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1 Lecture - 02/05/2014

Fix a finite field Fy, prime number ¢ { ¢, let X/F, be a smooth projective geometrically connected curve.
Let F' =TF,(X) be the function field of the curve (e.g. F =F,(T) for X =P'). Let |X| be the closed points
of X (the places of F), let A = H;elX\ F, which contains O = [],¢ x| Ov. Take G/F, a split connected
reductive group.

Automorphic forms: Levels are given by finite closed subschemes N C X, set Oy = F,[N] and Ky =
ker(G(0Q) — G(Op)). Take Z = Z(G), fix a lattice E C Z(F)\Z(A). Then G(F)\G(A)/KxNE has finite
volume (using Haar measure giving G(O) volume 1). Consider the space of functions

CE(G(F)\G(A)/KENE, Q)

as our “automorphic forms”. A function f in this space is called cuspidal if, for all parabolic P C G,
Np = R, (P), then

/ f(nx)dn =0
Np(F)\Np(4)

for all z € G(A). Let
Ceusp — CC“SP(G(F)\G(A)/KNE@U - CSO(G(F)\G(A)/KNE,@Z)

be the space of such cusp forms; this is a finite-dimensional Q,-vector space.

Hecke algebra: Take Hy = C°(Kny\G(A)/Ky,Q,) with convolution product; this acts on C2°(G(F)\G(A)/KnZE, Q)
by right convolution, preserving C“**P.

Dual group of G: Fix T'C G a split maximal torus. The group of characters X* = X*(T) has a subset
of roots and the set of cocharacters X, (T) has a subset of coroots ¢¥. The tuple (X*, ¢, X,, ") is the
root data of G, and completely determines the reductive group. The dual group G is defined as the spit
reductive group with root data (X, ", X* ). Examples: if G = GL,, then G = GL,; if G = SO,, then
G = SOs,, if G = Spa, then G = SOs, 41 and vice versa, if G = GSpa, then G = GSpingpy1, if G = SL,
then G = PGL,... R

Definition: A Langlands parameter for G is a continuous group homomorphism o : Gal(F/F) — G(Q,)
such that:

e o is defined over a finite extension of Q, (automatic for GL,; maybe for others?)
e o is semisimple (i.e. the Zariski closure of the image of o is a reductive subgroup of CA?)
e o is almost everywhere unramified.

We say two parameters are equivalent, o ~ o', if they’re conjugate under @(@2) (E.g. a Langlands
parameter for GL,, is an n-dimensional f-adic Galois representation of Gal(F/F)).

Main theorem (V. Lafforgue): There exists a canonical H y-equivariant decomposition C¢**? = EB[U]
compatible with the Satake isomorphism at places of X \ N.

Remark: For GL,, this is known (Drinfeld for n = 2, L. Lafforgue for n > 3).

Very rough sketch of proof: Suppose that the theorem is true. Then for every finite set I we get a functor
Rep(G') — Rep(Hn x I'L) (where I'r is the absolute Galois group), given by sending W to @, H, ® W,:
(where W has 'L acting through of). We have:

H,

,o unramified

o Hy, =Cowr.

e Forall £ : I — H, we have a I'f-equivariant isomorphism (functorial in W) X¢ : Hyw = H J,we¢ where
W€ is W with G7 acting via £* : G/ — GT.



How do we get back to Langlands parameters from this formalism? Fix [ finite, W € Rep(G ), (vi) € TL.

Fix G-equivariant maps z : 1 — W99 and ¢ : Wdiag — | (soz € WG—diag anqg ¢ e (W*)G diag) Then get
that

C*P = Hy = Hioy1 — Hyoy,waies = Hrw — Hrw = Hgy waiag — Hygy1 = CP

where the arrows are z, (7;), and £, respectively. This whole big thing gives an endomorphism S7 .4 ¢,(+,) of
End(C°**P). On the factor H, of C°**P_ trace through and find it’s multiplication by the scalar (£, (o(v:)) - 7)-
Lafforgue’s crucial observations:
(1) As we vary I, W, x, &, (), these scalars totally determine o, so we get back C“**? = H, by simultaneously
diagonalizing the St w . ¢ (v,)-
(2) We only need to have the functors W — Hj y plus some basic properties to make this work. (We’ll get
those functors by using the cohomology of moduli stacks of shtukas).
Explanation of (1): First note that, as W, z,  vary the functions (g;) — (£, (g;)x) are exactly the functions
in O(@\\él // é) (“coarse quotient” - take ring of functions, take invariants).
If W,z,§ correspond to f then S;w . ¢ (+,) depends on W,x,§ only through f; write it as Sy g (4,). A
simultaneous eigenvalue of these St f (,,) gives a morphism of algebras

O(G\G'//G) — Cont(T'L, Q).

Write I = {0,1,...,n}. Note that we have maps é"//@ — @\\él//@ by (g1,---,9n) = (1,91, -, 9n)-

Proposition (Lafforgue, based on results Richardson). Let I" be a profinite group, H a split connected
reductive group, F/Qy a finite extension. Suppose give, for all n > 0, we’re given algebra maps =, :
O(H™//H) — Cont(I'™, E) such that

1. (E,) is functorial for maps & : {1,...,n} — {1,...,m}.
2. For all n, for all f € O(Hn//H)’ lf.}?e O(HnJrl/H) is given by f(gla s 7gn+1) = f(gh cee 7gn—lvgngn+l)
then Zn41(f)(71,- -+ Wt1) = En(f) (1, Va1, YnYnt1)-

Then, there exists F’/FE finite and ¢ : I'r — H(E), a semisimple continuous group homomorphism, such
that 2, (F)(71,---s7m) = f(o(11),...,0(ym)) for all f. Moreover, o is unique modulo H(Qy)-conjugacy.

