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1 Lecture - 09/11/2014

Fix a finite field F, of characteristic p, prime number ¢ # p, let X/IF, be a smooth projective geometrically
connected curve. Let F' = F,(X) be the function field of the curve. For every closed point v € | X|, i.e. place
of F', have completion F, with ring of integers O,. Set QO = HU€|X| O, and A = H/UE\X| F,. Fix a split
connected reductive group G over Fy (e.g. G = GL,,, SL,,, SO,,, Sp,,,,... - but not unitary ones because they
aren’t split).

Cuspidal automorphic forms: Fix a finite closed subscheme N of X (the level). Let Ky = ker G(OQ) —
G(Op), an open compact subgroup in G(A). Also, for technical purposes fix a cocompact lattice Z in
Z(F)\Z(A). Let

Hy = Ce(Kn\G(A)/Kn,Qy),

be the global Hecke algebra, with convolution product, for Haar measure with vol(Ky) = 1 and thus 1, is
the identity of this associative algebra. This acts by right convolution on

Ce(G(P)\G(A)/EKN, Q)

where the = is there to make the space have finite volume (so can take it to be trivial if G is semisimple).
Some elements of this space are our automorphic forms, but we need to add a cuspidality condition. Let
F be such a form; say it’s cuspidal if for every parabolic subgroup P C G with unipotent radical U, then

the constant term
g / f(ng)dn
U(F)\U(A)

is zero. So get a subspace of cuspidal automorphic forms
CP(G(F)\G(A)/ZK N, Q).

(Remark: Usually there’s other conditions for “automorphic forms”, but a non-trivial fact that they’re implied
by the cuspidality condition in this situation). Another nontrivial fact: CS"P is a finite-dimensional space,
stable under the action of Hy. The representations that appear in this are called the cuspidal automorphic
ones. (Remark: lim C'$"P over all levels N has an action of G(A), with its irreducible constituents all of the
cuspidal automorphic representations. If NV is fixed, irreducible H y-submodules are the same as irreducible
cuspidal automorphic representations with K y-fixed vectors).

Main theorem (V. Lafforgue): There exists a canonical H y-equivariant decomposition

O (GF\G(A)/ZK N, Q) = P ho

where o runs over Langlands parameters: continuous semisimple homomorphisms Gal(F/F) — G (Qy) which
are unramified outside of N. This decomposition is compatible with the Satake isomorphism at places v { | N|.
(Remark this does not determine the decomposition in general - for GL,, it does but for other groups strong
multiplicity one can fail).

Here, G is the dual group of G (invert the roots). Have GL,,,SOq,, are self-dual, Sp,,,, SO2,+1 are dual,
SL,,, PGL,, are dual, etc. Semisimple means Im o (taking the Zariski closure) is reductive. Unramified outside
of N means for all v ¢ |N|, 0|g.F, /5, 15 trivial on inertia, so o(Frob,) is well-defined as a conjugacy class.

What is the Satake isomorphism? Write Ky = [], K, where K, C G(O,0 is such that if v ¢ |N| then
K, = G(O,). So Hy = ® H, for H, = C.(K,\G(F,)/K,,Q,). Then if v ¢ |N| there is a canonical
Qg-algebra isomorphism (the Satake isomorphism) between H, and K (Repg) ® Qy, where Repg is the

category of algebraic representations of é, and K is the Grothendieck group with multiplication coming
from tensor product. In particular, H, is commutative. We also get characters of H, — Qy is in bijection
with characters of K(Repg) ® Q, which is in bijection with semisimple elements G(Q,) up to conjugacy.
Example: If G = GL,,,

K(Repg) = QuXTEY, ..., XE5



What do we mean that the isomorphism is compatible with Satake isomorphism outside N? For all o
and all v € |N|, H, acts on h, via multiplication by the character corresponding to o(Frob,).

Very vague idea of proof: For every finite set I and every W € Repg;, we can define a moduli stack
ChtN,I,W — (X \ N)! of G-shtuka. A G-shtuka on S/F, is a G-bundle G on X x S with an isomorphism

@ : gXXS\UieIFIi — ((idx X FrObS)*g)XXS\U;,EI r,.’

where (z;);cr € X(5) are the “legs of the shtuka”, W bounds how far ¢ is from an isomorphism at the z;,
and we have a level N structure, i.e. a trivialization of (G, ) on N x S.

Have that Chty 1w is a Deligne-Mumford stack, and if I = () then Cht,, ;1 is a discrete stack with points
G(F)\G(A)/Ky. Lafforgue defines a subspace Hy y of H*(Chtx 1w, Q,) (actually intersection cohomology)
that admits an action of Hy x Gal(F/F)!, with

Hy, = CP(G(F)\G(A)/ENE, Q).

Properties: W +— Hpw is functorial in W € Repg; (comes from geometric Satake). By coalescing and
separating the legs, get for all £ : I — J, an isomorphism Hyw = Hjyye.

Lafforgue uses these to construct “excursion operators” Hy, — Hp; (depending on I, W,z € W,¢ €
W*, (vi)ier with v; € Gal(F/F)). These operators generate a commutative subalgebra B of End(Hp ;) and
get the decomposition of CS™P = Hy ; by taking the generalized eigenspace decomposition of B. (Initially
this decomposition is indexed by characters of B, but these give parameters o by Lafforgue’s generalization
of pseudo-representations). Finally, for v ¢ |N| we have a basis consisting of excursion operators.

So that’s the outline - lots of steps. The first will be to define the moduli stacks, but we first need to
define algebraic stacks.

Fix a base scheme S, let Affs be the category of affine schemes over S. We consider four Grothendieck
topologies on this category:

1. Zariski topology, Affsza.: A covering is a family (U; — U);es such that each U; — U is an open
embedding (of each connected component) and U = |Jimg(U;).

2. Etale topology, Affg ¢ A covering family (f; : U; — U) is one such that each f; : U; — U is étale and
U=U /Ui

3. Fppf topology, Affg gppe: A covering family (f; : U; — U) is one such that each f; : U; — U is fppf flat
of finite presentation and U = | f[U;].

4. Fpqc topology, Affg e A covering family (f; : U; — U) is one such that each f; : U; — U is flat and
there exists J C I with U = U, ; f;[U;].

Definitions: A presheaf of sets on Affg is a functor F : Affy’ — Set. If f: U — V the map F(V) — F(U)
is called s — f*s, or s — s|y. Let Psh(Affg) be the category of presheaves, which has all inductive and
projective limits (calculated term by term).

For a sheaf, you need a topology top (one of the four just defined). Then a presheaf F on Affg is called
a sheaf for top (a top-sheaf) if, for every covering family f; : U; — U, we have that F(U) — [[ F(U;) is
injective, and the image of this map is the set of tuples (s;) with s;|v,x, v, = sjlv,xyu, for all 4,5. (A
“separating presheaf” is one such that F(U) — [[ F(U;) is injective).

The map Sh(Affg,,) — Psh(Affs) is full. This embedding has a left adjoint F ~ F*" called sheafi-
fication. Note Sh(Affg.,) has all inductive and projective limits. Projective limits and filtered inductive
limits are calculated term by term. Other inductive limits are sheafifications of the limit in the category of
presheaves.
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S a scheme, Aff g the category of affine schemes over S (affine scheme with map to S) and Schg the category
of schemes over S. Last time defined four sites, Aff g zar, Aff g, Affs ppr, Affspqe. (Remark: for fpqe
topology have some set-theoretic issues; need to fix a universe, and things depened on that).

Defined Psh(Affg) and Sh(Affg.p,); have two functors, Sh — Psh the fully faithful embedding, and
the sheafification functor that’s a left adjoint. Yoneda embedding: For X € Schg, get X € Psh(Affg)
defined by X (U) = Hom(U, X). This gives a fully faithful functor Schg — Psh(Affg). (Often just write X
for X, identifying Schg as a subcategory of (pre)sheaves).

Theorem (Grothendieck): For any X € Schg, X is a fpqc sheaf, so we get a fully faithful embedding
Schg — Sh(Affg f,q.). (And since our topologies are linearly ordered by coarseness, being an fpqc sheaf is
the strongest condition, so get Schg — Sh(Affg ;) for any of the four topologies).

Definition: An S-space is a fppf sheaf on Affs. An S-space is representable by a scheme (or even “is a
scheme”) if it is isomorphic to some X.

This point of view is nice if we want a natural way to define a scheme via its functors of points, e.g.
moduli problems. For instance:

e Algebraic groups.

e Grassmannians: If £ is a quasicoherent sheaf on S and r € N, set Gr(r,£) to be the sheaf taking U
to the set of surjective maps £ ®p, Oy — F with F a locally free Oy-module with rank . This is
representable.

e In case S = SpecQ, take sheaf F mapping U to the set of relative elliptic curves E — U together with
P € E(U) of order 4 modulo equivalence; this is representable.

e Non-example: S = SpecQ and F like above, but maps U just to the set of relative elliptic curves
E — U modulo equivalence. Unfortunately this isn’t even an étale sheaf! There exist nonisomorphic
elliptic curves F, E'/Q that become isomorphic over a number field (so this isn’t separated, because a
number field is an étale cover of Q). This comes from the fact that H'(Gg, Aut(E)) # 1.

So the problem in the last case is that some elliptic curves have too many isomorphisms, but we’re naively
taking equivalence classes anyway. A few ways to fix the problem: we can rigidify the problem (i.e. like in
the example above it). Alternatively, and perhaps more natural (at the expense of lots of technical stuff):
Get rid of the equivalence, and instead look at a sheaf of categories.

How do we make sense of a “presheaf of categories”. Want to say this is a functor Schg — Cat, but
Cat is really a 2-category so it isn’t really reasonable to ask for this. For instance, we could try to define
a presheaf by mapping U to the category of vector bundles on U, but we only have (f o g)* & g* o f*,
rather than equality - so this isn’t actually a functor. Instead it’s a pseudofunctor, which we could use as
our definition (but becomes a pain given the compatibility conditions we need to carry around).

Another point of view: filtered categories. Let C be a category and p : F — C a functor. An arrow
¢: E — F in F is Cartesian if, for every ¢ : B/ — F in F and every h : p(E') — p(E) with p(p) o h = p(¢))
there’s a unique x : E/ — F with ¢ o x = and p(x) = h.

Example: Take C = Affg, and F having objects given by maps £ — U with U € Affg and F — U a
vector bundle, and morphisms (E — U) to (F — V) being commutative diagrams

-

©

i
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S
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such that F — U xy F is a map of vector bundles over U. Define p : F — C by mapping p(E — U) to U
and p of a diagram to f. Then a diagram as above is a Cartesian arrow in F iff it’s a Cartesian square.

Remarks: Let f : U — V be a morphism in C, F an object in F with p(F) = V. If p : E — F and
¢ 1 E' toF are Cartesian arrows in F are such that p(F) = p(E’) = U and p(¢) = p(¢’) = f then there
exists a unique 0 : F — E’ with p() = idy. We call E the pullback of F to U. (Pullbacks are unique up to
unique isomorphism).

Back to general case: If o : E — F and ¢ : F' — G are arrows in F with ¢ Cartesian, then ¢ is Cartesian
iff ¢ o  is Cartesian. If ¢ : E — F is in F is such that p(y) is an isomorphism, then ¢ is Cartesian iff it’s
an isomorphism.

Definition. We say p: F — C is a fibered category over C if pullbacks always exist: For every morphism
f:U — V in C and every object F' in F with p(F) = V, there exists a Cartesian arrow ¢ : B — F with
p(¢) = f (which includes p(E) = U). (So the example above is a fibered category).

Definition: If p : F — C is fibered, the fiber over an object U of C is the category F(U) with objects E
of F with p(E) = U, and morphisms F — E’ given by morphisms £ — E’ from F such that p(E) = idy. In
our example, F'(U) is the category of vector bundles over U.

In general, fibered categories over C form a 2-category. A morphism of fibered categories (i.e. a 1-
morphism) from p : F — C to p’ : F/ — C is a functor F : F — F’ such that p’ o F = p, which sends
Cartesian arrows to Cartesian arrows. (Note: This equality of composition of functors is actually a equality,
not an isomorphism!). A 2-morphism between F,G : F — F' is a natural transformation « : F' — G such
that for every E' € F the morphism ag : F(E) — G(FE) satisfies p'(ag) = idyg). (Note p'(ag) maps from
P (F(E)) =p(F) to p'(G(E)) = p(E) via the equalities p' o F = p =p’ o G).

Let p : F — C be a fibered category. A cleavage of p is a class K of arrows of F such that for all
f:U —=Vin C and every F in F with p(F) = V, there exists a unique ¢ : E — F in K with ¢ Cartesian
and p(¢) = f. (Remark: cleavages always exist by the axiom of choice).

So let K be a cleavage. For f: U — V in C, get a functor f*: F(V) — F(U): if F is an object in F(V),
then there exists a unique ¢ : E — F as before so we can take f*(F) = E; and if ¢ : F — F’ is a map
in F(V) then by Cartesianness there exists a unique f*(¢) : f*(F) — f*(F’) which makes the appropriate
square commute and such that p(f*(¢)) = idy. Also, get isomorphisms of functors (idy)* = idg(yy and
fog)* = g*o f*, plus a bunch of compatibility conditions. This defines a contravariant pseudofunctor
C — Cat (by U — F(U) and f — f*). Conversely, a contravariant pseudofunctor C — Cat gives a fibered
category.

So, have defined fibered categories, and mentioned that they corresponded to pseudo-functors and thus
to “presheaves of categories”. Now can move on to stacks, which will be “sheaves of categories”. How does
the sheaf condition translate? Let p : F — C be a fibered category where C is a site. (The only examples
we really care about are Affg4,,). Fix a cleavage of p. Let U = {f; : U; — U} be a covering family in C.
The category of descent data for &, DD(U), is:

e The objects of DD(U) is the collection of families (E;, ;) jer with E; € F(U;) and ¢;; : 7} E; = T Ej
in F(U,; xy Uj), satisfying the cocycle condition (for E;, E;, Ej, we pull back ¢;;, ¢;k, pir to Uy xU; x Uy
and demand compatibility there once we put in all of the canonical isomorphisms).

e Morphisms between (Ej, ¢;;) and (Ef, ¢};) are families (1;) with ¢; : E; — Ej that are compatible
with the ¢;; and ¢, in the obvious way.

Given this definition, we have a functor F(U) — DD(U) via E — (7} E,id) for any cover U of U.

What’s a stack? We say p : F — C is a prestack (respectively a stack) if, for every covering family U
of U, the functor F(U) — DD(U) is fully faithful (respectively an equivalence of categories). Example: U
mapping to vector bundles over U is a fppf stack.



3 Lecture - 09/18/2014

Last time: defined filtered category p : F — C; talked about how it corresponded to a pseudo-functor
C°P — Cat, which is what we want to call a presheaf of categories in C. If C is a site can make sense of the
sheaf axioms, and call the resulting presheaves a stack. Formalize this by defining, for each covering family
U of U, a category of descent data DD(U/), and a functor F(U) — DD(U). (If F is a presheaf of sets, then
DD(U) is the set of tuples (s;) with s; € F(U;) such that s;|v,x, v, = sj|v,xv;). Thenp: F — Cis a prestack
of categories if F(U) — DD(U) is fully faithful for all U, and a stack of categories if F(U) — DD(U) is an
equivalence of categories for all U. (For presheaves of sets, these conditions are exactly “separated presheaf”
and “presheaf”).
Definition: A category is called:

o A set (or discrete) if the only morphisms are identity morphisms.
e A groupoid if every morphism is an isomorphism.

e An equivalence relation if it’s a groupoid, and if Hom(A, B) < 1 for all A, B (equivalently, if it’s
equivalent to a set).

Definition: We say that a fibered category F — C is fibered in sets/equivalence relations/groupoids if all of
its fibers are of the appropriate type of category. Exercise: F — C is fibered in groupoids iff every map in
F is Cartesian.

Definition: We say that F — C is a (pre)stack in sets/equivalence relations/groupoids if it’s a (pre)stack
and fibered in sets/equivalence relations/groupoids. Convention for the rest of the semester: “(pre)stacks”
are always in groupoids. (Remark: from above, prestacks/stacks in sets are just separated presheaves /
sheaves).

Remarks: Have 2-categories Prestack(C) and Stack(C) of (pre)stacks in groupoids lying over C. Have
a fully faithful functor Sh(C) — Stack(C), by identifying sheaf with the corresponding stack in sets, which
has essential image equal to stacks in equivalence relations. Have 2-Yoneda lemma: for any of our 4 usual
topologies top, we get a fully faithful embedding

Schg — Sh(Affg ;,,) — Stacks(Affgp).

What’s the stack corresponding to a scheme X/S? Well, the sheaf corresponding to it was X given by
U — Hom(U,X) = X(U). Then this becomes a stack by seeing it as a pseudofunctor; but what’s the
corresponding fibered category F — Affg? Well, the objects of F are pairs (U,z) where U is an affine
scheme and z € X(U) = Hom(U, X) is a map of schemes U — X, i.e. the morphisms f : U — X, i.e.
affine X-schemes. So the objects of F are the objects of Aff x. What are the maps? Given f : U — X
and g : V — X in this category, an F-morphism between them must be a S-map h : U — V together with
¢ : f — h*(g), which has to be idy because the stack is fibered in sets. But this means f = h*(g) so f = goh.
So an F-morphism between U — X and V' — X is the same as an X-morphism. Thus we conclude that the
stack coming from X is the fibered category F = Aff x — Affs with the obvious map.

Another way to formulate the stack condition: Let p : F — C be a fibered category, and have objects
UeC, E,F €FU), get a presheaf Hom(E, F) : Cy — Set (where Cy is the category of objects of C
over U...), by f:V — U mapping to Homg(f*E, f*F). Fact: F — C is a prestack iff for all U, E, F,
Hom(E, F) is a sheaf. Moreover, F — C is a stack iff every descent datum is effective. (So prestack means
“morphisms are defined locally” and stack means “morphisms and objects are defined locally”).

Examples: If ® : C — Cat is a (pre)stack in categories, then ®*° : C — Grpd is a (pre)stack of
groupoids, where ®¥°(U) is the subcategory of ®(U) obtained by throwing away all non-isomorphisms.
Another example: C — Cat given by U — Sh(Cy) is a stack. Also, can reformulate faithfully flat descent
as saying the pseudofunctor QCoh mapping U to quasicoherent sheaves on U is a fpqc stack over Affg.
Consequence: the map taking U to the category of affine morphisms V' — U is a fpqc stack. Also, U
mapping to the category of pairs (X — U, L) where X — U is a projective morphism and £ is a relatively
ample Ox-module is a fpqc stack.



G-bundles. Fix a field k, all schemes will be over k. Let G be an affine algebraic group over k (which
we might as well assume is smooth because it will be in applications). Definition: If X is a scheme, a vector
bundle over X is a Ox-module that is locally free of finite type (locally could equivalently be for Zariski,
etale, fppf, and maybe even fpqc topologies). Then have the category of vector bundles over X, Vect(X),
an exact tensor category. Remember the 4 equivalent definitions of a G-bundle over a scheme X:

1. A sheaf P on Aff x rppr which is a torsor under G (the sheaf U — G(U)). This means you have a right
action P x G — P such that P x G — P x P (given by (z,g) — (z,xg)) is an isomorphism.

2. A scheme X — X with a right action of G compatible with the trivial action on X, such that there
exists a morphism Y — X that’s faithfully flat of finite presentation, such that Y =Y xx X 2Y x G
as a Y-scheme with axiom of G.

3. X o X is fppf and there’s a right action of G on X with G x X 2 X x X via (g,2) = (z,xg9).
4. Tannakian description: An exact tensort functor Rep; — Vect(X).

