf corresponding to it was X given by
U 7→ Hom(U,X) = X(U). Then this becomes a stack by seeing it as a pseudofunctor; but what’s the
corresponding fibered category F → AffS? Well, the objects of F are pairs (U, x) where U is an affine
scheme and x ∈ X(U) = Hom(U,X) is a map of schemes U → X, i.e. the morphisms f : U → X, i.e.
affine X-schemes. So the objects of F are the objects of AffX . What are the maps? Given f : U → X
and g : V → X in this category, an F-morphism between them must be a S-map h : U → V together with
ϕ : f → h∗(g), which has to be idf because the stack is fibered in sets. But this means f = h∗(g) so f = g◦h.
So an F-morphism between U → X and V → X is the same as an X-morphism. Thus we conclude that the
stack coming from X is the fibered category F = AffX → AffS with the obvious map.

Another way to formulate the stack condition: Let p : F → C be a fibered category, and have objects
U ∈ C, E,F ∈ F(U), get a presheaf Hom(E,F ) : CU → Set (where CU is the category of objects of C
over U ...), by f : V → U mapping to HomF(V )(f

∗E, f∗F ). Fact: F → C is a prestack iff for all U,E, F ,
Hom(E,F ) is a sheaf. Moreover, F→ C is a stack iff every descent datum is effective. (So prestack means
“morphisms are defined locally” and stack means “morphisms and objects are defined locally”).

Examples: If Φ : C → Cat is a (pre)stack in categories, then Φiso : C → Grpd is a (pre)stack of
groupoids, where Φiso(U) is the subcategory of Φ(U) obtained by throwing away all non-isomorphisms.
Another example: C→ Cat given by U 7→ Sh(CU ) is a stack. Also, can reformulate faithfully flat descent
as saying the pseudofunctor QCoh mapping U to quasicoherent sheaves on U is a fpqc stack over AffS .
Consequence: the map taking U to the category of affine morphisms V → U is a fpqc stack. Also, U
mapping to the category of pairs (X → U,L) where X → U is a projective morphism and L is a relatively
ample OX -module is a fpqc stack.
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G-bundles. Fix a field k, all schemes will be over k. Let G be an affine algebraic group over k (which
we might as well assume is smooth because it will be in applications). Definition: If X is a scheme, a vector
bundle over X is a OX -module that is locally free of finite type (locally could equivalently be for Zariski,
etale, fppf, and maybe even fpqc topologies). Then have the category of vector bundles over X, Vect(X),
an exact tensor category. Remember the 4 equivalent definitions of a G-bundle over a scheme X:

1. A sheaf P on AffX,fppf which is a torsor under G (the sheaf U 7→ G(U)). This means you have a right
action P ×G→ P such that P ×G→ P ×P (given by (x, g) 7→ (x, xg)) is an isomorphism.

2. A scheme X̃ → X with a right action of G compatible with the trivial action on X, such that there
exists a morphism Y → X that’s faithfully flat of finite presentation, such that Ỹ = Y ×X X̃ ∼= Y ×G
as a Y -scheme with axiom of G.

3. X̃ → X is fppf and there’s a right action of G on X̃ with G× X̃ ∼= X̃ × X̃ via (g, x) 7→ (x, xg).

4. Tannakian description: An exact tensort functor RepG → Vect(X).

Remark: (3) says that Y from (2) can be taken to be X̃, and that P is representable by X̃ in (1). Another
remark: If G is smooth then every G-bundle is étale-locally trivial. If G = GLn then every G-bundle is
Zariski-locally trivial.

Construction: IF G̃→ X is a G-bundle and if ZS is a scheme with an action of G, then the fiber bundle
over X associated to Z and P is ZP = (X̃ × Z)/G if this exists as a scheme. (Could introduce this more
generally as an algebraic space). Example: this exists as a scheme if Z is affine, or if Z is quasi-projective
with a G-equivariant ample line bundle. Applying this to Z = An with the usual action of GLn gives
that the category of GLn-bundles on X is equivalent to the category of rank-n vector bundles on X, with
isomorphisms. (A morphism of G-bundles is automatically an isomorphism because of local triviality, so we
need to restrict to only isomorphisms in the category of vector bundles). The inverse functor takes a vector
bundle E to Isom(OnX , E).

More fppf stacks on AffS .

• Vectn given by V mapping to rank n vector bundles with isomorphisms. (Or even Vect).

• The classifying stack BG = [pt/G] of G, which maps U to G-bundles on U . (Above, said BGLn ∼=
Vectison ). This is “the quotient in the category of stacks of the point Spec k by the action of G”.

• More generally: If X is a S-scheme with an action of G, define [X/G] as a presheaf in groupoids defined
by letting [X/G](U) be the category of diagrams U ← P → X with P → U a G-bundle and P → X
G-equivariant, and homomorphisms are G-equivariant maps P → P ′ over U ×X. This is a stack, and
if the action of G on X is free and X/G is a scheme then [X/G] is represented by X/G.

Notation for our several types of quotients: X/G is quotient in category of schemes (which may or may not
exist as scheme), [X/G] is quotient in category of stacks.

Proof that [X/G] is a stack: Let G − ShX be the pseudofunctor mapping U to the G-equivariant fppf
sheaves on AffX×U with isomorphisms. (i.e. sheaves P on AffX×U,fppf with an action of G such that P → X
is G-equivariant). Then:

1. G− ShX is a stack (by descent...).

2. The map [X/G]→ G− ShX given by taking U ← P → X to the map P → X ×U is a 1-morphism of
pseudofunctors. This is fully-faithful, so [X/G] is a prestack.

3. Remains to show descent is effective in [X/G]. Given a descent datum for [X/G] and (Ui → U), then
it glues to an object P → X × U in G-ShX . We just need to check that P → U is a G-bundle; but
this is an fppf local condition we know on an open cover.

4. Finally, if the action is free and X/G is a scheme, then X → X/G is a G-bundle. This gives a point of
[X/G](X/G), i.e. a map X/G→ [X/G], which is an isomorphism.
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4 Lecture - 09/23/2014
Examples of stacks. Last time gave a specific case of a mapping stack: let k be a field, G an affine algebraic
group over k, X/k a scheme. Then BunG,X , given by mapping U to G-bundles on X × U , is an fppf stack.

Mapping stacks in general: Fix a base scheme S. Let Y be a stack on Affs,top and X an S-scheme.
Define Maps(X,Y) as a presheaf in groupoids, sending U ∈ AffS to HomStacks(S,top)(X × U,Y). If X is
affine this equals Y(X × U) (but we can’t write this in general like this... yet). Then this is a stack. For
instance, BunG,x = Maps(X,BG).

This follows from: Lemma: if Y is a stack on AffS,top then Yext : SchS → Grpd defined by

X 7→ HomSt(AffS,top)(X,Y)

is a stack on SchS,top. So we get an equivalence of 2-categories

St(AffS,top) ∼= St(SchS,top).

Later on we’ll just identify Y and Yext and then identify these two categories. (This justifies writing Y(X×U)
if X is a non-affine scheme above).

Proof: Step 1 - prove Yext is a prestack. Fix an object X in SchS and let F,G ∈ Yext(X) = Hom(X,Y).
We get a presheaf Isom(F,G) on SchX,top taking an X-scheme F : U → X to the set of natural transfor-
mations f∗F → f∗G (since Y is a groupoid, all natural transformations are actually isomorphisms). As a
fibered category over AffS , X is just AffX . So we have F,G : AffX → Y compatible with the natural maps
AffX ,Y → AffS , with f∗F = F |AffU and similarly for G.

Then Yext is a prestack iff Isom(F,G) is a sheaf for all X,F,G as above. Let {fi : Yi → Y } is a
covering family on SchX,top. So suppose ϕ,ψ ∈ Isom(F,G)(Y ) are such that f∗i ϕ = f∗i ψ for all i. Fix some
T ∈ AffY . If T → Y factors through Yi → Y then ϕ(T ) = ψ(Y ) : F (T )→ G(T ) in Y(T ). Now, take general
T ; let Ti = T ×Y Yi. Then {gi : Ti → T} is a covering family, and ϕ(Ti) = ψ(Ti) for all i. But Y is a stack
so ϕ(T ) = ψ(T ).

So have proven Isom(F,G) is a presheaf. Now take a compatible family

{ϕi : F |AffYi
→ G|AffYi

}

(i.e. ϕi ∈ Isom(F,G)(Yi)) such that ϕi|Yi×Y Yj = ϕj |Yi×Y Yj . Let T ∈ AffY . We want to define ϕ(T ) :
F (T ) → G(T ), a morphism of Y(T ); let Ti = T ×Y Yi. Then Ti → T is a covering, and we have ϕ(Ti) :
F (Ti)→ G(Ti) such that the pullbacks agre on Ti ×T Tj . Since Y is a stack, this gives a ϕ(T ).

Step 2 - prove Yext is a stack, i.e. descent data are effective. Let {Xi → X} be a covering family in
SchS,top. For all i ∈ I suppose we have

Fi ∈ Yext(Xi) = HomSttop(S)(Xi,Y)

and for all i, j we have
ϕij : Fi|AffXi×Xj

∼= Fj |AffXi×Xj

satisfying the cocycle condition. We want F : AffX → Y, i.e. F ∈ Yext(X), such that F |AffXi
isoFi. But if

T is an object in AffX , get F (T ) an object in Y(T ) by gluing the Fi(T ×X Xi). Same for morphisms. QED
Next: Fiber products of stacks. Let C be a site, and St(C) the category of stacks (of groupoids) over

C. Then this category has all 2-projective limits and all 2-inductive limits; in principle could do these by
calculating these in the category of prestacks and then stackifying (but hopefully not). Will describe fiber
products; let F ,F ′,G be categories, and let f : F → G and f ′ : F ′ → G be 1-morphisms. Then F ×G F ′ is
defined in the following way. For U ∈ C, the objects of (F ×G F ′)(U) are defined as tuples (E,E′, ϕ) where
E ∈ F(U), E′ ∈ F ′(U), and ϕ : f(E′) ∼= f ′(E′) in G(U). Morphisms (E,E′, ϕ) → (F, F ′, ψ) are pairs of
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maps a : E → F in F(U) and a′ : E′ → F ′ in F ′(U) such that the obvious diagram commutes:

f(E) f ′(E′)

f(F ) f ′(F ′)

ϕ

f(a) f ′(a′)

ψ

.

Remarks: This is a stack if F ,F ′,G are (exercise: trace through the definition to verify this). Also, if F ,F ′
are fibered in sets (i.e. presheaves of sets, not just groupoids) then so is F ×G F ′. Warning: the square

F ×G F ′ F

F ′ G

is only commutative up to natural isomorphism! So to write a UMP we need to have some sort of naturality
condition.

Example: Let p : F → C be as before. Then U, V ∈ C give U, V : Cop → Set; fix α : U → F and
β : V → F , i.e. a` ∈ F(U) and β¬F(V ). We want to calculate U ×F V . This is a presheaf of sets on C,
and sends T ∈ C to triples (f, g, ϕ) where f : T → U , g : T → V , and ϕ : f∗(a) ∼= g∗(b) is a morphism in
F(T ). If U = V then U ×F U |CU

= Isom(α, β). Now look at the 2-fiber product

(U × V )×F2 F F

U × V F2

∆F

(α,β)

where all unspecified products are over the final objects. Now, ((U × V )×F2 F)(T ) turns out to only have
identity morphisms, so this stack is a presheaf of sets. In fact we have an isomorphism (U × V ) ×F2 F ∼=
U ×F V . If U = V and we restrict to CU then we get Isom(α, β) ∼= U ×F2 F|CU

.
Schematic maps: Let S be a scheme, C = AffS,top. Definition: let X ,Y be stacks on AffS,top. A

1-morphism F : X → Y is called schematic if, for all Y ∈ SchS and all morphisms Y → Y, the morphism
Y ×Y X → Y is a morphism of schemes (since Y ×Y X is a scheme!).

Definition: If (P) is a property of morphisms of schemes that is stable by base change and top-local, we
say F : X → Y is schematic and has property (P) if

1. F is schematic

2. For all Y in SchS , Y ×Y X → Y has (P).

Examples of such (P): smooth, unramified, étale, smooth surjective, closed/open/locally closed immersion,
quasi-compact, locally of finite type/presentation, separated, ...

Definition: An algebraic stack or Artin stack over S is an fppf stack X on AffS such that:

1. The diagonal ∆X : X → X × X is schematic, separated, quasi-compact. (Note: sometimes algebraic
stacks are defined without the latter two conditions on the diagonal, but they get added in as hypotheses
in most theorems).

2. There exists an S-scheme X and a smooth surjective map X → X (called a presentation of the stack).

Note: We’ll see that (1) implies that every map X → X , with X a scheme, is schematic.
We say X is a Deligne-Mumford stack if it is algebraic and has an étale presentation. Remark: Let

X ∈ St(AffS,fppf). The following are equivalent:
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1. ∆X : X → X ×X is schematic.

2. For all U ∈ AffS and all x, y ∈ X (U), the fppf sheaf Isom(x, y) on AffU is representable by a scheme.

3. For all U ∈ AffS and all x ∈ X (U), the map x : U → X is schematic.

4. For all X ∈ SchS , every x : X → X is schematic.

Proof: All rests on Isom(x, y) ∼= U ×X 2 X|AffU .
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5 Lecture - 09/25/2014
Let S be a scheme; we take the convention that a “stack” on AffS is always with the fppf topology unless
otherwise specified. Also, remark that last time we used the convention that un-adorned products were over
the final object of St(S), which is just S itself viewed as a stack.

Definition: A stack X over S (i.e. over AffS) is algebraic stack (Deligne-Mumford stack, respectively) if:

1. X → X ×X is schematic, separated, and quasi-compact.

2. There exists an S-scheme X and a map X → X that’s smooth and surjective (étale surjective, respec-
tively).

Lemma: (a) If X → Y is a schematic (+ some other assumptions?) map of sheaves of groupoids, and Y
is an algebraic (or D-M) stack, then so is X .
(b) If X → Y and X ′ → Y are maps of stacks with X ,X ′,Y algebraic (or D-M) stacks, then so is X ×Y X ′.

Proof: (a) ??? (b) To prove (2) take presentations of each thing and take lots of base changes - reduce
to the case X = X and X ′ = X ′, etc... For (1) have some base-change diagram with the diagonal map on
the top and Z → S for a scheme Z...

Remark: Condition (2) implies that ∆X in (1) is of finite type.
Examples of algebraic stacks. Let k be a field and G a linear algebraic group over k (which includes

the condition that G is smooth). First of all, recall we had a stack BG = [·/G] where BG(S) is the set of
G-bundles over S, which is Hom(S,BG). Then BG is an algebraic stack.

Proof: need to show that BG→ BG×BG is schematic, etc. Long computation........
Now, [Z/G]. Let Z be a k-scheme with a right action of G. We let [Z/G](S) be the set of pairs of

G-bundles X̃ → X with G-equivariant maps α : X̃ → G. Have morphism π : [Z/G]→ BG by (X̃, α) 7→ X̃.
Given X ∈ Schk with a morphism X → BG (which amounts to a G-bundle πX : X̃ → X), what is

[Z/G] ×BG X? Well, should be (Z × X̃)/G; once we expect this we simply need to check that these are
equal. In particular, if Z is separated and quasicompact, then [Z/G] is algebraic.

Our main example of algebraic stacks; BunGLn,X = V ectn,X , taking S to the category of rank-n vector
bundle on S ×X, with isomorphisms as morphisms. This is an algebraic stack if X is projective. (Remark:
What if X is not projective? Well can look at X = A1, and find BunGLn,A1(Spec k) is the category of free
k[t]-modules of rank n, and if x corresponds to k[t]n then Isom(x, x)(SpecA) is GLn(A[t]) which is too big
if n ≥ 2).
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6 Lecture - 09/30/2014
Goals: Prove a lemma from last time; give a presentation of BunGLn,X . To do this, there’s two results we’ll
be using over and over again which we’ll state but not prove:

• Let S ∈ Schk, ps : XS → X, E a coherent OXS -module. Define a presheaf on SchS by QuotE/XS/S by
mapping T → S to the set of isomorphism classes of pairs (G, ϕ) with G an OXT -module that’s flat over
OT and ϕ : EXT � G. Theorem (Grothendieck): If XS → S is projective then this is representable by
a scheme over S.

• Assume pS : XS → S is projective, let O(1) be a relatively ample line bundle on XS . Theorem (Serre):
Assume S is Noetherian, let D be a coherent OXS -module. Set E(n) = E ⊗ O(1)n. Then (i) the
RipS∗E are coherent OS-modules. (ii) There exists N such that if n ≥ N then RipS∗E(n) = 0 for
all i ≥ 1. (iii) There exists N such that if n ≥ N then p∗SpS∗E(n) → E(n) is surjective for n ≥ N .
(Remark: If RipS∗E = 0 then p∗E is a vector bundle on S. Why? Well, it’s a coherent sheaf and
s 7→ dim(ES) = χ(XS , E) is locally constant on S).

Lemma (very important): Let S ∈ Schk, pS : XS → S be flat and projective, and YS → XS be
quasi-projective. Define a presheaf of sets on SchS by

Sect(XS , YS)(T ) = HomXT (XT , YT ) = HomXS (XT , YS)

where XT = XS ×S T and YT = YS ×S T . Then Sect(XS , YS) is a scheme.
Remark: If S = Spec k, XS = X, YS = X × Y , then

Sect(XS , YS)(T ) = HomX×T (X × T,X × Y × T ) = Hom(X × T, Y ) = Maps(X,Y )(T ),

so Sect is some relative version of the mapping stack.
Proof: (0) If Y1,S , Y2,S , Y3,S are quasiprojective over XS and we have XS-morphisms Y1,S → Y2,S ← Y3,S ,

then
Sect(XS , Y1,S ×Y2,S

Y3,S) = Sect(XS , Y1,S)×Y2,S
Sect(XS , Y3,S).

This is immediate from the definition.
(1) Case where YS = P(E), E a vector bundle over XS . In this case

Sect(XS ,P(E))(T ) = HomXT (XT ,P(EXT )) = {(L, α)}/∼

where L runs over line bundles on XT and α : L → EXT is OXT -linear and condition (*) holds: For all
Z → XT , αZ : LZ → EZ is injective (equivalently, EXT /L is flat over OXT , or also equivalently EXT /L is a
vector bundle over XT ).

Now: Have Sect(XS ,P(E))(T ) → QuotE/XS/S(T ) given by (L, α) 7→ (EXT � EXT /L). Want to prove
that this is a schematic open immersion. The image of this is cut out by two conditions on ϕ : EXT � G:
namely

• (a) G is OXT -flat (not just OT -flat), i.e. G is a vector bundle.

• (b) rankG = rank E − 1.

Let Q(a) and Q(a, b) be the subsets cut out by these things; want to show both have schematic open
embeddings into QuotE/XS/S . For the first one, want to show that for T → S, P = Q(a) ×Quot T → T is
an open immersion; but P (T ′ → T ) is ∗ if GXT ′ is OXT ′ -flat, and ∅ otherwise. Let U ⊆ XT be the (open)
locus of flatness of GXT ; then P is representable by T \ pT [XT \ U ]. Remains to show Q(a, b) ↪→ Q(a) is a
schematic open and closed embedding; this follows because the rank of a vector bundle is locally constant.

(2) If YS ↪→ ZS is an open embedding of XS-schemes, then Sect(XS , YS)→ Sect(XS , ZS) is a schematic
open embedding.
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Proof: Let T → S, let α : XT → ZS be in Sect(XS , ZS)(T ) = HomXS (XT , ZS). Let P = Sect(XS , YS)×Sect(XS ,ZS)

T with the product via α. This is a presheaf on SchT , and P (T ′ → T ) is ∗ if XT ′ → XT → ZS has image
in YS and ∅ otherwise. Let UT = α−1[YS ] ↪→ XT (an open subscheme). Then XT ′ → XT → ZS has image
in YS iff XT ′ → XT has image in YT iff T ′ → T has image in T \ pT [XT \ UT ], which is open because pT is
proper. So P → T is representable by T − pT [XT \ UT ]→ T .

(3) If YS ↪→ ZS is a closed embedding of XS-schemes, then Sect(XS , YS)→ Sect(XS , ZS) is a schematic
closed immersion. (This will finish the proof).