Case H = GL,: let x5 be the character of the standard representation; then 7 = E1(xs) : I' = E
determines all of the Z,,(F). Moreover, there’s a condition on 7 given by A"t St =0 (?).



2 Lecture - 02/07/2014

Part 1. The geometric Satake equivalence.
Introduction: Classical Satake. Let k be a finite field, K = k((t)), O = k[[t]]. Fix a split connected
reductive group G/k. The unramified Hecke algebra is

He = CZ(G(O)\G(K)/G(0),Q)

for some ¢ not equal to the characteristic of k. We give this a convolution product (via Haar measure on
G(K) with the volume of G(O) equal to 1).

Example: G = T = G" a torus. The dual group 7 is the torus with cocharacters X, (T) = X*(T) (so
we think of 7' as being “X*(T) @z G,,”). Now, we have

X*(T) = X.(T) = T(K)/T(0) = TO\T(K)/T(0)
where the isomorphism is given by g + u(t). This gives an isomorphism of Q-algebras

Hr = Q[X*(T)] = Q[T

(where the first thing is a group algebra, isomorphic to Ko(Reps) ® Q,, and the second thing is the rational
functions on 7. Here, Reps is the category of algebraic representations, and Ky is the Grothendieck group,
which has multiplication given by tensor product).

General case: Fix Borel subgroup B C G, split maximal torus T' C B. Set [ph = ¢(T,G) and ¢* =
©(T, B). Define

X (T)" = X*(T)" = {p € X.(T) : Vo € oT, {a, pu) > 0}.

Cartan decomposition: G(k) = [I,,4)ex. )+ G(O)u(t)G(O). Then, if we set ¢, to be the indicator function
of G(O)u(t)G(0O), the collection of these as y runs over X, (T)7" is a basis of Hg as a Q,-vector space.
Satake transform: Set N = R, (B), give Haar measure dn on N(K) such that the volume of N(O) is 1.
Let 6 : B(K) — R* be the modular function (so d(g) = |ap(g)], ap = 3¢+ @, seen as a character of B
via B— B/N =T).
Definition: For all f € Hg, define Sf : T(K) — Q, by

Sf(g) =6(g)"/? /N(K) f(gn)dn=5(g)‘1/2/N f(ng)dn.

(K)

Then Sf € Hr.
Theorem: Let W = W(T,G). Then S induces an isomorphism of algebras

He = Hy = QX (T)]" = Q[T/W] = Ko(Repg) @z Q

(where the last isomorphism takes a class [V] in Ky to the function g — tr(g, V)).

Corollary: Characters Hg — Q, are the same as Q,-points of f/ W, which are the same as semisimple
conjugacy classes in é(@e)

Aside: Now, recall last time that C°“*?(G) = @_ H, by a Hy-equivariant map; the character by which
He ) acts on H, corresponds to o(Frob,). (777)

Example: G = GL,,, usual B and T'... Then Hg = @e[Tlﬂ, oo TEN.

Idea of proof of Theorem:
(1) Show that S is a morphism of algebras (“easy” calculation using the Iwasawa decomposition).
(2) Show S(H¢g) C HYY (also easy).



(3) Show S : He — MY is an isomorphism of vector spaces. Had a basis basis ¢, defined earlier of H¢ for
p € X.(T)". Define a basis {d,} of HY by setting, W (u) = {w € W : wu = pu} and

d, =

weW

Define the “matrix” () by

SC,\ = Z amdﬂ.

peX=(T)+
Order X * (T) by A < p iff u — X is a positive sum of stuff in (¢V)*. Calculate
e = Sex(plt)) = 6(1(6)) "2 ol GOINH)G(O) N N(K)u(t) GI(O)).

Lemma (F. Herzig): This volume is zero unless g < A, and is [k[»N if u = A So (ay,) is “lower-
triangular” and has nonzero diagonal entries so is invertible. Thus Hg = Ko(Repg) ®z Qy.

Question: Can we upgrade this to an equivalence of (Tannakian) categories? Something isomorphic to
reps? Sheaf-to-function dictionary. If X/F, is a scheme of finite type, K a constructible /-adic complex on
X, this passes to tx : X(F,) — Q, given by z ~ tr(Frob,). The set of all Tx/x@r,.'s determines the class
of K in Ky of the f-adic complexes.

Suggests: On LHS, use ¢-adic complexes on some scheme-line object X/k such that X (k) = G(O)\G(K)/G(O).
Issues: this quotient is X, (T")* which is discrete for any reasonable geometric structure. Instead, use f-adic
sheaves on G(K)/G(O) (affine Grassmannians) and take G(O)-equivariant sheaves. But |G(K)/G(0O)| is
infinite so isn’t X (k) for any scheme of finite type; thus our affine Grassmannian will be an ind-scheme.

The RHS is Repg, a semisimple abelian category. The LHS thus cannot be D? (¢-adic complexes) o
Sh,. (constructible sheaves). We'll have to use perverse sheaves. Bonus: k can be any field (We’ll take k = k
to simplify).