Remark: (3) says that Y from (2) can be taken to be X, and that P is representable by X in (1). Another
remark: If G is smooth then every G-bundle is étale-locally trivial. If G = GL,, then every G-bundle is
Zariski-locally trivial. _

Construction: IF G — X is a G-bundle and if ZS is a scheme with an action of G, then the fiber bundle
over X associated to Z and P is Zyp = (X x Z)/G if this exists as a scheme. (Could introduce this more
generally as an algebraic space). Example: this exists as a scheme if Z is affine, or if Z is quasi-projective
with a G-equivariant ample line bundle. Applying this to Z = A™ with the usual action of GL, gives
that the category of GL,-bundles on X is equivalent to the category of rank-n vector bundles on X, with
isomorphisms. (A morphism of G-bundles is automatically an isomorphism because of local triviality, so we
need to restrict to only isomorphisms in the category of vector bundles). The inverse functor takes a vector
bundle € to Isom(O%,E).

More fppf stacks on Affg.

e Vect,, given by V mapping to rank n vector bundles with isomorphisms. (Or even Vect).

e The classifying stack BG = [pt/G] of G, which maps U to G-bundles on U. (Above, said BGL,, =
Vect;??). This is “the quotient in the category of stacks of the point Speck by the action of G”.

e More generally: If X is a S-scheme with an action of G, define [X/G] as a presheaf in groupoids defined
by letting [X/G](U) be the category of diagrams U <— P — X with P — U a G-bundle and P — X
G-equivariant, and homomorphisms are G-equivariant maps P — P’ over U x X. This is a stack, and
if the action of G on X is free and X/G is a scheme then [X/G] is represented by X/G.

Notation for our several types of quotients: X /G is quotient in category of schemes (which may or may not
exist as scheme), [X/G] is quotient in category of stacks.

Proof that [X/G] is a stack: Let G — Shyx be the pseudofunctor mapping U to the G-equivariant fppf
sheaves on Aff x .y with isomorphisms. (i.e. sheaves P on Aff x xy fppr With an action of G such that P — X
is G-equivariant). Then:

1. G — Shy is a stack (by descent...).

2. The map [X/G] — G — Shx given by taking U < P — X to the map P — X x U is a 1-morphism of
pseudofunctors. This is fully-faithful, so [X/G] is a prestack.

3. Remains to show descent is effective in [X/G]. Given a descent datum for [X/G] and (U; — U), then
it glues to an object P — X x U in G-Shx. We just need to check that P — U is a G-bundle; but
this is an fppf local condition we know on an open cover.

4. Finally, if the action is free and X/G is a scheme, then X — X/G is a G-bundle. This gives a point of
[X/G)(X/G), i.e. amap X/G — [X/G], which is an isomorphism.
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Examples of stacks. Last time gave a specific case of a mapping stack: let k£ be a field, G an affine algebraic
group over k, X/k a scheme. Then Bung, x, given by mapping U to G-bundles on X x U, is an fppf stack.
Mapping stacks in general: Fix a base scheme S. Let ) be a stack on Aff,;,, and X an S-scheme.
Define Maps(X,Y) as a presheaf in groupoids, sending U € Affs to Homggacks(s,top) (X x U, V). If X is
affine this equals Y(X x U) (but we can’t write this in general like this... yet). Then this is a stack. For
instance, Bung,; = Maps(X, BG).
This follows from: Lemma: if ) is a stack on Affg,, then Y*** : Schg — Grpd defined by

X = HomSt(Aﬂ‘S)m,,) (X7 y)
is a stack on Schg ;op. So we get an equivalence of 2-categories
St(Affg 0p) = St(Schg iop).

Later on we’ll just identify )V and Y°** and then identify these two categories. (This justifies writing Y(X xU)
if X is a non-affine scheme above).

Proof: Step 1 - prove Y**! is a prestack. Fix an object X in Schg and let F,G € Y**!(X) = Hom(X, )).
We get a presheaf Isom(F,G) on Schx ., taking an X-scheme F : U — X to the set of natural transfor-
mations f*F — f*G (since ) is a groupoid, all natural transformations are actually isomorphisms). As a
fibered category over Affg, X is just Aff x. So we have F,G : Aff x — ) compatible with the natural maps
Affx, Y — Affg, with f*F = F|ag, and similarly for G.

Then Y! is a prestack iff Isom(F,G) is a sheaf for all X, F,G as above. Let {f; : Vi = Y} is a
covering family on Schx ;,p. So suppose ¢, € Isom(F,G)(Y') are such that f¢ = f*i for all i. Fix some
T € Affy. If T — Y factors through Y; — Y then o(T) =¢(Y) : F(T) — G(T) in Y(T'). Now, take general
T;let T; =T Xy Y;. Then {g; : T; — T} is a covering family, and o(T;) = ¢(T;) for all &. But Y is a stack
so ¢(T) = (T).

So have proven Isom(F,G) is a presheaf. Now take a compatible family

{¢i: Flagy, = Glagy,}

(ie. ¢ € Isom(F,G)(Y:)) such that vily,xyy; = @jlyixyy;. Let T € Affy. We want to define p(7T') :
F(T) — G(T), a morphism of Y(T); let T; = T xy Y;. Then T; — T is a covering, and we have ¢(T;) :
F(T;) — G(T;) such that the pullbacks agre on T; xr Tj. Since Y is a stack, this gives a (7).

Step 2 - prove Y’ is a stack, i.e. descent data are effective. Let {X; — X} be a covering family in
Schg +op. For all i € I suppose we have

F; € Y**'(X;) = Homgy,,, (5)(Xi,Y)

and for all 7, j we have
Pij  Filagx,.ox, = Filagx, o,

satisfying the cocycle condition. We want F': Affx — Y, ie. F' € Y***(X), such that F|ag, isoF;. But if
T is an object in Aff x, get F(T) an object in Y(T) by gluing the F;(T X x X;). Same for morphisms. QED

Next: Fiber products of stacks. Let C be a site, and St(C) the category of stacks (of groupoids) over
C. Then this category has all 2-projective limits and all 2-inductive limits; in principle could do these by
calculating these in the category of prestacks and then stackifying (but hopefully not). Will describe fiber
products; let F, F’, G be categories, and let f : F — G and f' : 7/ — G be l-morphisms. Then F xg F’ is
defined in the following way. For U € C, the objects of (F x¢g F')(U) are defined as tuples (E, E’, ¢) where
E e F{U), E € F(U), and ¢ : f(E') = f(E') in G(U). Morphisms (E,E’,p) — (F,F’,4) are pairs of



maps a: E — F in F(U) and o' : E' — F' in F'(U) such that the obvious diagram commutes:

F(E) —"= [(E)

f(a)l lf’(a’) :

f(F) T J'(F")
Remarks: This is a stack if F, F’, G are (exercise: trace through the definition to verify this). Also, if F,F’
are fibered in sets (i.e. presheaves of sets, not just groupoids) then so is F xg F'. Warning: the square

FxgF ——F

|

F G

is only commutative up to natural isomorphism! So to write a UMP we need to have some sort of naturality
condition.

Example: Let p : F — C be as before. Then U,V € C give U,V : C? — Set; fix a : U — F and
B:V = F,ie. al € F(U) and f—~F(V). We want to calculate U x x V. This is a presheaf of sets on C,
and sends T € C to triples (f,g,¢) where f : T - U, g:T — V,and ¢ : f*(a) = ¢g*(b) is a morphism in
F(T). If U =V then U xr Ulc,, = Isom(a, ). Now look at the 2-fiber product

(UxV)Xp2 F——F

-
xV F?

v (,8)

where all unspecified products are over the final objects. Now, (U x V) X2 F)(T') turns out to only have
identity morphisms, so this stack is a presheaf of sets. In fact we have an isomorphism (U X V) X 72 F =
UxzV. It U=V and we restrict to Cy then we get Isom(a,8) 2 U X2 Flc,-

Schematic maps: Let S be a scheme, C = Affg;,,. Definition: let X', be stacks on Affg,p. A
l-morphism F' : X — Y is called schematic if, for all Y € Schg and all morphisms Y — ), the morphism
Y Xy X — Y is a morphism of schemes (since Y xy X is a scheme!).

Definition: If (P) is a property of morphisms of schemes that is stable by base change and top-local, we
say F': X — ) is schematic and has property (P) if

1. F' is schematic
2. For all Y in Schg, Y xy3 X — Y has (P).

Examples of such (P): smooth, unramified, étale, smooth surjective, closed/open/locally closed immersion,
quasi-compact, locally of finite type/presentation, separated, ...
Definition: An algebraic stack or Artin stack over S is an fppf stack X on Affg such that:

1. The diagonal Ax : X — X x X is schematic, separated, quasi-compact. (Note: sometimes algebraic
stacks are defined without the latter two conditions on the diagonal, but they get added in as hypotheses
in most theorems).

2. There exists an S-scheme X and a smooth surjective map X — X (called a presentation of the stack).

Note: We'll see that (1) implies that every map X — X, with X a scheme, is schematic.
We say X is a Deligne-Mumford stack if it is algebraic and has an étale presentation. Remark: Let
X € St(Aff s fppr). The following are equivalent:



1. Ay : X - X x X is schematic.

2. For all U € Affg and all z,y € X(U), the fppf sheaf Isom(z,y) on Affy is representable by a scheme.
3. For all U € Affs and all z € X(U), the map z : U — X is schematic.

4. For all X € Schg, every z : X — X is schematic.

Proof: All rests on I'som(z,y) 2 U Xxz X|as, -
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5 Lecture - 09/25/2014

Let S be a scheme; we take the convention that a “stack” on Affg is always with the fppf topology unless
otherwise specified. Also, remark that last time we used the convention that un-adorned products were over
the final object of St(.S), which is just S itself viewed as a stack.

Definition: A stack X over S (i.e. over Affg) is algebraic stack (Deligne-Mumford stack, respectively) if:

1. X - X x X is schematic, separated, and quasi-compact.

2. There exists an S-scheme X and a map X — X that’s smooth and surjective (étale surjective, respec-
tively).

Lemma: (a) If ¥ — ) is a schematic (+ some other assumptions?) map of sheaves of groupoids, and )
is an algebraic (or D-M) stack, then so is X.

(b) If ¥ - Y and X’ — Y are maps of stacks with X', X”, ) algebraic (or D-M) stacks, then so is X xy X’.

Proof: (a) 777 (b) To prove (2) take presentations of each thing and take lots of base changes - reduce
to the case X = X and X' = X, etc... For (1) have some base-change diagram with the diagonal map on
the top and Z — S for a scheme Z...

Remark: Condition (2) implies that Ay in (1) is of finite type.

Examples of algebraic stacks. Let k be a field and G a linear algebraic group over k (which includes
the condition that G is smooth). First of all, recall we had a stack BG = [-/G] where BG(S) is the set of
G-bundles over S, which is Hom(S, BG). Then BG is an algebraic stack.

Proof: need to show that BG — BG x BG is schematic, etc. Long computation........

Now, [Z/G]. Let Z be a k-scheme with a right action of G. We let [Z/G](S) be the set of pairs of
G-bundles X — X with G-equivariant maps o : X — G. Have morphism 7 : [Z/G] — BG by (X, a) — X.

Given X € Schy with a morphism X — BG (which amounts to a G-bundle 7x : X - X), what is
[Z/G] x e X? Well, should be (Z x X)/G; once we expect this we simply need to check that these are
equal. In particular, if Z is separated and quasicompact, then [Z/G] is algebraic.

Our main example of algebraic stacks; Buncr,,x = Vect, x, taking S to the category of rank-n vector
bundle on S x X, with isomorphisms as morphisms. This is an algebraic stack if X is projective. (Remark:
What if X is not projective? Well can look at X = A', and find Bungy,, a1 (Speck) is the category of free
Ek[t]-modules of rank n, and if « corresponds to k[t]" then Isom(z,z)(Spec A) is GL,,(A[t]) which is too big
if n > 2).

11



6 Lecture - 09/30/2014

Goals: Prove a lemma from last time; give a presentation of Bungt,,, x. To do this, there’s two results we’ll
be using over and over again which we’ll state but not prove:

e Let S € Schy, ps : Xs — X, € a coherent Ox -module. Define a presheaf on Schg by Quote,x /s by
mapping 7' — S to the set of isomorphism classes of pairs (G, ¢) with G an Ox..-module that’s flat over
Or and ¢ : Ex, — G. Theorem (Grothendieck): If Xg — S is projective then this is representable by
a scheme over S.

e Assume pg : Xg — S is projective, let O(1) be a relatively ample line bundle on Xg. Theorem (Serre):
Assume S is Noetherian, let D be a coherent Oy -module. Set £(n) = & ® O(1)". Then (i) the
Ripgs.& are coherent Og-modules. (ii) There exists N such that if n > N then Ripgs.E£(n) = 0 for
all ¢ > 1. (iii) There exists N such that if n > N then pips.€(n) — €(n) is surjective for n > N.
(Remark: If Ripg.E = 0 then p.€ is a vector bundle on S. Why? Well, it’s a coherent sheaf and
s = dim(Es) = x(Xs, E) is locally constant on 5).

Lemma (very important): Let S € Schy, ps : Xg — S be flat and projective, and Y — Xg be
quasi-projective. Define a presheaf of sets on Schg by

Sect(Xs,Ys)(T) = HomXT(XT,YT) = HOIIlXS (XT, Ys)

where X7 = Xg Xg T and Yr = Yg xg T. Then Sect(Xg, Ys) is a scheme.
Remark: If § = Speck, Xg = X, Ys = X x Y, then

Sect(Xs,Ys)(T) =Homyx (X X T, X xY xT) =Hom(X xT,Y) = Maps(X,Y)(T),

so Sect is some relative version of the mapping stack.
Proof: (0) If Y1,s,Y>,s, Y3 g are quasiprojective over Xg and we have Xg-morphisms Y7 ¢ — Y2 5 < Y3 g,
then
SeCt(Xs,Yl,S XYy s Y37s) = SeCt(Xs,YLs) XY, s Sect(Xs,Ys,s).

This is immediate from the definition.
(1) Case where Ys = P(£), £ a vector bundle over Xg. In this case

Sect(Xs, P(E))(T) = Homy, (X1, P(Ex,)) = {(£,a)}/~

where £ runs over line bundles on X7 and « : £ — Ex, is Ox,-linear and condition (*) holds: For all
Z — X, az : Lz — &z is injective (equivalently, Ex,./L is flat over Ox,., or also equivalently £x,./L is a
vector bundle over Xr).

Now: Have Sect(Xs,P(E))(T) — Quotg, x4 /s(T) given by (L,a) — (Ex, — Ex,/L). Want to prove
that this is a schematic open immersion. The image of this is cut out by two conditions on ¢ : €x, — G:
namely

e (a) Gis Ox,-flat (not just Op-flat), i.e. G is a vector bundle.
e (b) rankG =rank & — 1.

Let Q(a) and Q(a,b) be the subsets cut out by these things; want to show both have schematic open
embeddings into Quote/x /5. For the first one, want to show that for T — S, P = Q(a) XqQuet T — T is
an open immersion; but P(T" — T) is * if Gx,, is Ox,_,-flat, and () otherwise. Let U C X7 be the (open)
locus of flatness of Gx,.; then P is representable by T'\ pr[Xr \ U]. Remains to show Q(a,b) — Q(a) is a
schematic open and closed embedding; this follows because the rank of a vector bundle is locally constant.

(2) If Ys — Zg is an open embedding of Xg-schemes, then Sect(Xg,Ys) — Sect(Xg, Zsg) is a schematic
open embedding.
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Proof: Let T'— S, let a : X7 — Zg bein Sect(Xgs, Zs)(T) = Homx (X1, Zs). Let P = Sect(Xs,Ys) X gect(Xs,2s)
T with the product via . This is a presheaf on Schr, and P(T" — T) is * if X7v — X7 — Zg has image
in Y5 and () otherwise. Let Uz = a~![Ys] = X7 (an open subscheme). Then X7+ — X7 — Zg has image
in Yg iff X7v — X7 has image in Yr iff 77 — T has image in T \ pr[Xr \ Ur], which is open because pr is
proper. So P — T is representable by T — pp[Xr \ Ur| — T.

(3) If Ys — Zg is a closed embedding of Xg-schemes, then Sect(Xg,Ys) — Sect(Xg, Zs) is a schematic
closed immersion. (This will finish the proof).

Proof: Let T' — S, let a : X7 — Zg bein Sect(Xs, Zs)(T) = Homx (X1, Zs). Let P = Sect(Xs,Ys) X gect(xs,2s)
T with the product via «. This is a presheaf on Schy, and P(T" — T) is x if X7v — X7 — Zg has image in Yy
and () otherwise. Let Ur = a~![Ys] < X7 (an open subscheme). Set Wr = a~![Ys], a closed subscheme of
X7. Then X1/ — Zg has image in Yy iff X7v — X7 has image in Wy. So P(T" — T) = Sect(Xr, Wr)(T").

All of that is identical as above, but at this point we need to modify the argument; is Sect(Xr, Wr)(T")
representable by a closed subscheme of T? If Xr is affine, then Wr = {0} xan X7 where 0 — A™ is the
zero section; want to generalize this. Well, Wr — X7 is closed so let J C Ox, be ideal of definition.

Let O(1) be a relatively (for X7 — T) ample line bundle. If n > 0 then pipr.J(n) - J(n) and
o7« Ox, (n) = Ox,(n) and pr.Ox, (n) is a vector bundle.

Want a vector bundle £ on X7 and a section «a of € such that Wy = X1 x¢ Xp. If T = Speck choose
S1y.+y8m € (X7, J(n)) generating J(n). Take & = Ox(n)™ and o = (s1,...,sn). If T is not, exercise
(easier version: Assume T quasiprojective, use ample line bundle on Xr7). On top of this taking n big enough
can assume Rip7,.£ = 0 for i > 1. Now we reduce to step 4.

(4) Let £ — Xg be a vector bundle. Then Sect(Xg, £) is representable by a scheme, and Sect(Xg, Xg) —
Sect(Xg, &) (coming from the 0-section) is a schematic closed embedding.

Remark: This is sufficient to finish (3) because Sect(Xr, Wr) — Sect(Xr, X7) = T is the pullback of
T = Sect(Xr, Xr) — Sect(Xr,E) via a: Xp — E.

Proof: This is true in general but much easier if we assume R'pg.€ = 0 for all i > 1 (which we can do by
the end of (3)). I want a coherent sheaf F over S such that for all T — S, I'(Xr, Ex,) = Home, (Fr, Or).
(Why? Then Sect(Xg, ) is representable by Specg(Sym F), which has T-points equal to Op-algebra maps
Sym F — Op, which equal to Home,,.(F, Or)).

How do we get this F? Take F = (ps«&)Y. This F works by flat base change and Serre duality: if we
have f : T — S then Lf*Rpgs.€ = Rpr.Ex, but this reduces to ps.& = pr.€x, (in particular flatness gives
Lf* = f*, and our assumption R'pgs.€ = 0 for i > 0 gives the rest). Without the assumption on R still
works for

F = H°(Rps«(€" @ Kx4/5))

and use Grothendieck duality. Note the map S = Sect(Xg, Xg) — Sect(Xg, E) coming from the zero section
Xg — & is also the map induced by Sym F — Sym® F = Og.
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7 Lecture - 10/02/2014

Remember: if Y is a stack and X is a scheme (over a field k) then Maps(X,)) is the stack
S+ Hom(X x S, ).

The reason we care is Bung x = Maps(X, BG).

Cor 1: Let Y1 — ) be a schematic quasiprojective morphism of stacks. Then the induced map
Maps(X, V1) = Maps(X,)s) is schematic.

Cor 2: If G; — G is an injective map between linear algebraic groups, then for any X, Bung, x —
BunG%X.

Cor 3: If Bungy,, x is algebraic for all n, then Bung x is algebraic for any linear algebraic group G.