Proof: Let T → S, let α : XT → ZS be in Sect(XS , ZS)(T ) = HomXS (XT , ZS). Let P = Sect(XS , YS)×Sect(XS ,ZS)

T with the product via α. This is a presheaf on SchT , and P (T ′ → T ) is ∗ ifXT ′ → XT → ZS has image in YS
and ∅ otherwise. Let UT = α−1[YS ] ↪→ XT (an open subscheme). Set WT = α−1[YS ], a closed subscheme of
XT . Then XT ′ → ZS has image in YS iff XT ′ → XT has image in WT . So P (T ′ → T ) = Sect(XT ,WT )(T ′).

All of that is identical as above, but at this point we need to modify the argument; is Sect(XT ,WT )(T ′)
representable by a closed subscheme of T? If XT is affine, then WT = {0} ×An XT where 0 → An is the
zero section; want to generalize this. Well, WT ↪→ XT is closed so let J ⊆ OXT be ideal of definition.
. Let O(1) be a relatively (for XT → T ) ample line bundle. If n � 0 then p∗T pT∗J (n) � J (n) and
p∗T pT∗OXT (n) � OXT (n) and pT∗OXT (n) is a vector bundle.

Want a vector bundle E on XT and a section α of E such that WT = XT ×E XT . If T = Spec k choose
s1, . . . , sm ∈ Γ(XT ,J (n)) generating J (n). Take E = OX(n)m and α = (s1, . . . , sN ). If T is not, exercise
(easier version: Assume T quasiprojective, use ample line bundle on XT ). On top of this taking n big enough
can assume RipT∗E = 0 for i ≥ 1. Now we reduce to step 4.

(4) Let E → XS be a vector bundle. Then Sect(XS , E) is representable by a scheme, and Sect(XS , XS)→
Sect(XS , E) (coming from the 0-section) is a schematic closed embedding.

Remark: This is sufficient to finish (3) because Sect(XT ,WT ) → Sect(XT , XT ) = T is the pullback of
T = Sect(XT , XT )→ Sect(XT , E) via α : XT → E .

Proof: This is true in general but much easier if we assume RipS∗E = 0 for all i ≥ 1 (which we can do by
the end of (3)). I want a coherent sheaf F over S such that for all T → S, Γ(XT , EXT ) = HomOT (FT ,OT ).
(Why? Then Sect(XS , E) is representable by SpecS(SymF), which has T -points equal to OT -algebra maps
SymF → OT , which equal to HomOT (F ,OT )).

How do we get this F? Take F = (pS∗E)∨. This F works by flat base change and Serre duality: if we
have f : T → S then Lf∗RpS∗E = RpT∗EXT but this reduces to ps∗E = pT∗EXT (in particular flatness gives
Lf∗ = f∗, and our assumption RipS∗E = 0 for i > 0 gives the rest). Without the assumption on Ri still
works for

F = H0(RpS∗(E∨ ⊗KXS/S))

and use Grothendieck duality. Note the map S = Sect(XS , XS)→ Sect(XS , E) coming from the zero section
XS → E is also the map induced by SymF � Sym0 F = OS .
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7 Lecture - 10/02/2014
Remember: if Y is a stack and X is a scheme (over a field k) then Maps(X,Y) is the stack

S 7→ Hom(X × S,Y).

The reason we care is BunG,X = Maps(X,BG).
Cor 1: Let Y1 → Y2 be a schematic quasiprojective morphism of stacks. Then the induced map

Maps(X,Y1)→Maps(X,Y2) is schematic.
Cor 2: If G1 → G2 is an injective map between linear algebraic groups, then for any X, BunG1,X →

BunG2,X .
Cor 3: If BunGLn,X is algebraic for all n, then BunG,X is algebraic for any linear algebraic group G.
Corollary 2 implies Corollary 3 immediately. To see Corollary 1 implies Corollary 2, need that BG1 →

BG2 is schematic and quasiprojective. Take S ∈ Schk, S → BG2 corresponding to G2-bundle S̃ → S. Then
can calculate

BG1 ×BG2 S = (G2/G1 × S̃)/G2,

which is a scheme, and the map to S is quasiprojective.
Proof of Corollary 1: Let Y1 → Y2 be schematic quasiprojective. Let S ∈ Schk, let X × S → Y2 be an

S-point of Maps(X,Y2). Let
ZS = (X × S)×Y2 Y1 → X × S

Then
(Maps(X,Y1)×Maps(X,Y2) S)(T )

is the set of maps X × T → Y1 such that

X × T Y1

S ×X Y2

commutes. But this is Hom(X × T,ZS) = Sect(X × S,ZS)(T ), and we know this Sect is representable by a
scheme.

Goal: to show that if X is projective then BunGLn,X is an algebraic stack; missing the most important
part, the presentation. By definition

BunGLn,X(S) = {rank n vector bundles on X × S}.

(Remark: Eventually we’ll be using this when X is a smooth projective curve, but don’t need that many
hypotheses for now).

Let pS : X × S → S be the projection. For all d ∈ Z and N ∈ N define a stack Ud,N by letting Ud,N (S)
be the set of E ∈ BunGLn,X(S) satisfying

1. For all i ≥ 1, RipS∗E(d) = 0.

2. p∗SpS∗E(d)→ E(d) is surjective.

3. The rank of pS∗E(d) is N .

Remark: (1) implies pS∗E(d) is a vector bundle on S, so (3) makes sense.
Claim: the obvious inclusion Ud,N → BunGLn,X is a schematic open embedding, and BunGLn,X =⋃

d,N Ud,N . The second part follows from Serre’s theorem last time. For first part, need to see that (1),(2),(3)
are open conditions. Fix S and a map S → BunGLn,X corresponding to E on X × S. Then

(Ud,N ×BunGLn,X
S)(T )
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is ∗ if EX×T ∈ Ud,N (T ) and ∅ otherwise, and need to see this is open. Take

U1 = S \
⋃
i≥1

supp(RipS∗E)

which is open in S and cuts out condition (1). Let U3 be the open closed subscheme of U1 where pS∗E(d)
has rank N , and let

U2 = U3 \ pS [X × U2 \W ]

for
W = X × U3 \ supp(Coker(p∗SpS∗E(d)→ E(d))).

Claim: Fix T → S. Claim EX×T ∈ Ud,N (T ) iff T → S factors through U2.
Proof: “if” is obvious. Only if: once you see that T → S has to factor through U1 it’s easy to get that it in

fact factors through U2 (base change, etc.) That it factors through U1 follows from semicontinuity theorems.
Now, need a presentation of Ud,N (fixed d,N). Let Yd,N (S) be the set of pairs (E , ϕ) with E free of rank

n and RipS∗E(d) = 0 for all i ≥ 1, and ϕ : ONX×S � E(d) a map inducing via adjunction an isomorphism
ONS → pS∗E(d). Then map Yd,N → Ud,N by (E , ϕ) 7→ E .

(a) This is surjective (as a map of stacks): if E ∈ Ud,N (S) then fppf locally there’s an isomorphism
OnS → pS∗E(d), which gives by pullback ϕ : ONX×S → p∗SpS∗E(d) � E(d). Then (E , ϕ) ∈ Yd,N (S).

(b) This map is schematic smooth and surjective. Let E ∈ Ud,N (S). Then (Yd,N ×Ud,N S)(T ) is he set of
ϕ : ONX×T → EX×T (d) such that the induced map ONT → pT∗EX×T (d) (from adjunction) is an isomorphism.
This is equal to the set of isomorphisms ONT → pT∗EX×T (d), and thus to Isom(OnS , pS∗E(d))(T ), which is a
GLn-bundle on S.

Finally, want to show Yd,N is a scheme. Let ZN (S) be the set of pairs (G, ϕ) with ϕ : ONX×S � G and G
locally free of rank N . Then Yd,N → ZN given by (E , ϕ) 7→ (E(d), ϕ) is a schematic open immersion (just as
for Ud,N → BunGLn,X). Then, claim that the map ZN (S)→ QuotOnX/X/ Spec k(S) given by (G, ϕ) 7→ (G, ϕ)

is a schematic open immersion. Why? If (G, ϕ) is in Quot then ϕ : ONX×S � G with G a coherent OX×S-
module, flat over OS . The conditions for being in ZN is that G is flat over OX×S and of rank n; both open
conditions. Since we know Quot is a scheme, we’re done.

Properties of stacks and morphisms (over a base scheme S). Let (P) be a property of morphisms of
schemes f : X → Y that’s local for the smooth topology, i.e. for every Cartesian square

X ′ X

Y ′ Y

f

with Y ′ → Y smooth surjective, and X ′′ → X ′ is smooth surjective, and f ′′ : X ′′ → Y ′ is the map induced
by the UMP, then f has (P) iff f ′ has (P). Examples: surjective, universally open, locally of finite type /
presentation, flat, smooth. Non-example: étale.

Definition: Say a map f : X → Y of algebraic stacks has property (P) if there exists a commutative
diagram (iff for every commutative diagram)

X ′′ X ′ X

Y Y
f ′′

f

with the left square commutative and Y → Y, X ′′ → X ′ are presentations, such that f ′′ has (P). Say X ′ has
(P) if X → S has (P).

Also, let (P) be a property of schemes that’s local for the smooth topology, i.e. if X ′ → X is smooth
surjective then X ′ has (P) iff X has (P). Examples: locally Noetherian, reduced, regular, of characteristic
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p, ... We say an algebraic stack X has (P) if it has a presentation (iff for all presentations) X → X with X
having (P).

Definition: We say X is quasi-compact if there exists a presentation X → X with X quasicompact. Define
Noetherian as locally Noetherian + quasicompact, and finite type = locally of finite type + quasi-compact.

By looking at points: Theorem: Let f : X → Y be a morphism of algebraic stacks. Then:
(i) f is locally of finite type iff for every filtered projective system (Ui)i∈I in AffS , the following square

is 2-Cartesian.
lim−→X (Ui) X (lim←−Ui)

lim−→Y(Ui) Y(lim←−Ui)

f f

In particular if Y = S this says lim−→X (Ui) ∼= X (lim←−Ui).
(ii) If f is locally of finite presentation then f is smooth iff it is formally smooth, i.e. for all U = SpecA ∈

AffS with A local strictly Henselian, for all I ⊆ A with I2 = 0 and all commutative diagrams

Spec(A0) Y

U X

f

there exists x : U → Y making the diagram commute.
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8 Lecture - 10/07/2014
Today talk about how to define properties of stacks and which are satisfied by the stacks we’ve seen. To
define dimension: let X be an algebraic stack over S. We define the points of S as the set

|X | =

 ∐
SpecK→S

X (SpecK)

 /∼

where the disjoint union runs over maps from fields K, and the equivalence relation is defined by (x′,K ′) ∼
(x′′,K ′′) if there exists some K with K ′,K ′′ ↪→ K and SpecK → S through which x′, x′′ become equivalent.

Let f : X → X be a presentation of X . If x ∈ |X| (so x : SpecK → X ), then we define the dimension at
the point x as

dimx(X ) = dimX − dim(X ×X SpecK),

i.e. the dimension dimX minus the relative dimension of f at the point (since this base change of f is a map
of schemes). Need to prove this is well-defined, etc. But even then this is difficult to use - need an explicit
presentation of the stack (which we were very far from having, e.g. for BunG; for that we first reduced to
BunGLn and then used an open cover...)

In practice, to calculate dimx(X ) (at least when X is smooth) we use the tangent complex. For this, can
consider the lifts of x : SpecK → X to SpecK[ε]; the set of all such lifts is the fiber of X (SpecK[ε])→ SpecK
at x, which is a groupoid XX ,x in X (SpecK[ε]). This has extra structure:

Definition: A category in K-vector spaces is a groupoid C with a functor + : C ×C → C and functors
λ : C→ C for every λ ∈ C such that:

• (C,+) is symmetric monoidal (i.e. addition is commutative)

• For all C, C · − : C→ C is an equivalence of categories

• A bunch of compatibilities for the rest of the vector space axioms for λ.

Example: Let d : C−1 → C0 be a 2-step complex of K-vector spaces. Define a category C with objects C0

and morphisms x→ y given by f ∈ C−1 such that df = x− y. This is a category in K-vector spaces.
Fact (Deligne): For any C in the definition, if for every X ∈ C the commutativity constraint X + X ∼=

X +X is idX+X , then C is equivalent to a category as in the example.
Back to stacks: If CX ,x is what we defined above, it’s a category in K-vector spaces, satisfying the

condition in the above fact. Thus it corresponds to a complex C−1 → C0, and H0(C·) is the set of
isomorphism classes of objects in the category, and H−1 is the automorphism group of the trivial lift.

Theorem: If X is smooth at x, then dimx X = dimH0(C·)− dimH−1(C·).
Examples: Spec k is our base scheme, and G is a linear algebraic group.
(1)BG: Spec k → BG is a presentation, BG is locally of finite type (check the conditionBG(Spec lim−→Ai) =

lim−→BG(SpecAi), follows from something in EGA). In fact it’s finite type and smooth, so dimBG =
dim(Spec k) − reldim(f) = − dimG. (Remark |BG| is just one point). This implies BG is not Deligne-
Mumford, since D-M stacks must have nonnegative dimension.

(2) BunG,X (for X projective, so BunG,X is algebraic). It’s locally finite type, but not finite type in
general (e.g. consider BunGL2,X for X a smooth projective curve, which splits up as an infinite disjoint
union indexed by degree). Formally: Proposition 1: For all n � 0, there’s a connected k-variety Y and
a map Y → BunGL2,X and y0, y1 ∈ Y (k) such that y0 7→ OX ⊕ OX and y1 7→ OX(n) ⊕ OX(−n) (in
Bun

(0)
GL2,X

(Spec k), where the 0 means degree 0). Proof of this: Y the affine space corresponding tok-vector
space ExtT 1(OX(n),OX(−n)). Then define Y → BunGL2,X by mapping a SES

0→ OX(−n)→ E → OXn)→ 0

to E . Want to see that F = OX ⊕ OX is an extension of OX(n) by OX(−n). By Serre’s theorem, if
n� 0 then F(n) is generated by global sections (actually n ≥ 1 works by ampleness of OX(1)) so we have
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an injective map OX → F(n) (choosing section which is nowhere zero; exercise why “generated by global
sections”) gives this. Then L = F(n)/OX is a line bundle, and we have

0→ OX(−n)→ F → L(−n)→ 0.

Identify L(−n); note we have OX = detF = OX(−n)⊗ L(−n) so L(−n) ∼= OX(n).
Proposition 2: If Y → BunGL2,X is a representation such that, for all n there’s yn ∈ Y (Spec k) with
y − n 7→ OX(n) ⊕ OX(−n) then Y cannot be of finite type. Proof: Assume we have such a Y . Then
Y → BunGL2,X corresponds to a rank 2 vector bundle E on Y ×X, and yn 7→ OX(n)⊕OX(−n) means that
E|yn×X ∼= OX(n) ⊕ OX(−n). If Y were Noetherian then by Serre’s theorem there would be N ∈ N with
E(N)|y×X generated by global sections for all points y of Y . But E(N)|yN+1×X

∼= OX(−1) ⊕OX(2N + 1),
contradiction.

Theorem: (i) If X is a curve, then BunG,X is smooth. (In fact, if dimX > 1 then it’s known BunG,X is
not smooth!)
(ii) If X is a smooth curve and G is reductive, then dimBunG,X = (dimG)(g − 1).

Idea of proof: (i) We want the infinitesimal lifting criterion. Let A be a strictly Henselian k-algebra,
I ⊆ A ideal with I2 = 0. May assume A/mA = k by extending k. We are given x0 ∈ BunG,X(SpecA0),
i.e. a G-bundle P on XA0 . Can we lift to a point in BunG,X(SpecA), i.e. extend to G-bundle on XA?
Since G is smooth, a G-bundle is étale locally trivial. So G-bundles on XA0 are G-bundles on X, where
G = ResA0/kGA0

and G-bundles on XA are G′-bundles on X, where G = ResA/kGA. Now, have

1→ H → G′ → G → 1

where H = LieG⊗k I = LieG′⊗A I. Now, G → Out(H) = Aut(H) as a natural adjoint action on LieG⊗kA,
and π∗(X̃) = (X̃ × G)/G′.

We have a fixed G-bundle P over X. Consider the stack Y over X, with U(U) the G′-bundles P ′ on U
together with ϕ : π∗P ′ ∼= PU . Does this have a point over X? Well, Y is a gerbe over X, i.e. has objects
locally and any two objects are locally isomorphic. What is the band of the gerbe Y? It should be a sheaf
of groups B on AffX ; so given U → X what’s B(U)? Take U ′ → U covering with x′ ∈ Y(U ′). Then
Isom(x′, x′)is a sheaf BU ′ on AffU ′ , and the two pullbacks of x′ on U ′ ×U U ′ are locally isomorphic, so this
defines gluing data on BU ′ for U ′ → U and allows us to descend BU ′ to BU on AffU , unique up to unique
isomorphism.
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9 Lecture - 10/09/2014
Goal: X/k a smooth projective curve, G/k linear algebraic group. Stated two things last time:

1. BunG,X is smooth.

2. If X is geometrically irreducible and G is reductive, then dim(BunG,X) = dim(G)(g − 1) (where g is
the genus of X).

Studied this by deforming G-bundles. Let A be a strictly Henselian k-algebra, I ⊆ A an ideal with I2 = 0,
A0 = A/I. Assume WLOG (by extending k if necessary) that A/mA = k. Want to prove the infinitesimal
lifting criterion to prove smoothness.

Last time showed BunG,X(SpecA) was the set of G′-bundles on X and BunG,X(SpecA0) was the set of
G-bundles on X, where G′ = ResA/kGA and G = ResA0/kGA0

. Have exact sequence

1→ H → G′ → G → 1

where π : G′ → G is the obvious thing. Moreover, we identified

H = Lie(G′)⊗A I = Lie(G)⊗A0 I = Lie(G)⊗k I.

Now, viewing this SES as an extension it gives a map G → Out(H) = Aut(H) (since H is abelian), which is
the adjoint representation.

So: Fix a point x ∈ BunG,X(SpecA0) corresponding to a G-bundle X̃ → X. Define stack Y/X of
local lifts of X̃ to a G′-bundle; namely Y(U) is the set of G′-bundles X̃ ′ → U together with isomorphisms
(X̃ ′ × G)/G′ ∼= X̃U . Then Y is a gerbe (i.e. lifts always exist locally, and two are locally isomorphic). Let
E = (H × X̃)/G (quotient by the diagonal action), a vector bundle over X; claim this is the band of the
gerbe.

Let x′ ∈ Y(U); so x′ corresponds to X̃ ′ → U with (X̃ ′ × G)/G′ ∼= X̃U . Then Aut(x′) is a fppf sheaf on
AffU ; what is it? Answr is that it’s E|U . To construct the map; let ϕ ∈ Aut(x′)(V ), so ϕ : X̃ ′V → X̃ ′V is a
G′-bundle automorphism such that the induced isomorphism

(X̃ ′ × G)/G′ ∼= (X̃ ′ × G)/G′

is the identity. Fix W → V and s ∈ X̃ ′(W ). Then ϕ(s) = s · g for some g ∈ G′(W ). Also (s, 1) ∼ (ϕ(s, 1)
mod G′(W ), so there exists h ∈ G′(W ) such that (sh, π(h)) = (ϕ(s), 1) = (sg, 1). So ϕ(h) = 1, so h ∈ H(W ),
and g = h−1 so g ∈ H(W ) as well. If we choose a different section t ∈ X̃ ′(W ) and write t = sa then
ϕ(t) = ϕ(s)a = sga = t(a−1ga); so (α(s, 1), h) is uniquely determined by ϕ as an element of ((X̃×H)/G)(W ).
(Note: The action of G′ on H factors through G, as H is commutative).

So: X̃ ′ has a point over a cover W of V , which gives some v ∈ E(W ). By the uniqueness, we can descend
to a section of E(V ). So we get a map Aut(ϕ)→ E|V , a map of sheaves. Can check it’s a group isomorphism
locally (since locally X̃ ′ is trivial). Hence:

• For every U → X, the set of isomorphism classes of objects of Y(U) is isomorphic to H1
fppf(U, E).

• So objects exist locally; need to know we can glue local lifts. The obstruction to lifting is an element
of H2

fppf(U, E).

But E is a vector bundle, so H2
fppf(X, E) = H2

ét(X, E) = H2(X, E) = 0 because dimX ≤ 1. So Y(X) 6= 0,
proving smoothness.