The affine Grassmannian. Schemes as functors of points. Fix a commutative ring R (later we’ll take
R =k), and Affr to be the category of affine schemes over Spec R. The Zariski (étale, fppf, fpqc) topology
on Affy is defined by taking as covering families as the families {f; : S; — S}ies such that

e All of the f;’s are (open immersions, étale, flat of finite presentation, flat).
e There exists J C I finite such that S =J,c; f;[S;].

Then, take PSh(Affg) to be all functors Aff7) — set, and Sh(Affg) the fpqc sheaves of sets on Aff p.
There’s an exact sheafification functor PSh(Affr) — Sh(Affz) which we'll denote F s F*".

Define an R-space as an fpqc sheaf on Affp. Example: if X/R is a scheme, then X : S — Hompg(S, X)
is an R-space. The map X +— X is functorial and induces a fully faithful functor Schr — Sh(Affg) (by
Yoneda + a bit more).

Faithfully flat descent (Grothendieck): Let {f; : S; — S}ticr be a family of morphisms of R-schemes.
A descent datum for quasicoherent sheaves WRT this family consists of quasicoherent sheaves F; on S;
for all ¢ and isomorphisms ¢;; : 7/ F; = m;Fj as schemes on Si xs Sj. These must satisfy the usual
cocycle condition: for every i, 7, k the following diagram commutes (where 7; : S; Xg S; xg S, — S; and
i+ S; XgSj Xg Sk — Si xg S; are the obvious things):

* .
TikPik

ﬂf}—i szk

WTN 4‘/’“




A morphism v : (Fi, pij) — (F/, #};) of descent data is a family of morphisms v; : F; — F; such that

* Pij *
™, -Fz —_— ijj

}f:w lﬂ?@j
’

(pvv
i F — v

Then get a category of descent data for our family {f; : S; — S}. If F is a quasicoherent sheaf on .S, then
we get a descent datum consisting of the f/F and the canonical map. This assignment is functorial.
Theorem (Grothendieck): Assume that {f; : S; — S} is a fpqc cover. Then the functor from quasicoherent
sheaves to descent data above is an equivalence of categories. (I.e. a descent datum “glues” together to a
quasicoherent sheaf). (Later we’ll see this means the functor S — QCoh(S) is a fpqc stack).
In particular, affine schemes over S are given as relative Spec’s of quasicoherent Og-algebras. So you can
descend affine schemes.



3 Lecture - 02/14/2014

Last time: Defined R-spaces as the category Sh(Affg) for the fpqc topology. Also had PSh(Affg) with
sheafification functor (that’s exact) to Sh(Affg). Yoneda: Have fully faithful embedding Schp into R-spaces
by mapping X to the sheaf Spec A — X (A).

How about projective and inductive limits? In Psch(Aff ) these are calculated term-by-term, i.e.

(lim ;) (Spec A) = lim P;(Spec A).

What about in Sh(Affg)? Projective limits and directed ( = filtered) inductive limits are calculated term
by terms. General inductive limits: calculate limit in PSh(Affr) and sheafify. (Example of where we need
to do this: quotients).

Digression: How do you define “geometric” properties of R-spaces and morphisms of them? A few ways:
(1) Schematic morphisms. If f: X — Y is a morphism of R-spaces. Say f is schematic (or representable,
but some people define that using algebraic spaces) if, for all morphisms S — Y with S a R-scheme, S xy X
is also a scheme. Then, if f : X — Y is schematic, say it satisfies a property (P) of morphisms of schemes
(that’s stable under base change and fpqc local on the target), we say f has property (P) if for every S — Y
with S a scheme, the base change S xx Y — S has property (P). Examples of these: closed/open/locally
closed immersions, quasicompact, universally closed, affine, proper, quasi-affine, (locally) quasi-finite / finite
type / finite presentation (fibers of dimension d), flat, smooth, unramified, étale, ...

(2) Properties defined directly on functors of points. Most important are formally smooth /unramified /étale:
Let f: X — Y be a map of R-spaces. Then f is formally smooth/unramified/étale if for every surjective
R-algebra B — A with nilpotent kernel, and for every commutative diagram

SpecA —— X
3

I

SpecB —Y

there exists (at least one / at most one / exactly one) g that fits in the diagram.

(3) Some properties are originally defined for schemes but can be checked on functors of points. Definition:
An R-space X is locally of finite presentation (type) if for every directed inductive system (A;) of R-algebras
of finite presentation/type, if A = lim A; then the map lim X (Spec A;) — X (Spec A) is an isomorphism.
A map f: X — Y is locally of finite presentation/type if for every Spec A in Affgr and for every point
y:S =SpecA (i.e. y € Y(S9)) then the A-space f~1[y] given by

Spec B — {x € X(Spec B) : f(z) =y on SpecB}.

Theorem: This is compatible with the usual definitions for schemes (and compatible with the previous
definition for schematic morphisms, but more general since works for non-schematic ones!!!).

Other examples: quasi-compact, separated, proper, smooth /unramified /étale, open immersions ( = étale
+ universally injective), ...

Ind-schemes: A (strict N-)ind-scheme is an R-space X that can be written as

X = h_n} X
neN

with the X,,’s R-schemes and the transition maps X,, — X,,41 closed immersions. Will just say “ind-scheme”
to mean this in our context (in general could define ind-schemes over other index sets, and drop the “strict”
= closed immersion). If X is an ind-scheme, an equality (isomorphism?) X = lim X, with the X.,’s schemes
is called an ind-presentation.

Examples: ][, cyP* (is this the same as the disjoint union of schemes??7?), lim A" (this is definitely not
a scheme!) By following stuff: this is ind-affine and ind-finite type.