Corollary 2 implies Corollary 3 immediately. To see Corollary 1 implies Corollary 2, need that BG; —
BG@G, is schematic and quasiprojective. Take S € Schy, S — BG5 corresponding to Go-bundle S — S. Then
can calculate _

BG1 X BGo S = (Gz/Gl X S)/Gg,

which is a scheme, and the map to S is quasiprojective.
Proof of Corollary 1: Let )3 — )s be schematic quasiprojective. Let S € Schy, let X x S — )5 be an
S-point of Maps(X,Ys). Let
Zs=(XxS)xypy, V1 > X xS
Then
(Maps(X, yl) X Maps(X,Y2) S)(T)

is the set of maps X x T"— Y; such that

XxT —— )

|

SxX —— Yy

commutes. But this is Hom(X x T, Zg) = Sect(X x S, Zg)(T), and we know this Sect is representable by a
scheme.

Goal: to show that if X is projective then Bungy, x is an algebraic stack; missing the most important
part, the presentation. By definition

Bungr, x(S) = {rank n vector bundles on X x S}.

(Remark: Eventually we’ll be using this when X is a smooth projective curve, but don’t need that many
hypotheses for now).

Let ps : X x S — S be the projection. For all d € Z and N € N define a stack Uy y by letting Uy v (S)
be the set of £ € Bungr,,, x (S) satisfying

1. For alli > 1, R'pg.&(d) = 0.
2. pips«E(d) — £(d) is surjective.
3. The rank of ps.€(d) is N.

Remark: (1) implies ps.€(d) is a vector bundle on S, so (3) makes sense.

Claim: the obvious inclusion Uy ny — Bungr,,x is a schematic open embedding, and Bungy, x
Ua,n Ua,n. The second part follows from Serre’s theorem last time. For first part, need to see that (1),(2),
are open conditions. Fix S and a map S — Bungr,,, x corresponding to £ on X x S. Then

(Ua,N X Bungy,, x S)(T)

3)

14



is % if Exxp € Uy n(T) and () otherwise, and need to see this is open. Take

Uy = S\ | supp(R'ps.€)

i>1

which is open in S and cuts out condition (1). Let Us be the open closed subscheme of U; where pg.€(d)
has rank N, and let
Uz = Us \ ps[X x Uz \ W]

for
W = X x Us \ supp(Coker(pips«<E(d) — £(d))).

Claim: Fix T'— S. Claim Exxr € Uy n(T) it T — S factors through Us.

Proof: “if” is obvious. Only if: once you see that T — S has to factor through U; it’s easy to get that it in
fact factors through Us (base change, etc.) That it factors through Uy follows from semicontinuity theorems.

Now, need a presentation of Uy v (fixed d, N). Let Yy n(S) be the set of pairs (€, ¢) with £ free of rank
n and Ripg.E(d) = 0 for all i > 1, and ¢ : OF ¢ — £(d) a map inducing via adjunction an isomorphism
OY — ps.&(d). Then map Yy n — Uan by (E,¢) — E.

(a) This is surjective (as a map of stacks): if &€ € Uy n(S) then fppf locally there’s an isomorphism
0% — ps.&(d), which gives by pullback ¢ : O ¢ — pips.E(d) - £(d). Then (£, ) € Van(9).

(b) This map is schematic smooth and surjective. Let €& € Uy v (S). Then (Va,n Xu, 5 S)(T) is he set of
¢ : O¥, 7 — Exxr(d) such that the induced map OF — pr.Exx7(d) (from adjunction) is an isomorphism.
This is equal to the set of isomorphisms O — pr.Exxr(d), and thus to Isom(O%, ps.E(d))(T), which is a
GL,,-bundle on S.

Finally, want to show Yy n is a scheme. Let Zx(S) be the set of pairs (G, ) with ¢ : O, ¢ — G and G
locally free of rank N. Then Yy v — Zn given by (€, ¢) — (£(d), ¢) is a schematic open immersion (just as
for Uy, Ny — Bungr,,x). Then, claim that the map Zn(S) — Quotoy /x/speck(S) given by (G, ¢) = (G, ¢)
is a schematic open immersion. Why? If (G, ) is in Quot then ¢ : OF ¢ — G with G a coherent Oxx s-
module, flat over Og. The conditions for being in Zy is that G is flat over Ox s and of rank n; both open
conditions. Since we know Quot is a scheme, we’re done.

Properties of stacks and morphisms (over a base scheme S). Let (P) be a property of morphisms of
schemes f : X — Y that’s local for the smooth topology, i.e. for every Cartesian square

X — X

L

Y — Y

with Y’ — Y smooth surjective, and X" — X’ is smooth surjective, and f” : X"/ — Y is the map induced
by the UMP, then f has (P) iff f/ has (P). Examples: surjective, universally open, locally of finite type /
presentation, flat, smooth. Non-example: étale.

Definition: Say a map f : X — ) of algebraic stacks has property (P) if there exists a commutative
diagram (iff for every commutative diagram)

XN X — X

Nl b

Y — Y

with the left square commutative and Y — Y, X" — X’ are presentations, such that f” has (P). Say X’ has
(P) if ¥ — S has (P).

Also, let (P) be a property of schemes that’s local for the smooth topology, i.e. if X’ — X is smooth
surjective then X’ has (P) iff X has (P). Examples: locally Noetherian, reduced, regular, of characteristic
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p, ... We say an algebraic stack X has (P) if it has a presentation (iff for all presentations) X — X with X
having (P).
Definition: We say X is quasi-compact if there exists a presentation X — X with X quasicompact. Define
Noetherian as locally Noetherian + quasicompact, and finite type = locally of finite type + quasi-compact.
By looking at points: Theorem: Let f: X — ) be a morphism of algebraic stacks. Then:
(i) f is locally of finite type iff for every filtered projective system (U;);cr in Affg, the following square
(Us) —— X(imU))
(

lim

is 2-Cartesian.
X
—
fl lf

lng Y(U;) —— Y(im V)
In particular if ) = S this says hﬂX(UJ >~ X (lim U;).

(ii) If f is locally of finite presentation then f% smooth iff it is formally smooth, i.e. for all U = Spec A €
Affg with A local strictly Henselian, for all I C A with I? = 0 and all commutative diagrams

Spec(4g) —— Y

| s

U—X

there exists « : U — ) making the diagram commute.
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8 Lecture - 10/07/2014

Today talk about how to define properties of stacks and which are satisfied by the stacks we’ve seen. To
define dimension: let X be an algebraic stack over S. We define the points of S as the set

Xl={ JI «peck)]/~

Spec K—S

where the disjoint union runs over maps from fields K, and the equivalence relation is defined by (z/, K') ~
(2", K") if there exists some K with K’, K" — K and Spec K — S through which z’, 2"/ become equivalent.
Let f: X — X be a presentation of X. If € | X| (so « : Spec K — X), then we define the dimension at
the point x as
dim, (X) = dim X — dim(X x » Spec K),

i.e. the dimension dim X minus the relative dimension of f at the point (since this base change of f is a map
of schemes). Need to prove this is well-defined, etc. But even then this is difficult to use - need an explicit
presentation of the stack (which we were very far from having, e.g. for Bung; for that we first reduced to
Bungy,, and then used an open cover...)

In practice, to calculate dim, (X') (at least when X is smooth) we use the tangent complex. For this, can
consider the lifts of  : Spec K — X to Spec K[e]; the set of all such lifts is the fiber of X' (Spec Ke]) — Spec K
at x, which is a groupoid Xy , in X' (Spec K[e]). This has extra structure:

Definition: A category in K -vector spaces is a groupoid C with a functor 4+ : C x C — C and functors
A: C — C for every A € C such that:

e (C,+) is symmetric monoidal (i.e. addition is commutative)
e For all C, C-—: C — C is an equivalence of categories
e A bunch of compatibilities for the rest of the vector space axioms for .

Example: Let d : C~! — CY be a 2-step complex of K-vector spaces. Define a category C with objects C°
and morphisms = — y given by f € C~! such that df = x — y. This is a category in K-vector spaces.

Fact (Deligne): For any C in the definition, if for every X € C the commutativity constraint X + X 22
X + X isidx4x, then C is equivalent to a category as in the example.

Back to stacks: If Cx , is what we defined above, it’s a category in K-vector spaces, satisfying the
condition in the above fact. Thus it corresponds to a complex C~! — C° and H°(C) is the set of
isomorphism classes of objects in the category, and H~! is the automorphism group of the trivial lift.

Theorem: If X' is smooth at x, then dim, X = dim H°(C") — dim H~1(C").

Examples: Speck is our base scheme, and G is a linear algebraic group.

(1) BG: Speck — BG is a presentation, BG is locally of finite type (check the condition BG(Speclim A;) =
hﬂBG(SpecAi), follows from something in EGA). In fact it’s finite type and smooth, so dim BG =
dim(Speck) — reldim(f) = —dimG. (Remark |BG| is just one point). This implies BG is not Deligne-
Mumford, since D-M stacks must have nonnegative dimension.

(2) Bung,x (for X projective, so Bung, x is algebraic). It’s locally finite type, but not finite type in
general (e.g. consider Bungr, x for X a smooth projective curve, which splits up as an infinite disjoint
union indexed by degree). Formally: Proposition 1: For all n > 0, there’s a connected k-variety Y and
a map Y — Bungr, x and yo,y1 € Y (k) such that yo — Ox & Ox and y; — Ox(n) ® Ox(—n) (in

Bunggz,x (Spec k), where the 0 means degree 0). Proof of this: Y the affine space corresponding tok-vector

space Ext” 1(Ox(n), Ox(—n)). Then define Y — Bungr,, x by mapping a SES

0—Ox(—n) =& —0Oxn) =0
to £. Want to see that F = Ox @ Ox is an extension of Ox(n) by Ox(—n). By Serre’s theorem, if
n > 0 then F(n) is generated by global sections (actually n > 1 works by ampleness of Ox (1)) so we have
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an injective map Ox — F(n) (choosing section which is nowhere zero; exercise why “generated by global
sections”) gives this. Then £ = F(n)/Ox is a line bundle, and we have

0— Ox(—n) = F = L(—n) — 0.

Identify £(—n); note we have Ox = det F = Ox(—n) @ L(—n) so L(—n) = Ox(n).
Proposition 2: If Y — Buncr, x is a representation such that, for all n there’s y, € Y (Speck) with
y—n +— Ox(n) ® Ox(—n) then Y cannot be of finite type. Proof: Assume we have such a Y. Then
Y — Bungr,,x corresponds to a rank 2 vector bundle £ on Y x X, and y,, = Ox (n) ® Ox(—n) means that
Ely.xx = Ox(n) ® Ox(—n). If Y were Noetherian then by Serre’s theorem there would be N € N with
E(N)|yxx generated by global sections for all points y of Y. But E(N)|yy,, xx = Ox(—1) ® Ox (2N + 1),
contradiction.

Theorem: (i) If X is a curve, then Bung x is smooth. (In fact, if dim X > 1 then it’s known Bung x is
not smooth!)
(ii) If X is a smooth curve and G is reductive, then dim Bung x = (dimG)(g — 1).

Idea of proof: (i) We want the infinitesimal lifting criterion. Let A be a strictly Henselian k-algebra,
I C A ideal with I? = 0. May assume A/my = k by extending k. We are given xo € Bung, x(Spec Ap),
i.e. a G-bundle P on X4,. Can we lift to a point in Bung x(Spec A), i.e. extend to G-bundle on X 47
Since G is smooth, a G-bundle is étale locally trivial. So G-bundles on X 4, are G-bundles on X, where
G = Resa, /1 G4, and G-bundles on X4 are G’-bundles on X, where G = Res 4/, Ga. Now, have

1-H—->G¢ >5G—>1

where H = LieG®y I =LieG' ®4I. Now, G — Out(H) = Aut(H) as a natural adjoint action on Lie G ®, A,
and m,(X) = (X x G)/G'.

We have a fixed G-bundle P over X. Consider the stack ) over X, with &(U) the G’-bundles P’ on U
together with ¢ : 7, P’ = Py. Does this have a point over X7 Well, ) is a gerbe over X, i.e. has objects
locally and any two objects are locally isomorphic. What is the band of the gerbe Y7 It should be a sheaf
of groups B on Affx; so given U — X what’s B(U)? Take U’ — U covering with «’ € Y(U’). Then
Isom(a’,2')is a sheaf By on Affy, and the two pullbacks of &’ on U’ xy U’ are locally isomorphic, so this
defines gluing data on By for U’ — U and allows us to descend By to By on Affy, unique up to unique
isomorphism.
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9 Lecture - 10/09/2014

Goal: X/Ek a smooth projective curve, G/k linear algebraic group. Stated two things last time:
1. Bung,x is smooth.

2. If X is geometrically irreducible and G is reductive, then dim(Bung,x) = dim(G)(g — 1) (where g is
the genus of X).

Studied this by deforming G-bundles. Let A be a strictly Henselian k-algebra, I C A an ideal with I? = 0,
Ay = A/I. Assume WLOG (by extending k if necessary) that A/my = k. Want to prove the infinitesimal
lifting criterion to prove smoothness.

Last time showed Bung,x (Spec A) was the set of G’-bundles on X and Bung, x (Spec Ag) was the set of
G-bundles on X, where G’ = Res 4/, Ga and G = Resy, /i, Ga,. Have exact sequence

1-H—=G¢ —-G—1
where 7 : G’ — G is the obvious thing. Moreover, we identified
H =Lie(G") @4 I = Lie(G) ®a, I = Lie(G) @4 I.

Now, viewing this SES as an extension it gives a map G — Out(H) = Aut(H) (since H is abelian), which is
the adjoint representation. B

So: Fix a point x € Bung, x(Spec Ag) corresponding to a G-bundle X — X. Define stack J/X of
local lifts of X to a G’ -bundle; namely Y(U) is the set of G’-bundles X U together with isomorphisms
(X' x G)/G' = Xy. Then Y is a gerbe (i.e. lifts always exist locally, and two are locally isomorphic). Let
& = (H x X)/G (quotient by the diagonal action), a vector bundle over X; claim this is the band of the
gerbe.

Let ' € Y(U); so @’ corresponds to X’ — U with (X’ x G)/G' = Xy. Then Aut(a') is a fppf sheaf on
Affy; what is it? Answr is that it’s £|y. To construct the map; let o € Aut(z')(V), so ¢ : X{, — X{, is a
G'-bundle automorphism such that the induced isomorphism

(X'xG)/¢' = (X'xG)/G

is the identity. Fix W — V and s € X'(W). Then ¢(s) = s - g for some g € ¢'(W). Also (s,1) ~ (¢(s,1)
mod G’ (W), so there exists h € G'(W) such that (sh,m(h)) = (¢(s),1) = (sg,1). So ¢(h) =1,s0 h € H(W),
and g = h™! so g € H(W) as well. If we choose a different section ¢t € X'(W) and write ¢t = sa then
o(t) = (s)a = sga = t(a~'ga); so (a(s, 1), h) is uniquely determined by ¢ as an element of (X x H)/G)(W).
(Note: The action of G’ on H factors through G, as H is commutative).

So: X’ has a point over a cover W of V', which gives some v € £(W). By the uniqueness, we can descend
to a section of £(V'). So we get a map Aut(yp) — E|v, a map of sheaves. Can check it’s a group isomorphism

locally (since locally X' is trivial). Hence:
e For every U — X, the set of isomorphism classes of objects of Y(U) is isomorphic to Hflppf(U, E).

e So objects exist locally; need to know we can glue local lifts. The obstruction to lifting is an element
of Hfzppf(U, ).

But £ is a vector bundle, so prpf(X, E) = H.(X,€E) = H*(X,€) = 0 because dim X < 1. So Y(X) # 0,
proving smoothness.

We now move on to computing the dimension. Specialize to A = k[e], Ay = k, and z € Bung,x (Speck).
Then C = Cpung x,» = Y(Speck) is a category in vector spaces over k as defined last time. So this
corresponds to a 2-step complex of vector spaces that we need to identify. But HP is the set of objects of C
modulo isomorphisms, which is H*(X, ). For every object 2’, Aut(z') = H°(X, ), so

dim, (Bung x) = dim H' (X, €) — dim H°(X, &) = —x(X, &).
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So need to calculate this Euler-Poincaré characteristic. If G is reductive, Lie(G) = Lie(G)Y as a G-module,
s0 &2 &Y so deg(€£) = 0. Then Riemann-Roch tells us x(X, &) = rank(€)(g — 1) = dim(G)(g — 1).

This finishes the generalities on stacks. Now move onto a new topic, defining Shtuka (reference: Var-
shavsky’s paper on “F-bundles”). The base scheme will be Speck for k a field. We let G/k be a split
connected reductive algebraic group and X/k a smooth projective geometrically irreducible curve. Since
we've fixed G, X, write Bun for Bung, x.

Recall the Beauville-Laszlo theorem from last semester. Notation: If A is a k-algebra let D4 = Spec A[t]
and DS = Spec A((t)). Then Vect(D,) and Vect(D9) are the categories of finite-type projective modules
over A[t] or A(t)), respectively.

Here we only suppose X is a smooth curve: Fix z € X (k), fix @)(73C = k[t], get Da — X4 and DY — X§
where X° = X \ {«}. Then:

Theorem (Beauville-Laszlo): For every k-algebra A, define a functor

Bun(Spec A) = BG(X4) - D

where D is the gluing data category consisting of triples (Pxo, Pp, §) where Pxo € BG(XY), Pp € BG(Dy),
and 8 : Pxe|ps — Pp|ps is an isomorphism, and the functor is given by P — (P|xs,P|p,,id). Then this
isomorphism is an equivalence of categories.

Level structures on Bun. Let N be a finite closed subscheme of X. Also, P° always denotes the trivial
G-bundle. Definition: Buny maps U to the set of pairs (P, ) for P € Bun(U) and ¢ : Pluxn — Piyn-
Define a group scheme Gy : U — G(U x N), which acts on the right on Buny by changing ¢ (since
GN(U) = Aut(Pgy))- If N C M are two levels, get a map Bunys — Buny; also Bun = Bung.

Fact: Bunj; — Buny is a torsor under the linear algebraic group ker(Gyr — Gyn), so it’s schematic
affine. In particular Buny is algebraic.

Proof: Let (P,p) € Buny(U). Then (Buny Xpuny U)(V) is the set of ¢ : Parxy = Py such that
YInxv = fro. R

Infinite level structure: Fix z € X(K), and Ox , = k[t] (which fixes D4 — X 4). Define Bunoo, (Spec A)
to be the set of pairs (P, ¢) with P € Bun(Spec A) and ¢ : P|p, = Pp, . Also define G[t](Spec A) = G(A[t])
and G(t)(Spec A) = G(A(t)). Then G[t] acts on Buns, as before (by changing ¢: G(A[t]) = Aut(Pp,)).
Also, have Buneso, — Bun, and this is a G[t]-torsor; moreover Bun o, = @Bunm (i.e. for N = nx).

Fact: (1) Buneo, is a sheaf in equivalence relations (in fact, a scheme).

(2) The G[t]-action on Buns., extends to a G(t) action.

Proof: (1) We have to prove that for all a € Bunae, (U), Aut(a)(U) = id,. Let (P, ¢) € Bunso,(Spec A),
and ¢ : P — P in BG(X4) such that ¢|p, = id. Let F' be the function field of X. Then BG(X4) —
BG(Spec A x Spec K) is faithful, and thus ¢|ps = id (which we know) implies p|spec(agr) = id.

(2) Let (P, ) € Buneoz(Spec A), g € G(A((t)). Define a G-bundle P’ on X4 by applying B-L theorem
to the triple (P|xs,Pp,,9 o ¢). By construction get ' : P'|p, — Pp ; take (P,¢) - g = (P',¢').
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10 Lecture - 10/14/2014

Notation: k field, X/k smooth projective geometrically irreducible curve, G /k split connected reductive linear
algebraic group. Write Bun = Bung,x, and if NV C X a finite closed subscheme, we have Buny — Bun.