We now move on to computing the dimension. Specialize to A = k[ε], A0 = k, and x ∈ BunG,X(Spec k).
Then C = CBunG,X ,x = Y(Spec k) is a category in vector spaces over k as defined last time. So this
corresponds to a 2-step complex of vector spaces that we need to identify. But H0 is the set of objects of C
modulo isomorphisms, which is H1(X, E). For every object x′, Aut(x′) = H0(X, E), so

dimx(BunG,X) = dimH1(X, E)− dimH0(X, E) = −χ(X, E).
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So need to calculate this Euler-Poincaré characteristic. If G is reductive, Lie(G) ∼= Lie(G)∨ as a G-module,
so E ∼= E∨, so deg(E) = 0. Then Riemann-Roch tells us χ(X, E) = rank(E)(g − 1) = dim(G)(g − 1).

This finishes the generalities on stacks. Now move onto a new topic, defining Shtuka (reference: Var-
shavsky’s paper on “F -bundles”). The base scheme will be Spec k for k a field. We let G/k be a split
connected reductive algebraic group and X/k a smooth projective geometrically irreducible curve. Since
we’ve fixed G,X, write Bun for BunG,X .

Recall the Beauville-Laszlo theorem from last semester. Notation: If A is a k-algebra let DA = SpecAJtK
and D◦A = SpecA((t)). Then Vect(DA) and Vect(D◦A) are the categories of finite-type projective modules
over AJtK or A((t)), respectively.

Here we only suppose X is a smooth curve: Fix x ∈ X(k), fix ÔX,x ∼= kJtK, get DA → XA and D◦A → X◦A
where X◦ = X \ {x}. Then:

Theorem (Beauville-Laszlo): For every k-algebra A, define a functor

Bun(SpecA) = BG(XA)→ D

where D is the gluing data category consisting of triples (PX◦ ,PD, β) where PX◦ ∈ BG(X◦A), PD ∈ BG(DA),
and β : PX◦ |D◦A → PD|D◦A is an isomorphism, and the functor is given by P 7→ (P|X◦A ,P|DA , id). Then this
isomorphism is an equivalence of categories.

Level structures on Bun. Let N be a finite closed subscheme of X. Also, P◦ always denotes the trivial
G-bundle. Definition: BunN maps U to the set of pairs (P, ϕ) for P ∈ Bun(U) and ϕ : P|U×N → P◦U×N .
Define a group scheme GN : U 7→ G(U × N), which acts on the right on BunN by changing ϕ (since
GN (U) = Aut(P◦U×N )). If N ⊆M are two levels, get a map BunM → BunN ; also Bun = Bun∅.

Fact: BunM → BunN is a torsor under the linear algebraic group ker(GM → GN ), so it’s schematic
affine. In particular BunN is algebraic.
Proof: Let (P, ϕ) ∈ BunN (U). Then (BunM ×BunN U)(V ) is the set of ψ : PM×V ∼= P◦M×V such that
ψ|N×V = f∗ϕ.

Infinite level structure: Fix x ∈ X(K), and ÔX,x ∼= kJtK (which fixes DA → XA). Define Bun∞x(SpecA)
to be the set of pairs (P, ϕ) with P ∈ Bun(SpecA) and ϕ : P|DA ∼= P◦DA . Also define GJtK(SpecA) = G(AJtK)
and G((t))(SpecA) = G(A((t))). Then GJtK acts on Bun∞x as before (by changing ϕ: G(AJtK) = Aut(P◦DA)).
Also, have Bun∞x → Bun, and this is a GJtK-torsor; moreover Bun∞x = lim←−Bunnx (i.e. for N = nx).

Fact: (1) Bun∞x is a sheaf in equivalence relations (in fact, a scheme).
(2) The GJtK-action on Bun∞x extends to a G((t)) action.

Proof: (1) We have to prove that for all a ∈ Bun∞x(U), Aut(a)(U) = ida. Let (P, ϕ) ∈ Bun∞x(SpecA),
and ϕ : P → P in BG(XA) such that ψ|DK = id. Let F be the function field of X. Then BG(XA) →
BG(SpecA× SpecK) is faithful, and thus ϕ|D◦A = id (which we know) implies ϕ|Spec(A⊗F ) = id.

(2) Let (P, ϕ) ∈ Bun∞x(SpecA), g ∈ G(A((t))). Define a G-bundle P ′ on XA by applying B-L theorem
to the triple (P|X◦A ,P

◦
DA
, g ◦ ϕ). By construction get ϕ′ : P ′|DA → P◦DA ; take (P, ϕ) · g = (P ′, ϕ′).
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10 Lecture - 10/14/2014
Notation: k field, X/k smooth projective geometrically irreducible curve, G/k split connected reductive linear
algebraic group. Write Bun = BunG,X , and if N ⊆ X a finite closed subscheme, we have BunN → Bun.

Study Fq-points, in case k = Fq: Let F = k(x), so for every v ∈ |X| have Ov = ÔX,v ⊆ Fv, and surjective
map Ov � k(v) which is a finite extension of k. Define the adeles A =

∏′
v Fv with respect to the Ov’s, and

O =
∏
v Ov. Let KN be the kernel of the projection G(O)→ G(ON ) where ON =

∏
v∈N Ov.

Claim: The objects of BunN (Fq)/∼ are in bijection with G(F )\G(A)/KN .
Proof: Start by constructing the claimed bijection α. Let G ∈ BunN (Fq). Since H1(F,G) = 0, have that

G is generically trivial, so there exists U open dense and ξ ∈ G(U). Also, for all v ∈ |X| have H1(k(v), G) = 0
by Lang’s theorem, so G has a section over k(v) which lifts to a section ξv over Ov by smoothness. If v ∈ |N |
take ξv given by the fixed isomorphism ϕ : G|N → Gk. Thus for all v ∈ |X| have two sections ξ, ξvof G over
SpecFv, so there exists a unique gv ∈ G(Fv) with ξ = ξv · gv. If v ∈ |U |, then ξ is defined over SpecOv so
gv ∈ G(Ov). So g = (gv) ∈ G(A); define α(G, ϕ) = g.

Why is α injective? If α(G, ϕ) = α(G′, ϕ′) choose U, ξ, ξ′, ξv, ξ′v, gv, g′v as before. Then by assumption
there exists γ ∈ G(F ) and (hv) ∈ KN such that γgvhv = g′v for all v. We may assume γ ∈ G(U) (just shrink
U), so we may assume G|U = G′|U , ξ = ξ′ and γ = 1.

Claim: If V ⊇ U is open, if ψ : G|V ∼= G′|V is such that ϕ|U = id and ϕ(ξv) = ξ′v for all v ∈ |V | \ |U |
and ψ is compatible with ϕ,ϕ′ then for all w ∈ |X| \ |V | there exists G|W ∼= G′|W where W = V ∪ {w}
extending ψ and satisfying the same conditions. Proof: Use B-L theorem to glue ψ and the isomorphisms
G|SpecOw → G′|SpecOw coming from hw.

Why is α surjective? Let g = (gv) ∈ G(A). Can find U ⊆ X open dense such that gv ∈ G(Ov) for all
v ∈ |U |; trying to construct (G, ϕ) such that α(G, ϕ) = g. Over U take G|U = GU the trivial bundle, and
take ξ = 1 and ξv = gv for all v ∈ |U |. Extend G to larger subsets one point at a time by B-L theorem.

Now, talk about truncations. Start with truncations by degree, which appeared when we proved BunGLn

was an algebraic stack. Notation: if H is an algebraic group and H ∈ BH(S), and ϕ : H → GL(V )
is an algebraic representation of H, let Hϕ be the associated vector bundle over S (i.e. (H × V )/H).
(Remember if we let ϕ : H → H ′ be a morphism of algebraic groups get a map ϕ∗ : BH → BH ′ sending
H → (H×H ′)/H). Moreover if ϕ is a closed immersion then for all H′ ∈ bH ′(S), the isomorphism classes
of H-bundles H together with an isomorphism ϕ∗H ∼= H′ is bijective with the set of sections H′/H → S,
where H′/H = (H′ ×H ′/H)/H ′ with action (s, h) · h′ = (sh, (h′)−1h).

Fix T ⊆ B ⊆ G, (maximal torus, Borel), let Z = Z(G). Assume that Gder is simply connected (mostly
to simplify notation). Roots and coroots: have X∗(T ) ⊇ Φ ⊆ Φ+ ⊇ ∆ and X∗(T ) ⊇ Φ∨ ⊇ Φ∨+ ⊇ ∆∨ as
usual, and

ρ =
1

2

∑
α∈Φ∨+

α ∈ X∗(T ).

Have X∗+(T ) and X+
∗ (T ) the dominant things. On X∗(T ) and X∗(T ) have the Bruhat order λ1 ≤ λ2 iff

λ2 − λ1 ∈
∑
α∈Φ+ Nα. Finally, let λ1, . . . , λd be the fundamental weights of G (in X∗+(T )).

For all λ ∈ X+
∗ (T ) let λ be the corresponding irreducible representation of G. If G is a G-bundle write

Gλ = GVλ . Now fix a parabolic subgroup P ⊇ B. A P -structure on a G-bundle G is a P -bundle P with an
isomorphism (P ×G)/P ∼= G of G-bundles.

Lemma: Let G be a G-bundle on S. We have a canonical bijection between

1. Isomorphism classes of P -structures on G

2. Families of line subbundles Aλ ⊆ Gλ for λ ∈ X+
∗ (T )∩X∗(P ) such that for all λ, µ we have Aλ⊗Aµ =

Aλ+µ via the natural embedding Gλ+µ ↪→ Gλ ⊗ Gµ.

3. Collections of line subbundles Aλi ⊆ Gλi for all i such that the fundamental weight λi lives in X∗(P ),
such that the Plücker relations are satisfied: for all ki ∈ N then⊗

i

(Aλi)k ⊆
⊗
i

(Gλi)k
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is contained in G∑ kiλi .

Proof: Map from (ii)→(iii) is obvious. Map from (i)→(ii): Let P be a P -structure on G; if λ ∈ X∗+(T ) ∩
X∗(P ) the highest weight line Lλ ⊆ Vλ is stable by P . Take

Aλ = (P × Lλ)/P ↪→ (P × Vλ)/P ∼= G.

(iii)→(i): Let Aλi be as in (iii). Want to construct a section s of G/P that will give back the Aλi by our
map (i)→(ii). Claim such a map exists and is unique. Thanks to uniqueness can check the claim étale
locally on S, so we assume G is trivial. Then G/P = (G/P ) × S. So s is an S-point of G/P . We have
G/P ↪→

∏
i P(Vλi); each Aλi gives a S-point xi ∈ P(Vλi) and the family (xi) is in the image of G/P iff the

Plücker relations are satisfied.
Definition: For all µ ∈ X∗(T ) ⊗ Q, let Bun≤µN be defined by taking S to the set of (G, ϕ) ∈ BunN (S)

such that for every geometric point s of S, for every B-structure B on GX×{s}, and for every λ ∈ X∗+(T ), we
have deg(Bλ) ≤ 〈λ, µ〉.

Theorem: Bun≤µN → BunN is a schematic open immersion. Moreover, for all µ ∈ X∗(T )⊗Q, if deg(N)

is big enough, Bun≤µN is a countable disjoint union of quasi-projective schemes.
Lemma: π0(Bun) ∼= π1(G) = X∗(Z(Ĝ)) = X∗(T )/X∗(T ∩Gder).
So, if ν ∈ π1(G) get the connected component Bunv ⊆ Bun, and then Bun≤µ,νN = Bun≤µN ∩Bunν . The

second part of the theorem actually says that if deg(N)� 0 (relative to µ) then Bun≤µ,νN is a quasi-projective
scheme for all ν.

Proofs: May or may not prove lemma; very similar to proof for affine Grassmannian. For the first
part of the theorem, only have to consider Bun≤µ → Bun (the level structure doesn’t play any role). Let
G ∈ Bun(S). Then G ∈ Bun≤µ(S) iff for all geometric points s of S and all 1 ≤ i ≤ d and all B-structures B
on Gs, deg(Bλi) ≤ 〈λi, µ〉; call this condition (*). Let Ui → BunN be the substack defined by the following:
G ∈ Ui(S) iff (*) is true for the fixed i. Then Bun≤µ =

⋂
Ui, so it’s sufficient to prove Ui → Bun is a

schematic open embedding.
Fix i, let Pi ⊇ B be the maximal parabolic subgroup corresponding to λi. For every s and B as above,

Bλi only depends on (B × Pi)/B (a Pi-structure on Gs). Using the lemma, (*) becomes condition (**), that
for every s, (Gs)λi has no line subbundle of degree ≤ 〈λi, µ〉 satisfying the Plücker relations. This is an open
condition on s. If s1 → s2 is a specialization, if L ⊆ (Gs1)λi is a line subbundle, then it gives a unique
line subbundle L2 of (Gs2)λi because Grassmannians are projective. The degree conditions and the Plücker
relations are closed conditions, so L2 satisfies them if L1 does.

For the second statement (about Bun≤µN being a countable disjoint union of quasiprojective schemes):
Case G = GLn. Fix an ample line bundle O(1) on X. A B-structure on a G-bundle G ∈ BG(S) is a flag
0 = F0 ⊆ · · · ⊆ Fn = G with Fi+1/Fi a line bundle for all i. The ≤ µ condition involves bounding the
degrees of these line bundles. Serre’s theorem gives that there exists m ∈ N such that for all S and all
E ∈ Bun≤µ(S), if pS : X × S → S is the projection, then RipS∗E(m) = 0 for i ≥ 0, pS∗E(m) is a vector
bundle, and the adjunction map p∗SpS∗E(m)→ E(m) is surjective.
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11 Lecture - 10/16/2014

From last time: Fixed T ⊆ B ⊆ G and µ ∈ X∗(T ) ⊗ Q. Defined a stack Bun≤µ by letting Bun≤µ(S) be
the set of G ∈ Bun(S) such that for every geometric point s of S, every B-structure B on Gs, and every
λ ∈ X∗+(T ) we have deg(Bλ) ≤ 〈µ, λ〉.

Also, recalled we had an isomorphism π0(Bun) ∼= π1(G) = X∗(Z(Ĝ)). We let Bunv be the connected com-
ponent corresponding to v ∈ π1(G) and set Bun≤µ,v = Bun≤µ ∩Bunv and Bun≤µ,vN = BunN ⊗Bun Bun≤µ,v.

Result we were working on last time: For all µ there exists d such that if deg(N) ≥ d then Bun≤µ,vN is a
quasi-projective scheme for all v.

Proof: Case G = GLn with the standard Borel; then a B-structure on G ∈ Bun(S) is a flag 0 = F0 ⊆
F1 ⊆ · · · ⊆ Fn = G with Fi+1/Fi a line for all i. Take µ = (µ1, . . . , µn) ∈ Qn and λ = (λ1, . . . , λn) ∈ Zn
with λ1 ≥ · · · ≥ λn. Then deg(Bλ) ≤ 〈λ, µ〉 iff

k∑
i=0

deg(Fi+1/Fi)λi+1 ≤
k∑
i=0

λi+1µi+1

for all k ≤ n− 1. If we want this to be true for every λ this is equivalent to the condition

k∑
i=0

deg(Fi+1/Fi) ≤
k∑
i=0

µi+1

for every k ≤ n− 1 with equality for k = n− 1.
Fix µ ∈ X∗(T ) ⊗ Q. By Serre’s theorem, exists m such that for all S and all E ∈ Bun≤µ(S) we have

RipS∗E(m) = 0 for i ≥ 1, pS∗E(m) is a vector bundle, and p∗SpS∗E(m) → E(m) is surjective. (As usual,
pS : X × S → S is the projection and O(1) is a fixed ample line bundle). (Apparently getting that this is
true uniformly for all E is tricky and uses much more than Serre’s theorem ????)

Fix such a m. If deg(N) is big enough, then for all S and E , pS∗E(m) → pS∗EN×S(m) is injective and
stays so after base change. So we get pS∗E(m) ↪→ pS∗EN×S(m) ∼= pS∗OnN×S(m) (where this isomorphism
comes from the level structure ϕ). Let Yr be the stack defined by letting Yr(S) be pairs (α, β) such that
α : E1 ↪→ pS∗OnN×S(m) where E1 is a rank-r vector bundle and cokerα is flat over S, and β : (p∗SE1)(−m) � E2
with E2 a rank n vector bundle. Thus have a map Bun≤µN

∐
r Yr by mapping

(E , ψ) 7→
(
α : pS∗E(m) ↪→ pS∗OnN×S(m), β : (p∗SpS∗E(m))(−m) � E

)
.

Claims:

• This map Bun≤µN →
∐
Yr is a schematic open embedding.

• Yr is a projective scheme

• If v is fixed, the image of Bun≤µN lands in a finite union of Yr.

General case: Choose an injective morphism G→ GLn. This gives BunG,N → BunGLn,N which we have
seen is schematic and affine (because GLn/G is affine). Let µ ∈ X∗(T )⊗Q; then there exists µ′ ∈ X∗(TGLn)

such that Bun≤µG,N → BunGLn,N factors through Bun≤µ
′

GLn,N
.

The affine Grassmannian and the Hecke stack. Remember: A fppf sheaf of sets on Affk (what we called a
k-space last semester) is an ind-scheme if we can write X = lim−→i∈NXi with the Xi schemes and the transition
maps Xi → Xj closed immersions. We say X is of ind-finite type (or ind-affine, ind-projective) if we can
take all of the Xi’s to be of finite type (affine, projective); if this is true for one presentation X = lim−→Xi

then it’s true for all.
Notation/examples: Arc group GJtK : SpecA 7→ G(AJtK), loop group G((t)) : SpecA 7→ G(A((t))), affine

Grassmannian GrG = G((t))/GJtK. Have that GJtK is a group scheme (not of finite type in general), which
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embeds in G((t)) that’s a group ind-scheme (not of ind-finite type in general), and GrG is an ind-projective
ind-scheme. Then GJtK acts on GrG on the left in the obvious way, and last year calculated the orbits are
indexed by w ∈ X+

∗ (T ). If w ↔ Orbw and if K/k is algebraically closed extension, then

Orbw(K) = G(KJtK)twG(KJtK)/G(KJtK)

where tw = w(t) ∈ G(K((t))). Also, Orbw is a projective scheme with

Orbw =
⋃
w′≤w

Orbw′ .

How was this connected to G-bundles? Fix x ∈ X(k), identify ÔX,x ∼= kJtK, so get maps DA → XA

(where DA = SpecAJtK is the formal disc). Let X◦ = X \ {x} so D◦A = SpecA((t)). We define more stacks

Grglob
G : SpecA 7→ {(G, ϕ) : G ∈ BG(XA), ϕ : G|X◦A ∼= GX◦A},

Grloc
G : SpecA 7→ {(G, ϕ) : G ∈ BG(AA), ϕ : G|D◦A ∼= GD◦A}.

We have maps Grglob
G → Grloc

G and GrG → Grloc
G by (G, ϕ) 7→ (G|DA , ϕ|DA) and g 7→ (GDA , g), and last year

proved these were isomorphisms by the B-L theorem.
Description of Orbw in Grloc

G . If g ∈ G(A((t))) then gG(AJtK) is in Orbw(A) if ρ : G → GL(Vλ)
then for all λ ∈ X∗+(T ), we have ρ(g) ∈ t〈λ,w〉 End(AJtK ⊗ Vλ) and moreover there exists λ such that
ρ(g) /∈ t〈λ,w〉+1 End(AJtK⊗ Vλ).

Now, for all x ∈ X(S) = Hom(S,X) let ΓX ⊆ X × S be the graph of x. For I a finite set and
N ⊆ X a closed finite subscheme, let GrI be the stack with GrI(S) the set of tuples (G, (xi)i∈I , ϕ) where
G ∈ BG(X × S), xi ∈ X(S), and

ϕ : GX×S\⋃i∈I Γxi
∼= G|X×S\⋃i∈I Γxi

.

Also define a stackHeckeN,I by lettingHeckeN,I(S) be the set of tuples (G, ϕ,G′, ϕ′, (xi), ϕ) with (G, ϕ), (G′, ϕ′) ∈
BunN (S), xi ∈ X(S) \N(S), and

ϕ : GX×S\⋃i∈I Γxi
∼= G′|X×S\⋃i∈I Γxi

.