Definition: We say that an ind-scheme X is of ind-finite type (ind-affine, ind-proper, ind-projective, ...)
if for every ind-presentation X = lim X,,, the schemes X, are of finite type (affine, proper, projective)... We
say X is reduced (integral) if there exists an ind-presentation with X, reduced (integral) - not necessarily
true for all!

Lemma: Let X be an ind-scheme, Y — X a schematic closed immersion. Then:
(i) Y is an ind-scheme.
(ii) If Y is a quasicompact scheme and X = lim,, X,, is an ind-presentation, then Y — X factors through
some X,,.
(iii) If X = lim X,, = lim X, are two ind-presentations with X,,, X quasicompact, then for all n, there exists
m such that X,, — X factors through X/ — X.

Examples: Define:

e G,[[t]] as the R-space Spec A — A[[t]].
o G,((t)) as the R-space Spec A — A((t)) = A[[t]](1/¢).
o G,[t]/(t") as the R-space Spec A — Alt]/(t™).

Then G,[t]/(t") is an affine group that’s a scheme of finite type (isomorphic to A%). Also, G4[[t]] =
lim G, [t]/(t™) is an affine group scheme (isomorphic to [ Ak = Spec A[z,, : n € N]). Finally, G,((t)) is a
group ind-scheme but not a scheme: for all n, let t="G,[[t]] be G,[[t] and let "G, [[t]] — t~ (" TVG,[[t]] be
the embedding corresponding to multiplication by ¢ on G,[[t]]. Then G,((t)) = %nt*”Ga[[t]]. This is not of
ind-finite type. But, what we can do is take a quotient of R-spaces (i.e. fpqc quotient, quotient as sheaves
so computed as quotient as presheaves then sheafifying)

Gre, = Ga((1))/Gal[t] = lim t7" G [[1]]/Ga[[t] = lig A"

which is a group ind-scheme of ind-finite type that’s ind-affine.

Remark: If R is Noetherian, then ind-finite type implies locally of finite presentation.

Loop and arc spaces, the affine Grassmannian. Let X be an R-scheme. Its arc space is X[[t]] given
by Spec A — X (A[[t]]), its loop space X((T) is Spec A — X(A((t))), and its space of n-th order jets is
X[t]/(t"F1) taking Spec A — X (A[t]/(t"+1)).

Why the names? The infinitesimal (pointed) disc over R is Dg = Spec R|[[t]] (and D% = Spec R((t))).
Then X[[t]](Spec A) = Hom(D 4, X 4) and X ((¢))(Spec A) = Hom(D$, X 4).

Facts: The functors X — arc/loop/jet space commute with projective limits. Also, X[[t]] = Jim X [t]/(t™).
If X — Y is an étale morphism of schemes, then the following squares are Cartesian:

(this follows from infinitesimal lifting property of étale maps). So X|[[t]] — Y[[¢]] and X[t]/(t") — Y[t]/(t"™)
are schematic and étale, and they are open immersions if the original map X — Y is.

Proposition (1) X[t]/(t") and X[[t]] are schemes, affine if X is affine, X[t]/(¢™) is of finite type if X is.
The maps X [[t]] — X[t]/(#" 1) — X[t]/(t") are affine.
(2) If X is affine of finite presentation (over R) then X ((¢)) is an ind-scheme. Moreover the map X[[t]] —
X ((t)) is a schematic closed immersion.



Remarks: (1) X((¢)) is almost never ind-finite type. (2) It’s not an ind-scheme in general if X is not
affine (even if X = P! for instance). Maybe even not true if X is affine but not finite type/presentation?

Proof: (1) Did example of X = A! above; idea now is to reduce proof to that example. Case where X
affine: X = Spec R[t;]/(f;) for some set of variables (t;);c; and relations (f;)?S7. Then X = Spec R®,s Al;
since forming arc spaces commutes with projective limits, get

X[[t]] = SpecR XAI[[t]]J Al[[tﬂl.

So X[[t] is an affine scheme (same for X[¢t]/(t™)). If X is finite type then we can take I finite so this gives
Xt]/(t"™) of finite type. General case: Choose affine cover X = [[V;. Then the V;[[t]] are an affine cover of
X[[t], and same for Xt]/(t"™).

(2) Again, done the X = Al case. Generalize to the X affine of finite presentation again; get X =
Spec R ®,s Al for I,J finite. But finite projective limits commute with direct inductive limits so X ((¢)) is
an ind-scheme.

Remark: If X is is smooth over R, then X[t]/(t?) is the tangent bundle TX of X. Also, X[t]/(t" ") —
X[t]/(t™) is a torsor under TX x, X[t]/(t").

Example we care most about: R = k a field, G is linear algebraic group over k. Then G[t]/(t") is a
linear algebraic group that projects to G; the kernel of this projection is a unipotent group (because they’re
successive extensions of Lie(G)). The arc space G[[t]] is a pro-algebraic group, and the kernel of G[[t]] = G
is pro-unipotent (think of G[[t]] as “G(O)"). Then G((t)) is a group ind-scheme that’s ind-affine with G[[t]]
a closed subgroup (think of as “G(K)”).

Definition: The affine Grassmannian of G is Grg = G((t))/G[[t]] (think of as “G(K)/G(0)").



4 Lecture - 02/26,/2014

First, some comments from last time: disjoint unions are schemes and are the same as schemes and R-
schemes. Last time tried to show that A ((¢)) was ind-affine, but actually the argument wouldn’t work and
it’s not N-ind-affine.