Study Fg-points, in case k = F,: Let F' = k(x), so for every v € | X| have O, = @X’U C F,,, and surjective
map O, — k(v) which is a finite extension of k. Define the adeles A = H'v F,, with respect to the O,’s, and
0 =1]], 0, Let Ky be the kernel of the projection G(0) — G(On) where Oy = [[,cy Ov-

Claim: The objects of Buny(F,)/~ are in bijection with G(F)\G(A)/Ky.

Proof: Start by constructing the claimed bijection . Let G € Buny (F,). Since H'(F,G) = 0, have that
G is generically trivial, so there exists U open dense and ¢ € G(U). Also, for all v € | X| have H!(k(v),G) =0
by Lang’s theorem, so G has a section over k(v) which lifts to a section &, over O, by smoothness. If v € |N|
take &, given by the fixed isomorphism ¢ : G|xy — Gj. Thus for all v € | X| have two sections &, &, of G over
Spec Fy,, so there exists a unique g, € G(F,) with £ = &, - g,. If v € |U]|, then £ is defined over Spec O, so
gv € G(Ov) So g = (gv) € G(A), define a(g,ga) =4d.

Why is a injective? If a(G,p) = a(G’,¢’) choose U, &, &, &y, &L, gu, g, as before. Then by assumption
there exists v € G(F) and (h,) € Ky such that yg,h, = g, for all v. We may assume v € G(U) (just shrink
U), so we may assume G|y = G'|y, £ =& and v = 1.

Claim: If V' D U is open, if ¢ : G|y = G'|y is such that ¢|y = id and ¢(§,) = &, for all v € |V \ |U]
and 1 is compatible with ¢, ¢’ then for all w € |X|\ |V| there exists Glw = G'|w where W = V U {w}
extending 1 and satisfying the same conditions. Proof: Use B-L theorem to glue ¢ and the isomorphisms
g|Spec Ow — g/‘Spec Oy Coming from hw~

Why is « surjective? Let g = (g,) € G(A). Can find U C X open dense such that g, € G(O,) for all
v € |U]; trying to construct (G, ) such that «(G,¢) = g. Over U take G|y = Gy the trivial bundle, and
take £ =1 and &, = g, for all v € |U|. Extend G to larger subsets one point at a time by B-L theorem.

Now, talk about truncations. Start with truncations by degree, which appeared when we proved Bungr,,
was an algebraic stack. Notation: if H is an algebraic group and H € BH(S), and ¢ : H — GL(V)
is an algebraic representation of H, let H, be the associated vector bundle over S (i.e. (H x V)/H).
(Remember if we let ¢ : H — H’ be a morphism of algebraic groups get a map ¢, : BH — BH' sending
H — (H x H')/H). Moreover if ¢ is a closed immersion then for all H' € bH'(S), the isomorphism classes
of H-bundles H together with an isomorphism p,H = H' is bijective with the set of sections H'/H — S,
where H'/H = (H' x H'/H)/H' with action (s, h) -k’ = (sh,(h')"'h).

Fix T C B C G, (maximal torus, Borel), let Z = Z(G). Assume that G9" is simply connected (mostly
to simplify notation). Roots and coroots: have X*(T) 2 ® C &+ D A and X,(T) 2 ¥ 2 VT D AV as
usual, and

Have X7 (T) and X (T) the dominant things. On X,(T) and X*(T') have the Bruhat order A\; < Ay iff
A2 — A1 € ) ce+ Na. Finally, let Aq,..., A\g be the fundamental weights of G' (in X7 (7).

For all A € X (T) let X be the corresponding irreducible representation of G. If G is a G-bundle write
Gy = Gyv,. Now fix a parabolic subgroup P O B. A P-structure on a G-bundle G is a P-bundle P with an
isomorphism (P x G)/P = G of G-bundles.

Lemma: Let G be a G-bundle on S. We have a canonical bijection between

1. Isomorphism classes of P-structures on G

2. Families of line subbundles Ay C G, for A € X (T) N X*(P) such that for all A, u we have Ay ® A, =
Ajxy, via the natural embedding Gr1,, — G\ ® G,..

3. Collections of line subbundles Ay, C Gy, for all ¢ such that the fundamental weight \; lives in X*(P),
such that the Pliicker relations are satisfied: for all k; € N then

Q)(Ax)F C ®(9Ai)k

i
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is contained in G~y x,-

Proof: Map from (ii)—(iii) is obvious. Map from (i)—(ii): Let P be a P-structure on G; if A € X3 (T) N
X*(P) the highest weight line Ly C V) is stable by P. Take

A)\ = (P X L,\)/P‘—) (P X V)\)/P %g

(iii)—(i): Let Ay, be as in (iii). Want to construct a section s of G/P that will give back the Ay, by our
map (i)—(ii). Claim such a map exists and is unique. Thanks to uniqueness can check the claim étale
locally on S, so we assume G is trivial. Then G/P = (G/P) x S. So s is an S-point of G/P. We have
G/P — [], P(Vy,); each Ay, gives a S-point x; € P(V),) and the family (z;) is in the image of G/ P iff the
Pliicker relations are satisfied.

Definition: For all p € X.(T) ® Q, let Bun]%,“ be defined by taking S to the set of (G,¢) € Buny(S)
such that for every geometric point s of S, for every B-structure B on Gy (s}, and for every A € X (T'), we
have deg(Bx) < (A, u).

Theorem: Bunf,“ — Buny is a schematic open immersion. Moreover, for all p € X, (T) ® Q, if deg(N)
is big enough, Bunjg\,“ is a countable disjoint union of quasi-projective schemes.

Lemma: mo(Bun) = 71 (G) = X*(Z(G)) = X.(T)/X.(T N Géer).

So, if v € 71 (G) get the connected component Bun® C Bun, and then Buny""” = Buny" N Bun”. The
second part of the theorem actually says that if deg(N) > 0 (relative to p) then Bunzgv“ ¥ is a quasi-projective
scheme for all v.

Proofs: May or may not prove lemma; very similar to proof for affine Grassmannian. For the first
part of the theorem, only have to consider Bun=* — Bun (the level structure doesn’t play any role). Let
G € Bun(S). Then G € Bun=<H(S) iff for all geometric points s of S and all 1 < i < d and all B-structures B
on Gy, deg(By,;) < (A, p); call this condition (*). Let U; — Bunpy be the substack defined by the following:
G € U;(S) iff (*) is true for the fixed . Then Bun<, = (\U;, so it’s sufficient to prove U; — Bun is a
schematic open embedding.

Fix i, let P; O B be the maximal parabolic subgroup corresponding to A;. For every s and B as above,
By, only depends on (B x P;)/B (a P;-structure on Gy). Using the lemma, (*) becomes condition (**), that
for every s, (Gs)a, has no line subbundle of degree < (\;, ) satisfying the Pliicker relations. This is an open
condition on s. If s; — s9 is a specialization, if £ C (Gs, )y, is a line subbundle, then it gives a unique
line subbundle L5 of (Gs, ), because Grassmannians are projective. The degree conditions and the Pliicker
relations are closed conditions, so Lo satisfies them if £ does.

For the second statement (about Bunﬁ“ being a countable disjoint union of quasiprojective schemes):
Case G = GL,. Fix an ample line bundle O(1) on X. A B-structure on a G-bundle G € BG(S) is a flag
0=Fy C -+ CF, =G with F;11/F; a line bundle for all . The < u condition involves bounding the
degrees of these line bundles. Serre’s theorem gives that there exists m € N such that for all S and all
£ € Bun=t(9), if ps : X x S — S is the projection, then Ripg.E(m) = 0 for i > 0, pg.E(m) is a vector
bundle, and the adjunction map pips.€(m) — £(m) is surjective.
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11 Lecture - 10/16/2014

From last time: Fixed T C B C G and p € X,(T) ® Q. Defined a stack Bun=* by letting Bun=/*(S) be
the set of G € Bun(S) such that for every geometric point s of S, every B-structure B on Gs, and every
A € X3 (T) we have deg(Bx) < (i, A).

Also, recalled we had an isomorphism 7y(Bun) = 7 (G) = X* (Z(@)) We let Bun” be the connected com-
ponent corresponding to v € w1 (G) and set Bun=*" = Bun=* N Bun" and Bunﬁ“ = Buny ®py, Bun=*"?

Result we were working on last time: For all p there exists d such that if deg(N) > d then BunS“’U is a
quasi-projective scheme for all v.

Proof: Case G = GL,, with the standard Borel; then a B-structure on G € Bun(S) is a flag 0 = Fy C
Fi1 C .- CF, =G with F;41/F; aline for all i. Take p = (u1,...,1n) € Q" and A = (Aq,...,\,) € Z7"
with Ay > -+ > \,,. Then deg(B)) < (A, p) iff

k k
Z deg(Fit1/Fi)Nit1 < Z i1 fhit1

=0 =0

for all k < n — 1. If we want this to be true for every A this is equivalent to the condition

k k
> deg(Fir1/Fi) <Y pira
i=0 i=0

for every k < n — 1 with equality for k =n — 1.

Fix € X.(T) ® Q. By Serre’s theorem, exists m such that for all S and all £ € Bun=*(S) we have

Ripg.E(m) = 0 for i > 1, ps.&(m) is a vector bundle, and pips.E(m) — E(m) is surjective. (As usual,
s : X xS — S is the projection and O(1) is a fixed ample line bundle). (Apparently getting that this is
true uniformly for all £ is tricky and uses much more than Serre’s theorem ?7777)

Fix such a m. If deg(N) is big enough, then for all S and &, ps.€(m) — ps«Enxs(m) is injective and
stays so after base change. So we get ps.&(m) — ps.Enxs(m) = ps.Of, 5(m) (where this isomorphism
comes from the level structure ¢). Let ), be the stack defined by letting V,.(S) be pairs (a, 8) such that
a: & = ps O g(m) where & is a rank-r vector bundle and coker o is flat over S, and 3 : (p5&1)(—m) — &

with & a rank n vector bundle. Thus have a map Bun *11, Y» by mapping

(&:9) = (1 psu(m) = psiOlys(m), B+ (PspssE(m))(—m) - £).
Claims:
e This map Buny” — [] ), is a schematic open embedding.
e ), is a projective scheme
e If v is fixed, the image of Bun lands in a finite union of Y.

General case: Choose an injective morphism G' = GL,,. This gives Bung, y — Bungt,,,y which we have
seen is schematic and affine (because GL,, /G is aﬁine) Let u € X, (T)®Q; then there exists p' € X, (TaL, )
such that Buna“ v — Bungr, ~ factors through BunGLm

The affine Grassmannian and the Hecke stack. Remember: A fppf sheaf of sets on Affy (what we called a
k-space last semester) is an ind-scheme if we can write X = hglieN X, with the X; schemes and the transition
maps X; — X closed immersions. We say X is of ind-finite type (or ind-affine, ind-projective) if we can
take all of the X;’s to be of finite type (affine, projective); if this is true for one presentation X = @Xi
then it’s true for all.

Notation/examples: Arc group G[t] : Spec A — G(A[t]), loop group G((t)) : Spec A — G(A((t))), affine
Grassmannian Grg = G((t))/G[t]. Have that G[t] is a group scheme (not of finite type in general), which
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embeds in G((t)) that’s a group ind-scheme (not of ind-finite type in general), and Grg is an ind-projective
ind-scheme. Then GJt] acts on Grg on the left in the obvious way, and last year calculated the orbits are
indexed by w € X (T). If w +> Orb,, and if K/k is algebraically closed extension, then

Orby (K) = G(K[t])¢"G(K[t])/G(K[t)
where t¥ = w(t) € G(K(t)). Also, Orb,, is a projective scheme with

Orby = | Orbu.

w!' <w

How was this connected to G-bundles? Fix z € X (k), identify (/Q\X’z = k[¢], so get maps D4 — X4
(where D4 = Spec A[t] is the formal disc). Let X° = X \ {z} so DS = Spec A((t). We define more stacks

Gr&® : Spec A — {(G,¢) : G € BG(Xa),: Glxs = Gxs ),

Gr® : Spec A — {(G,9) : G € BG(A4), ¢ : Glps = Gpe}.

loc loc

We have maps Gré1 — Gr&° and Grg — Gr&° by (G, ) — (Glp,,¢lp,) and g — (Gp,,g), and last year
proved these were isomorphisms by the B-L theorem.

Description of Orb, in GriSS. If g € G(A((t))) then gG(A[t]) is in Orb,(A) if p : G — GL(Vy)
then for all A € X*(T), we have p(g) € t**) End(A[t] ® V)) and moreover there exists A such that
plg) ¢ tAW 1 End(Alt] @ V).

Now, for all z € X(S) = Hom(S,X) let 'y € X x S be the graph of . For I a finite set and
N C X a closed finite subscheme, let Gry be the stack with Gry(S) the set of tuples (G, (x;)ier, ) where
G € BG(X x8), z; € X(5), and

ob

P OxxS\Uye; Ty = Glxxs\Use, T, -
Also define a stack Heckey 1 by letting Hecken 1(S) be the set of tuples (G, ¢, G', ¢, (z:), ¢) with (G, ¢), (G, ¢’) €
Buny (5), z; € X(S)\ N(S), and

¥ gXxS\UielFmi = g/‘XxS\Uigz Lo,

Let Hecker = Heckeg ;, where the 1’s can be omitted. Note we could also have defined Gr;(S) to be the
set of (G,G’, (x;), ¢, ) where (G,G’, (x;),¢) € Hecker(S) and o : G’ = Gx«g.
We have lots of maps:

o Gry — Heckey by (gv (:Cl)aﬁp) — (vaXXSa (1‘2)790)
e Two maps Hecken,; — Bunn by (G, 9,7, ¢', (z;), p) mapping to (G, %) and (G, 9).

e Maps Hecker,Gr; — X! by mapping things to the tuple (z;) (compatible with the map Gr; —
Heckey).

e Heckeyr,r — Hecken r|(x—anyr if M 2 N.

Note
Hecken ; = Buny xgunHecker|(x —nyr

so we’ll usually work with just Heckej.

These Gr;’s and Heceky, ;’s are not algebraic stacks in general, they’re ind-algebraic stacks. But we’ll
deal with them by truncation just like Grg.

Let w = (w;) € X (T)!. We define substacks Gry,, and Heckey 1, of Gr; and Heckey s like so:

e (G,0,G" ¢, (x:),¢) is in Hecken 1, (S) iff for all X € X3 (T), we have o(Gx) C Gx - (X1 (N wi)Ta;)
- this allows poles at the points z;. (Recall G\ = Gy, ).
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o (G, (z;),¢) is in Gry,(s) iff for all X € X5 (T) have p(Gr) C (Gxxs)a - (X (A wi)Ts,).
Note that this has nothing to do with level structure, so

Hecken 1, = Buny xgunHecker | (x -yt
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12 Lecture - 10/21/2014

Last time we needed this lemma.
Lemma: Suppose that £ = k. Let n > 0 be an integer, and p1, ..., 1, € Q. Then there exists N such
that for all rank n vector bundles £ on X, if

e For all complete flags 0 = & C & C --- C &, with deg(&;) < p1 + -+ + p; with equality for i = n,
then H'(X,E(m)) =0 for m > N.

(Key remark: this condition imposes a bound on the Harder-Norasimhan polynomial of £, which was
how Drinfeld and others truncated the shtukas).

Proof for n = 2: Suppose £ satisfies this condition so deg & = 1 + o = d. There are 2 cases to consider:
either & is semistable or not. If not then there exists a flag with deg(&1) > deg(£/&1). Then condition (*)
says that if we set £1 and Lo = £/&; we have

deg(L1) > deg(L2) >d —pu— 1.

So if m > d — p1 + C (for some constant C' depending only on the genus of X) then H(X,&(m)) = 0.
Second case is when £ is semistable; thus every subbundle has slope < slope of &, so in particular for every
L C € we have deg £ < (deg&)/2. If HY(X,E(m)) # 0 then by Serre duality H°(X,EV(—m) @ wx) # 0
so £Y(—m) ® wx has a quotient line bundle of degree 0, so £(m) ® wy has a quotient of degree 0 so £ has
a quotient line bundle of degree —m + deg(wx). Since semistability means every quotient line bundle has
degree > deg(£)/2, thus —m + deg(wx) > deg(£)/2 so m < deg(wx) — d/2. So if m > deg(wx) — d/2 then
HY(X,&(m)) = 0; so can take N = max{deg(wx) — d/2,d — 1 + C} and this works to prove the n = 2 case.

Now, fix a finite set / and N C X a finite subscheme. Remember Heckey ; was the stack where an
S-point was the collection of data (G, ¢, G, ¢, (z;),v) with (G, ) and (G',¢’) in Buny(S), the z;’s are
points (indexed by I) with z; € (X — N)(S), and ¢ is an isomorphism

Glxxs\Ur., =G [xxs\UTs,

compatible with the level structure in the sense ¢’ 09 = ¢ on N x S. Also defined Gr;(S) as the set of
tuples (G, (2;), %) with G € Bun(S), z; € X(5), and ¢ : Gxxs\yr,, = Gxxs\Ur,,-
Remark: There’s an involution 7 of Heckey,; sending

(gv 2 g/’ 90/» (‘T%)vw) — (glv 30/7 g7 2 (xl)a 1/]_1)'

Fix w = (w;) with w; € XF(T). Define Hecken,1,, and gr; , by requiring the following. Recall that for
A € X (T) we have the highest-weight representation V) and then for any G can set G\ = Gy, . Then we say
(G,0,G", ¢, (x:),¢) € Hecken 1,,(S) iff for all A,

NE

i=1

¥(Gx) C Gy ( <)\,wi>in> _

Similarly (G, (z;),v¢ € Gry, iff for all A,
$(Gx) € Ga (Z <A,wi>rzi> :
i=1

Remark: The Drinfeld case is when G = GL,,, |I| = 2, and wy = (1,0,...,0), we = (0,...,0,—1).
Remark: The involution 7 sends Hecken 1, to Hecken 1 _w,(w) Where wq is the longest element of the
Weyl group. Why? Assume WLOG N = (), get

¥(Gr) €GO A\ wi)Ta,)
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iff
(@NX(=D (N widTs,) C(Gr)Y
iff
NG o) € Gmwon (= D (Awi)Ty,)

because V) = V_,,(x), and noting (X, w;) = (—wo(\), —wo(w;)) get the desired relation.

Proposition: For all w, Heckeny,1 . is an algebraic stack locally of finite type. Moreover, Gry ,, is a scheme
locally of finite type. In fact, the map Hecken 1., — Buny x (X — N)! given by mapping a point of the
Hecke stack to (p/, (z;)) is schematic projective, and by the remark so is the map (p, (z;)).

Proof: We'll just do the fist statement. Assume N = (). Want to prove Hecker, — Bun x X7 is schematic
projective. Let V = @?:1 VA;, where the A;’s are the fundamental weights, which is a faithful representation
of G. Fix N such that for all ¢ € T and all weights A of V, —N < (w;,\) < N. Let Hecke' be a stack
S (G,G, (x;),v) € Hecker(S) with

( NZF )ngv CQV<NZF%>

First note Hecker,, C Hecke' by definition and remarks about 7. Claim that Hecker, — Hecke' is a
schematic closed embedding. Let (G, G’, (z;), %) € Hecke'(S). Then (Heckes o X fecker S)(f : 8" — 5) is *
if o(f*Gx) € f*GL (> (A, w;)T'y, for all A, and () otherwise. But this happens iff

Qa(f*g)\j) < f*gi\J (Z <)‘j7 ’LUZ>F11

foralli,j. Let F = G, (N>, Ty,) = @?Z Gx,(NDT3,); then & = @ (Gy;) and & = P G4, (3 (Ai, wi)T'z,)
embed in F, and the fiber product we’re looking at is the closed subscheme where £ C £’.