Let HeckeI = Hecke∅,I , where the ψ’s can be omitted. Note we could also have defined GrI(S) to be the
set of (G,G′, (xi), ϕ, α) where (G,G′, (xi), ϕ) ∈ HeckeI(S) and α : G′ ∼= GX×S .

We have lots of maps:

• GrI → HeckeI by (G, (xi), ϕ) 7→ (G, GX×S , (xi), ϕ)

• Two maps HeckeN,I → BunN by (G, ϕ,G′, ϕ′, (xi), ϕ) mapping to (G, ψ) and (G′, ψ).

• Maps HeckeI ,Gri → XI by mapping things to the tuple (xi) (compatible with the map GrI →
HeckeI).

• HeckeM,I → HeckeN,I |(X−M)I if M ⊇ N .

Note
HeckeN,I = BunN ×BunHeckeI |(X−N)I

so we’ll usually work with just HeckeI .
These GrI ’s and HecekN,I ’s are not algebraic stacks in general, they’re ind-algebraic stacks. But we’ll

deal with them by truncation just like GrG.
Let ω = (ωi) ∈ X+

∗ (T )I . We define substacks GrI,ω and HeckeN,I,ω of GrI and HeckeN,I like so:

• (G, ϕ,G′, ϕ′, (xi), ϕ) is in HeckeN,I,ω(S) iff for all λ ∈ X∗+(T ), we have ϕ(Gλ) ⊆ Gλ′ · (
∑n
i=1 〈λ, ωi〉Γxi)

- this allows poles at the points xi. (Recall Gλ = GVλ).
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• (G, (xi), ϕ) is in GrI,ω(s) iff for all λ ∈ X∗+(T ) have ϕ(Gλ) ⊆ (GX×S)λ · (
∑n
i=1 〈λ, ωi〉Γxi).

Note that this has nothing to do with level structure, so

HeckeN,I,ω = BunN ×BunHeckeI,ω|(X−N)I
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12 Lecture - 10/21/2014
Last time we needed this lemma.

Lemma: Suppose that k = k. Let n > 0 be an integer, and µ1, . . . , µn ∈ Q. Then there exists N such
that for all rank n vector bundles E on X, if

• For all complete flags 0 = E0 ⊆ E1 ⊆ · · · ⊆ En with deg(Ei) ≤ µ1 + · · · + µi with equality for i = n,
then H1(X, E(m)) = 0 for m ≥ N .

(Key remark: this condition imposes a bound on the Harder-Norasimhan polynomial of E , which was
how Drinfeld and others truncated the shtukas).

Proof for n = 2: Suppose E satisfies this condition so deg E = µ1 +µ2 = d. There are 2 cases to consider:
either E is semistable or not. If not then there exists a flag with deg(E1) > deg(E/E1). Then condition (*)
says that if we set L1 and L2 = E/E1 we have

deg(L1) > deg(L2) ≥ d− µ− 1.

So if m > d − µ1 + C (for some constant C depending only on the genus of X) then H1(X, E(m)) = 0.
Second case is when E is semistable; thus every subbundle has slope ≤ slope of E , so in particular for every
L ⊆ E we have degL ≤ (deg E)/2. If H1(X, E(m)) 6= 0 then by Serre duality H0(X, E∨(−m) ⊗ ωX) 6= ∅
so E∨(−m)⊗ ωX has a quotient line bundle of degree 0, so E(m)⊗ ω∨X has a quotient of degree 0 so E has
a quotient line bundle of degree −m + deg(ωX). Since semistability means every quotient line bundle has
degree ≥ deg(E)/2, thus −m+ deg(ωX) ≥ deg(E)/2 so m ≤ deg(ωX)− d/2. So if m > deg(ωX)− d/2 then
H1(X, E(m)) = 0; so can take N = max{deg(ωX)− d/2, d−µ1 +C} and this works to prove the n = 2 case.

Now, fix a finite set I and N ⊆ X a finite subscheme. Remember HeckeN,I was the stack where an
S-point was the collection of data (G, ϕ,G′, ϕ′, (xi), ψ) with (G, ϕ) and (G′, ϕ′) in BunN (S), the xi’s are
points (indexed by I) with xi ∈ (X −N)(S), and ψ is an isomorphism

G|X×S\⋃Γxi
∼= G′|X×S\⋃Γxi

compatible with the level structure in the sense ϕ′ ◦ ψ = ϕ on N × S. Also defined GrI(S) as the set of
tuples (G, (xi), ψ) with G ∈ Bun(S), xi ∈ X(S), and ψ : G|X×S\⋃Γxi

∼= GX×S\
⋃

Γxi
.

Remark: There’s an involution τ of HeckeN,I sending

(G, ϕ,G′, ϕ′, (xi), ψ)→ (G′, ϕ′,G, ϕ, (xi), ψ−1).

Fix ω = (ωi) with ωi ∈ X+
∗ (T ). Define HeckeN,I,ω and grI,ω by requiring the following. Recall that for

λ ∈ X∗+(T ) we have the highest-weight representation Vλ and then for any G can set Gλ = GVλ . Then we say
(G, ϕ,G′, ϕ′, (xi), ψ) ∈ HeckeN,I,ω(S) iff for all λ,

ψ(Gλ) ⊆ G′λ

(
n∑
i=1

〈λ, ωi〉Γxi

)
.

Similarly (G, (xi), ψ ∈ GrI,ω iff for all λ,

ψ(Gλ) ⊆ Gλ

(
n∑
i=1

〈λ, ωi〉Γxi

)
.

Remark: The Drinfeld case is when G = GLn, |I| = 2, and ω1 = (1, 0, . . . , 0), ω2 = (0, . . . , 0,−1).
Remark: The involution τ sends HeckeN,I,ω to HeckeN,I,−w0(ω) where w0 is the longest element of the

Weyl group. Why? Assume WLOG N = ∅, get

ψ(Gλ) ⊆ G′λ(
∑
〈λ, ωi〉Γxi)
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iff
(G′)∨λ(−

∑
〈λ, ωi〉Γxi) ⊆ ψ(Gλ)∨

iff
ψ−1(G′−w0(λ) ⊆ G−w0(λ)(−

∑
〈λ, ωi〉Γxi)

because V ∨λ = V−w0(λ), and noting 〈λ, ωi〉 = 〈−w0(λ),−w0(ωi)〉 get the desired relation.
Proposition: For all ω, HeckeN,I,ω is an algebraic stack locally of finite type. Moreover, GrI,ω is a scheme

locally of finite type. In fact, the map HeckeN,I,ω → BunN × (X − N)I given by mapping a point of the
Hecke stack to (p′, (xi)) is schematic projective, and by the remark so is the map (p, (xi)).

Proof: We’ll just do the fist statement. Assume N = ∅. Want to proveHeckeI,ω → Bun×XI is schematic
projective. Let V =

⊕d
i=1 Vλi , where the λi’s are the fundamental weights, which is a faithful representation

of G. Fix N such that for all i ∈ I and all weights λ of V , −N ≤ 〈ωi, λ〉 ≤ N . Let Hecke′ be a stack
S 7→ (G,G′, (xi), ψ) ∈ HeckeI(S) with

G′V
(
−N

∑
i

Γxi

)
⊆ ψ(Gv) ⊆ G′V

(
N
∑
i

Γxi

)
.

First note HeckeI,ω ⊆ Hecke′ by definition and remarks about τ . Claim that HeckeI,ω → Hecke′ is a
schematic closed embedding. Let (G,G′, (xi), ψ) ∈ Hecke′(S). Then (HeckeI,ω ×Hecke′ S)(f : S′ → S) is ∗
if ϕ(f∗Gλ) ⊆ f∗G′λ(

∑
〈λ,wi〉Γxi for all λ, and ∅ otherwise. But this happens iff

ϕ(f∗Gλj ) ⊆ f∗G′λj (
∑
〈λj , wi〉Γxi

for all i, j. Let F = G′V (N
∑
i Γxi) =

⊕d
j= Gλj (N

∑
Γxi); then E =

⊕
ψ(Gλj ) and E ′ =

⊕
G′λj (

∑
〈λi, wi〉Γxi)

embed in F , and the fiber product we’re looking at is the closed subscheme where E ⊆ E ′.
So if we know Hecke′ is good then this will imply Hecke is good. How do we understand Hecke′? Move

to Hecke′′, the stack with Hecke′′(S) having points (E ,G′, (xi), ψ) with (G′, (xi)) ∈ (Bun×XI)(s), E is a
rank dimV vector bundle on S ×X, and ψ : E|X×S\⋃Γxi

∼= G′V |X×S\⋃Γxi
.

We have Hecke′ → Hecke′′ given by (G, . . .) 7→ (GV , . . .). Now, claim that Hecke′′ → Bun×XI is
schematic projective. This follows because (Hecke′′×Bun×XI S)(f : S′ → S) is the set of pairs (E , ψ) with E
a rank dimV vector bundle on X×S′ with ψ′ : E|X×S′\⋃Γi

∼= f∗G′|X×S′\⋃Γi satisfying the usual properties.
But this is the same as rank dimV vector bundles E on X × S′ with

f∗G′V
(
−N

∑
Γxi

)
⊆ E ⊆ f∗G′V

(
N
∑

Γxi

)
.

This is a Grassmannian over S′.
Finally, need to prove Hecke′ → Hecke′′ is a schematic closed embedding. Proof: Let (E ,G′, (xi), ψ) ∈

Hecke′′(S). Then if Z = Hecke′×Hecke′′ S, we have Z(S′) is ∗ if there exists G ∈ Bun(S′) with GV ∼= EX×S′
and G = G′ on X ×S′ \

⋃
Γxi , and ∅ otherwise. So Z(S′) is ∗ iff the section of E/G over X ×S′ \

⋃
Γxi given

by ψ extends to X × S′ (and this extension is necessarily unique by separatedness). In fact, E/G → X × S
is affine (because G is reductive so GL(V )/G is affine). So we just need the following:

Lemma. Let S be a scheme, let xi ∈ X(S) for i ∈ I, set U = X×S \
⋃

Γxi , let s ∈ γ(U,OX×S). Consider
the sheaf F given by sending f : S′ → S to ∗ if f∗s extends to X × S′ and ∅ otherwise. Then F → S is a
schematic closed embedding.

Proof: Let t ∈ Γ(X × S, j∗OU/OX×S) be the image of s, and ti = t|Γxi . Identify Γxi with S by the
projection X × S → S. Then F → S is the inclusion of

⋂
{ti = 0}.

Corollary: Let µ ∈ X∗(T ) and v ∈ π1(G). Then

Hecke≤µ;v
N,I,ω = HeckeN,I,ω ×BunN Bun≤µ,vN

is an algebraic stack of finite type, and even a scheme if deg(N)� 0 (relative to µ).
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Shtukas. Now take k = Fq. For all S ∈ SchFq , let FrobS : S → S be the map taking f ∈ OS to fq. If
G ∈ Bun(S) write τG = (idX ×FrobS)∗G. (If Y is any stack and a ∈ Y(S), let τa = Frob∗S a).

Definition: Let ChtN,I be the stack with S-points (G, ϕ, (xi), ψ) with (G, ϕ) ∈ BunN (S), xi ∈ X(S), and
ψ an isomorphism of G with τG on X × S \

⋃
Gxi with τψ ◦ ϕ|N×S = ψ. Thus

ChtN,I = HeckeN,I ×BunN ×BunN BunN

where the map HeckeN,I → BunN ×BunN is the obvious one and the map BunN → BunN ×BunN is (id, τ).
We have an obvious map ChtN,I → BunN ×(X −N)I by dropping the ψ. Can also define

Cht≤µ;v
N,I,ω = Hecke≤µ,vN,I,ω ×BunN ×BunN BunN .

In particular this this is an algebraic stack of finite type. Also have maps ChtM,I → ChtN,I if N ⊆M .
Proposition: The map

ChtM,I → ChtN,I ×XI (X \M)I

is schematic, finite étale and Galois of group GM,N (Fq) with GM,N = ker(GM → GN ). Moreover, Cht≤µ;v
N,I,ω

is Deligne-Mumford of finite type, and a scheme for deg(N) � 0 (relative to µ). If ωi = 0 for all i, then
ChtN,I,ω = BunN (Fq)× (X \N)I with the BunN a discrete stack.
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13 Lecture - 10/23/2014
Recall we defined the stack of shtuka ChtN,I = HeckeN,I ×BunN ×BunN BunN , where the first map to
Bun×Bun is (p, p′) and the second is (id, τ) where if G is a bundle on X × S then τG = (idX ×FrobS)∗G.
More concretely, ChtN,I(S) is the set of collections of (G, ϕ) ∈ BunN (S) with (xi)i∈I ∈ X(S)I and ψ : G ∼= τG
away from

⋃
Γxi with τψ ◦ ϕ = ψ. (Recall a level structure is an isomorphism

∏
: G|N × S ∼= GN×S).

Also had various truncations

Cht≤µ,vN,I,ω = Hecke≤µ,vN,I,ω ×BunN ×BunN BunN .

which is an algebraic stack of finite type. (Here, ω ∈ X+
∗ (T )I , µ ∈ X∗(T ) ⊗ Q, v ∈ π1(G)). If N ⊆ M get

ChtM,It ◦ ChtN,I ; also have maps ChtN,I → BunN ×(X \N)I .
Proposition: (a)

ChtM,I → ChtN,I ×XI (X −M)I

is finite étale Galois of group GM,N (Fq), where GM,N = ker(GM → GN ) with GM (A) = G(A⊗OM ) which
we can abuse notation to write as GM = ResM/Fq GM .
(b) ChtN,I,ω is a Deligne-Mumford stack locally of finite type; in fact each Cht≤µ,vN,I,ω is the quotient of a
quasiprojective scheme by a finite group, and actually is a scheme if deg(N)� 0 relative to µ.
(c) If ωi = 0 then ChtN,I,ω = BunN (Fq)× (X \N)I (with BunN (Fq) treated as a discrete stack).
(d) ChtN,I,ω 6= ∅ iff

∑
ωi ∈ X∗(T ∩Gder).

Remark: ω is the highest weight of an irreducible representation of ĜI , and
∑
ωi ∈ X∗(T ∩Gder) iff the

diagonally-embedded Z(Ĝ) ↪→ ĜI acts trivially on the representation. Drinfeld case: G = GLn, Ĝ = GLn,
|I| = 2, with the representation we use is st⊗ st∨ where st is the standard representation of GLn.

Lemma: Let X/Fq be an algebraic stack locally of finite type, and let Y be the stack

S 7→ {(A,ψ) : A ∈ X (S), ψ : A ∼= τA}

(a) Y is a DM stack, étale over SpecFq, and X (Fq) ⊆ Y is a schematic open and closed embedding.
(b) If moreover ∆ : X → X ×X has connected geometric fibers then Y = X (Fq).

Proof: The general case isn’t too hard with some stack theory, but we’ll just consider the two cases we
need (in which case (b) applies): (i) X is a scheme and (ii) X = BG with G connected.

Case (i): Obviously Y = X (Fq) (since Y(S) = X(S)FrobS ). Case (ii): We want to show Y = B(G(Fq))
for X = BG. Get natural map B(G(Fq))(S) → Y(S); and there’s a bijective correspondence between
G ∈ BC(S) with c ∈ H1

ét(S,G), such that τG = FrobG(c). (What is c? Choose covering family {Ui} of S
such that G|Ui is trivial, ϕi : G|Ui ∼= GUi . Take c to come from cij = ϕi ◦ ϕ−1

j ∈ G(Ui ×S Uj)). If τG ↔ c′

then c′ij = cij ◦ Frob = FrobG ◦cij so c′ = FrobG(c) as needed.
To finish the proof we want: If c ∈ H1

ét(S,G) is such that c = FrobG(c) then c is in the image of
H1

ét(S,G(Fq)). Indeed: Choose (Ui) and cij as before. Then c = FrobG(c) iff there exists hi ∈ G(Ui) such that
hicijh

−1
j = FrobG(cij). Lang’s theorem says g 7→ FrobG(g)−1g is surjective since G is connected. So up to

going to another cover, we have gi ∈ G(Ui) such that hi = FrobG(gi)
−1gi. Then gicijg−1

j = FrobG(gicijg
−1
j ),

i.e. gicijg−1
j ∈ G(Fq).

Proof of proposition part (a): It is enough to show that ChtN,I → ChtI |(X\N)I is finite étale Galois
of group GN (Fq). Let Y(S) be the set of (G̃, ψ̃) such that G̃ ∈ BG(N × S), ψ̃ : G̃ → τ G̃. By the lemma,
YN = B(GN (Fq)). We have a map ChtN,I → YN by (G, ϕ, (xi), ψ) 7→ (G|N×S , ψ|N×S). Now claim that the
map

ChtN,I → (ChtN,I ×XI (X \N)I)×YN SpecFq
given by ((G, ϕ), (xi), ψ) 7→ (G, (xi), ψ) is well-defined and an isomorphism. So ChtN,I → ChtI × (X \N)I

is a GN (Fq)-bundle.
(b) Fix µ ∈ X∗(T ). If deg(N) � 0 then Bun≤µ,vN and Hecke≤µ,vN,I,ω are quasi-projective schemes, so

Cht≤µ,vN,I,ω is also one. In general, Cht≤µ,vN,I,ω is a quotient of Cht≤µ,vM,I,ω for M big enough, by a finite group
GM,N (Fq), and by (a) the quotient map is étale.
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(c) Suppose ωi = 0 for all i. We want ChtN,I,ω = BunN (Fq)×(X\N)I . But note that if ((G, ϕ), (xi), ψ) ∈
ChtN,I,ω then for all λ ∈ X∗+(T ) have ϕ(Gλ) = τGλ so ψ extends to G ∼= τG. So ChtN,I,ω ∼= ChtN,∅×(X\N)I .
We want ChtN,∅ = BunN (Fq).

Fix µ, v. Then if M ⊇ N has big enough degree Cht≤µ,vM,∅ and Bun≤µ,vM are schemes, and Cht≤µ,vM,∅ =

Bun≤µ,vM (Fq). This implies the result for Cht≤µvN,∅ , and we use that ChtN,∅ is the union of these over all µ, v.
(d) Claim: ChtN,I,ω 6= ∅ iff

∑
ωi ∈ X∗(T ∩ Gder). If this stack is nonempty: Take (G, ϕ, (xi), ψ) ∈

ChtN,I,ω(S). Then if λ ∈ X∗(G), λ, λ−1 are dominant so the condition on ψ(Gλ) and τGλ becomes ψ(Gλ) =
τGλ(

∑
〈λ, ωi〉Γxi). Let s be a geometric point of S and take degrees:

deg(Gλ,s) = deg(Gλ,s) +
∑
i∈I
〈λ, ωi〉.

So this sum is zero, so
∑
ωi ∈ X∗(T ∩Gder). Conversely, if we assume

∑
ωi is in this space then ChtN,I,Ω

contains Bun(Fq)× (X \N).
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14 Lecture - 11/04/2014
Local models for ChtN,I,ω. As always: X/Fq a smooth projective curve with XFq connected, and G/Fq a
split connected reductive group. I a finite set.

Local version of GrG,I : previously we defined this by letting GrG,I(S) be the set of tuples (G, (xi), ψ)
with G ∈ BG(X × S), xi ∈ X(S), and

ψ : G|X×S\⋃Γxi
∼= GX×S\

⋃
Γxi

.

Notation: Suppose (xi)i∈I is in X(S)I . If J is the ideal of
⋃

Γxi in OX×S , let

Γ∑
∞xi = Spec lim←−

n

OX×S/J n.

If (ni) ∈ NI , let Γ∑
nixi be the closed subscheme which is Zariski locally defined by the equation

∏
tnii where

ti is a local equation for Γxi ⊆ X × S.
More notation: Let G∑

nixi → XI be the smooth group scheme with S-points consisting of tuple (xi; gi)
with (xi) ∈ XI(S) and (gi) ∈ G(Γ∑

nixi). Similarly define G∑
∞xi → XI (relative version of GJtK).

Other description of GrG,I : tuples (G, (xi), ψ) with (xi) ∈ XI(S), G ∈ BG(Γ∑
∞xi), and ψ a trivialization

of Gon Γ∑
∞xi \

⋃
Γxi . Have obvious map from original GrG,I to this, and by B-L theorem these stacks

are isomorphic. But this one is easier to work with in many cases: for instance in this description it is
obvious that GrG,I has a left action of G∑

∞xi (by changing ψ). Also, have GrI,ω ↪→ GrI with GrI,ω closed
subscheme stable under the action and GrI the inductive limits.