The affine Grassmannian of GL,,. Let k be a field, Aff, the affine schemes over k with the fpqc topology.
Recall a k-space is a fpqc sheaf on Affy. The affine Grassmannian for GL,,, Grar,, is the fpgc quotient
GL,((t))/GLy[[t]] of group-ind-schemes in the category of k-spaces. In other words, it’s the fpqc sheafification
of the presheaf

GLn (A((*)))

Spec A — m

Goal: Show this is an ind-projective ind-scheme (i.e. an inductive limit over N of projective schemes, with
the transition maps immersions).

Definition: Let X be a scheme. A vector bundle on X is a locally free Ox-module of finite rank (i.e.
a finite locally free Ox-module). Remark: Usually we should be careful about what topology we mean
for “locally” but here it’s okay because finite locally rank is the same as flat of finite presentation and as
projective of finite presentation, so we get the same for the Zariski and fpqc topologies (and the fppf and
étale topologies t0o). Let Vect(X) be the category of vector bundles on X. It’s an exact category (i.e. can
talk about exact functors) but not an abelian category.

Lattices: If A is a commutative ring, a lattice in A((¢))™ is a sub-A[[¢]]-module £ such that there exists
N with tVA[[t]]” € £ C t~NA[t]]”, and t~NA[[t]]"/L is a locally free A-module. Define Latt,, to be the
functor taking Spec A to the set of lattices in A((¢))™; this is actually a k-space (exercise). If we fix N in the

definition, we have subfunctor Latt; note

Latt, = lim Latth .

Fix N, set Vy = t=NE[[t]]"/tVEk[[t]]", a k-vector space of dimension 2Nn together with a nilpotent
endomorphism ¢. Remember that the Grassmannian Gr(r,Vy) is the k-space taking Spec A to the set of
quotients of Viy ® A that are finite locally free of rank r (following Grothendieck, use quotients rather than
subspaces). Grothendieck: Gr(r, Vy) is representable by a projective scheme over k.

Fact:

Latt — H Gr(r, V)
0<r<2N

by £ ~ t~NE[[t]]"/L, and claim this is a representable closed immersion. A corollary of this will be that
LattY is a projective scheme and that the transition maps Latt) — Latt)+! are closed immersions, so
Latt,, is an ind-projective ind-scheme.

Proof of Fact: Fix r and try to describe the subfunctor Latt) N Gr(r,Vy). This is the subfunctor of
M such that ker Viy — M is stable by ¢. How do you prove that this is a representable closed immersion?
Take a scheme Spec A, take a map f : Spec A — Gr(r,V), look at the fiber product, P and check that
P is a closed subscheme of Spec A. So suppose that f corresponds to M € Gr(r,Vy)(Spec A) and let
K =ker(Vy ® A — M). Then the fiber product P is the A-space given by mapping Spec B to a point if
K ® B is stable by t, and () otherwise. We may assume that A is Noetherian (all spaces are locally of finite
type). Then K is of finite presentation and M is a vector bundle, so Hom(K, M) is represented by a vector
bundle V. Then the composition K ® B — Vy ® B — M ® B is a global section of the vector bundle. Since
V is a scheme, has the zero section Vy as a closed subscheme, and P = V), Xy, Spec A is a closed subscheme
of Spec A.

If we just cared about GL,, we’d be basically done; show that Latt, is isomorphic to the affine Grass-
mannian for GL,, directly. But for other groups lattices don’t work so well, so we want another perspective
that generalizes. Consider the perspective of local bundles. Recall that the “infinitesimal disk over k” is

10



D = Speck][[t]], which contains D° = Speck((t)). Definition: If A is a k-algebra, an A-family of vector
bundles over D (or D°) is a module over A[[t]] (or A((t)), respectively) that is finite locally free, where the
“locally” is fpqc locally on Spec A (i.e. there exists A — B faithfully flat such that M ® 4y B[[t] is free
over B([[t]], and similarly for B((t))).

Define categories Vect (D) and Vect4(D°) as the A-families of vector bundles over the appropriate
space (both are exact categories, and there’s a restriction from one to the other). Lemma: Vect (D) is
equivalent to the category of projective systems (M, a,)neny With M, finite locally free over A[t]/t" and
anMp1/t" =2 M,. (Proof: Nakayama’s lemma).

Then, define Gré’fn as the functor taking Spec A to the set of pairs (M,~) moduli equivalence, with
M € Vect 4(D) and « an isomorphism M|po = M4 |p.. (Here M° = k[[t]]™). Note there are no nontrivial
automorphism, and remark that this is a sheaf by faithfully flat descent. R

Global bundles: Fix a smooth curve X, and z € |X| with k(z) = k. Fix D = SpecOx , and X° = X \ z.
Then have diagram

Vect(X4) —— Vect4(D)

|

Vect(X§) —— Vect4(D°).

Define Gr(g;lfj: by taking Spec A to pairs (Mx,v) with Mx € Vect(X4) and ~ : MX|XZ = M§(|X3 where
M5 = O%. Remark: This is a sheaf, and we have an obvious restriction map Gr?}lﬁi — Grl(‘;’fn

The Beauville-Laszlo Theorem: Define the category of gluing data (over a fixed A) as the category of
triple (Mxe, Mp, 3) where Mx. € Vect(X3), Mp € Vecta(D), and 3 an isomorphism M5|pg = Mp|ps.
Then the theorem (due to B-L over C at least) is that the obvious functor from Vect(X4) to this category
of gluing data is an equivalence. Remark: if A is Noetherian this is faithfully flat descent (A Noetherian
implies D4 — X4 is flat, but not true in general). Will omit the proof of this because, if we’re careful, we
can just reduce to the Noetherian case everywhere.