So if we know Hecke' is good then this will imply Hecke is good. How do we understand Hecke'? Move
to Hecke”, the stack with Hecke”(S) having points (£,G’, (;),%) with (G', (x;)) € (Bun xX1)(s), € is a
rank dim V' vector bundle on S x X, and v : £|x x5\ r,, = Gvlxxs\U r,,-

We have Hecke' — Hecke” given by (G,...) — (Gy,...). Now, claim that Hecke” — BunxX7 is
schematic projective. This follows because (Hecke” X gunxx1 S)(f : 8" — ) is the set of pairs (£,4) with £
arank dim V' vector bundle on X x 8" with ¢’ : £ x xsnyr, = f G| xxs\Ur, satisfying the usual properties.
But this is the same as rank dim V' vector bundles £ on X x S’ with

7 (~NYOTL) cEC Gy (N0

This is a Grassmannian over S’.

Finally, need to prove Hecke' — Hecke” is a schematic closed embedding. Proof: Let (£,G', (x;),9) €
Hecke”(S). Then if Z = Hecke' X precker S, we have Z(S’) is * if there exists G € Bun(S’) with Gy = Exx g
and G =G’ on X x S"\JT'y,, and @ otherwise. So Z(5") is « iff the section of £/G over X x 5"\ YT, given
by 1 extends to X x S” (and this extension is necessarily unique by separatedness). In fact, £/G — X x S
is affine (because G is reductive so GL(V)/G is affine). So we just need the following:

Lemma. Let S be a scheme, let 2; € X(S) fori € I, set U = X x S\UTs,, let s € (U, Oxxg). Consider
the sheaf F given by sending f : S’ — S to * if f*s extends to X x S’ and @ otherwise. Then F — S is a
schematic closed embedding.

Proof: Let t € T'(X % S,7.0u/Oxxs) be the image of s, and t; = t‘]"zi. Identify T',, with S by the
projection X x S — S. Then F — S is the inclusion of ({¢; = 0}.

Corollary: Let pn € X, (T) and v € m1(G). Then

< <
HeckeN#va = Hecken 1w XBuny Buny™”

is an algebraic stack of finite type, and even a scheme if deg(N) > 0 (relative to p).
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Shtukas. Now take k = ;. For all S € Schy_, let Frobs : S — S be the map taking f € Og to f9. If
G € Bun(S) write "G = (idx X Frobg)*G. (If Y is any stack and a € Y(S), let "a = Frobg a).

Definition: Let Chty ; be the stack with S-points (G, ¢, (z;), %) with (G, ¢) € Buny(S), z; € X(5), and
1 an isomorphism of G with "G on X x S\ |JG,, with "¢ o ¢|nxs = 9. Thus

Cht]v)[ = Heck‘eNJ XBuny X Buny BunN

where the map Hecken ;1 — Buny x Buny is the obvious one and the map Buny — Buny x Buny is (id, 7).
We have an obvious map Chty ; — Buny x(X — N)! by dropping the v. Can also define

<pvo <pv
ChtNJ& - HeCkeN,I7ﬂ XBuny x Buny BUny .

In particular this this is an algebraic stack of finite type. Also have maps Chty; — Chtn if N € M.

Proposition: The map
Chtnr,r — Chtnyg xx1 (X \ M)!

is schematic, finite étale and Galois of group G n(Fy) with G n = ker(Gar — Gn). Moreover, Chtlg\,ﬂll
is Deligne-Mumford of finite type, and a scheme for deg(N) > 0 (relative to u). If w; = 0 for all 4, then
Chtn, 1w = Buny(F,) x (X \ N)! with the Buny a discrete stack.
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13 Lecture - 10/23/2014

Recall we defined the stack of shtuka Chty; = Hecken,; XBuny x Buny Buny, where the first map to
Bun x Bun is (p,p’) and the second is (id,7) where if G is a bundle on X x S then "G = (idx x Frobg)*gG.
More concretely, Chty 1 (.S) is the set of collections of (G, ¢) € Buny (S) with (2;);c; € X(S)  and¢: G 2 7G
away from |JT';, with 7¢p o p = 1. (Recall a level structure is an isomorphism [] : G|N x S = Gyxs)-

Also had various truncations

<pov <pv
ChtN,I,g = Heck:eN’I)g XBuny x Buny BULN .

which is an algebraic stack of finite type. (Here, w € X/(T)!, p € X*(T)® Q, v € m(G)). If N C M get
Chtyr 1t o Chty 1; also have maps Chty ; — Buny x (X \ N)..

Proposition: (a)

Oht]\/[J — Oht]v,[ X xI (X — M)I

is finite étale Galois of group Gy n(Fy), where Garn = ker(Gyr — Gn) with Gar(A) = G(A ® On) which
we can abuse notation to write as Gy = Respyy/r, G-
(b) Chtn 1, is a Deligne-Mumford stack locally of finite type; in fact each C’ht?\,f” I’j’w is the quotient of a
quasiprojective scheme by a finite group, and actually is a scheme if deg(N) > 0 relative to .
(¢) If w; = 0 then Chty 1 = Buny(F,) x (X \ N)! (with Buny(F,) treated as a discrete stack).
(d) Chtn, 1w # 0 Y w; € X (T NGoer).

Remark: w is the highest weight of an irreducible representation of G!, and Y wi € X.(T NG*7) iff the
diagonally-embedded Z (@) < GT acts trivially on the representation. Drinfeld case: G = GL,,, G = GL,,

|I] = 2, with the representation we use is st ® st where st is the standard representation of GL,.
Lemma: Let X' /F, be an algebraic stack locally of finite type, and let ) be the stack

S {(Ag): A X(S),p: A=A}

(a) Y is a DM stack, étale over SpecF,, and X'(F,) C Y is a schematic open and closed embedding.
(b) If moreover A : X — X x X has connected geometric fibers then Y = X'(F,).

Proof: The general case isn’t too hard with some stack theory, but we’ll just consider the two cases we
need (in which case (b) applies): (i) X is a scheme and (ii) X = BG with G connected.

Case (i): Obviously Y = X(F,) (since Y(S) = X (5)F°Ps). Case (ii): We want to show ¥ = B(G(F,))
for X = BG. Get natural map B(G(F,))(S) — Y(S); and there’s a bijective correspondence between
G € BC(S) with ¢ € H}(S,G), such that "G = Frobg(c). (What is ¢? Choose covering family {U;} of S
such that G|y, is trivial, ¢; : G|y, = Gy,. Take c to come from c¢;; = p; o w;l € GU; xsUj)). If 7G < ¢
then c;j = ¢;j o Frob = Frobg oc¢;; so ¢/ = Frobg(c) as needed.

To finish the proof we want: If ¢ € H} (S,G) is such that ¢ = Frobg(c) then c¢ is in the image of
H} (S,G(F,)). Indeed: Choose (U;) and ¢;; as before. Then ¢ = Frobg(c) iff there exists h; € G(U;) such that
hicijhjfl = Frobg(ci;). Lang’s theorem says g — Frobg(g)~'g is surjective since G is connected. So up to
going to another cover, we have g; € G(U;) such that h; = Frobg(g;)~'g;- Then gicijg;1 = F‘robg(gicijg;l),
i.e. gicijgj_l S G(Fq)

Proof of proposition part (a): It is enough to show that Chty ;1 — Chir|x\n)r is finite étale Galois
of group Gy (F,). Let Y(S) be the set of (G,) such that G € BG(N x S), ¢ : G — ™G. By the lemma,
Yn = B(Gy(F,)). We have a map Chtn 1 — Vv by (G, ¢, (2:),¢) = (G|nxs,¥|nxs). Now claim that the
map

Chtn,; — (Chtn g X x1 (X\N)I) Xyy SpeclF,
given by ((G,¢), (z;),v) — (G, (7;),%) is well-defined and an isomorphism. So Chty ; — Cht; x (X \ N){
is a Gn(F4)-bundle.
(b) Fix p € X.(T). If deg(N) > 0 then Buny”" and Hecke?vf}’f)w are quasi-projective schemes, so
Cht]SV“ 7., is also one. In general, Cht%" 7" is a quotient of Cht]%jf +¢ for M big enough, by a finite group
G, N7(IF;), and by (a) the quotient maI:; is étale. -
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(c) Suppose w; = 0 for all i. We want Chty 1, = Buny(F,) x (X\N)!. But note that if (G, ¢), (x:), %) €
Chtp, 1, then for all A € X7 (T) have ¢(Gy) = 7Gx so 1) extends to G 2 7G. So Chtn 1, = Chtygx (X\N)L.
We want Chty g = Buny(F,).

Fix p,v. Then if M D N has big enough degree C’ht]%[’f 5 and Bun]%[“ 'Y are schemes, and Chtj%/}fé” =

BunI\Sf’U(Fq). This implies the result for C’htf/‘@”, and we use that Chty g is the union of these over all y,v.
(d) Claim: Chty, # 0 iff Y w; € X.(T N GY). If this stack is nonempty: Take (G, ¢, (z;),1) €
Chtn 1 ,(S). Then if A € X*(G), A\, \"! are dominant so the condition on ¢(G,) and "G, becomes (Gy) =

TGA(OC (A, wi)T'y,). Let s be a geometric point of S and take degrees:

deg(Ga.s) = deg(Gxs) + Z (A wi).

i€l

So this sum is zero, so > w; € X,.(T'N Gd"”'). Conversely, if we assume Y w; is in this space then Chin 1.0
contains Bun(F,) x (X \ N).
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14 Lecture - 11/04/2014

Local models for Chty 1. As always: X/F, a smooth projective curve with X3 connected, and G/F, a
split connected reductive group. I a finite set. !

Local version of Grg,;: previously we defined this by letting Grg ;(S) be the set of tuples (G, (x;),¥)
with G € BG(X x S), x; € X(5), and

¥ Glxxs\ur., = Gxxs\Ur,,-
Notation: Suppose (;);cr is in X(S)L. If J is the ideal of |JT, in Oxxs, let

FZ coxr; — Specr&loXxS/jn-

If (n;) € N7, let ['s~p,e, be the closed subscheme which is Zariski locally defined by the equation [ #;"* where
t; is a local equation for I';, € X x S.

More notation: Let Gy, — XT be the smooth group scheme with S-points consisting of tuple (x;; g;)
with (z;) € X!(S) and (g;) € G(I's ;). Similarly define Gy~ o, — X (relative version of G[t]).

Other description of Gre ;: tuples (G, (z;),v) with (z;) € X'(S), G € BG(I's~ 0oz, ), and 1 a trivialization
of Gon I's~ o, \ UT's,. Have obvious map from original Grg s to this, and by B-L theorem these stacks
are isomorphic. But this one is easier to work with in many cases: for instance in this description it is
obvious that Grg,r has a left action of Gy~ oz, (by changing +). Also, have Grr, < Gry with Gry, closed
subscheme stable under the action and Gr; the inductive limits.

Lemma: Let w € X (T)!. If the n;’s are big enough then the action of Gy oon; 01 Gry, factors through
G n;xTyi*

Z:Proof: Have (G, (x;),%) is in Gry(S) iff for all A € X3 (T'), we have 1)(Gx) € GA(D_ (A, wi)T'z,).

Next: Fix w, and fix (n;) as in the lemma. Remember Cht;(S) consisted of (G, (x;),v) with G € Bun(S)
and ¢ an isomorphism of G with "G on X x S\ [TI'y,. Moreover this element is in Chty,(S) iff for all
A€ X3 (T), we have 1(Gx) € TG (> (A, wi)I'y,). Want to define a map

Elw* Cht[,g — Gzi 961\ Gr[’ﬂ.

This is defined by descent. If (G, (7;),v) € Cht;y(S5), and if I has 8 : "G|ry v, = Gy oox,, then send
(gv (ffz)ﬂ/)) to
(g|FZoomi ) (‘TZ)7 Bo w) € GrI,Q(S)'

Moreover the element of z in Gy p,,4,\ Grr, does not depend on 3. While a 3 may not exist globally, it
does exist locally on .S, so can go to a cover, define the image, and descend back.
Proposition: €7, is smooth of relative dimension dim(Gy- 4, /X7).
Proof: Let
Y =Chtrw Xy ne;\Griw Grrw-

Then Y — Chtr,, is a Gy y,,4,-torsor (though not really relevant for us); and we want to show that o :
Y — Gry,, is smooth of relative dimension d. Can identify Y(S) with the set of tuples (G, (z;), v, 5) with
(G, (x:),¢) € Chtrw and B : "Gls piz; = G nyay-

Let z = (G, (z),¢) € Grrw(S). What is the fiber ' = ¥ xq,,, S, with the map S — Grr,, coming
from z? Well, Y'(S" — S) is the set of (F, (z;), x, ¥, ) with F € Bun(S’), x an isomorphism of F with "F
on X x S\ JT,, ¢ is an isomorphism of F with G on I's~,,.,., and o : .7:|1“200mi 2 G such that for all

0T ~
¥ ‘F|F20cmi ZGFzmmi

extending v (locally defined) we have Yoyx=poa.
Now, )’ is also the equalizer of the maps

Fy, Fy : Bung s~ 0, Xx1S — Bung x5,
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where Fj is the obvious projection (forgetting level structure) and Fy is given as follows. If (F,¢) €
Bung s~ n,e, (S') and if {/}V : Flrs, s, = Gry.,, extending t, we call a G-bundle “F¥Yon X x S” by gluing
Flxxsnyr,, and Glry. - via o loy (by B-L theorem). This does not depend on choice of ¥, so descends
to a G-bundle on X x S” which we call as(F, ). Now Fy is defined by (F, ¢, s) — (az2("F, 1), s).

Let € be the equalizer of these maps; then £(S”) consists of (F, 1, (x;),s) with F € Bun(S'), v : F= G
on I's~ 0., Plus F = ax(7(F,v)) ie. {/; extending "¢m and an isomorphism of flied bundles... Basically it
turns out to be the same thing as )!

Situation: we have two maps Fy, F3 : Y — X. We know F} is smooth of relative dimension dim (G~ .,/ X7),
Fy has differential 0, and X,Y are smooth. So the equalizer is the pullback of A : ¥V — Y x Y and
Y xxY =Y xY (with all of the things smooth), so it’s sufficient to check that the intersection is transver-
sal. Check this on tangent spaces of (y,y) €Y x Y.
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15 Lecture - 11/06/2014

The geometric Satake correspondence and fusion. Here: k is a field, X/k a smooth curve, G/k a split
connected reductive group, ¢ a prime not the characteristic of k. Fix G O B 2 T and thus X (T), X; = (T),
etc., as usual. Will focus on the case of the affine Grassmannian over a point to start.

Reminder of stuff from last year: Let Y/k be a finite type scheme, H a finite type connected affine
group schemes, and if a : H x Y — Y is a (left) action of H on Y, then a Q,-perverse sheaf K on Y is called
H -equivariant if there exists an isomorphism a*K = p*K where p : H x Y — Y is the projection. (Note
that this is not the general definition! This one only works for H connected, and is “morally wrong”, but is
simpler for our case so we’ll use it).

Define Pervy (Y) as the full abelian subcategory of H-equivariant perverse sheaves on Y in Pervy (Y).
(Again, we're “morally wrong” for not requiring H-equivariance of the morphism, but the case of H connected
that condition turns out to be automatic. So we’re really just treating H-equivariance as an extra property
of the perverse sheaf rather than an additional structure). Some other comments:

e If H acts transitively on Y and if the stabilizers of points are connected, then Perv (Y) is equivalent
to the category of constant sheaves on Y, given by mapping a constant sheaf £ to £[dim Y.

e What if Y is an ind-scheme? If H is an affine group scheme acting on Y, say the action is good if we
can write Y = lim Y,, where each Y, is a finite-type scheme and the action of H on Y,, factors through
a finite-type quotient H — H,,. Then we define

Pervy(Y) = lim Pervy, (Y,).
(This does not depend on the choices).

e There is a relative version we’ll need; if Y — S is a S-scheme (or S-ind-scheme) and H — S is an
S-group scheme (with connected fibers, for simplicity) with a relative action a : H xg Y — Y, and if
p: H XgY — Y is the second projection, then we define Perv g (Y') similarly (using this a and this
p). Need this for dealing with the relative affine Grassmannian.

Main Example: Y = Grg = G(t)\G]t], and H = G[t] acting by left multiplication. Proved last year that
this action was good; this will basically be the only example we care about. Write Sat(G) = Pervap(Grg),
the Satake category. Studied this last semester, and showed:

e The G[t]-orbits on Grg are given by O,, = G[t]t*G[t]/G[t] for p € X (T) (for t# = pu(t) € G(k(t)));
this is the Cartan decomposition. These orbits are finite-dimensional, smooth, simply connected.
Calculated dim O, = (2p, u) for 2p = " « as a runs over all positive roots.

e The closure @# is Uu’Su O,. This is projective but not smooth in general.
e The simple objects of Sat(G) are the intersection complexes IC), for p € X (T), where
1C, = ju (@Z,O“ [dim O]).
(Here j, : O, — O, is the inclusion, and j,. is the intermediate extension discussed last year).

e There is a convolution (or fusion) product * on Sat(G) making it into a Tannakian category (more on
it later). The functor w : Sat(G) — Q,-Vect given by K — @,., H (Grg 4, k) is a fiber functor. So
Sat(G) is actually a neutral Tannakian category.

e If k = k then the Tannakian group of sat(G) is the dual group G of G over Q. That is, we have an
equivalence of categories S : Reps — Sat(G) that is an exact tensor functor (sends tensor product of
representations to fusion product) and sends the natural fiber functor Reps — Qy-Vect to w. Finally,
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it matches up irreducible objects in the obvious way: if u € X} (T) and V), is the corresponding
irreducible representation of G, then S(V,) = IC,. In particular Sat(G) is a semisimple abelian
category.

For general k, Sat(G) is not always semisimple, but we do know that the IC), are defined over k. So
get an exact fully faithful tensor functor S : Reps — Sat(G), but there can be nontrivial extensions
in Sat(G) (preventing it from being an equivalence). (Note: It’s actually possible to identify the
Tannakian group in this case; it’s basically “G).

Goal of this chapter : Let I be a finite set. We have the relative affine Grassmannian Gr; — X I Tet

Gr =

(over

1.

2.

3.

G%: ~oz; — X! be our relative version of G[t] (a relative group scheme). This acts on the left on Gr;

X"). Note:

If we write I = I; U I as a disjoint union of subsets, then define
Xhxxla c xh x X = x1

as the set of pairs (z;;y;) such that {J,c; 'y, and (¢, I's; are disjoint. Then:

i€l

Grr|xngxmn = (Gry X Gro, )| xn g xrs-

If ¢ : I — J is a map of finite sets, let A¢ : X7 — X! be the map (z;) — (z¢(;)). Then we have
Gry x x1 X7 = Gr; (obvious from writing down the definition).

We have similar statements for Gr. (All of this is what we call the “factorizable structure”, which if we
did formally requires compatibility conditions, but those are obvious in our case).

What we want to do is construct a faithful exact Q,-linear functor Repgs, — Pervg, (Gry) (denoted
W — Sw.1) such that:

If [I| = 1 then for all z € X (k) have Sw. 1|, ,, = Sw (since Gry (43 = Grg; this says our functor
extends geometric Satake on the fibers).

For all W € (A?I, Si.w is supported on |J,, Grr,, where w € X,7(T)! runs over all weights of W.

Sw.r is ULA (universally locally acyclic) with respect to Gry — X!. (We'll define what this means
later, when we actually need to use it).