Lemma: Let ω ∈ X+
∗ (T )I . If the ni’s are big enough then the action of G∑

∞xi on GrI,ω factors through
G∑

nixi .
Proof: Have (G, (xi), ψ) is in GrI,ω(S) iff for all λ ∈ X∗+(T ), we have ψ(Gλ) ⊆ Gλ(

∑
〈λ, ωi〉Γxi).

Next: Fix ω, and fix (ni) as in the lemma. Remember ChtI(S) consisted of (G, (xi), ψ) with G ∈ Bun(S)
and ψ an isomorphism of G with τG on X × S \

⋃
Γxi . Moreover this element is in ChtI,ω(S) iff for all

λ ∈ X∗+(T ), we have ψ(Gλ) ⊆ τGλ(
∑
〈λ, ωi〉Γxi). Want to define a map

εI,ω : ChtI,ω → G∑
i xi
\GrI,ω .

This is defined by descent. If (G, (xi), ψ) ∈ ChtI,ω(S), and if I has β : τG|Γ∑
∞xi
∼= G∑

∞xi , then send
(G, (xi), ψ) to

(G|Γ∑
∞xi

, (xi), β ◦ ψ) ∈ GrI,ω(S).

Moreover the element of x in G∑
nixi\GrI,ω does not depend on β. While a β may not exist globally, it

does exist locally on S, so can go to a cover, define the image, and descend back.
Proposition: εI,ω is smooth of relative dimension dim(G∑

nixi/X
I).

Proof: Let
Y = ChtI,ω ×G∑

nixi
\GrI,ω GrI,ω .

Then Y → ChtI,ω is a G∑
nixi-torsor (though not really relevant for us); and we want to show that π2 :

Y → GrI,ω is smooth of relative dimension d. Can identify Y(S) with the set of tuples (G, (xi), ψ, β) with
(G, (xi), ψ) ∈ ChtI,ω and β : τG|∑nixi

∼= G∑
nixi .

Let z = (G, (xi), ϕ) ∈ GrI,ω(S). What is the fiber Y ′ = Y ×GrI,ω S, with the map S → GrI,ω coming
from z? Well, Y ′(S′ → S) is the set of (F , (xi), χ, ψ, α) with F ∈ Bun(S′), χ an isomorphism of F with τF
on X × S \

⋃
Γxi , ψ is an isomorphism of F with G on Γ∑

nixi , and α : F|Γ∑
∞xi
∼= G such that for all

ψ̃ : τF|Γ∑
∞xi
∼= GΓ∑

∞xi

extending ψ (locally defined) we have ψ̃ ◦ χ = ϕ ◦ α.
Now, Y ′ is also the equalizer of the maps

F1, F2 : BunG,
∑
nixi ×XIS → BunG×S,
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where F1 is the obvious projection (forgetting level structure) and F2 is given as follows. If (F , ψ) ∈
BunG,

∑
nixi(S

′) and if ψ̃ : F|Γ∑
∞xi
∼= GΓ∑

∞xi
extending ψ, we call a G-bundle “F∨ on X × S” by gluing

F|X×S′\⋃Γxi
and G|Γ∑

∞xi
via ϕ−1 ◦ ψ̃ (by B-L theorem). This does not depend on choice of ψ̃, so descends

to a G-bundle on X × S′ which we call a2(F , ψ). Now F2 is defined by (F , ψ, s) 7→ (a2(τF , ψ), s).
Let E be the equalizer of these maps; then E(S′) consists of (F , ψ, (xi), s) with F ∈ Bun(S′), ψ : F ∼= G

on Γ∑
nixi , plus F ∼= a2(τ (F , ψ)) i.e. ψ̃ extending τψm and an isomorphism of flied bundles... Basically it

turns out to be the same thing as Y!
Situation: we have two maps F1, F2 : Y → X. We know F1 is smooth of relative dimension dim(G∑

nixi/X
I),

F2 has differential 0, and X,Y are smooth. So the equalizer is the pullback of ∆ : Y → Y × Y and
Y ×X Y → Y ×Y (with all of the things smooth), so it’s sufficient to check that the intersection is transver-
sal. Check this on tangent spaces of (y, y) ∈ Y × Y .
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15 Lecture - 11/06/2014
The geometric Satake correspondence and fusion. Here: k is a field, X/k a smooth curve, G/k a split
connected reductive group, ` a prime not the characteristic of k. Fix G ⊇ B ⊇ T and thus X+

∗ (T ), X+ ∗ (T ),
etc., as usual. Will focus on the case of the affine Grassmannian over a point to start.

Reminder of stuff from last year: Let Y/k be a finite type scheme, H a finite type connected affine
group schemes, and if a : H ×Y → Y is a (left) action of H on Y , then a Q`-perverse sheaf K on Y is called
H-equivariant if there exists an isomorphism a∗K ∼= p∗K where p : H × Y → Y is the projection. (Note
that this is not the general definition! This one only works for H connected, and is “morally wrong”, but is
simpler for our case so we’ll use it).

Define PervH(Y ) as the full abelian subcategory of H-equivariant perverse sheaves on Y in PervH(Y ).
(Again, we’re “morally wrong” for not requiringH-equivariance of the morphism, but the case ofH connected
that condition turns out to be automatic. So we’re really just treating H-equivariance as an extra property
of the perverse sheaf rather than an additional structure). Some other comments:

• If H acts transitively on Y and if the stabilizers of points are connected, then PervH(Y ) is equivalent
to the category of constant sheaves on Y , given by mapping a constant sheaf L to L[dimY ].

• What if Y is an ind-scheme? If H is an affine group scheme acting on Y , say the action is good if we
can write Y = lim−→Yn where each Yn is a finite-type scheme and the action of H on Yn factors through
a finite-type quotient H � Hn. Then we define

PervH(Y ) = lim−→PervHn(Yn).

(This does not depend on the choices).

• There is a relative version we’ll need; if Y → S is a S-scheme (or S-ind-scheme) and H → S is an
S-group scheme (with connected fibers, for simplicity) with a relative action a : H ×S Y → Y , and if
p : H ×S Y → Y is the second projection, then we define PervH(Y ) similarly (using this a and this
p). Need this for dealing with the relative affine Grassmannian.

Main Example: Y = GrG = G((t))\GJtK, andH = GJtK acting by left multiplication. Proved last year that
this action was good; this will basically be the only example we care about. Write Sat(G) = PervGJtK(GrG),
the Satake category. Studied this last semester, and showed:

• The GJtK-orbits on GrG are given by Oµ = GJtKtµGJtK/GJtK for µ ∈ X+
∗ (T ) (for tµ = µ(t) ∈ G(k((t))));

this is the Cartan decomposition. These orbits are finite-dimensional, smooth, simply connected.
Calculated dimOµ = 〈2ρ, µ〉 for 2ρ =

∑
α as α runs over all positive roots.

• The closure Oµ is
⋃
µ′≤µOµ′ . This is projective but not smooth in general.

• The simple objects of Sat(G) are the intersection complexes ICµ for µ ∈ X+
∗ (T ), where

ICµ = jµ!∗(Q`,Oµ [dimOµ]).

(Here jµ : Oµ → Oµ is the inclusion, and jµ!∗ is the intermediate extension discussed last year).

• There is a convolution (or fusion) product ∗ on Sat(G) making it into a Tannakian category (more on
it later). The functor ω : Sat(G) → Q`-Vect given by K 7→

⊕
i∈ZH

i(GrG,k, k) is a fiber functor. So
Sat(G) is actually a neutral Tannakian category.

• If k = k then the Tannakian group of sat(G) is the dual group Ĝ of G over Q`. That is, we have an
equivalence of categories S : RepĜ → Sat(G) that is an exact tensor functor (sends tensor product of
representations to fusion product) and sends the natural fiber functor RepĜ → Q`-Vect to ω. Finally,
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it matches up irreducible objects in the obvious way: if µ ∈ X+
∗ (T ) and Vµ is the corresponding

irreducible representation of Ĝ, then S(Vµ) = ICµ. In particular Sat(G) is a semisimple abelian
category.

• For general k, Sat(G) is not always semisimple, but we do know that the ICµ are defined over k. So
get an exact fully faithful tensor functor S : RepĜ → Sat(G), but there can be nontrivial extensions
in Sat(G) (preventing it from being an equivalence). (Note: It’s actually possible to identify the
Tannakian group in this case; it’s basically LG).

Goal of this chapter : Let I be a finite set. We have the relative affine Grassmannian GrI → XI . Let
GI = G∑

∞xi → XI be our relative version of GJtK (a relative group scheme). This acts on the left on GrI
(over XI). Note:

1. If we write I = I1 t I2 as a disjoint union of subsets, then define

XI1×̊XI2 ⊆ XI1 ×XI2 = XI

as the set of pairs (xi; yj) such that
⋃
i∈I1 Γxi and

⋃
j∈I2 Γxj are disjoint. Then:

GrI |XI1 ×̊XI2 ∼= (GrI1 ×GrI2)|XI1 ×̊XI2 .

2. If ζ : I → J is a map of finite sets, let ∆ζ : XJ → XI be the map (xj) 7→ (xζ(i)). Then we have
GrI ×XIXJ ∼= GrJ (obvious from writing down the definition).

3. We have similar statements for GI . (All of this is what we call the “factorizable structure”, which if we
did formally requires compatibility conditions, but those are obvious in our case).

What we want to do is construct a faithful exact Q`-linear functor RepĜI → PervGI (GrI) (denoted
W 7→ SW,I) such that:

• If |I| = 1 then for all x ∈ X(k) have SW,I |GrI,{x} = SW (since GrI,{x} ∼= GrG; this says our functor
extends geometric Satake on the fibers).

• For all W ∈ ĜI , SI,W is supported on
⋃
ω GrI,ω where ω ∈ X+

∗ (T )I runs over all weights of W .

• SW,I is ULA (universally locally acyclic) with respect to GrI → XI . (We’ll define what this means
later, when we actually need to use it).

• If I = I1 t I2 and W = W1 �W2 for Wi ∈ RepĜIi , then we have canonical isomorphisms

SW,I |GrI |XI1 ×̊XI2
∼= (SW1,I1 � SW2,I2)|(GrI1 ×GrI2 )|

XI1 ×̊XI2
.

• If ζ : I → J is a map of finite sets, we have ∆ζ : XJ → XI as before, and define ζ∗ : ĜJ → ĜI given
by (gj) 7→ (gζ(i)) and a functor RepĜI → RepĜJ given by W 7→W ζ (which is W with the ĜJ -action
via ζ∗). Then we have a canonical isomorphism

SW,I |GrI ×XIXJ
∼= SW ζ ,J .

The case |I| = 1 : Write Gr1 = Gr{1} and G1 = G{1}. We want a functor RepĜ → Perv(G1)(Gr1) which
we write W 7→ SW,1. Remark: last year we did this for X = A1; in this case choosing a coordinate on
X gives an isomorphism Gr1

∼= GrG×X, so we could take SW,1 = SW � Q`,X [1]. Want to generalize this
construction.

Let Aut be the connected affine group scheme over k given by letting

Aut(R) = AutR-alg,cont(RJtK) ∼= RJtK×
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(with the latter isomorphism given by α 7→ α(t)/t). Then Aut acts on G((t)) and GJtK (recalling G((t)) =
Hom(R((t)), G) and letting us send f ∈ G(R((t))) to f(α(t)) or maybe f(α−1(t)) - which sign works out
isn’t important for us). So Aut acts on GrG. The results of Section 1 imply that every K ∈ Sat(G) is
Aut-equivariant.

Now let X : AffK → Set be given by

SpecR 7→ {(x, s) : x ∈ X(R), s : ÔXR,x ∼= RJtK continuous R-algebra homomorphism}.

Obviously have X → X given by (x, s) 7→ x, and this is an Aut-torsor. Let q : GrG×X → Gr1 sends (G, ϕ)×
(x, s) to (s∗G, s∗ϕ). Then q is an Aut-torsor, where α ∈ Aut sends (G, ϕ)× (x, s) to ((G, α∗ ◦ϕ), (x, α−1 ◦s)).
(Again, up to a choice of signs that needs to be checked).

So we get two Aut-torsors, q : GrG×X → Gr1 and (id, π) : GrG×X → GrG×X. If K ∈ Sat(G) we have
that

K �Q`,X [1] ∈ Perv(GrG×X)

is GJtK and Aut equivariant, so
p∗(K �Q`,X [1]) ∈ Perv(GrG×X )

is equivariant by GJtK acting on GrG, Aut acting on GrG, and Aut acting on X . So there exists a unique
L ∈ Perv(Gr1) such that q∗L = p∗(K � Q`,X [1]), and L is G1-equivariant. (Remark: X isn’t a finite-type
scheme so strictly speaking this doesn’t make sense, but we do everything on the level of finite-type quotients
like we did with convolution products last year).

So we define: If W ∈ RepĜ define SW,1 ∈ Perv(Gr1) as the unique perverse sheaf such that

q∗SW,1 = p∗(SW �Q`,X [1]).
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16 Lecture - 11/11/2014
Remember: Sat(G) = PervGJtK(GrG). Geometric Satake says there is a fully faithful exact tensor functor
S : RepĜ/Q`

→ Sat(G) (an equivalence if k = k), such that if µ ∈ X+
∗ (T ) then S(Vµ) = ICOµ .

Goal: Relativize this; if I is a finite set have GrI → XI the relative affine Grassmannian, and GI → XI

the relative version of GJtK, which acts on GrI . We want an exact functor RepĜI → PervGI (GrI) that
takes W to SW,I in a way that’s “compatible with the factorizable structure” and such that if |I| = 1 then
for all x ∈ X(k) we have (SW,I)x = SW on GrI,x ∼= GrG.

Last time for |I| = 1: If X = A1 we recalled that choosing a coordinate on X gives Gr1
∼= GrG×X, and

then take SW,1 = SW � Q`,X [1] for all W ∈ RepĜ. Then showed that this construction is canonical and
works fppf locally on X and glues.

Remark: The most general statement of geometric Satake (for k = k and |I| = 1) is that we have an
equivalence S1 of Ĝ-Perv(X) (the categories of perverse sheaves on X with a Ĝ-action; note RepĜ embeds
in this) with the category of K ∈ PervG1(Gr1) such that K is “universally locally acyclic” with respect to
π : Gr1 → X. To construct this, let R = k[Ĝ] with its two Ĝ-actions. As a Ĝ-module with the first action,
k[Ĝ] is the union of its finite-dimensional sub-Ĝ-modules. Set

SR,1 = lim−→
V⊆k[Ĝ],V ∈RepĜ

SV,1,

an ind-perverse sheaf on Gr1. The second action of Ĝ on R gives an action of Ĝ on SR,1. By the algebraic
Peter-Weyl theorem, for any V ∈ RepĜ have V ∼= HomĜ(V ∗, k[Ĝ]) ∼= (V ⊗ k[Ĝ])Ĝ. So, for all V ∈ RepĜ,
have

SV,1 = (V ⊗ SR,1)Ĝ = (VGr1
⊗ SR,1)Ĝ.

So we define S : Ĝ-Perv→ PervG1
(Gr1) by

S(K) = (π∗K[−1]⊗ SR,1)Ĝ.

However, we won’t need this general form, just the easier special case we’ve been working on.

The case |I| = 2 : Write Gr2 = GrI , G2 = GI , X2 = XI . We have the diagonal map ∆ : X ↪→ X2 and
j : X̊2 = X2 \∆(X)→ X2. Have a commutative diagram with Cartesian squares:

Gr1 Gr2 (Gr1×Gr1)|X̊2

X X2 X̊2

∆ j

∆ j

Last year we saw (at least if X = Â1):
Theorem: Let V,W ∈ RepĜ. Then we have canonical isomorphisms(

∆∗j!∗(SV,1 � SW,1)|X̊2

)
[−1] =

(
∆!j!∗(SV,1 � SW,1)|X̊2

)
[−1] = SV⊗W,1.

Since X is locally A1 can reduce the general case to this result from last year.
Remark: More generally K,L ∈ PervG1

(Gr1) are universally locally acyclic with respect to Gr1 → X,
the isomorphism (

∆∗j!∗(K � L)|X̊2

)
[−1] =

(
∆!j!∗(K � L)|X̊2

)
[−1]

and use this to define a convolution product K ∗ L.
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Remark: If X = A1 and we fix an isomorphism Gr1
∼= GrG×X and if K,L ∈ Sat(G), showed last year

that (K ∗ L) �Q`[1] is equal to

∆∗j!∗
(
(K �Q`,X [1]) � (L�Q`,X [1])|X̊2

)
[−1].

In fact we can use this to define K ∗ L.
If W = W1 �W2 ∈ RepĜ2 , we want SW,2 ∈ PervG2

(Gr2) to be such that

j∗SW,2 ∼=
(
SW1,1 � SW2,2

)
|X̊2 .

and ∆∗SW,2 = SW,1[1] if we make W into a representation of Ĝ via the diagonal map Ĝ → Ĝ2. There’s an
obvious candidate to do this:

SW,2 = j!∗(SW1,1 � SW2,1|X̊2).

The General Case : Induct on |I|. First, assuming S·,J is constructed for all J with |J | < |I|, prove the
following:

Theorem: Let ζ : I � J , and let ∆ζ : XJ → XI be the map (xj) 7→ (xζ(i)). Let UJ ⊆
∏
j∈J X

ζ−1[j]

be the set of tuples ((xi)i∈ζ−1[j])j∈J) such that if j 6= j′ and i ∈ ζ−1[j] and i′ ∈ ζ−1[j′] then xi 6= xi′ . Let
jζ : UJ → XI be the open embedding. We have a diagram of Cartesian squares

Gr1 Gr2

(∏
j∈J Grζ−1[j]

)
|UJ

XJ XI UJ

∆ζ jζ

∆ζ jζ

Let k = |I| − |J |, let Wj ∈ RepĜζ−1[j] for all j ∈ J , and suppose we have canonical isomorphisms (assuming
|ζ−1[j]| < |J |):

∆∗ζjζ!∗
(
�j∈JSWj ,ζ−1[j]|Uj

)
[−k] = ∆!

ζjζ!∗
(
�j∈JSWj ,ζ−1[j]|Uj

)
[−k] ∼= S⊗

J Wj ,J .

Then: If W = �i∈IWi ∈ RepĜI , we can define

SW,I = jζ,!∗(�i∈ISWi,1)|UJ

for ζ the unique map I � {1}, and extend to RepĜI by additivity.
Proof: Omitted; just extends what we talked about before the obvious way.

Perverse sheaves on ChtN,I .If I is a finite set and W ∈ RepĜI , let ChtN,I,W =
⋃
ω ChtN,I,ω where ω

runs over elements of X+
∗ (T )I that are weights of W , and GrI,W =

⋃
ω GrI,ω for the same set of ω (so this

is the support of SW,I). Fix W . Then we have seen that if (ni) ∈ NI are big enough, we have a smooth
morphism

εI,W : ChtN,I,W → GrI,W /G∑
nixi

which has relative dimension dim(G∑
nixi/X

I). We set

FN,I,W = ε∗I,W (S′)[· · · ]

where the twist is by whatever we need to make this perverse on the fibers of ChtN,I,W → XI . Here S′ is
the unique sheaf on GrI,W /G∑

nixi that you get by descending SW,I (which we know is equivariant by GI
and thus by its image G∑

nixi).
Technical annoyance to deal with lack of finite type hypotheses: Let Z = Z(G). Then Z(A) acts on

Cht
(≤µ)
N,I,(W ), and Z(F ) acts trivially. Choose a lattice Ξ ⊆ Z(A)/Z(F ). Then Cht≤µN,I,W /Ξ is a DM stack
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of finite type - same as you need to choose auxiliary things like this in automorphic forms to make certain
volumes finite. (Or: Take G semisimple, where Ξ = 1 works).

Definition: Let pN,I,W : ChtN,I,W → XI be the natural map. Then for every µ ∈ X∗(T ), set

H≤µN,I,W = R0pN,I,W,!
(
FN,I,W |Cht≤µN,I,W /Ξ

)
.

Right now this is a perverse sheaf on XI .
Crucial property of these: let ζ : I → J be a map, let W ∈ RepĜI , let W

ζ be the corresponding object
of RepĜJ (taking the diagonal action via ζ). Remember we have ∆ζ : XJ → XI . Then there is a canonical
(i.e. functorial in W ) isomorphism

χζ : ∆∗ζ(H
≤µ
N,I,W ) ∼= H≤µN,J,W .