Corollary: Grélﬁi =~ Grige .

Vector bundles vs. Lattices: Remark: Grigf (Spec A) is the set of sub-A[[t]]-modules Mp C Mp, & A((t))

such that Mp is locally on A free of rank n and such that there exists N with ¢tV M2 o C Mp C t*NMO%.

Can define GrlgﬁnN to be the subfunctor for fixed N. Similarly for global ones: if j : X° < X is the inclusion,
then Grgjfn (Spec A) is the same as the set of sub-Ox-modules Mx — j,j*O% that is a vector bundle such
(automatic that there exists N with O% (—Nz) C Mx C O%(Nzx)).

We have four maps:
(1) GrleeN — Lattl) given by Mp — Mp.
(2) Grote®N — Lattl given by Mx — Mx|p.
(3) Latt — GrloeN given by L — L.
(4) Latth — Grolo®N given by taking £ to the preimage Mx of L/t A[[t]]" by the map M%(—Nx) —
M5 (~Na)/M§ (Na) =tV A[Y]" 7t Al

Proposition: These are all well-defined bijections.
Proof: We just need to prove they’re well-defined since they’re evidently mutual inverses. Actually sufficient
to prove (1) and (4) are well-defined since (2) and (3) come from composing those with restriction maps
from global Grassmannian to local.

(1): Let M € Gr'°¢(Spec A) with tNA[[t]]* € M C t~NA[[t]]*. We want to show N = t~NA[[t]]/M
is a finite locally free A-module. But t=2N M /M is a locally free A-module, so enough to show that N
t=2N M /M splits. Enough to show that ¢t~V A[[t]] < ¢=2¥ M splits as a map of A-modules. But

tNA[[t)] = 72 M < 3V A

obviously splits and restrict this.
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(4): Take a lattice £ € Latt) (Spec A) and map it to Mx C O%(—Nz); need to check this is a vector
bundle. Since LattY is of finite type, there exists A’ C A Noetherian and £’ € Latt) (Spec A’) such that
L =L @ QA[[t]]. Question: Is Mx = f*MY for f: X4 — Xa? Answer: Yes, use that ¢~V A'[[t]"/L
is A’-flat and exact sequence

0— Mx — O%,(=Nz) =t NA[t]]" /L — 0.

So we may assume that A is Noetherian. Then My is coherent and we just need to show it’s flat. Enough to
show that for all maximal ideals m @ k(m) is flat over Ox, . ; using flatness of =V A[[t]]" /£ we may assume
that A is a field. If A is a field, then M, is flat iff it’s torsion-free, bu M, C O%  (—~Nux).

. lob
Next time: Grar, = Grigf, = Grip’ = Latt,.
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5 Lecture - 02/28/2014

Last time: Showed Grlé’f ,Grélﬁb,Latt were ind-projective ind-schemes that were all isomorphic to each
other. What about the affine Grassmannian Grar,? Recall that Grgf (Spec A) is the set of pairs (Mp,~)
with Mp € Vect4(D) and v : Mp|pe = Mp.. (Deﬁne My = Allt ]]” "and M3 = A((t))°). On the other
hand

GL,,(())(Spec A) = Autyect ,(pe)(Mpo)

and
L [[t]](Spec A) = Aubyecs (o) (M5).
So can define a map
71 GLa((t) — Gréf,

by g — (M3, g), since we can interpret g as an automorphism of M7.. Further note that 7 is GL,[[t]]-
equivariant for the right action on GL,((t)) and the trivial action on G?"l(‘}’]‘jn7 so m passes to 7 : Grgr, —
GTlOC

Proposition: 7 is an isomorphism.

Proof: Let P be the presheaf quotient GL,((t))/GLy[[t]]. Then 7 also gives 7" : P — Gri$f . Have that
for all A, 7Psh . P(Spec A) — Grige .(Spec A) is injective, so 7 is injective on points (as sheafification is
exact). Note that the image of ﬂPGh(Spec A) is the set of (Mp,v) € Grigf such that Mp is trivial. But
each Mp is locally trivial on A, so T is surjective.

Corollary: Grar,, is an ind-projective ind-scheme.

Example: Grg,, is a commutative group ind-scheme. If K/k is a field extension, Grg,, (Spec K) is
the lattices in K ((¢)), so is isomorphic to Z (sending a lattice to the valuation of a generator). Thus
(Grg,,) " = 1], Speck.

Fact (proof is an exercise): Grg, , the connected component of the identity, is the (infinite-dimensional)
formal group with Lie algebra k((¢ )) /E[[t]]- (This formal group is the functor sending Spec A to the set of
sequences (ay)necz with a, € A nilpotent and a,, = 0 for n < 00).

G-bundles. Let G be an affine group scheme over k, and X/k a scheme which for convenience we’ll assume
to be quasicompact. A (principal) G-bundle over X is determined by any of the following three definitions:
(1) A sheaf P on (Sch/X) fpqc (or (Aff/X)fpqc) which is a torsor under G (i.e. G acts on P on the left, such
that G x P =2 P x P via the map (g, s) — (gs, s), and there exists an fpqc cover Y — X with P(Y) # 0).
(2) A scheme X — X with a left action of G (in Schy) such that there exists a faithfully flat map ¥ — X
such that YV x x X =Y x G in a G-equivariant way. L B
(3) A faithfully flat X — X with a left action of G such that G x X =2 X xx X via (¢,z) — (g, x).