IfI=1,Ulyand W = W; KW, for W; € Repgs,, then we have canonical isomorphisms

Swirlar | = (Swi,n B Swa,1)|(Grr, x Gyl

I g xT2 Iy xT2”

If ¢ : I — J is a map of finite sets, we have A¢ : X7 — X7 as before, and define ¢* : G7 — G! given
by (g5) = (g¢@iy) and a functor Reps;, — Repg, given by W — W¢ (which is W with the G”-action
via (*). Then we have a canonical isomorphism

Swirlar x o x7 = Swe .

The case [I| =1 : Write Gr; = Gryyy and G; = G1;. We want a functor Repg — Perv(G)(Gr;) which
we write W +— Sy1. Remark: last year we did this for X = A'; in this case choosing a coordinate on
X gives an isomorphism Gr; = Grg XX, so we could take Sy, = Sw X @K,X[l]' Want to generalize this
construction.

Let Aut be the connected affine group scheme over k given by letting

Aut(R) = AUtR—alg,cont (R[[t]]) = R[[t]]x
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(with the latter isomorphism given by « +— «a(t)/t). Then Aut acts on G((t)) and G[t] (recalling G((t)) =
Hom(R((t)),G) and letting us send f € G(R((t))) to f(a(t)) or maybe f(a~!(t)) - which sign works out
isn’t important for us). So Aut acts on Grg. The results of Section 1 imply that every K € Sat(G) is
Aut-equivariant.

Now let X : Aff x — Set be given by

SpecR — {(z,s) : x € X(R),s: @XR,JC = R[t] continuous R-algebra homomorphism}.

Obviously have X — X given by (x, s) — z, and this is an Aut-torsor. Let ¢ : Grg x 2" — Gry sends (G, ) x
(7,8) to (s*G, s*p). Then ¢ is an Aut-torsor, where o € Aut sends (G, ) X (z,5) to ((G,a* o), (z,a 1 os)).
(Again, up to a choice of signs that needs to be checked).
So we get two Aut-torsors, ¢ : Grg xX — Gry and (id, 7) : Grg xX — Grg xX. If K € Sat(G) we have
that
K X Qy x[1] € Perv(Grg xX)

is G[t] and Aut equivariant, so

p* (K &@Z,Xu]) € Perv(Grg xX)

is equivariant by G[t] acting on Grg, Aut acting on Grg, and Aut acting on X. So there exists a unique
L € Perv(Gry) such that ¢*L = p*(K X Q, x[1]), and L is G-equivariant. (Remark: X isn’t a finite-type
scheme so strictly speaking this doesn’t make sense, but we do everything on the level of finite-type quotients
like we did with convolution products last year).

So we define: If W € Repg define Sy,; € Perv(Gry) as the unique perverse sheaf such that

q"Sw,1 = p*(Sw K Qy x[1]).
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16 Lecture - 11/11/2014

Remember: Sat(G) = Pervgpy(Grg). Geometric Satake says there is a fully faithful exact tensor functor
S:Repg g, = Sat(G) (an equivalence if k = k), such that if u € X (T) then S(V,,) = 105,

Goal: Relativize this; if I is a finite set have Gr; — X! the relative affine Grassmannian, and G; — X'
the relative version of G[t], which acts on Gr;. We want an exact functor Reps; — Pervg, (Gry) that
takes W to Sy in a way that’s “compatible with the factorizable structure” and such that if |[I| = 1 then
for all z € X (k) we have (Sw,1), = Sw on Gry, = Grg.

Last time for |I| = 1: If X = Al we recalled that choosing a coordinate on X gives Gr; & Grg x X, and
then take Sy, = Sy K Qz, x[1] for all W € Repg. Then showed that this construction is Canomcal and
works fppf locally on X and glues.

Remark: The most general statement of geometric Satake (for k = k and | |I| = 1) is that we have an
equivalence S; of G- Perv(X) (the categories of perverse sheaves on X with a G-action; note Repg embeds
in this) with the category of K € Pervg, (Grl) such that K is “universally locally acyclic” with respect to
7 : Gr; — X. To construct this, let R = k‘[G] with its two G-actions. As a G-module with the first action,
k[@] is the union of its finite-dimensional sub-G-modules. Set

Sr1 = lim Sv,
VCk[G],VERepg

an ind-perverse sheaf on Gry. The second action of Gon R gives an action of Gon S Rr,1. By the algebraic

Peter-Weyl theorem, for any V' € Repg have V' = Homg(V*, K[G)) = (V@ k[é])é So, for all V € Repg,
have

Sy1=V&Sr1)%=Var, ®Sr1)°.
So we define S : G-Perv — Pervg, (Gry) by

S(K) = (r*K[-1] ® Sg1)°.
However, we won’t need this general form, just the easier special case we’ve been working on.

The case |I| =2 : Write Gry = Gry, Go = Gr, X? = X!. We have the diagonal map A : X < X? and
j:X2= X2\ A(X) — X2. Have a commutative diagram with Cartesian squares:

Gry A Gry 7 (Gry x Gry)| 4»

| |

2 2
X X X 7 X

Last year we saw (at least if X = A!):
Theorem: Let V,W € Repg. Then we have canonical isomorphisms

(A% (Sva B Swa)l2) [—1] = (A1 (Sy K Swi)lxe2)[=1] = Svew.

Since X is locally A! can reduce the general case to this result from last year.
Remark: More generally K, L € Pervg, (Gry) are universally locally acyclic with respect to Gr; — X,
the isomorphism
(A" (K B L)| g) [-1] = (Al (K R L) 2) [-1]

and use this to define a convolution product K * L.
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Remark: If X = A' and we fix an isomorphism Gr; = Grg xX and if K, L € Sat(G), showed last year
that (K x L) K Q,[1] is equal to

A% (KR Qy x[1]) R (LR Qp x[1])] 52) [-1]-

In fact we can use this to define K * L.
If W =W; XKW, € Repg., we want Sy» € Pervg,(Grz) to be such that

J Swa = (Swl,l X SW272)|)°(2'

and A*Sy o = Sw[1] if we make W into a representation of G via the diagonal map G — G2. There’s an
obvious candidate to do this:

Sw,2 = Ji«(Swi 1 B Swy 1] 52)-

The General Case : Induct on |I|. First, assuming S. ; is constructed for all J with |J| < |I|, prove the
following:

Theorem: Let ¢ : I — J, and let A¢ : X7 — X be the map (z;) — (x¢(;)). Let Uy C HjeJXC_l[j]
be the set of tuples ((2;);ec-1[j])jes) such that if j # j’ and i € (7'[j] and i’ € (7'[j’] then z; # 2. Let
Jje:U;—= X I be the open embedding. We have a diagram of Cartesian squares

A 4
Cr; = Gry «> (Tljes Gre-1) v,

| |

J I
X A¢ X J¢ Us

Let k = |I| —|J|, let W; € Repag,l[j] for all j € J, and suppose we have canonical isomorphisms (assuming
(¢l < 1))

AZjete (RjesSw,c-115)lv;) [k = Aden (RjerSw, ¢-1151lu,) [Fk] = Sg, w,.0-
Then: If W = X;c;W; € Repgar, we can define

Sw.r = jex(XierSw, 1) v,

for ¢ the unique map I — {1}, and extend to Repg; by additivity.
Proof: Omitted; just extends what we talked about before the obvious way.

Perverse sheaves on Chty ; .If I is a finite set and W € Repgr, let Chty rw = Uﬂ Chin, 1w Where w
runs over elements of X7 (T)! that are weights of W, and Gryw = |J,, Gry,, for the same set of w (so this

is the support of Sy r). Fix W. Then we have seen that if (n;) € N/ are big enough, we have a smooth
morphism
EILwW ChtN,LW — GI"I,W /GZH1$1

which has relative dimension dim(Gs~,,,4,/X"). We set
Fnaw =erw(S)[ -]

where the twist is by whatever we need to make this perverse on the fibers of Chty ;w — X I Here S’ is
the unique sheaf on Gryw /Gy p,q, that you get by descending Sw,; (which we know is equivariant by G;
and thus by its image Gy~ o, )-

Technical annoyance to deal with lack of finite type hypotheses: Let Z = Z(G). Then Z(A) acts on

Chtg\fg,llt,)(WV and Z(F) acts trivially. Choose a lattice = C Z(A)/Z(F). Then Cht]%/lf],w = is a DM stack
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of finite type - same as you need to choose auxiliary things like this in automorphic forms to make certain
volumes finite. (Or: Take G semisimple, where = = 1 works).
Definition: Let py 1w : Chin 1w — XT be the natural map. Then for every pu € X, (T), set

M w = Rpn.swy (Frvawlonzs, w/E)'

Right now this is a perverse sheaf on X7'.

Crucial property of these: let ¢ : I — J be a map, let W € Repg;, let W€ be the corresponding object
of Repg, (taking the diagonal action via ¢). Remember we have A; : X 7 — XT. Then there is a canonical
(i.e. functorial in W) isomorphism

w19y < ~ <
X¢ - A((HNfLI,W) = HNfLJ,W-
Why is this? This follows from proper base change, and the canonical isomorphism between Fn rw and the
pullback of F ;¢ by the map
Ch/tN,J = ChtNJ X(X\N)I (X \ N)J — ChtN,I|imgA<

given by the similar isomorphism for Sw,; and Syy¢ ;.
Remark: If W is irreducible of highest weight w € X} (T)!, then Fx rw on Chtys,/Z is just the
intersection complex (with trivial coefficients, suitably shifted).
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17 Lecture - 11/13/2014

Goal for today: Start proof of main theorem, assuming a bunch of facts that we’ll need to prove later on.
From last time, we constructed a family of (exact) functors Repg, — Perv(X') given by W — ’H]%/‘IW
(for parameters I a finite set, N a level, u € X.(T), and depending on = a lattice in Z(F)\Z(A)). These
functors satisfy the property that, for all ¢ : I — H we have a functorial isomorphism (in W)

AR S ~ <p
X¢ - ACHN,I,W = HN,J7WC'

Where we used Geometric Satake was in making this functorial!

Hecke correspondences : (A) Let 7 : Z — Y be a finite étale map (for Z,Y irreducible). Then it induces
7 ICy — 7. ICyz and tr; : m.ICz — ICy such that tr, or* equals multiplication by deg(7) on ICy .

Proof of this: Choose j : V < Y open dense and such that V,.q is smooth. Write U = 77 1[V] — Z.
Do everything over V, U where the intersection complex is just the constant sheaf. Then have 7* : Qy —
7.Qu = T, 7*Qy that’s an adjunction map, and tr, : 7.Qy = m7'Qy — Q, is also an adjunction map. Then
the composite is multiplication by deg(m) by SGA4 XVII or XVIII (standard property of trace map). Want
to extend this to intersection complexes; use definition ICy = j1.(Qy[d]) for d = dimY = dimV = dim Z,
and ICz = j/.(Qu[d]). Use that 7. = ji, = ji. (recall ji. is the image of PH(j') — PH(j*) in the perverse
sense), using that =, j| = ji and 7.j, = j., and that 7, is exact (in the usual sense and the perverse sense).

(B) If there’s two finite étale maps 71 : Y — Z and mg : Y — Z, they give a map tr,, onj : ICyz — ICy,
hence an endomorphism of the intersection cohomology of Z. The Hecke correspondences will show up in
this way. N

(C) Come back to the moduli stack of shtuka. Fix w € X} (7T)! a dominant weight for G! and look
at Chinrw. Let Ky = ker(G(O) — G(On)) as earlier in the semester. Then Ky = [],¢ x| Kn,o with
Ky, =0, for v ¢ N. Recall we have

Hecken = Co(KN\G(A)/Kn, Q)

which is an algebra by the convoluton product; want to make this act on
ling H
N

where W is the representation with highest weight w. Let g = (g,) € G(A), and choose T' C |X| a finite
set of places such that for all v ¢ T we have g, € Ky, and assume that 7N N # @ (to “concreteify” the
definition, which will be enough for us).

We'll define the action of the characteristic function 1k, 4k, € Hecken. Write

KngKy = [[ Know x [] G(OL)@)G(O,)
vgT veT

for w, € O, a uniformizer and A\, € X (T). Let I'y(g) be the stack sending S to the category of pairs of a
tuple (z;) € (X \ |N|\ T)1(S) and a commutative diagram

(G ¥) —E (TG )

(G, %) —5— (76,7 ¥)

where the horizontal arrows are objects of Chty 1, (S5), and & is an isomorphism G| x\r)xs) = G'|(x\1)x s
such that 1)’ o k = 1 (this is where we use our assumption that 7N |N| = ()) and such that for every place
v € T the relative position of G and G’ at v is equal to \,, i.e.: for all geometric points s — S, if we choose
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trivializations of ¢ : G — 7G and ¢’ : G' = "G’ over D x s = Spec k(s)[[t] (where D is the formal disc around
v, and these trivializations are unique up to G(O,)) then

K Gl(p\{uhxs = G'l(D\ (v} xs

defines an element of G(O,)\G(F,)/G(O,) which we require to be A,(w,).

We then have two maps 71, m2 : I'n(9) — Chin 1, with o taking the top horizontal arrow in the diagram
and 7 the bottom horizontal arrow. Claim: 7, my are finite étale. This is because there exists xk € X.(T)
(depending on g) such that for all u, we have

- <
2 [7T1 I[Chtﬁlflgﬂ - Cht%,rI’TUow
So we get a map ]-'j%”}’w - F ]%,“Iw Taking perverse direct images, we get

. <p : <p
hﬂ HN 1w — hﬂ HN T w
1 1

which is by definition the action of 1k, ¢k, € Heckeny. We can extend this to @u HJS\,”‘I’M for any W €
Repgr by linearity. Claim: This defines an action of Heckey, i.e. sends convolution to convolution.

A particular case : If W =1 is the trivial representation (i.e. I = ) then we saw that Chty 11 is the
discrete stack Buny (F,) = G(F)\G(A)/Kx. So hén’;’—[]%““ is the constant sheaf with value

C(GP\G(A)/ENE, Q),

and the action of Heckey is the usual one (by convolution).

The Hecke-finite part : Let A : X < X! be the diagonal embedding. Let 77 be the generic geometric
point of X. Fix N, W as before. Then we say

ue (hg%fv{‘,w>
1

is Hecke-finite if there exists a finite-dimensional Q,-subspace V such that u € V and such that v is stable
by Heckey.

Let Hyw,; be the Hecke-finite vectors in h_n)lHJ%*}W Note that this depends on N but we’re suppressing
that from the notation. Then:

(a) W Hjw is a functor in Repg;.

(b) If ¢ : I — J then we have an isomorphism x¢ : Hrw = Hjyc functorial in W, and such that
Xcer = XeXer, and ¢ is Hecke-invariant.

(c) If W =1 then Hyw = C*P(G(F)\G(A)/KNE, Q). (This is a purely automorphic calculation - can
read it in Lafforgue).

We assume (for now - much of the rest of the semester will be devoted to proving it) the following:
For all I, W there’s an action of Gal(F/F)! on Hy commuting with the maps coming from functoriality,
commuting with the Hecke actions, and compatible with y, via the diagonal map Gal(F/F)’ — Gal(F/F)*.

How do (a),(b),(c) give the decomposition of

Hyoy 1 = C"P(G(F)\G(A)/KNE, Q)7

A7)

Excursion operators: For I a finite set and W € Repg;, set (7 : It o {0} (so W¢ = W with the diag-

onal action) .Let z : 1 — WS and ¢ : WS — 1 be G-equivariant, and take (y;) € Gal(F/F)!. Define
St we,(v:) € End(H{py 1) as the composition

1R

H(x i X H ﬁ
Hioya 1, Hyoywer <5~ Hrw R Hyw — Hgy wer HO, Hioy
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We will see that S; w4 () only depends on I, (v;), and f € O(GT) defined by f((g:)) = (£, (g) - z). Note
f is left and right invariant by G (because we chose x and £ to be @—invariant). So we’ll write St r (,)-
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18 Lecture - 11/18/2014

We have additive functors W +— Hp yw, where W € Repgr and Hyw is a @g—vector space with commuting
actions of Heckey (so this does depend on N but we're suppressing that from the notation) and Gal(F/F)!
compatible with maps I — J. Remark: If W is irreducible it has a highest weight w € X (T)!, and H; w
is the “Hecke-finite part” of
lim  THY(ChtF/; ,/Z)
nEX.(T)

with d = dim C’ht%,’}&/E. If W is the trivial representation then H; w is CS%P(G(F)\G(A)/KNE, Q).

Excursion operators: For I finite, W € Repg:, ¢r : I — {0}, W< is W with the diagonal action
of G, fix x € (W)Y (which gives z : 1 — W¢) and & € (WS )G (which gives £ : WS — 1) and
(vi)ier € Gal(F/F)!. The excursion operator S w,u ¢ (1) € End(Hjoy,1) is defined by

R

H(x) > (vi H(E)
Hioya — Hyoy wer o Hpw L> Hrw SLLTEN Hyoy wer — Hioy1

Remark: Make G act diagonally on G on the left and right, and let G\\G?//@ be the coarse quotient, i.c.
the one such that A P
O(G\\G'//G) = O(G")“*¢

over Q,. Claim
O(G\\G'//G) = {f € O(GT) : 3W, ¢ such that f((g:)) = (£, (9:)z)-

Proof: Obviously any such f is G x G-invariant by G-invariance of x ;€. Conversely, suppose f is in the
ring of invariants. Let Wp C O(GI ) be the subspace generated by left translates of f under G! (note that
dim Wg) < o0), let oy = f, let £ : Wp — Q, map h to h(1). Then we have f((g:)) = (&s, (g:)x ).

Note that the W,z, ¢ is not unique, but the one we defined for our f in the previous paragraph is the
minimal one. If W,z,§ are any such triple, let W, C W be the G'-submodule generated by 2. Then we
have a : W, = W and 3 : W, — W, that are G!-invariant (with 8(y)(g;) = (&, (g:)y)). Under this map,
olx) =z and B(z) = x5, and (Ta)(€) = (1 B)(&7) = £l o

Proposition: (0) If W, z, € are as before, then S, ¢,(+:) depends only on the function f € O(G\\G'//G)
defined by W, z,§. So we write St 7 (4,) instead.

(1) The subalgebra B of End(Hygy,1) generated by the St s,y (for I, f,(v;) varying) is commutative, and
for fixed I, (v;) the map O(é\\@l//é) — B is a Q-algebra map.
(2) For all ¢ : I — J and all f € O(G\\G!//G), it ¢ € O(G\\G’//@G) is defined by the usual formula
F¢(95) = F(9¢(y) then Sj s (+) = 11, (ve00)
(3) For all I, f, (vi), (7)), (vf'), if B o R

F e O(G\G™M//G)

is defined by f(gi, 9., 9) = f(9i(g,)"'g}') then

SI0IUL o (vi vty = OTF (i) =120

(4) For all I, f the map Gal(F/F)! — B given by (v;) = S1,7,(v,) is a continuous morphism of groups (where
B has the ¢-adic topology). Remark: dimg , Ho,1 < 0o means dim B < oo.
(5) Forallv € | X\ N|and all V € RepG 1rreduc1ble if T, € End(H{oy,1) is the action of the element of
the unramified Hecke algebra at v corresponding to V., if f(g1,92) = xv(9195 "), if Frob, € Gal(F/F) is a
lift of the Frobenius at v, then Ty, = S{1 2}, f,(Frob,,1)-

Point (5) is serious and will take us a while to prove. The other points follow from the following easy
lemma:
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Lemma: (1) If o : W — W' is a map in Repg;, if z € (WC'L')@, if ¢ e ((VV’)C“*)@7 then

SUW,2,Tu(¢)(3) = SLW ()€ (1)

(2) For all ¢ : I — J we have Sjwe¢ ;e (i) = ST,w,a.6,(v:)-
(3)
SIluIQyWI&W2;Il&w2a£1®527(’7i1)><(712) = 51171111@17(17(73) ° Slz7w27$27C27(’Y§)'
(4)
STW,,(vi () = STUILTL,WRW *RW,6w B ,(Bevw ,(v:) x (7)) X (1) -
Now, how do we apply this result? Last year, we proved the following result: -
Theorem: Let I" be a profinite group, let H/Q, be connected reductive, let =, : O(H™//H) — C(I'™,Q,) be

a family of maps such that:
(a) Forall (: {1,...,n} = {1,...,m} and all f € O(H"//H) and all (71,...,7vm) € '™, we have

Em(£)(v) = En(H) ()
(b) For all n > 1 and all f € O(H"//H) and all (7;) € ™" we have

~

Ent1 (O ¥mt1) = EalF) (s -+ 5 Y1, YaVnr1)

~

where f(g1,... gnt1) = f(91,- -, Gn—1, Gngn+1)- R

Then, there exists o : I' — H(Q,) a continuous morphism of groups, unique up to (Q,)-conjugacy, such
that Z,(f)(v1,---,7m) = f(e(11),...,0(7m)). Moreover, if I' — T, if for all n > 0 the image of Z,, is in
C(¥",Qy) then o factors through T.