Why is this? This follows from proper base change, and the canonical isomorphism between FN,I,W and the
pullback of FN,J,W ζ by the map

ChtN,J = ChtN,I ×(X\N)I (X \N)J → ChtN,I |img ∆ζ

given by the similar isomorphism for SW,I and SW ζ ,J .
Remark: If W is irreducible of highest weight ω ∈ X+

∗ (T )I , then FN,I,W on ChtN,I,ω/Ξ is just the
intersection complex (with trivial coefficients, suitably shifted).
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17 Lecture - 11/13/2014
Goal for today: Start proof of main theorem, assuming a bunch of facts that we’ll need to prove later on.
From last time, we constructed a family of (exact) functors RepĜI → Perv(XI) given by W 7→ H≤µN,I,W
(for parameters I a finite set, N a level, µ ∈ X∗(T ), and depending on Ξ a lattice in Z(F )\Z(A)). These
functors satisfy the property that, for all ζ : I → H we have a functorial isomorphism (in W )

χζ : ∆∗ζH
≤µ
N,I,W

∼= H≤µN,J,W ζ .

Where we used Geometric Satake was in making this functorial!

Hecke correspondences : (A) Let π : Z → Y be a finite étale map (for Z, Y irreducible). Then it induces
π∗ : ICY → π∗ICZ and trπ : π∗ICZ → ICY such that trπ ◦π∗ equals multiplication by deg(π) on ICY .

Proof of this: Choose j : V ↪→ Y open dense and such that Vred is smooth. Write U = π−1[V ] ↪→ Z.
Do everything over V,U where the intersection complex is just the constant sheaf. Then have π∗ : QV →
π∗QU = π∗π

∗QV that’s an adjunction map, and trπ : π∗QU = π!π
!QV → Qv is also an adjunction map. Then

the composite is multiplication by deg(π) by SGA4 XVII or XVIII (standard property of trace map). Want
to extend this to intersection complexes; use definition ICY = j!∗(QV [d]) for d = dimY = dimV = dimZ,
and ICZ = j′!∗(QU [d]). Use that π∗ = j′!∗ = j!∗ (recall j!∗ is the image of PH0(j!)→ PH0(j∗) in the perverse
sense), using that π∗j′! = j! and π∗j′∗ = j∗, and that π∗ is exact (in the usual sense and the perverse sense).

(B) If there’s two finite étale maps π1 : Y → Z and π2 : Y → Z, they give a map trπ2 ◦π∗1 : ICZ → ICZ ,
hence an endomorphism of the intersection cohomology of Z. The Hecke correspondences will show up in
this way.

(C) Come back to the moduli stack of shtuka. Fix ω ∈ X+
∗ (T )I a dominant weight for ĜI and look

at ChtN,I,ω. Let KN = ker(G(O) → G(ON )) as earlier in the semester. Then KN =
∏
v∈|X|KN,v with

KN,v = Ov for v /∈ N . Recall we have

HeckeN = Cc(KN\G(A)/KN ,Q`)

which is an algebra by the convoluton product; want to make this act on

lim−→
µ

H≤µN,I,W

where W is the representation with highest weight ω. Let g = (gv) ∈ G(A), and choose T ⊆ |X| a finite
set of places such that for all v /∈ T we have gv ∈ KN,v, and assume that T ∩ N 6= ∅ (to “concreteify” the
definition, which will be enough for us).

We’ll define the action of the characteristic function 1KngKn ∈ HeckeN . Write

KNgKN =
∏
v/∈T

KN,v ×
∏
v∈T

G(Ov)$λv
v G(Ov)

for $v ∈ Ov a uniformizer and λv ∈ X+
∗ (T ). Let ΓN (g) be the stack sending S to the category of pairs of a

tuple (xi) ∈ (X \ |N | \ T )I(S) and a commutative diagram

(G′, ψ′) (τG′,τ ψ′)

(G, ψ) (τG,τ ψ)

ϕ

κ κ

ϕ

where the horizontal arrows are objects of ChtN,I,ω(S), and κ is an isomorphism G|(X\T )×S)
∼= G′|(X\T )×S

such that ψ′ ◦ κ = ψ (this is where we use our assumption that T ∩ |N | = ∅) and such that for every place
v ∈ T the relative position of G and G′ at v is equal to λv, i.e.: for all geometric points s→ S, if we choose
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trivializations of ϕ : G → τG and ϕ′ : G′ → τG′ over D× s ∼= Spec k(s)JtK (where D is the formal disc around
v, and these trivializations are unique up to G(Ov)) then

κ : G|(D\{v})×S ∼= G′|(D\{v})×S

defines an element of G(Ov)\G(Fv)/G(Ov) which we require to be λv($v).
We then have two maps π1, π2 : ΓN (g)→ ChtN,I,ω with π2 taking the top horizontal arrow in the diagram

and π1 the bottom horizontal arrow. Claim: π1, π2 are finite étale. This is because there exists κ ∈ X∗(T )
(depending on g) such that for all µ, we have

π2[π−1
1 [Cht≤µN,I,ω]] ⊆ Chtµ+κ

N,I,Uom.

So we get a map F≤µN,I,ω → F
≤µ
N,I,ω. Taking perverse direct images, we get

lim−→
µ

H≤µN,I,ω → lim−→
µ

H≤µN,I,ω

which is by definition the action of 1KNgKN ∈ HeckeN . We can extend this to lim−→µ
H≤µN,I,ω for any W ∈

RepĜI by linearity. Claim: This defines an action of HeckeN , i.e. sends convolution to convolution.

A particular case : If W = 1 is the trivial representation (i.e. I = ∅) then we saw that ChtN,I,1 is the
discrete stack BunN (Fq) = G(F )\G(A)/KN . So lim−→H

≤µ
N,I,1 is the constant sheaf with value

C∞c (G(F )\G(A)/KNΞ,Q`),

and the action of HeckeN is the usual one (by convolution).

The Hecke-finite part : Let ∆ : X ↪→ XI be the diagonal embedding. Let η be the generic geometric
point of X. Fix N,W as before. Then we say

u ∈

(
lim−→
µ

H≤µN,I,W

)
∆(η)

is Hecke-finite if there exists a finite-dimensional Q`-subspace V such that u ∈ V and such that v is stable
by HeckeN .

Let HW,I be the Hecke-finite vectors in lim−→H≤µN,I,W . Note that this depends on N but we’re suppressing
that from the notation. Then:
(a) W 7→ HI,W is a functor in RepĜI .
(b) If ζ : I → J then we have an isomorphism χζ : HI,W

∼= HJ,W ζ functorial in W , and such that
χζζ′ = χζχζ′ , and χζ is Hecke-invariant.
(c) If W = 1 then HI,W = Ccuspc (G(F )\G(A)/KNΞ,Q`). (This is a purely automorphic calculation - can
read it in Lafforgue).

We assume (for now - much of the rest of the semester will be devoted to proving it) the following:
For all I,W there’s an action of Gal(F/F )I on HI,W commuting with the maps coming from functoriality,
commuting with the Hecke actions, and compatible with χζ via the diagonal map Gal(F/F )J → Gal(F/F )I .

How do (a),(b),(c) give the decomposition of

H{0},1 = Ccuspc (G(F )\G(A)/KNΞ,Q`)?

Excursion operators: For I a finite set and W ∈ RepĜI , set ζI : It ◦ {0} (so W ζI = W with the diag-
onal action) .Let x : 1 → W ζI and ζ : W ζI → 1 be Ĝ-equivariant, and take (γi) ∈ Gal(F/F )I . Define
SI,W,x,ξ,(γi) ∈ End(H{0},1) as the composition

H{0},1 H{0},W ζI HI,W HI,W H{0},W ζI H{0},1
H(x)

χζI

∼= (γi) χζI H(ξ)
.
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We will see that SI,W,x,ξ,(γi) only depends on I, (γi), and f ∈ O(ĜI) defined by f((gi)) = 〈ξ, (gi) · x〉. Note
f is left and right invariant by Ĝ (because we chose x and ξ to be Ĝ-invariant). So we’ll write SI,f,(γi).
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18 Lecture - 11/18/2014

We have additive functors W 7→ HI,W , where W ∈ RepĜI and HI,W is a Q`-vector space with commuting
actions of HeckeN (so this does depend on N but we’re suppressing that from the notation) and Gal(F/F )I

compatible with maps I → J . Remark: If W is irreducible it has a highest weight ω ∈ X+
∗ (T )I , and HI,W

is the “Hecke-finite part” of
lim−→

µ∈X∗(T )

IHd(Cht≤µN,I,ω/Ξ)

with d = dimCht≤µN,I,ω/Ξ. If W is the trivial representation then HI,W is Ccusp
c (G(F )\G(A)/KNΞ,Q`).

Excursion operators: For I finite, W ∈ RepĜI , ζI : I → {0}, W ζI is W with the diagonal action
of Ĝ, fix x ∈ (W ζI )Ĝ (which gives x : 1 → W ζI ) and ξ ∈ (W ζI ,∗)Ĝ (which gives ξ : W ζI → 1) and
(γi)i∈I ∈ Gal(F/F )I . The excursion operator SI,W,x,ξ,(γi) ∈ End(H{0},1) is defined by

H{0},1 H{0},W ζI HI,W HI,W H{0},W ζI H{0},1
H(x)

χζI

∼= (γi) χζI H(ξ)
.

Remark: Make Ĝ act diagonally on ĜI on the left and right, and let Ĝ\\ĜI//Ĝ be the coarse quotient, i.e.
the one such that

O(Ĝ\\ĜI//Ĝ) = O(ĜI)Ĝ×Ĝ

over Q`. Claim

O(Ĝ\\ĜI//Ĝ) = {f ∈ O(ĜI) : ∃W,x, ξ such that f((gi)) = 〈ξ, (gi)x〉.

Proof: Obviously any such f is Ĝ × Ĝ-invariant by Ĝ-invariance of x, ξ. Conversely, suppose f is in the
ring of invariants. Let WF ⊆ O(ĜI) be the subspace generated by left translates of f under ĜI (note that
dimWF ) <∞), let xf = f , let ξf : WF → Q` map h to h(1). Then we have f((gi)) = 〈ξf , (gi)xf 〉.

Note that the W,x, ξ is not unique, but the one we defined for our f in the previous paragraph is the
minimal one. If W,x, ξ are any such triple, let Wx ⊆ W be the ĜI -submodule generated by x. Then we
have α : Wx ↪→ W and β : Wx � Wf that are ĜI -invariant (with β(y)(gi) = 〈ξ, (gi)y〉). Under this map,
α(x) = x and β(x) = xf , and (>α)(ξ) = (>β)(ξf ) = ξ|WF

.
Proposition: (0) IfW,x, ξ are as before, then SI,W,x,ξ,(γi) depends only on the function f ∈ O(Ĝ\\ĜI//Ĝ)

defined by W,x, ξ. So we write SI,f,(γi) instead.
(1) The subalgebra B of End(H{0},1) generated by the SI,f,(γi) (for I, f, (γi) varying) is commutative, and
for fixed I, (γi) the map O(Ĝ\\ĜI//Ĝ)→ B is a Q`-algebra map.
(2) For all ζ : I → J and all f ∈ O(Ĝ\\ĜI//Ĝ), if fζ ∈ O(Ĝ\\ĜJ//Ĝ) is defined by the usual formula
fζ(gj) = f(gζ(i)) then SJ,fζ ,(γj) = SI,f,(γζ(i))
(3) For all I, f , (γi), (γ

′
i), (γ

′′
i ), if

F̃ ∈ O(Ĝ\\ĜItItI//Ĝ)

is defined by f(gi, g
′
i, g
′′
i ) = f(gi(g

′
i)
−1g′′i ) then

SItItI,f̃ ,(γi,γ′i,γ′′i ) = SI,f,(γi(γ′i)−1γ′′i ).

(4) For all I, f the map Gal(F/F )I → B given by (γi) 7→ SI,f,(γi) is a continuous morphism of groups (where
B has the `-adic topology). Remark: dimQ` H0,1 <∞ means dimB <∞.
(5) For all v ∈ |X \N | and all V ∈ RepĜ irreducible, if Tv,v ∈ End(H{0},1) is the action of the element of
the unramified Hecke algebra at v corresponding to V , if f(g1, g2) = χv(g1g

−1
2 ), if Frobv ∈ Gal(F/F ) is a

lift of the Frobenius at v, then TV,v = S{1,2},f,(Frobv,1).
Point (5) is serious and will take us a while to prove. The other points follow from the following easy

lemma:
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Lemma: (1) If µ : W →W ′ is a map in RepĜI , if x ∈ (W ζi)Ĝ, if ζ ∈ ((W ′)ζI ,∗)Ĝ, then

SU,W,x,>µ(ζ′),(γi) = SI,W ′,µ(x),ξ′,(γi).

(2) For all ζ : I → J we have SJ,W ζ ,x,ξ,(γi) = SI,W,x,ξ,(γi).
(3)

SI1tI2,W1�W2,x1�w2,ξ1�ξ2,(γ1
i )×(γ2

i ) = SI1,w1,x1,ζ1,(γ1
i ) ◦ SI2,w2,x2,ζ2,(γ2

i ).

(4)
SI,W,x,ξ,(γi(γ′i)γ′′i = SItItI,W�W∗�W,δW�x,ζ�evw,(γi)×(γ′i)×(γ′′i ).

Now, how do we apply this result? Last year, we proved the following result:
Theorem: Let Γ be a profinite group, let H/Q` be connected reductive, let Ξn : O(Hn//H)→ C(Γn,Q`) be
a family of maps such that:
(a) For all ζ : {1, . . . , n} → {1, . . . ,m} and all f ∈ O(Hn//H) and all (γ1, . . . , γm) ∈ Γm, we have

Ξm(fζ)(γj) = ΞN (f)(γζ(i)).

(b) For all n ≥ 1 and all f ∈ O(Hn//H) and all (γi) ∈ Γn+1, we have

Ξn+1(f̂)(γ1, . . . , γn+1) = Ξn(f)(γ1, . . . , γn−1, γnγn+1)

where f̂(g1, . . . , gn+1) = f(g1, . . . , gn−1, gngn+1).
Then, there exists σ : Γ → H(Q`) a continuous morphism of groups, unique up to (̂Q`)-conjugacy, such

that Ξn(f)(γ1, . . . , γn) = f(σ(γ1), . . . , σ(γn)). Moreover, if Γ � Γ, if for all n � 0 the image of Ξn is in
C(γn,Q`) then σ factors through Γ.

How do we apply this? Remember that H{0},1 = Ccusp
c (G(F )\G(A)/KNΞ,Q`). Write the decomposition

of H{0},1) into generalized eigenspaces for B,
⊕

α:B→Q` hα. Now we change this into something indexed
by Langlands parameters: if α : B → Q` is a character then for all Q`-algebra morphisms and all I, have
continuous function

O(Ĝ\\ĜI//Ĝ)→ C(Gal(F/F )I ,Q`)

by mapping f to the function (γi) 7→ α(SI,f,(γi)). Using the isomorphisms Ĝn//Ĝ ∼= Ĝ Ĝn+1//Ĝ by
(g1, . . . , gn) 7→ (1, g1, . . . , gn) this defines a family Ξn as in the theorem so there exists σ : Gal(F/F )→ Ĝ(Q`)
a continuous group morphism unique up to Ĝ(Q`)-conjugacy, semisimple (i.e. the Zariski closure of Imσ is
reductive) such that for all I, f, (γi) we have

tr(Sf,I,(γi)|hα) = f(σ(γi)) dim(hα).

Also, σ factors through the Galois group of the maximal extension unramified outside of N . From now on
write hα = hσ.

So, we get
Ccusp
c (G(F )\G(A)/KNΞ,Q`) =

⊕
σ:Gal(F/F )→Ĝ(Q`)

hσ,

and part (5) of the proposition says that for all v ∈ |X \ N | and V ∈ RepĜ irreducible, the unique
eigenvalue of TV,v on hσ is χv(σ(Frobv)) = tr(σ(Frobv)|V ), i.e. the decomposition is compatible with the
Satake isomorphism at places v /∈ |N |.

So that’s the outline of the argument. Remains to do:

• Define the action of Gal(F/F )I on HI,W via partial Frobenius maps.

• Study Hecke-finite vectors.

• Prove (5) of the proposition.
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The Galois action on the cohomology of ChtN,I . Start by discussing “small maps”. A map of
k-schemes of finite type f : X → Y is small if f is proper surjective birational and for all r ≥ 1,

codim{y ∈ Y : dim f−1[y] = r} > 2r

Theorem: If f is small, if V ⊆ Y is open dense such that f : f−1[V ] ∼= V , then the canonical isomorphism
Q`,V = f∗Q`,f−1[V ] extends to an isomorphism ICY = f∗ICX .

Now, more affine Grassmannians. Let I be a finite set and (I1, . . . , Ir) a partition of I. Define a
stack (actually an ind-scheme) Gr

(I1,...,Ir)
I by letting Gr

(I1,...,Ir)
I (S) be the set of tuples of (xi) ∈ X(S)i,

Gj ∈ BunG(S) for 0 ≤ j ≤ r,

ϕj : Gj−1|X×S\⋃ i∈IjΓxi
∼= Gj |X×S\⋃ i∈IjΓxi

for 1 ≤ j ≤ r, and ϕ : Gr ∼= G×X × S.
Remark:

• We could also require Gr = G×X × S and get rid of ψ.

• GrI = Gr
(I)
I

• We have obvious maps Gr
(I1,...,Ir)
I → GrI by the full tuple mapping to ((xi),G0,Gr, ϕr◦· · ·◦ϕ1, ϕ). More

generally if (I1, . . . , Ir) refines (I ′1, . . . , I
′
r′) we have an obvious small map Gr

(I1,...,Ir)
I → Gr

(I′1,...,I
′
r′ )

I .

• Can also make the G-bundles Gj defined on
∑
∞xi. This would give the same stack.
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19 Lecture - 11/20/2014
From last time: let I be a finite set and (I1, . . . , Ir) a partition of I. Define a stack (actually an ind-scheme)
Gr

(I1,...,Ir)
I by letting Gr

(I1,...,Ir)
I (S) be the set of tuples of (xi) ∈ X(S)i, Gj ∈ BunG(S) for 0 ≤ j ≤ r,

ϕj : Gj−1|X×S\⋃ i∈IjΓxi
∼= Gj |X×S\⋃ i∈IjΓxi

for 1 ≤ j ≤ r, and ϕ : Gr ∼= G×X × S. Can also define Hecke(I1,...,Ir)
I as the same thing but omitting the

final trivialization ϕ. Then have maps Gr
(I1,...,Ir)
I (S) → Hecke

(I1,...,Ir)
I and from both things to XI(S). If

(I1, . . . , Ir) refines (I ′1, . . . , I
′
r′) get a map from the things for the former to the things for the latter.

Truncations: Let ω = (wi) ∈ X+
∗ (T )I and let ωj = (wi)i∈Ij . Say ((xi),G0, . . . ,Gr, ϕ1, . . . , ϕr) ∈

Hecke
(I1,...,Ir)
I is in Hecke(I1,...,Ir)

I,ω if, for all j and all λ ∈ X+
∗ (T ) we have

ϕj(Gj−1,λ) ⊆ Gj,λ

∑
i∈Ij

〈λ, ωi〉Γxi

 .

Similarly define Gr
(I1,...,Ir)
I,ω .

Also, have maps p, p′ : Hecke
(I1,...,Ir)
I → BunG by mapping a tuple to G0 or Gr, respectively. Then

Hecke
(I1,...,Ir)
I

∼= HeckeI1 ×BunG · · · ×BunG HeckeIr .

Also,
Gr

(I1,...,Ir)
I = Hecke

(I1,...,Ir)
I ×BunG Spec k

with the maps p′ and Spec k → BunG giving the trivial bundle.
Proposition: (a) Let ∆ = {(xi) ∈ XI : ∃i 6= j, xi = xj} be the fat diagonal. Fix ω. If (I1, . . . , Ir) refines

(I ′1, . . . , I
′
r) then the morphisms

Hecke
(I1,...,Ir)
I,ω → Hecke

(I′1,...,I
′
r′ )

I,ω

and
Gr

(I1,...,Ir)
I,ω → Gr

(I′1,...,I
′
r′ )

I,ω

are projective and are isomorphisms over XI \∆.
(b) If I = I1 t I2 and we let UI1,I2 be the open set of tuples (xi) such that xi 6= xj if i ∈ I1 and j ∈ J2.