Notation: let BG(X) be the groupoid of G-bundles over X (objects are G-bundles and morphisms are
isomorphisms of G-bundles).

Proof that the definitions are equivalent (i.e. they give equivalent categories):

(1) = (2): If P is a G-bundle as in (1), take Y — X faithfully flat such that P(Y) # 0. Let s € P(Y) =
Hom(Y P). Definec: Y xxY - G by letting ¢(y1,y2) be the unique g € G such that s(y2) = gs(y1). Let
Y =Y x G, let p: Y xxY = Y xx Y be the map ((y1,9),y2) — (y1, (y2,¢c(y1,y2)g)). This is a descent
datum for Y with respect to ¥ — X. As Y/Y is affine, this is effective, i.e. there’s X — X such that
Y = X xx Y. The left G-action on Y (by k- (y,9) = (y,gh™")) is compatible with ¢ hence also descends
to X. Then this X satisfies the conditions of (2).

(2) = (3): Let X — X be as in (2). We want to check that X — X is faithfully flat. But there exists
Y — X faithfully flat such that ¥ x x X > Yis faithfully flat. So X > X is faithfully flat (since that’s an
fpge-local condition). Also, G X x X — X xx X becomes an isomorphism because it’s an isomorphism after
a faithfully flat base change.
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(3) = (2): Take Y = X

(2) = (1): Take P defined by Y — Homx (Y, X).

Fiber bundles associated to a G-scheme. Definition: Let P or X be a G-bundle over X. Let Z be a
scheme with a left G-action. If the quotient

X x¢Z=0G\(X x 2)

exists (i.e. if the fpqc quotient is representable by a scheme), we call it Zp. For example, this is okay if Z is
affine.

Proposition: If G is smooth (e.g. if k has characteristic zero), then every G-bundle is locally trivial in

the étale topology.
Proof: Let X — X be a G-bundle; want to trivialize it over an étale cover of X. First, it becomes smooth
after a faithfully flat base change (as it becomes isomorphic to G xx X, and G is smooth). So WLOG
X — X is smooth, and étale (Zariski) locally on X it becomes X — A" x X — X where the first map is
étale and the second is the projection. Choose a € A™(k); then Y = X Xanxx X — X is étale and trivializes
X — X (where the map X — A" x X is the section for our a).

Let P be a GL,-bundle over X, let E° be the standard representation of GL,, (i.e. E° = A}}). Then E}
is a rank-n vector bundle.

Proposition: GL,-bundles over X correspond to rank-n vector bundles over X via P +— E% (i.e. this
defines an equivalence of categories).

Proof: The inverse functor sends a rank-n vector bundle E to the GL,,-bundle P given by Y — Isomy (EY, Ey ).

Tannakian point of view: Let Reps be the category of algebraic representations of G. Let Vect(X)
be the vector bundles on X. If P is a G-bundle on X, we get a functor Fp : Rep; — Vect(X) given by
Vi Vp.

Proposition: The category of G-bundles over X is equivalent to the category of exact tensor functors
Fp : Repy — Vect(X), via the above equivalence. (Recall Vect(X) isn’t an abelian category, but it is an
exact category).

Note: The trivial G-bundle goes to the functor V +— V ®; Ox.

Proof: Construct the inverse functor. Let F': Reps — Vect(X) be an exact tensor functor. If V' is a
locally finite representation (i.e. V = h_H)1i€I>, define F(V) = fm, F(V;). Note F(V) is a flat Ox-module
(as a limit of vector bundles). Apply this to the ring of regular functions on G, k[G], with the left regular
action. Then A = F(k[G]) is a commutative O x-algebra because F is a tensor functor. Take X = Specy (A).
Then X — X is flat.

Now, if we let 1 be the trivial representation on GG, have

0—1— k[G] — k[G]/1 — 0.
Since F' is exact get exact sequence
0—0x - A— F(k[G]/1) —» 0

with F(k[G]/1) flat over Ox. So for all z € X, k(z) - A k(z) is injective, and A is faithfully flat over
Ox. Also, the second G-action on k[G] gives a G-action on X. Next,

X xx X = Specy (A ®oy A) = Specy (F(k[G] @ k[G])).

But by properties of the regular representation, k[G] ® k[G] = k[G] ®i k[G] where k[G] has k[G] as the

underlying vector space but the trivial action. So A ®p, A= A®p, k[G]. So

X xx X = X x Speck[G] = X x G,

and can find this is G-equivariant.
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Now, talk about changing the group of a G-bundle. Let p : G — H be a morphism of groups.

Extension of structure group: Have BG(X) — BH(X) given by P — Hp (with the action of G via p);
in Tannakian point of view this is F' +— F o p*.

Reduction of structure group: Let Py be a H-bundle on X. A reduction of the structure group of Py
to G is a G-bundle P with an isomorphism Hp = Pgy. Now, Py corresponds to a functor Fp, : Repy —
Vect(X), and have p* : Repy — Repg.

Exercise: If p is a closed immersion, there’s a natural bijection between reductions of Py to G (modulo
isomorphism) and sections (H/G)p, — X.

Remark: G-bundles over X (up to isomorphism) are classified by Cech cohomology H}pqc(X ,G). It
G — H is normal, we have an exact sequence

H}pqc(X, G) — H}pqc(x, H) — H}qu(X, H/G).