How do we apply this? Remember that Hygy 1 = CS*P(G(F)\G(A)/KNE, Q). Write the decomposition
of Hyoy 1y into generalized eigenspaces for B, @P,.z -3, h,. Now we change this into something indexed
by Langlands parameters: if a : B — Q, is a character then for all Q,-algebra morphisms and all I, have
continuous function

O(G\\G'//G) — C(Gal(F/F)",Q,)
by mapping f to the function (v;) — (St f,(y,)). Using the isomorphisms G")|G=@ G"1//G by
(g1,---59n) = (1,91, ..,9n) this defines a family Z,, as in the theorem so there exists o : Gal(F/F) — é(@g)

a continuous group morphism unique up to a(Qg)—conjugacy, semisimple (i.e. the Zariski closure of Im o is
reductive) such that for all I, f, (y;) we have

tr(Ss.1,(v) lha) = f(o(7:)) dim(hy,).

Also, o factors through the Galois group of the maximal extension unramified outside of N. From now on
write h, = h,.

So, we get

C™P(G(F\G(A)/KNE, Q) = ) by,
0:Gal(F/F)—G(Qy)

and part (5) of the proposition says that for all v € |X \ N| and V' € Repg irreducible, the unique
eigenvalue of Ty, on h, is x,(o(Frob,)) = tr(c(Frob,)|V), i.e. the decomposition is compatible with the
Satake isomorphism at places v ¢ |N|.

So that’s the outline of the argument. Remains to do:

e Define the action of Gal(F/F)! on Hy w via partial Frobenius maps.
e Study Hecke-finite vectors.

e Prove (5) of the proposition.
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The Galois action on the cohomology of Chty; . Start by discussing “small maps”. A map of
k-schemes of finite type f : X — Y is small if f is proper surjective birational and for all r > 1,

codim{y € Y : dim f[y] =r} > 2r

_ Theorem: If f is small, if V' C Y is open dense such that f: f V] =2V, then the canonical isomorphism
Qv = f«Qq s-1[v) extends to an isomorphism ICy = f.ICx.
Now, more affine Grassmannians. Let I be a finite set and (I1,...,I,) a partition of I. Define a

G; € Bung(S) for 0 < j <,

©j Gj—tlxxs\UierT,, = Gjlxxs\Uienr,,

forl<j<r,and p:G.=2Gx X xS.
Remark:

e We could also require G, = G x X x S and get rid of .
e Gry = Grgl)

e We have obvious maps GrII1 """ ) Gy by the full tuple mapping to ((z;), Go, Gr, pro- - -0p1,¢). More

generally if (Iy,...,1I,) refines (I7,...,I’,) we have an obvious small map Grgh"“’b) — Gr;

s Loy

e Can also make the G-bundles G; defined on >~ ocox;. This would give the same stack.
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19 Lecture - 11/20/2014

From last time let I be a finite set and (11, ..., I,) a partition of I. Define a stack (actually an ind-scheme)
Gr (11’ - by letting GrI 1’”"[")(5’) be the set of tuples of (z;) € X(S)?, G; € Bung(S) for 0 < j <,

©j 1 Gi—1lxxs\UierT., = Gjlxxs\Uiernr,,

for1<j<r,and ¢:G, =G x X x S. Can also define Heclce(l1 1) a5 the same thing but omitting the

final trivialization . Then have maps Gr(h’ )(S) — Heck:e(ll"” ) and from both things to X1(9). 1f
(I1,...,1I.) refines (I7,... ,IT ) get a map from the things for the former to the things for the latter.

Truncations: Let w = (w;) € X (T)" and let w; = (wi)icr,- Say ((€i),Go,---,Gr 01,---,0r) €

Heckeyl’”"h) is in Heckeg;"”’lr) if, for all j and all A € X7 (T) we have

01(Gi1n) SGin [ D (Awi)T,

i€l

Similarly define Gr(h’ o),

Also, have maps p,p’ : H ecke(II1 """ Ly Bung by mapping a tuple to Gy or G, respectively. Then

A
Hecke(l vendr) o Hecker, XBung - XBung Hecker,.

Also,
Grrgl1 """ I = Heckeg1 """ I XBune Speck
with the maps p’ and Speck — Bung giving the trivial bundle.
Proposition: (a) Let A = {(x;) € X! : 3i # j,z; = z;} be the fat diagonal. Fix w. If (I1,...,I,) refines
(I1,...,1I)) then the morphisms

Heckeg;’ ) Heck‘e( 1l

and
Grleate) Gyl
are projective and are isomorphisms over X! \ A.
(b) If I = I, U I, and we let Uy, j, be the open set of tuples (x;) such that x; # z; if i € I; and j € Jo.
Then for all w = (w;,w,) the morphism

I,
Heck;e(I o 2) Heckey ,

is an isomorphism over Uy, ,.

(c) Let w € X7(T)". Over X'\ A, Gry, is canonically isomorphic to [T, Gry;} ., (this is just a restatement
of the factorizable structure on the Grassmannian).

(d) There exists T'— Bung x X smooth surjective with connected fibers such that

Heck‘e{l},w XBung xx 1 = Gr{l},w xXxT.

(e) Gry — X is a Zariski locally trivial fibration with fiber Gr,, = Orb(t*) C Grg.
Proof: (c),(e) we're just restating from earlier results.
(b): Let ((X;),G,G6',¢: G — G') € Hecker(S) be such that (x;) € Up, 1,(S). Use ¢ to glue Q|X><S\U

to G'[xxs\U, rer, Ty 1O get a G-bundle G”, with id : ¢ — G’ an isomorphism over X x S\ |J

zeIl

i€l 11 and

¢ : G — G"” an isomorphism over X x S\ |J..;. I'z,. This defines a point of Heckeg;’b)(S)7 and this gives

our inverse map.

i€ly
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(a) It’s enough to do it for Hecke and for Hecke) = Hecke(l{i}) — Heckey. The last part follows from
(b). We know Heckes,, — Bung x X! is projective for all w and all I. And also Hecke’l’g is a product of

Heckeg; y’s, so Hecke’lyw — Bung x X7 is also projective so Hecke;, — Hecke; is projective.
(d) Let T'(S) be the set of tuples (z,G,%) with (x,G) € (X x Bung)(S) and ¢ : Glr_. = G X Ty,

Definition: f : Y — Z a morphism of finite-type k-schemes. Said f is small if f is proper surjective
birational and for all » > 1
codim{y € Y : dim f[y] = r} > 2r.

Say f is semismall if it’s proper surjective and for all r > 0
codim{y € Y : dim f~![y] = r} > 2r.

(The r = 0 case implies this is generically finite; note we’re taking this instead of assuming birational).

If f:Y — Z is a map of algebraic stacks, call it (semi)mall if for all Z — Z smooth with Z finite type
scheme, Z xy Z — Z is (semi)small.

Theorem: Let w € X;F(T)!. If (I1,...,I,) refines (I1,...,I/,) then

(I1,...,IT) (I{,...,I'/)
Heckej’g — Heclcel’g T
and ( ) )
Ila“wlr 1oty 4
GrrL£ — GrLg "
are small.

Proof: By (d) of the proposition (hopefully), these two statements are equivalent for fixed I,w. It’s
enough to do the extreme map 4
Hecke) , = Heckeg{;}) — Hecker .

If (I1,...,1, is a partition of I let A,
Xo(Il,...,IT) be

1,) be the diagonal such that z; = zy whenever 4,7’ € I;. Let

.....

AT AN U Ay,

where the union runs over all strict coarsenings; thus it consists of all tuples (z;) with z; = z; iff 4,4
are in the same I;. Then X7 is the disjoint union of all of these X°U1:Ir) and we know 7 and 7€
are isomorphisms over the open stratum X°W#) = X7 \ A. The other strata are codimension > 1 and
Hecker ,,, Gry,, — X! are equidimensional.

So we just need to show 7 and 7& are small over X°(t-Ir) for everything but the finest partition.
But over this set we have that Heckey ,, is canonically isomorphic to 777
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20 Lecture - 11/25/2014

First, fix issue from last time. Defined two stacks, Hecke; mapping S to the tuples (z,G,G’,¢) with
r € X(5), G,G" € Bung(95), ¢ : Glxxs\r. = G'|xxs\r,, and Gr; mapping S to the tuples (z,G, ) with
r € X(5), G € Bung(S), ¢ : Glxxs\r, = Gxxs\r,.- Have natural maps Gr; — Hecke; taking (z,G,p) to
(z,G,Gxxs,¢) and Hecke; — Bung xX by (z,G,G', ) — (2,G').

Want that there exists T — Bung XX smooth surjective with connected fibers such that Hecke; XBung xx
T = Gr; xxT. For this, take T to be given by mapping S to tuples (z,G,v) with (z,G) € (X x Bung)(S)
and ¢ : G|r., =2 Gr_,.

To prove this works, recall by B-L theorem Gr; 2 Grl°® where Grl°° is defined by mapping S to tuples
(x,G,p) with z € X(5), G € BG(I'wz), and ¢ : Gp_ \r, = Gr_,\r,. Then, explicitly define mutually
inverse morphisms between the things we want:

To define o : Grlrlf’C xxT — Hecke1 X x xBune T let (2,G, ¢, G, ) € (Gr; x xT)(S); this means z € X(5),
G € BG(Twez), ¢ : Glro\r, 2 Gr 1., ¢ € BG(X x 8), and ¢ : G|, = Gr_,,. By B-L theorem gluing
G on Iy and G' on X x S\ T, using 9/~ o p on I, \ Tz gives a G-bundle G; on X x S together with
w1 :6G1 2 G on X x S\T',. Take a of the input tuple to map to the pair of tuples (x,G1,G’,¢1) and
(,G",9).

To define 3 : Heckey X x xBung T — Gri’® x xT', suppose we have a point ((z, G, G’ o), (z,G", 1), x) where
X : G = G”. Then on I'w, \ I'z by composing ¢, x, 1 we get a chain of isomorphisms G =2 G’ =2 G"” = G, so
get (z,Gr_. 1 oxop) € Gri®. Take 4(2) to be this point together with the point from T'(S).

Remark: If we work with Gry, and Hecke;, then we can instead take T, given by S — (z,G, ¢ :
Glr,. = Gr, ) for large n (relative to w).

loc
1

What we were doing : Last time stopped in the middle of a proof. had w = wy + -+ + w, € X} (T).
Was trying to show that the map Gry ,, — Gry,, was semi-small where

1} {1}

rll/,w = Gr}l,n_w},(wi) XXTX

where GrE}T?ET(Ll)(S) was tuples (1,...,2,Go,.-.,Gr,01,...,0,) with x; € X(S), G; € Bung(S), ¢; an
isomorphism of G;_; with G; on X x S\T',, with G, = G x X x S, and such that for all A € X7 (T) we have
©i(Gi—1.0) € Gial((Xwi)Ts,). Thus Gr ,(S) is the same data but with z; = --- = x, = z, and the map to
Gry,, maps this tuple to (z,Go, pr 0 -+ 0 ¢1).

Proof: First we may assume X = A', so Gr{, — Gry,, is the product of |idx and Gr,,....
where Gr,, = Orbw and Gry, .. o

— Gr,
is Gry,, X - - x Gr,,,., where this is defined via a convolution diagram

"

Gr,, X -+ X Gr,,, = ma[n] }[Cry, X --- x Cr,,.]] = 7y }[Gry, % -+ x G1,,,]/G[]" 1,
where 71,73 1 G(t)"! x Grg — Gr, are such that
’lTl(gla <oy Gr—1, Z) = (517 s ety Z)

771(917 s Or—1, Z) = (§17§1§27 e g1 o591 'gT71z>
where g is the image of g in Grg. Note that 7 is a G[t]"~'-torsor. Also, the map Gry, .
projection to the last factor (viewing them as subsets of Grg; and Grg).
This map Gry, ..., — Gr, is a partial Bott-Samelson (or Demazure) resolution. Last year we already
used that these were semismall to show that the convolution product preserved perversity. Reference: Ngo-
Polo, lemma 9.3 for the case w; (quasi)-minuscule, but can be easily adapted to the general case.

— Gry, is

T

Shtuka : Let I be a finte set, (I1,...,I.) a partition of I, N C X a finite closed subscheme. Define
Cht%jl’""lr)(S) to be the set of tuples ((x;)icr, (Go,%0);s- -, (Gr, ), @1, .-, @) where z; € X(S)\ N(S),
(Gj, ;) € Bung n(S), (Gr,¥r) = (TGo,™ %o), and ¢, is an isomorphism of G;_; and G; on X x S\Uielj Ty,
compatible with the ¥;_; and ;.
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Note ChtN ; = Chtn 1, and define Cht(ll’ o) sp by putting the degree condition on Gy. Remark: If
(I1,...,I,) refines (I1,...,I.,) we get a map C’ht(h’ ) Cht%{j”"l’/').

y Lt

We have a map 7 : Chty Il’ A Grgll’ /GZ coz; defined as follows. If ((x;),(G;,v;), (¢;)) is in

Cht%’ll’ oI )(S) and ¢ a tr1v1ahzation of G, = "Go on I's~ oz, send this tuple to ((2;),1 0 p.0---0p1). Note
1) exists only locally, but this construction glues to give .

Definition: set
Chtyy o™ =G G ).

If W € Repg: set
Ot U Chtiy!

where w runs over highest weights of W. As before, if W is fixed then for n; big enough then 1 comes from
a natural map
envg : Cht) — Gl ™) jGss

Proposition: ey, ; is smooth of relative dimension dim(Gs 4, /X 7).

Corollary: The maps C’htN I""}[}I D Chtg\l,ll’ W 1) are small.

Geometric Satake : Theorem: For all I and all partitions (I1,...,I.) we have an additive functor
Repgr — Pervegy .. (Gr(lll""’IT')). We denote this W S;I{,[’,'”’IT'). This satisfies some compatibility

i . . Iy, I, 00 .
conditions, and is such that if we have 7 : Grg\,ll’ W ) Grg\,ll w "~ induced by a refinement, then we have

a canonical isomorphism
U)o (I1,.. 1)
STw =S

Remark: If W is irreducible of highest weight w then S}III,V ole ") is just the intersection complex of Gr( b ),

so the last map follows from smallness of .
Definition: Set ]-'](Vlll’ WI ") = EN I(S}{I}’,‘“’h)ﬁ -+] (with the shift chosen so that this is perverse on fibers of

Chtlélj’ V[’, ) — X1). Remember: for p: Chty rw — X!, we defined
Hz%rfbl,w =PRp, («FN,I,W‘ChtJSvI,LI,W/E)-
Then we get: for all partitions of (I, ..., I.) have
Pirry s CES " — X7
we have a canonical isomorphism

Ii,....I, 11, I)<
HY w PRy (FN " |CRt =4 /).
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21 Lecture - 12/02/2014

Partial Frobenius morphisms . Recall our setup: (I3,...,1I,) is a partition of I, and defined a stack
Chty 11’ I ) with S-points consisting of a tuple (z;) € (X \ N)!(S) and a sequence of bundles (G;,1;) for
0< j S r (with (Gr, ) = "(Go,10)) and morphisms ¢; : (Gj—1,%j-1) — (Gj,1;) an isomorphism on

X xS\ Uiel,- I';,, plus a truncation condition. Have p : Cht(h’ oI 5 X1 and are interested in

Iy I ) g o (T I <
HNIW_pRp'(‘FJ(VIIW |Cht » #/)

which we showed was independent of the partition.
Now, fix a partition (Iy,...,I.). Let Frobs, : XT — X be (Frobx )™ x (idx)\. Define a morphism

Frob{! ") s Cht(y — oy

by sending the tuple with (x;) and

(Go, o) —— (G1,¢1) —— -+ —— (G, )
to Froby, (x;) and
(gla,(/h) —_— (grawr) L T(le,(/]l)

recalling that (G,,1,) = " (G1,¢1).
Note that
Frobg{r,h,..qlrfl) 0---0 Frobglwwfr)

is the absolute Frobenius of Cht%ll’ Wl ), SO Frobgl’”"lr) is a totally radical universal homomorphism and in

particular we have a canonical 1somorphism
(Frob{t )y pzstrt) = o)
Lemma: If w = (w;) € X;7(T)! then
Frob ) [Cht%};;g’”’g“} C Cht{pyTrhspmwo e
where wy is the longest element of the Weyl group, and

(Frobf™1"))~ {Chtzé”j""l Il)@} C Oty ST

So for all g and all W, if k € X;(T) is big enough then Frobgl’”"[") induces

Fr, @ (Froby, )* HN/,J[,W = HJ%/HIJFVI;/

(for every partition of I).

Drinfeld’s Lemma . Let X be as before (smooth projective curve), F = k(X), n = Spec F' the generic
point, and 77 = Spec F a geometric generic point. Let I be finite, A : X — X' the diagonal, n’ be the
generic point of X! and 7 a geometric point over this. Fix a specialization map sp : 77 — A(7). Let E/Q,
be a finite extension (our field of coefficients).

Lemma 0 : (i) If F is a lisse (constructible) O g-sheaf (or E-sheaf) on a dense open subset of X7, admitting
“partial Frobenius isomorphisms” (i.e. Fy;y : Froby;y Fl,r — F|,1 for every i € I, which commute with each

49



other and compose to the usual Frobenius). Then, here exists an open nonempty subset U such that F
extends to a lisse sheaf on U'.

(ii) Fix U C X nonempty. Let C(U,I,OF) be the category of lisse (constructible) Opg-sheaves on U’
admitting partial Frobenius isomorphisms. Then F + F|a) is an equivalence between C(U, I, Og) and the
category of representations of 71 (U, 7)! on Og-modules of finite type.

Note also that sp* : F|aq) — Fl;r is an isomorphism.

Idea of proof: (i) Let 2 C X! be the biggest open on which F extends to a lisse sheaf, and let A = X7\ Q.
We want to show that if A is finite over each factor X we know A is stable by all Froby;;. An easy induction
reduces to case |I| = 2, [ = {iy,42}. Let A¢ be an irreducible component of A. If m;, : A9 — X are both

For proof of (ii), see lemmas below.

Lemma 1: Let Y/, be a finite-type scheme and let k/FF, be algebraically closed. Let Y = Y ®r, k and
7 = (idy, ® Froby)*. Then the obvious functor ® taking the category of coherent sheaves on Y to coherent
sheaves G on Y with ¢ : 7G = G is fully faithful, and is an equivalence if Y is projective.

Proof: It’s obvious that ® is fully faithful, so assume Y} is projective and choose O(1) a very ample
line bundle. Then F — @ H°(Y, F(n)) is an equivalence of coherent sheaves on Y with finite-type graded
modules over @ H%(Yy, O(n)) modulo graded modules that are 0 in degree > 0, and similarly for Y. So
reduce to the case Yy = SpecF,, and we have to prove the following lemma.