Then for all ω = (ω1, ω2) the morphism

Hecke
(I1,I2)
I,ω → HeckeI,ω

is an isomorphism over UI1,I2 .
(c) Let ω ∈ X+

∗ (T )I . OverXI\∆, GrI,ω is canonically isomorphic to
∏
i Gr{i},ωi (this is just a restatement

of the factorizable structure on the Grassmannian).
(d) There exists T → BunG×X smooth surjective with connected fibers such that

Hecke{1},ω ×BunG×X T ∼= Gr{1},ω ×XT.

(e) Gr1,ω → X is a Zariski locally trivial fibration with fiber Grω = Orb(tω) ⊆ GrG.
Proof: (c),(e) we’re just restating from earlier results.
(b): Let ((Xi),G,G′, ϕ : G → G′) ∈ HeckeI(S) be such that (xi) ∈ UI1,I2(S). Use ϕ to glue G|X×S\⋃i∈I1 Γx1

to G′|X×S\⋃i∈I2 Γx1
to get a G-bundle G′′, with id : G → G′ an isomorphism over X × S \

⋃
i∈I1 Γxi and

ϕ : G′ → G′′ an isomorphism over X × S \
⋃
i∈I2 Γxi . This defines a point of Hecke(I1,I2)

I,ω (S), and this gives
our inverse map.
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(a) It’s enough to do it for Hecke and for Hecke′I = Hecke
({i})
I → HeckeI . The last part follows from

(b). We know HeckeI,ω → BunG×XI is projective for all ω and all I. And also Hecke′I,ω is a product of
Hecke{ij}’s, so Hecke

′
I,ω → BunG×XI is also projective so Hecke′I → HeckeI is projective.

(d) Let T (S) be the set of tuples (x,G, ψ) with (x,G) ∈ (X × BunG)(S) and ψ : G|Γ∞x ∼= G × Γ∞x, a
GΓ∞x torsor. (?????? Mistake in proof need to fix next time).

Definition: f : Y → Z a morphism of finite-type k-schemes. Said f is small if f is proper surjective
birational and for all r ≥ 1

codim{y ∈ Y : dim f−1[y] = r} > 2r.

Say f is semismall if it’s proper surjective and for all r ≥ 0

codim{y ∈ Y : dim f−1[y] = r} ≥ 2r.

(The r = 0 case implies this is generically finite; note we’re taking this instead of assuming birational).
If f : Y → Z is a map of algebraic stacks, call it (semi)mall if for all Z → Z smooth with Z finite type

scheme, Z ×Y Z → Z is (semi)small.
Theorem: Let ω ∈ X+

∗ (T )I . If (I1, . . . , Ir) refines (I ′1, . . . , I
′
r′) then

Hecke
(I1,...,Ir)
I,ω → Hecke

(I′1,...,I
′
r′ )

I,ω

and
Gr

(I1,...,Ir)
I,ω → Gr

(I′1,...,I
′
r′ )

I,ω

are small.
Proof: By (d) of the proposition (hopefully), these two statements are equivalent for fixed I, ω. It’s

enough to do the extreme map
Hecke′I,ω = Hecke

({i})
I,ω → HeckeI,ω.

If (I1, . . . , Ir is a partition of I let ∆(I1,...,Ir) be the diagonal such that xi = xi′ whenever i, i′ ∈ Ij . Let
X◦(I1,...,Ir) be

∆(I1,...,Ir) \
⋃

∆(I′1,...,I
′
r′ )

where the union runs over all strict coarsenings; thus it consists of all tuples (xi) with xi = xi′ iff i, i′

are in the same Ij . Then XI is the disjoint union of all of these X◦(I1,...,Ir), and we know πH and πG

are isomorphisms over the open stratum X◦({i}) = XI \ ∆. The other strata are codimension ≥ 1 and
HeckeI,ω,GrI,ω → XI are equidimensional.

So we just need to show πH and πG are small over X◦(I1,...,Ir) for everything but the finest partition.
But over this set we have that HeckeI,ω is canonically isomorphic to ???
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20 Lecture - 11/25/2014
First, fix issue from last time. Defined two stacks, Hecke1 mapping S to the tuples (x,G,G′, ϕ) with
x ∈ X(S), G,G′ ∈ BunG(S), ϕ : G|X×S\Γx ∼= G′|X×S\Γx , and Gr1 mapping S to the tuples (x,G, ϕ) with
x ∈ X(S), G ∈ BunG(S), ϕ : G|X×S\Γx ∼= GX×S\Γx . Have natural maps Gr1 → Hecke1 taking (x,G, ϕ) to
(x,G, GX×S , ϕ) and Hecke1 → BunG×X by (x,G,G′, ϕ) 7→ (x,G′).

Want that there exists T → BunG×X smooth surjective with connected fibers such thatHecke1×BunG×X
T ∼= Gr1×XT . For this, take T to be given by mapping S to tuples (x,G, ψ) with (x,G) ∈ (X × BunG)(S)
and ψ : G|Γ∞x ∼= GΓ∞x .

To prove this works, recall by B-L theorem Gr1
∼= Grloc

1 where Grloc
1 is defined by mapping S to tuples

(x,G, ϕ) with x ∈ X(S), G ∈ BG(Γ∞x), and ϕ : G|Γ∞x\Γx ∼= GΓ∞x\Γx . Then, explicitly define mutually
inverse morphisms between the things we want:

To define α : Grloc
1 ×XT → Hecke1×X×BunGT , let (x,G, ϕ,G′, ψ) ∈ (Gr1×XT )(S); this means x ∈ X(S),

G ∈ BG(Γ∞x), ϕ : G|Γ∞x\Γx ∼= GΓ∞x\Γx , G′ ∈ BG(X × S), and ψ : G′|Γ∞x ∼= GΓ∞x . By B-L theorem gluing
G on Γ∞x and G′ on X × S \ Γx using ψ−1 ◦ ϕ on Γ∞x \ Γx gives a G-bundle G1 on X × S together with
ϕ1 : G1

∼= G′ on X × S \ Γx. Take α of the input tuple to map to the pair of tuples (x,G1,G′, ϕ1) and
(x,G′, ψ).

To define β : Hecke1×X×BunGT → Grloc
1 ×XT , suppose we have a point ((x,G,G′, ϕ), (x,G′′, ψ), χ) where

χ : G′ ∼= G′′. Then on Γ∞x \ Γx by composing ϕ, χ, ψ we get a chain of isomorphisms G ∼= G′ ∼= G′′ ∼= G, so
get (x,GΓ∞x , ψ ◦ χ ◦ ϕ) ∈ Grloc

1 . Take β(z) to be this point together with the point from T (S).
Remark: If we work with Gr1,ω and Hecke1,ω then we can instead take Tn given by S 7→ (x,G, ϕ :

G|Γnx ∼= GΓnx) for large n (relative to ω).

What we were doing : Last time stopped in the middle of a proof. had ω = ω1 + · · · + ωr ∈ X+
∗ (T ).

Was trying to show that the map Gr′′1,ω → Gr1,ω was semi-small where

Gr′′1,ω = Gr
{1},...,{r}
{1,...,r},(ωi)×XrX

where Gr
{1},...,{r}
{1,...,r},(ωi)(S) was tuples (x1, . . . , xr,G0, . . . ,Gr, ϕ1, . . . , ϕr) with xi ∈ X(S), Gi ∈ BunG(S), ϕi an

isomorphism of Gi−1 with Gi on X ×S \Γxi , with Gr = G×X ×S, and such that for all λ ∈ X∗+(T ) we have
ϕi(Gi−1,λ) ⊆ Gi,λ(〈λ, ωi〉Γxi). Thus Gr′′1,ω(S) is the same data but with x1 = · · · = xr = x, and the map to
Gr1,ω maps this tuple to (x,G0, ϕr ◦ · · · ◦ ϕ1).

Proof: First we may assume X = A1, so Gr′′1,ω → Gr1,ω is the product of |idX and Grω1,...,ωr → Grω
where Grω = Orbtω and Grω1,...,ωr is Grω1 ×̃ · · · ×̃Grωr , where this is defined via a convolution diagram

Grω1
×̃ · · · ×̃Grωr = π2[π−1

1 [Grω1
× · · · ×Grωr ]] = π−1

1 [Grω1
× · · · ×Grωr ]/GJtKr−1,

where π1, π2 : G((t))r−1 ×GrG → GrrG are such that

π1(g1, . . . , gr−1, z) = (g1, . . . , gr−1, z)

π1(g1, . . . , gr−1, z) = (g1, g1g2, . . . , g1 · · · gr−1, g1 · · · gr−1z)

where g is the image of g in GrG. Note that π2 is a GJtKr−1-torsor. Also, the map Grω1,...,ωr → Grω is
projection to the last factor (viewing them as subsets of GrrG and GrG).

This map Grω1,...,ωr → Grω is a partial Bott-Samelson (or Demazure) resolution. Last year we already
used that these were semismall to show that the convolution product preserved perversity. Reference: Ngo-
Polo, lemma 9.3 for the case ωi (quasi)-minuscule, but can be easily adapted to the general case.

Shtuka : Let I be a finte set, (I1, . . . , Ir) a partition of I, N ⊆ X a finite closed subscheme. Define
Cht

(I1,...,Ir)
N,I (S) to be the set of tuples ((xi)i∈I , (G0, ψ0), . . . , (Gr, ψr), ϕ1, . . . , ϕr) where xi ∈ X(S) \ N(S),

(Gj , ψj) ∈ BunG,N (S), (Gr, ψr) = (τG0,
τ ψ0), and ϕj is an isomorphism of Gj−1 and Gj on X ×S \

⋃
i∈Ij Γxi ,

compatible with the ψj−1 and ψj .
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Note Cht(I)N,I = ChtN,I , and define Cht(I1,...,Ir),≤µ
N,I by putting the degree condition on G0. Remark: If

(I1, . . . , Ir) refines (I ′1, . . . , I
′
r′) we get a map Cht(I1,...,Ir)

N,I → Cht
(I′1,...,I

′
r)

N,I .

We have a map η : Cht
(I1,...,Ir)
N,I → Gr

(I1,...,Ir)
I /G∑

∞xi defined as follows. If ((xi), (Gj , ψj), (ϕj)) is in

Cht
(I1,...,Ir)
N,I (S) and ψ a trivialization of Gr = τG0 on Γ∑

∞xi , send this tuple to ((xi), ψ ◦ϕr ◦ · · · ◦ϕ1). Note
ψ exists only locally, but this construction glues to give η.

Definition: set
Cht

(I1,...,Ir)
N,I,ω = η−1[Gr

(I1,...,Ir)
I,ω /G∑

∞xi ].

If W ∈ RepĜI set
Cht

(I1,...,Ir)
N,I,W =

⋃
ω

Cht
(I1,...,Ir)
N,I,ω

where ω runs over highest weights of W . As before, if W is fixed then for ni big enough then η comes from
a natural map

εN,I : Cht
(I1,...,Ir)
N,I,W → Gr

(I1,...,Ir)
I,W /G∑

nixi .

Proposition: εN,I is smooth of relative dimension dim(G∑
nixi/X

I).

Corollary: The maps Cht(I1,...,Ir)
N,I,W → Cht

(I′1,...,I
′
r′ )

N,I,W are small.

Geometric Satake : Theorem: For all I and all partitions (I1, . . . , Ir) we have an additive functor
RepĜI → PervG∑

∞xi
(Gr

(I1,...,Ir)
I ). We denote this W 7→ S

(I1,...,Ir)
I,W . This satisfies some compatibility

conditions, and is such that if we have π : Gr
(I1,...,Ir)
N,I,W → Gr

(I′1,...,I
′
r′ )

N,I,W induced by a refinement, then we have
a canonical isomorphism

S
(I′1,...,I

′
r′ )

I,W
∼= π∗S

(I1,...,Ir)
I,W .

Remark: IfW is irreducible of highest weight ω then S(I1,...,Ir
I,W ) is just the intersection complex of Gr

(I1,...,Ir)
I,ω ,

so the last map follows from smallness of π.
Definition: Set F (I1,...,Ir)

N,I,W = ε∗N,I(S
(I1,...,Ir)
I,W [· · · ] (with the shift chosen so that this is perverse on fibers of

Cht
(I1,...,Ir
N,I,W )→ XI). Remember: for p : ChtN,I,W → XI , we defined

H≤µN,I,W = pR0p!(FN,I,W |Cht≤µN,I,W /Ξ).

Then we get: for all partitions of (I1, . . . , Ir) have

p(I1,...,Ir) : Cht
(I1,...,Ir)
N,I,W → XI

we have a canonical isomorphism

H≤µN,I,W ∼=
pR0p(I1,...,Ir)!(F

(I1,...,Ir)
N,I,W |Cht(I1,...,Ir)≤µ

N,I,W /Ξ).
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21 Lecture - 12/02/2014
Partial Frobenius morphisms . Recall our setup: (I1, . . . , Ir) is a partition of I, and defined a stack
Cht

(I1,...,Ir)
N,I,W with S-points consisting of a tuple (xi) ∈ (X \ N)I(S) and a sequence of bundles (Gj , ψj) for

0 ≤ j ≤ r (with (Gr, ψr) = >(G0, ψ0)) and morphisms ϕj : (Gj−1, ψj−1) → (Gj , ψj) an isomorphism on
X × S \

⋃
i∈Ij Γxi , plus a truncation condition. Have p : Cht

(I1,...,Ir)
N,I,W → XI , and are interested in

H≤µN,I,W = pR0p!

(
F (I1,...,Ir)
N,I,W |Cht(I1,...,Ir),≤µ

N,I,W /Ξ
)

which we showed was independent of the partition.
Now, fix a partition (I1, . . . , Ir). Let FrobI1 : XI → XI be (FrobX)I1 × (idX)I\I1 . Define a morphism

Frob
(I1,...,Ir)
I1

: Cht
(I1,...,Ir)
N,I,W → Cht

(I2,...,Ir,I1)
N,I,W

by sending the tuple with (xi) and

(G0, ψ0) (G1, ψ1) · · · (Gr, ψr)
ϕ1

to FrobI1(xi) and

(G1, ψ1) · · · (Gr, ψr) >(G1, ψ1)
>ϕ1

recalling that (Gr, ψr) = >(G1, ψ1).
Note that

Frob
(Ir,I1,...,Ir−1)
Ir

◦ · · · ◦ Frob
(I1,...,Ir)
I1

is the absolute Frobenius of Cht(I1,...,Ir)
N,I,W , so Frob

(I1,...,Ir)
I1

is a totally radical universal homomorphism and in
particular we have a canonical isomorphism

(Frob
(I1,...,Ir)
I1

)∗F (I2,...,Ir,I1)
N,I,W = F (I1,...,Ir)

N,I,W .

Lemma: If ω = (ωi) ∈ X+
∗ (T )I then

Frob
(I1,...,Ir)
I

[
Cht

(I1,...,Ir),≤µ
N,I,ω

]
⊆ Cht(I1,...,Ir),≤µ−w0

∑
ωi

N,I,ω

where w0 is the longest element of the Weyl group, and

(Frob
(I1,...,Ir)
I )−1

[
Cht

(I2,...,Ir,I1),≤µ
N,I,ω

]
⊆ Cht(I1,...,Ir),≤µ+

∑
ωi

N,I,ω .

So for all µ and all W , if κ ∈ X+
∗ (T ) is big enough then Frob

(I1,...,Ir)
I1

induces

FI1 : (FrobI1)∗H≤µN,I,W ∼= H
≤µ+κ
N,I,W

(for every partition of I).

Drinfeld’s Lemma . Let X be as before (smooth projective curve), F = k(X), η = SpecF the generic
point, and η = SpecF a geometric generic point. Let I be finite, ∆ : X → XI the diagonal, ηI be the
generic point of XI and ηI a geometric point over this. Fix a specialization map sp : ηI → ∆(η). Let E/Qp
be a finite extension (our field of coefficients).

Lemma 0 : (i) If F is a lisse (constructible) OE-sheaf (or E-sheaf) on a dense open subset ofXI , admitting
“partial Frobenius isomorphisms” (i.e. F{i} : Frob∗{i} F|ηI → F|ηI for every i ∈ I, which commute with each
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other and compose to the usual Frobenius). Then, here exists an open nonempty subset U such that F
extends to a lisse sheaf on U I .

(ii) Fix U ⊆ X nonempty. Let C(U, I,OE) be the category of lisse (constructible) OE-sheaves on U I

admitting partial Frobenius isomorphisms. Then F 7→ F|∆(η) is an equivalence between C(U, I,OE) and the
category of representations of π1(U, η)I on OE-modules of finite type.

Note also that sp∗ : F|∆(η) → F|ηI is an isomorphism.
Idea of proof: (i) Let Ω ⊆ XI be the biggest open on which F extends to a lisse sheaf, and let ∆ = XI \Ω.

We want to show that if ∆ is finite over each factor X we know ∆ is stable by all Frob{i}. An easy induction
reduces to case |I| = 2, I = {i1, i2}. Let ∆0 be an irreducible component of ∆. If πij : ∆0 → X are both
surjective then ?????. (Proof in class had mistake, exercise).

For proof of (ii), see lemmas below.
Lemma 1: Let Y0/Fq be a finite-type scheme and let k/Fq be algebraically closed. Let Y = Y0 ⊗Fq k and

τ = (idY0 ⊗Frobk)∗. Then the obvious functor Φ taking the category of coherent sheaves on Y0 to coherent
sheaves G on Y with ψ : τG ∼= G is fully faithful, and is an equivalence if Y is projective.

Proof: It’s obvious that Φ is fully faithful, so assume Y0 is projective and choose O(1) a very ample
line bundle. Then F 7→

⊕
H0(Y0,F(n)) is an equivalence of coherent sheaves on Y0 with finite-type graded

modules over
⊕
H0(Y0,O(n)) modulo graded modules that are 0 in degree � 0, and similarly for Y . So

reduce to the case Y0 = SpecFq, and we have to prove the following lemma.
Lemma 2: Let k/Fq be as before, and V a finite-dimensional k-vector space. Let ψ : V → V be Frobk-

linear (where Frobk is x 7→ xq), and let V0 = ker(ψ − idV ). Then V0 ⊗Fq k → V is injective, and it’s an
isomorphism if ψ is an isomorphism.

Proof: If V0⊗Fq k → V is not injective then get αl, . . . , αn ∈ k× and e1, . . . , en linearly independent over
Fq but such that

α1e1 + · · ·+ αnen = 0

in V . Assume n is minimal such that this holds. Applying ψ get

αq1e1 + · · ·+ αqnen = 0,

and by minimality get there exists c such that αqi = cαi. So (αi/αj)
q = αi/αj for all i, so these are in Fq, so

e1 +
α2

α1
e2 + · · ·+ αn

α1
en = 0

is a dependence relation over Fq. Contradiction.
Now assume ψ is an isomorphism, and let n = dimk V . We want to show that n = dimFq V0, i.e. |V0| = qn.

Consider the closed subscheme Z of GLn × An over k defined by equation x1

...
xn

− g
 xq1

...
xqn

 = 0.

Then V0 is isomorphic to the fiber over g0 the matrix of ψ in some basis. Then π1 : Z → GLn is a finite
commutative group scheme, affine and quasi-finite étale. Claim Z is closed in GLn × Pn, where we embed
An as [1 : x1 : · · · : xn]. Define a homogeneous version of the same equation as

xq−1
0

 x1

...
xn

− g
 xq1

...
xqn

 = 0.

and find it doesn’t have any solutions for x0 = 0, so defines Z in GLn×P1. So Z → GLn is a finite étale group
scheme, hence has constant degree. So |V0| is degree of the matrix of ψ, which is degree over 1 ∈ GLn <
which is qn.
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Lemma 3: Let Y0 be a smooth scheme over Fq, k/Fq be algebraically closed, Y = Y0 ⊗Fq k, F =
FrobY0 ⊗ idk the relative Frobenius. Then z0 7→ z0 ⊗Fq k induces an equivalence of finite étale covers of Y0

with finite étale covers Z of Y with β : Z ∼= F ∗Z.
Proof: First note that giving β is the same as giving an isomorphism α : τZ ∼= Z. This functor Ψ is fully

faithful by Lemma 1, so it’s enough to show essential surjectivity locally on Y0. So we may assume Y0 is
affine. Choose a projective scheme Ỹ0 and open embedding Y0 ↪→ Ỹ0. Let (Z,α) be in the RHS category.
Let L/K be ring of fractions of O(Z)/O(Y ), and let Z̃ be the normalization of Ỹ = Ỹ0 ⊗Fq k in L.

Over Y , Z̃is just Z. As τ does not change the underlying scheme, τ Z̃ is the normalization of τ Ỹ in τL,
so α extends to τ Z̃ ∼= Z̃. Apply Lemma 1 to the coherent OỸ -module p∗OZ̃ (for p : Z̃ → Ỹ ) and its algebra
structure, descending it to OỸ0

.
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22 Lecture - 12/04/2014

Lemma 4: Let Y1,0 and Y2,0 be two smooth schemes over Fq, Yi = Ti,0 ⊗Fq Fq, Y = Y1 × Y2. Let Fi be the
“partial relative Frobenius” on Y defined by

Fi = (FrobYi,0 ⊗ idFq )× idY3−i .

Then we have an equivalence from the categories of maps ρ : π1(Y1,0)× π(Y2,0)→ Aut(A) for A a finite set,
to the category of finite étale maps Z → Y together with isomorphisms F ∗i Z ∼= Z. The functor here starts
with ρ, moves it to a map π1(Y1,0×Y2,0)→ Aut(A) by composing with π1(Y1,0×Y2,0)→ π1(Y1,0)×π2(Y2,0),
using this to get a finite étale map Z0 → Y1,0 × Y2,0 and then base-changing to Fq.

Proof: As usual, the hard part is essential surjectivity. So suppose we’ve fixed Z → Y finite étale together
with isomorphisms F ∗i Z ∼= Z for i = 1, 2. Let Ki be the field of fractions of O(Yi) and K = K1 ×K2 (the
field of fractions of Y ). Then get commutative diagram

π1(Y1 ⊗K2) π1(Y1) π1(Y1,0)

π1(K) π1(Y1 ⊗K2) π1(Y1)× π1(K2)

.

Now, Z corresponds to π1(Y ) → Aut(A) with A a finite set. By Lemma 3, ρ|π1(Y1⊗K2
factors through

π1(Y1,0) and thus through π1(Y1). So ρ|π1(Y1⊗K2) factors through π1(Y1) × π1(K2), hence so does ρ|π1(K).
Similarly ρ|π1(K) factors through π1(K1)× π1(Y2). Conclude ρ factors through π1(Y1)× π1(Y2). (?)

Application (Lemma 0 part ii): Let U ⊆ X be open nonempty, F a lisse `-adic sheaf over U I with partial
Frobenius morphisms. Then the `-adic representation of π1(U I) corresponding to F factors through π1(U)I .

Hecke-finite cohomology . We want to apply Drinfeld’s lemma to H≤µN,I,W ∈ Perv(U I) (which is lisse).
But there’s a bit of an issue because these sheaves aren’t stable by partial Frobenius morphisms - they
increase µ. What these morphisms really act on is lim−→µ

H≤µN,I,W , which is not finite type anymore.
Definition: Let x be a geometric point of XI (we only really care about x = ηI or x = ∆(η)). We

say an element of lim−→µ
H≤µN,I,W |x is Hecke-finite if it is contained in a finite-type OE-submodule (for E/Q`

finite the field of coefficients) that is stable by all Hecke operators T (f) for f ∈ Cc(KN\G(A)/Kn,OE). Let
(lim−→H

≤µ
N,I,W |x)HF be the set of Hecke-finite element.

V. Lafforgue conjectures (and hopes to prove, but hasn’t so far) conjectures that (lim−→H
≤µ
N,I,W |x)HF is

finite-dimensional, which means we could apply Drinfeld’s lemma immediately to the corresponding lisse
sheaf. Fortunately we only need the following weaker thing to apply Drinfeld’s lemma.

Claim: (1) (lim−→H
≤µ
N,I,W |ηI )HF is a union of finite-typeOE-submodules that are stable by Cc(KN\G(AF )/KN ,OE)

and the partial Frobenius.
(2) Remembering we fixed a specialization map sp : ηI → ∆(η). The specialization morphism

sp∗ : (lim−→H
≤µ
N,I,W |∆(η))

HF → (lim−→H
≤µ
N,I,W |ηI )

HF

is an isomorphism.
Then, we take HI,W = (lim−→H

≤µ
N,I,W |∆(η))

HF , which by Drinfeld’s lemma and (2) have a canonical action
of Gal(F/F )I . These are the things we used to define the excursion maps SI,f,(γi)i∈I . So what about the
rest of the proof (and the proof of this claim):

• We’ll have some Eichler-Shimura relations that, together with (1) will imply (2). (Very straightforward
argument)

• The Eichler-Shimura relations will also imply (1).
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• To get the Eichler-Shimura relations, we need to identify unramified Hecke operators with some excur-
sion operators.

Eichler-Shimura relations : Fix I,N, µ,W as before. Let f ∈ Cc(KN\G(AF )/KN ,OE) (or replace OE
with E). If M is the set of places where f is not trivial, then T (f) is a map

H≤µN,I,W |(X\(N∪M))I → H≤µ+κ
N,I,W |(X\(N∪M))I

for some κ depending on f .
Creation and annihilation operators: Given J finite, U ∈ RepĜJ , ζJ : J → {0}, let UζJ ∈ RepĜ be U

with the diagonal action of Ĝ. Fix x ∈ (UζJ )Ĝ and ξ ∈ (UζJ ,∗)Ĝ. Then have idW �x : W � 1 → W � UζJ

and idW �ξ : W � Uζj → W � 1. Let EX\N be the constant sheaf on X \N , and ∆ = ∆ζJ : X → XJ be
the diagonal map

Definition: The creation operator C]x is the composition of the canonical isomorphism

H≤µN,I,W � EX\N ∼= H≤µN,It{0},W�1

on (X \N)It{0}, followed by
H(x) : H≤µN,It{0},W�1 → H

≤µ
N,ItJ,W�UζJ

and then the inverse of the fusion isomorphism

H≤µN,ItJ,W�U |(X\N)I×∆(X\N)
→ H≤µ

N,ItJ,W�UζJ
.

The annihilation operator C[ξ is the composition of the fusion isomorphism

H≤µN,ItJ,W�U |(X\N)I×∆(X\N)
→ H≤µ

N,ItJ,W�UζJ
.

with H(ξ) and then the inverse of the isomorphism

H≤µN,I,W � EX\N ∼= H≤µN,It{0},W�1.

Now, fix v ∈ |X \N |, V ∈ RepĜ irreducible. Get

hV,v ∈ Cc(G(Ov)\G(Fv)/G(Ov),OE)

by classical Satake. Let δV : 1→ V ⊗V ∗ and evv : V ⊗V ∗ → 1 the obvious maps from adjunction. Let SV,v
be the composition of

C]δV : H≤µN,I,W � Ev → H≤µN,It{1,2},W�V�V ∗|(X\N)I×∆(v)

with
F deg v
{1} : H≤µN,It{1,2},W�V�V ∗|(X\N)I×∆(v)

→ H≤µ+κ
N,It{1,2},W�V�V ∗|(X\N)I×∆(v)

and then
C[evv : H≤µ+κ

N,It{1,2},W�V�V ∗|(X\N)I×∆(v)
→ H≤µ+κ

N,I,W � Ev.

Then SV,v descends to a map
SV,v : H≤µN,I,W → H

≤µ+κ
N,I,W .

Crucial Theorem (to be proved later): SV,v|(X\(N∪{v}))I = T (hV,v).
Some propositions following from the theorem:
Proposition 1: For all f ∈ Cc(KN\G(AF )/KN ,OE), T (f) extends to a morphism T (f) : H≤µN,I,W →

Hµ+κ
N,I,W on (X \N)I (in a way compatible with composition of Hecke operators).

53



Proof: Assume f = ⊗fv and extend each T (fv) defined on (X \N ∪ {v})I . If v ∈ N , nothing to do. If
v /∈ N ,

fv ∈ Cc(G(Ov)\G(Fv)/G(Ov),OE),

so we may assume fv = hV,v for some V and then use SV,v to extend T (fv).
Proposition 2 (Eichler-Shimura relation): Let V ∈ RepĜ be irreducible and v ∈ |X \N |. Consider F deg v

{0}
as an endomorphism on

lim−→
µ

H≤µN,It{0},W�V |(X\N)I×v
.

Then
dimV∑
i=0

(−1)i(F deg v
{0} )i ◦ S∧dimV−i V,v|(X\N)I×v = 0

(Strictly speaking this is independent of the crucial theorem, but we use that to interpret the S∧dimV−i V,v

as an extension of a Hecke operator and thus make this look like a classical Eichler-Shimura relation).
Proof: For all J finite, let

AJ =
1

|J |!
∑
σ∈SJ

sgn(σ)σ ∈ Q[SJ ],

so A2
J = AJ . If V ′ is an E-vector space, AJ acts on (V ′)⊗J and its image is

∧|J|
V ′. For all n ∈ N and all

U ∈ End(V ⊗{0,...,n}) let Cn(U) be the composition of

C]
δ⊗nv

: H≤µN,I,W�V |(X\N)I×v
→ H≤µ

N,It{0}t{1,...,2n}W�V�V �n�V ∗�n|(X\N)I×∆(v)

with H(idW �U � id(V ∗)�n) and then
∏n
j=1(F{j})

deg v and finally

C[
ev�nv

: H≤µ+n deg(v)κ

N,It{0}t{1,...,2n}W�V�V �n�V ∗�n|(X\N)I×∆(v)
→ H≤µ+n deg(v)κ

N,I,W�V |(X\N)I×v
.

Claim: For all n,

Cn(A{0,...,n}) =
1

n+ 1

n∑
i=0

(−1)i(F deg v
{0} )i ◦ S∧dimV−i V,v.

If we apply the claim for n = dimV , A{0,...,dimV } acts by 0 to on V ⊗{0,...,dimV }, so CdimV (A{0,...,dimV })
and so we get the proposition.

Proof of the claim: Finish next time.
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23 Lecture - 12/09/2014
Remember from last time: I finite, N the level, W ∈ RepĜI . Defined creation morphism, annihilation
morphism, and then the operator

SV,v : H≤µN,I,W � Ev → H≤µ+κ
N,I,W � Ev

for v ∈ |X \N | and V ∈ RepĜ. This descends to a morphism H≤µN,I,W → H
≤µ+κ
N,I,W .

Crucial theorem (still to be proved): If V is irreducible, then SV,v restricted to (X \ (N ∪ v))I is equal to
the unramified Hecke operator T (hV,v) at v corresponding to V by Satake.

Proposition 2 (Eichler-Shimura relation): Consider

F
deg(v)
{0} : lim−→

µ

H≤µN,It{0},W�V |(X\N)I×v
→ lim−→

µ

H≤µN,It{0},W�V |(X\N)I×v
.

Then
dimV∑
i=0

(−1)i(F deg v
{0} )i ◦ S∧dimV−i V,v|(X\N)I×v = 0

Proof: From last time reduce to the claim that for all n

Cn(A{0,...,n}) =
1

n+ 1

n∑
i=0

(−1)i(F deg v
{0} )i ◦ S∧dimV−i V,v.

For all σ ∈ S{0,...,n}, let `(σ, 0) be the length of the cycle containing 0. Then we further reduce to the claim
that, for each i,

Cn

 1

n!

∑
σ:`(σ,0)=i+1

sgn(σ)σ

 = (−1)i(F deg v
{0} )i ◦ S∧dimV−i V,v.

Fix i ∈ {0, . . . , n− 1}. Note that Cn(µ) does not change if we compose by σ with σ(0) = 0. So

Cn

 1

n!

∑
σ:`(σ,0)=i+1

 = Cn

 1

(n− i)!
∑

σ=(0 1 ··· i)···

sgn(σ)σ

 .

Now, what’s this remaining sum? At this point we’ve totally separated what our σ’s does to {0, . . . , i} and
{i + 1, . . . , n}, so the legs for {0, . . . , i} ∪ {n + 1, . . . , n + i} and {i + 1, . . . , n} ∪ {n + i + 1, . . . , 2n} play
independent roles. So what happens to them?

First, the legs at {i+ 1, . . . , n} ∪ {n+ i+ 1, . . . , 2n}:

1. We create the pairs of legs (i+ 1, n+ i+ 1), . . . , (n, 2n) by δV .

2. We apply
1

(n− i)!
∑

τ∈S{i+1,...,n}

sgn(τ)τ = A{i+1,...,n}

to the legs in {i+ 1, . . . , n}.

3. We apply the partial Frobenius to the legs {i+ 1, . . . , n}.

4. We destroy the legs by the pairs (i+ 1, n+ i+ 1), . . . , (n, 2n) by evv.

The result is S∧dimV−i V,v (or SV ⊗(dimV−i),v if we don’t do (2)).
What about the legs in {0, . . . , i} ∪ {n+ 1, . . . , n+ i}? Renumber the legs by the bijection

{0, n+ 1, 1, n+ 2, . . . , n+ i, i} ↔ {0, 1, 2, . . . , 2i}

(so the first set of legs become even numbers and the second set becomes odd numbers). Then:
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1. First we create pairs of legs (1, 2), . . . , (2i− 1, 2i) using δV .

2. We apply the partial Frobenius at {2, 4, 6, . . . , 2i}.

3. We kill the pairs of legs (0, 1), . . . , (2i− 2, 2i− 1).

If i = 1 we get F deg v
{0} using that if µ using the fact that for all µ,

V V ⊗ V ∗ ⊗ V V ⊗ V ∗ ⊗ V V
idV ⊗δV idV ⊗ idV ⊗µ evV ⊗idV

is equal to µ. By induction on i, the obvious analog of this computation for i ≥ 1 gives that the answer to
the question above is (F deg v

{0} )i.
Aside: How is this inspired by a proof of Cayley-Hamilton? Well, if we have V and µ ∈ End(V ) then we

want
dimV∑
i=1

(−1)i tr(

dimV−i∧
µ)µi = 0.

Then, if n ∈ N and U ∈ End(V ⊗{0,...,n}), let Cn(U) be the composition of idV ⊗δV⊗n with U ⊗ id(V ∗)⊗n ,
idV ⊗ id(V ∗)⊗n ⊗µ⊗n and then (evv)

⊗n ⊗ idV . Then claim that Cn(A{0,...,n}) =
∑

(−1)i tr(
∧dimV−i

µ)µi,
which follows from a very similar proof.

Claim (1) from last time : Now that we have the Eichler-Shimura relation, which we called (2), we
want to get statement (1), that (

lim−→
µ

H≤µN∩,W |ηI

)HF
is a union of finite-type OE-submodules stable by the actions of Cc(KN\G(AF )/KN ,OE) and the partial
Frobenius. (We can then apply Drinfeld’s lemma to these finite-type parts and get what we want).

So how do we prove this? We may assume W = �i∈IWi. Let

N ⊆

(
lim−→
µ

H≤µN∩,W |ηI

)HF
be a finite-type OE-submodule stable by Hecke operators. We may assume N ⊆ H≤µ0

N,I,W |ηI
for some µ0.

Let U ⊆ XI be open dense such that H≤µ0

N,I,W is lisse on U . Then N = F|ηI with F lisse on U . Let
(vi)i∈I ∈ (X \N)I be such that ×i∈Ivi ∈ U . For all i ∈ I, Eichler-Shimura gives that

(F
deg(vi)
{i} )dimWi(F|×vi) ⊆

dimWi−1∑
r=0

(F
deg(vi)
{i} )r(S∧dimWi−rWi ,vi

F|×vi)

in lim−→H
≤µ
N,I,W |×vi

. But the LHS here is a lisse sheaf on XI , so we have a similar inclusion of subschemes of

(lim−→µ
H≤µN,I,W )|ηI . As F|ηI is stable by S∧dimWi−rWi

(by the crucial theorem that this is a Hecke operator)
so we get that

F
deg(vi) dim(Wi)
{i} (N ) ⊆

dimWi−1∑
r=0

F
deg(vi)r
{i} (N )

in lim−→µ
H≤µN,I,W |ηI . So N

′ is finite type over OE , stable by Hecke operators and partial Frobenius, where

N =
∑

(ni)∈NI :0≤ni≤dim(Wi) deg(vi)−1

∏
i∈I

Fni{i}(N ).
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Proof of the crucial theorem : Recall the theorem was if v ∈ |X \ N | and V ∈ RepĜ is irreducible,
then SV,v = T (hV,v) as morphisms

H≤µN,I,W |(X\(N∪v))I → H≤µ+κ
N,I,W |(X\(N∪v))I .

Simple case to do first: deg(v) = 1, the highest weight ωV of V is minuscule. (Remark: ωv minuscule iff
ωV is minimal in X+

∗ (T ), iff the weights of V are the Weyl group translates of ωV , which implies Orb(tωv ) =
Orb(tωv ) is smooth). Also, assume W is irreducible (which is a harmless simplification)

57



24 Lecture - 12/11/2014
Still studying the map SV,v (for v ∈ |X \N | and V ∈ RepĜ irreducible). Main theorem we want to prove:
SV,v|(X\(N∪v))I = T (hV,v). Recall we’re first doing the case where deg v = 1 and the highest weight ωV of V
is minuscule.

Correspondences: Let X1, X2 be DM stacks of locally of finite type. A correspondence from X1 to X2 is
a morphism a = (a1, a2) with a2 schematic of finite type. (The case where a2 = id corresponds to an actual
morphism). A cohomological correspondence from F1 ∈ Db

c(X1,Q`) to F2 ∈ Db
c(X2,Q`) with support in a

(or A) is a map µ : a∗1F1 → a!
2F2.

If a1 is proper, if fi : Xi → S are such that f1a1 = f2a2, then µ induces a map H(µ)

f1!F1 f1!a1∗a
∗
1F1 f1!a1!a

∗
1F1 f2!a2!a

!
2F2 f2!F2

adj = µ adj
.

Sometimes there’s a canonical µ with support in a.
Example: if X1, X2, A are smooth of dimensions d1, d2, d then a∗1Q`,X1

= Q`A and a!
2Q`,X2

= Q`,A(d −
d2)[2(d− d2)] so we have µ = id is a correspondence from Q`,X1

(d− d2)[2(d− d2)] to Q`,X2
.

The Hecke correspondence T (hV,v) . Write Z(I) = ChtN,I,W |(X\(N∪v))I . Then T (hV,v) = H(µ) where
µ is a cohomological correspondence from F≤µN,I,W to itself, with support in Γ(I) where Γ(I)(S) is the set of
tuples of (xi) and diagrams

(G′, ψ′) (τG′, τψ′)

(G, ψ) (τG, τψ)

ϕ′

ϕ

κ τκ

where κ gives an isomorphism of G and G′ on X × S \ Γv (compatible with ψ,ψ′) and such that for all λ we
have

κ(Gλ) = G∧λ (〈λ, ωV 〉Γv)

(here = and ⊆ are equivalent because ω − v is minuscule). Then, our maps a1, a2 : Γ(I) → Z(I) take the
diagram to the lower line and the upper line, respectively; since ωv is minuscule these are in fact finite étale.
Hence

a∗1F
≤µ
N,I,W = a!

2F
≤µ
N,I,W = ICΓ(I),≤µ .

Claim that this first equality is actually our µ; this is because ωV is minuscule so hV,v = 1G(Ov)tωV G(Ov).
Now, we need to write SV,v in the same way. Recall our annihilation operator is from

C[ : HN,It{1,2},W�V�V ∗ |(X\(N∪v))I×∆(v) → H≤µN,I,W |(X\(N∪v))I×∆(v)

with the domain coming from the sheaf F (with the same decorations) on

Cht
(1,2,I)
N,It{1,2},W�V�V ∗ |(X\(N∪v))I×∆(v).

Let this stack be Z(1,2,I); so we want a correspondence form Z(1,2,I) to Z(I) for the corresponding sheaves
F≤µ (with the same lower subscripts).

Let ι1 : Y1 ↪→ Z(1,2,I) be the closed substack where ϕ2ϕ1 extends to an isomorphism on X×S. Similarly
let α1 : Y1 → Z(I) be given by taking a diagram in Y1 to ϕ3(ϕ2ϕ1) : (G0, ψ0) → (τG0,

τψ0). Then α1 is
smooth of relative dimension 〈ρ, ωV 〉. Our geometric correspondence is then ι1 and α1.

Lots of details checking this correspondence gives what we want...
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