Lemma 2: Let k/F, be as before, and V a finite-dimensional k-vector space. Let ¢ : V' — V be Froby-
linear (where Froby, is o + x7), and let Vj = ker(y) —idy). Then Vy ®p, & — V is injective, and it’s an
isomorphism if ¢ is an isomorphism.

Proof: If Vo ®F, k — V is not injective then get oy, ..., a, € k* and ey, ..., e, linearly independent over
F, but such that

are] + -+ ane, =0

in V. Assume n is minimal such that this holds. Applying ¥ get
ale; +---+ale, =0,

and by minimality get there exists ¢ such that of = ca;. So (a;/j)? = o/ for all 4, so these are in Fy, so

@ @
61+i€2+"'+l6n20
851 851
is a dependence relation over F,. Contradiction.
Now assume v is an isomorphism, and let n = dimy V. We want to show that n = dimg, Vp, i.e. [Vo| = ¢™.
Consider the closed subscheme Z of GL,, x A™ over k defined by equation

Then V) is isomorphic to the fiber over gy the matrix of ¥ in some basis. Then 7 : Z — GL,, is a finite
commutative group scheme, affine and quasi-finite étale. Claim Z is closed in GL,, x P™, where we embed

A™as [1:2y:---:x,]. Define a homogeneous version of the same equation as
T zd
~1 .
xd —-g| | =0
T, xd

and find it doesn’t have any solutions for o = 0, so defines Z in GL,, xP'. So Z — GL,, is a finite étale group
scheme, hence has constant degree. So |Vp| is degree of the matrix of ¢, which is degree over 1 € GL,, <
which is ¢".
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Lemma 3: Let Yy be a smooth scheme over F,, k/F, be algebraically closed, ¥ = Y} ®r, k, F =
Froby, ®idy the relative Frobenius. Then 2o + 2o ®r, k induces an equivalence of finite étale covers of Y
with finite étale covers Z of Y with g: Z = F*Z.

Proof: First note that giving 3 is the same as giving an isomorphism « : 7Z 22 Z. This functor ¥ is fully
faithful by Lemma 1, so it’s enough to show essential surjectivity locally on Y;. So we may assume Yj is
affine. Choose a projective scheme Y, and open embeddlng Yy < Yy. Let (Z, a) be in the RHS category.
Let L/K be ring of fractions of O(Z)/O(Y), and let Z be the normalization of ¥ = Y, ®@p, k in L.

Over Y, Zis just Z. As 7 does not change the underlying scheme, 77 is the normalization of ™Y in L,
so a extends to TZ = Z. Apply Lemma 1 to the coherent Ogp-module p.O5 (for p: Z - Y) and its algebra
structure, descending it to Oy .
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22 Lecture - 12/04/2014

Lemma 4: Let Y1 9 and Y2 o be two smooth schemes over Fy, Y; = T; ¢ ®p, ?q, Y =Y; xY;5. Let F; be the
“partial relative Frobenius” on Y defined by

F;, = (FI"ObyLO ®idﬁq) X idyafi .

Then we have an equivalence from the categories of maps p : m1(Y1,0) x 7m(Y2,0) — Aut(A) for A a finite set,
to the category of finite étale maps Z — Y together with isomorphisms F;*Z = Z. The functor here starts
with p, moves it to a map m (Y1,0 x Y2,0) — Aut(A4) by composing with m1(Y1,0 x Y29) — m1(Y1,0) X m2(Y2,0),
using this to get a finite étale map Zy — Y7 9 X Y2 and then base-changing to ﬁq.

Proof: As usual, the hard part is essential surjectivity. So suppose we’ve fixed Z — Y finite étale together
with isomorphisms F*Z = Z for i = 1,2. Let K; be the field of fractions of O(Y;) and K = K; x K» (the
field of fractions of Y'). Then get commutative diagram

m (Y1 @ Ky) ————» m (V1) ————— m1(Y10)

J J

7T1(K) E— 7T1(Y1 ®K2) e 7T1(Y1) X 7T1(K2)

Now, Z corresponds to m1(Y) — Aut(A) with A a finite set. By Lemma 3, p|, (y,o7%, factors through

m1(Y1,0) and thus through 71(Y1). So plx, (viek,) factors through (Y1) x 71 (K>), hence so does p|., (k).

Similarly plr, k) factors through 7 (K1) x 71(Y2). Conclude p factors through 71 (Y1) x m(Y2). (?)
Application (Lemma 0 part ii): Let U C X be open nonempty, F a lisse ¢-adic sheaf over U! with partial

Frobenius morphisms. Then the ¢-adic representation of 7, (U”) corresponding to F factors through 7 (U)~.

Hecke-finite cohomology . We want to apply Drinfeld’s lemma to ’HJ%,“ " w € Perv(U!) (which is lisse).
But there’s a bit of an issue because these sheaves aren’t stable by partial Frobenius morphisms - they
increase p. What these morphisms really act on is HA’I# 'HJ%[” 7w+ which is not finite type anymore.

Definition: Let T be a geometric point of X! (we only really care about T = 7’ or T = A(7)). We
say an element of liénu HE?LWE is Hecke-finite if it is contained in a finite-type Opg-submodule (for E/Q,
finite the field of coefficients) that is stable by all Hecke operators T'(f) for f € C.(Ky\G(A)/K,,Og). Let
(hAl Hﬁ’“LW )2 be the set of Hecke-finite element.

V. Lafforgue conjectures (and hopes to prove, but hasn’t so far) conjectures that (li H]%f‘I’W ) HE s
finite-dimensional, which means we could apply Drinfeld’s lemma immediately to the corresponding lisse
sheaf. Fortunately we only need the following weaker thing to apply Drinfeld’s lemma.

Claim: (1) (h_n>q ’HJ%fLLW l7r) 7 is a union of finite-type O g-submodules that are stable by C.(Kn\G(Ar)/Kn, Og)
and the partial Frobenius.

(2) Remembering we fixed a specialization map sp : 7 — A(7). The specialization morphism

sp" + (UmHE 7 wlag) ™™ — U HF 70"

is an isomorphism.
Then, we take Hy w = (hg HJ%%I’WM(T,))HF, which by Drinfeld’s lemma and (2) have a canonical action

of Gal(F/F)!. These are the things we used to define the excursion maps Sy, So what about the

rest of the proof (and the proof of this claim):

Yi)ier

e We'll have some Eichler-Shimura relations that, together with (1) will imply (2). (Very straightforward
argument)

e The Eichler-Shimura relations will also imply (1).
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e To get the Eichler-Shimura relations, we need to identify unramified Hecke operators with some excur-

sion operators.

Eichler-Shimura relations : Fix I, N, u, W as before. Let f € C.(Kn\G(Ar)/Kn,Og) (or replace Op

with E). If M is the set of places where f is not trivial, then T'(f) is a map

< K
MY wloaavoany = HYTw ooy

for some k depending on f.

Creation and annihilation operators: Given .J finite, U € Repg,, (s : J — {0}, let U ¢ Repg be U

with the diagonal action of G. Fix z € (UC")a and & € (UCJ’*)é. Then have idy Kz : WK1 — W KU
and idy B¢ : WRUS — W K 1. Let Ex\y be the constant sheaf on X \ N, and A = A¢, : X — X7 be

the diagonal map
Definition: The creation operator C’ﬁ is the composition of the canonical isomorphism

<u [ <p
HN,I,W X EX\N = HN,Iu{o},Wm

on (X \ N)IMO0} followed by
< <
H(x) B o we = My rowsues
and then the inverse of the fusion isomorphism

IHSH 'HSP'
NIUJWRU| ¢\ 8y xa(x\a N, IUJWRUSI

The annihilation operator Cg is the composition of the fusion isomorphism

<p <u
< — H= .
HN,II_IJ,W|Z|U|(X\N)1XA(X\N) HN,ILIJ,W&UCJ

with H(£) and then the inverse of the isomorphism
<u ~ <u
HJT/,I,W X Ex\n = HJT/,Iu{o},W&r
Now, fix v € | X \ N|, V € Repg irreducible. Get

hve € Co(G(O)\G(Fy)/G(O,), OF)

by classical Satake. Let 6y : 1 = V ® V* and ev, : V@ V* — 1 the obvious maps from adjunction. Let Sy,

be the composition of

g . y<u <p
Cs, Hyrw®E, — HN,ILI{I,Q},WIZIV&V*\(X\N)I

X A(v)
with
pdegv . g <p <pt+r
{1}y - JU{L,2} WRVRV*| 0\ Ny Ao NIU{1,2} WRVEV* | o\ vy7 w Aw)
and then
b gy S<ptr <ptr
Ceop, * H = Hy 1w X Ey.

N.IU{1,2}, WRVEV*| 1\ 01T g a (o)

Then Sy, descends to a map
.y <p <ptk
Sve Hyrw = Hyrw-

Crucial Theorem (to be proved later): Sv.|x\(vufo}))r = T(hve)-
Some propositions following from the theorem:
Proposition 1: For all f € C.(Kny\G(Ar)/Kn,Og), T(f) extends to a morphism T'(f)

HA T on (X \ N)! (in a way compatible with composition of Hecke operators).
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Proof: Assume f = @f, and extend each T'(f,) defined on (X \ N U {v})!. If v € N, nothing to do. If
vé¢ N,
fo € Ce(G(O\G(F,)/G(O), Og),

so we may assume f, = hy, for some V and then use Sy, to extend T'(f,).
Proposition 2 (Eichler-Shimura relation): Let V' € Repg be irreducible and v € [ X\ N|. Consider F ?gf"
as an endomorphism on

: <p
H0 H 10003 WRV | 1 0
o
Then
dim V'
4 .
D (FDUFGE) 0 Spamv-i vyl x\wyixe =0
i=0
(Strictly speaking this is independent of the crucial theorem, but we use that to interpret the S AdIm V=i g

as an extension of a Hecke operator and thus make this look like a classical Eichler-Shimura relation).
Proof: For all J finite, let

Ay = |J||ngn o)o € Q[S],

g€Sy

so A% = A;. If V' is an E-vector space, A, acts on (V/)®/ and its image is /\lJ| V'. For all n € N and all
U € End(V®{0n}) et C,(U) be the composition of

g y<w <p
C(;@n : HN,],W®V|(X\N)I xv HN,Iu{o}u{l,...,2n}W®v|zV'X'n®v*@n\(X\N)I x A(v)

with H(idw XU K idy +)=.) and then H?ZI(F{j})dcg” and finally

O o S des()s

N H<p,+n deg(v)k
evg™ TN TU{0YU{L,... 20} WRIVRIVERRIV*Bn | 01 r X A(v)

NILWRV| o\ yr X0

Claim: For all n,

1 egv
Cn(A{O ..... n}) = Z( ) (F{do}g ) © S/\dimvf'i Vour
=0

If we apply the claim for n = dimV, Ao, . dimv} acts by 0 to on Y ei0.dimV} g Caimv (Aqo,....dim v})
and so we get the proposition.
Proof of the claim: Finish next time.
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23 Lecture - 12/09/2014

Remember from last time: [ finite, N the level, W € Repg;. Defined creation morphism, annihilation
morphism, and then the operator

.y <p <ptr
Sve HN,I,W X E, — HN,I,W X E,

for v € [X \ N| and V € Repg. This descends to a morphism ’H]S\,’fLW — ?—[%,“f;,

Crucial theorem (still to be proved): If V' is irreducible, then Sy, restricted to (X \ (N Uwv))! is equal to
the unramified Hecke operator T'(hy,,) at v corresponding to V' by Satake.
Proposition 2 (Eichler-Shimura relation): Consider

deg(v) | 1: <p i Sn
Fooy @HNJH{O},WW/MX\N)IM - @HN’I‘-'{U}’WW/'(X\N)IM'
" I
Then
dimV
i degv\i
D CDUFGE) 0 Spamv=iy lorwy i =0
i=0

Proof: From last time reduce to the claim that for all n

n

1 i/ pdeg vy i
Cn(Ago,..n}) = nrl Z(*l) (F?of; ) o Spdmv—iy,.
i=0

For all o € Syo,....n}, let £(0,0) be the length of the cycle containing 0. Then we further reduce to the claim
that, for each 1,

1 ; .
Cn ] Z sgn(o)o | = (1) (F{d;}g“) o S/\dimV—i Vo
o:l(0,0)=i+1

Fix ¢ € {0,...,n — 1}. Note that C,,(x) does not change if we compose by o with ¢(0) = 0. So

Cn % Z = Cn ﬁ Z Sgn(U)U

o:l(0,0)=i+1 o=(01 - 2)-

Now, what’s this remaining sum? At this point we’ve totally separated what our ¢’s does to {0,...,i} and
{i+1,...,n}, so the legs for {0,...,i} U{n+1,....n+i} and {i+1,...,n}U{n+i+1,...,2n} play
independent roles. So what happens to them?

First, the legs at {i+1,...,n}U{n+i+1,...,2n}:

1. We create the pairs of legs (i + 1,n +i+ 1),...,(n,2n) by dy.

2. We apply

1
> sen(n)T = Apgm

—_ !
(TL Z)' TES{i41,...n}
to the legs in {i +1,...,n}.
3. We apply the partial Frobenius to the legs {i +1,...,n}.
4. We destroy the legs by the pairs (i + 1,n+i+1),...,(n,2n) by ev,.

The result is Spyamv-iy, (or Syewmv-y , if we don’t do (2)).
What about the legs in {0,...,i} U{n+1,...,n+4}? Renumber the legs by the bijection

{On+1,1,n+2,...,n+4,i} < {0,1,2,...,2i}

(so the first set of legs become even numbers and the second set becomes odd numbers). Then:
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1. First we create pairs of legs (1,2),...,(2i — 1,2¢) using dy .
2. We apply the partial Frobenius at {2,4,6,...,2i}.
3. We kill the pairs of legs (0,1),...,(2i —2,2i — 1).

If i = 1 we get ngf Y using that if u using the fact that for all u,

VIO oy @ PV EINE g v g v Eidyy

is equal to p. By induction on ¢, the obvious analog of this computation for ¢ > 1 gives that the answer to
the question above is ( Fgf”)

Aside: How is this inspired by a proof of Cayley-Hamilton? Well, if we have V and p € End(V') then we
want

dim V' ‘ dim V —1¢ )
D=0t A\ wet =0
=1

Then, if n € Nand U € Erld(V‘g’{O"“m})7 let Cp,(U) be the composition of idy ®dy®@n with U @ idy+)en
idy ®idgy+yen @u®" and then (ev,)®” ®idy. Then claim that Cp (Ao, ny) = S (=1 tr(A™™Y " p)ud,
which follows from a very similar proof.

Claim (1) from last time : Now that we have the Eichler-Shimura relation, which we called (2), we

want to get statement (1), that
HF
lim 13
g Nﬁ,W‘ﬁj
m

is a union of finite-type Opg-submodules stable by the actions of C.(Kny\G(Ar)/Kn,Og) and the partial
Frobenius. (We can then apply Drinfeld’s lemma to these finite-type parts and get what we want).
So how do we prove this? We may assume W = X;c;W;. Let

HF
NC <1LHHN0 Wi >
<o

be a finite-type Og-submodule stable by Hecke operators. We may assume N C H NIWI s for some .

Let U C X' be open dense such that ’H;“IOW is lisse on U. Then N = Flzr with F lisse on U. Let
(vi)ier € (X \ N) be such that x,c;v; € U. For all i € I, Eichler-Shimura gives that

dim W; —1
d i)\dim W; d i)\T
(FRpeydmWe o, ) € > (FREC) (S pamwi—w 4 Flun,)
r=0

in li_n}’}-[f,“l Wik, " But the LHS here is a lisse sheaf on X', so we have a similar inclusion of subschemes of

(liglﬂ 'H,]%/‘ rw)lmr- As Flgr is stable by Spamw,-ry, (by the crucial theorem that this is a Hecke operator)

so we get that
dim W; —1

Ff}”}g(w) dim(W;) (W) C Z Fdeg(v1)T N)

7

in hﬂu HJ%fLIleT]I' So N is finite type over Og, stable by Hecke operators and partial Frobenius, where

N = > 1 ).

(n;)ENT:0<n; <dim(W;) deg(v;)—1 i€l
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Proof of the crucial theorem : Recall the theorem was if v € [X \ N| and V' € Repg is irreducible,
then Sy, = T'(hy,,) as morphisms

< < K
HY L wlawonyr = HY' Wl wo -

Simple case to do first: deg(v) = 1, the highest weight wy of V' is minuscule. (Remark: w, minuscule iff
wy is minimal in X (T), iff the weights of V are the Weyl group translates of wy, which implies Orb(t“») =

Orb(tw») is smooth). Also, assume W is irreducible (which is a harmless simplification)
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24 Lecture - 12/11/2014

Still studying the map Sy, (for v € |[X \ N| and V' € Repg irreducible). Main theorem we want to prove:
Svl(x\(vuv))r = T(hv,). Recall we're first doing the case where degv = 1 and the highest weight wy of V
is minuscule.

Correspondences: Let X1, Xo be DM stacks of locally of finite type. A correspondence from X; to Xs is
a morphism a = (a1, ag) with as schematic of finite type. (The case where as = id corresponds to an actual
morphism). A cohomological correspondence from F; € Db(X1,Q,) to Fy € D%(X,,Q,) with support in a
(or A) is a map p : a}Fy — abFo.

If a; is proper, if f; : X; — S are such that fia; = faag, then u induces a map H(u)

adj = © adj
fuFi —— fuaaiFi —— fuana{Fy —— faanahFo —— faFo .

Sometimes there’s a canonical g with support in a. o - o -
Example: if X, X5, A are smooth of dimensions dy,ds,d then ajQ, x, = Q4 and a!QQg’Xz = Qqa(d -
d2)[2(d — d2)] so we have p = id is a correspondence from Q x, (d — d2)[2(d — d2)] to Qy x,.

The Hecke correspondence T'(hy,) . Write Z() = Chtn1wlx\(Nuvyyr- Then T'(hy,,) = H(u) where

1 is a cohomological correspondence from ]:J%,HI,W to itself, with support in ') where I')(S) is the set of
tuples of (z;) and diagrams

(@) —E (7, )

(g7 7/’) T> (‘rg7 T¢)

where k gives an isomorphism of G and G’ on X x S\ T, (compatible with 1, 1") and such that for all A we
have

K(Gr) =GR (A, wy)Tw)

(here = and C are equivalent because w — v is minuscule). Then, our maps aj,as : rh — 2 take the
diagram to the lower line and the upper line, respectively; since w,, is minuscule these are in fact finite étale.
Hence

CL}{]:]%,IRW = a;}ﬂﬁfiw = ICF(I),S;L.

Claim that this first equality is actually our y; this is because wy is minuscule so by, = 1g(0,)v ¢(0,)-
Now, we need to write Sy, in the same way. Recall our annihilation operator is from

<
(X\(NUv))TxA(v) =7 HN,,LI,W‘(X\(NUIJ))’XA(U)

b
C” Hy 1u{1,2) WRVRV =

with the domain coming from the sheaf F (with the same decorations) on

(1,2,I)
ChtN 1111 23, wrVEY = | (O (VU)X Av)-

Let this stack be Z(1:2:0): so we want a correspondence form Z(1:20) to Z() for the corresponding sheaves
F<H (with the same lower subscripts).

Let ¢ : Y1 < Z(1:2D be the closed substack where @27 extends to an isomorphism on X x S. Similarly
let ay : Y1 — Z0) be given by taking a diagram in Vi to @3(pa¢1) : (Go,%0) — ("Go, "1g). Then ay is
smooth of relative dimension {p,wy ). Our geometric correspondence is then ¢; and «;.

Lots of details checking this correspondence gives what we want...
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