This is actually true even if G is not normal in H. This is how you do the exercise...

Application: SL,-bundles over X are isomorphic to rank-n vector bundles E/X together with an iso-
morphism det(E) =2 Gx (where det(E) = A" E = (GL,,/SL,,)x). Along the same lines, O(n)-bundles on X
are equivalent to rank-n vector bundles E together with ¢ : E = E* with o =0 '.

G-bundles on the formal disk. Recall D = Spec k[[t]] and D° = Spec k((t)). An A-family of G-bundles on
D (or D°) is an exact tensor functor Reps — Vect4(D) (or Vect4(D°)). These give categories BG 4(D)
and BG4 (D°). Remark: BG4(D) is equivalent to compatible systems of G-bundles on Spec At]/t".

Corollary (of BL theorem): Let X be a smooth curve, x € |X| such that k(z) = k, pick Spec @X@ ~D.
Let X° = X \{z}. Then BG(X 4) is isomorphic to triple (Px., Pp, B) with Px. € BG(X}), Pp € BG4(D),
and B : PXO|D0 = PD|D°~
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6 Lecture - 03/05/2014

Remark: Formula for (Grg )(Spec A) last time was wrong; should be the set of tuples (a,) over n < 0 with
ap € A nilpotent and a,, = 0 fir n < 0 (at least for Spec A connected...)

Today: The affine Grassmannian for an arbitrary linear algebraic group G/k (recall this means smooth
of finite type). Remember Grg = G((t))/G[t]. Want to prove that Grg is an ind-scheme of int-finite type,
which is ind-projective iff G is reductive (i.e. that R,(Gy) = 1 in our context). Also, want to calculate
mo(Grg). (Remark: Grg is reduced iff Hom(G, G,,) = 1; lines up with us seeing that Grgr,, is not reduced!)

Notation: Let P? be the trivial G-bundle (or trivial family of G-bundles, etc.) over whatever the base *
is.

As in the GL,, case, we're doing to prove this by way of working with spaces GrlgC and Grg()b. These are
defined by

Gre(Spec A) = {(Pp, \) : Pp € BGA(D),~ : Pp|ps = P2},

Grg(Spec A) = {(Px,7) : Px € BG(Xa),v : Px|xs = Pxs )

where again D° = Speck((t)) C Speck[t] = D are the formal disc (with and without the origin removed)

and X is a smooth curve with € | X| such that k(x) = k, Spec (”)\X,I >~ D, and X° = X \ {0}. As in the

GL,, case, the BL theorem tells us that the restriction map Grg‘)b — Grlé;’c is an isomorphism.

As in the case of GL,, we identify G((t)) = Aut(P%.) and G[t] = Aut(P2). We then get a map
7 G(t) — Gre® given by v +— (P9, ), which passes to 7 : Grg — GrS°.

Proposition: 7 is an isomorphism.

Proof: The proof is exactly the same as for GL,,. The nontrivial point is showing that Pp € BG4(D) is
trivial locally on A. This follows from the fact that G is of finite type (since then Rep has a ®-generator,
and we can trivialize its image under Reps — Vect (D) and thus trivialize anything). Also need to use
smoothness throughout the argument.

So we now have three isomorphic things Grg = Gr Gr‘gOb; how do we prove that they are actually
ind-schemes? Let G; — G2 be a map of linear algebraic groups. Then we get a map Grg, — Grg, of affine
Grassmannians. Assume G7; — G2 map is a closed immersion; then:

Proposition: In this situation, if Go/G1 is quasi-affine (affine) then the map Grg, — Grg, is a schematic
locally closed immersion (schematic closed immersion). Thus if we know G5 is an ind-scheme of ind-finite
type, so is Gy.

Remark: In general Grg, — Grg, is strange (may not be schematic, may not be immersion...). For
example, if B C G is a Borel subgroup, then the induced map Grg(K) — Grg(K) is an isomorphism for all
K/k but Grp — Grg is not. Note that in this case we have G(K (t)) = B(K (t))G(K[]¢t])-

Corollary: For every G, Grg is an ind-scheme of ind-finite type, and moreover Grg is ind-proper iff it’s
ind-projective iff G is reductive.

Proof of Corollary: If G is reductive, pick any embedding G < GL,; then GL, /G is affine (proof of
this that works in characteristic p in 3rd edition of GIT somewhere), so Grg — Grgr,, is a schematic closed
immersion. So Grg is an ind-projective ind-scheme. If G is not reductive then after extending &k (which
preserves ind-projectivity), have embedding G, — G with G/G, is affine. Then Grg, (which is ind-affine)
is closed in Grg, which means Grg cannot be ind-projective.

So it remains to show that that Grg is an ind-scheme of ind-finite type for a general linear algebraic
group G. Pick an embedding G — GL,,. By Chevalley’s theorem, there’s a finite-dimensional representation
V of GL, and a line £ C V such that G = Stabgr, (£). Thus G acts on ¢ by some character x; then can
embed G — GL, x G,, = G’ by g — (g9,x(g)~!). Then G’ acts on v (with G,,, acting by homotheties), and
for all v € £\ {0}, G = Stabg/(v). So G'/G = G'-v C V is quasi-affine. We know that Grgr = Grgr,, X Grg
is an ind-scheme of ind-finite type, and thus so is Grg (via the proposition).

Proof of Proposition: Let Spec A € Affy, and fix an A-point f : Spec A — Grg, = Grlg; so f corresponds
to a pair (Pp,7). Let Z be the fiber product of Grg, — Grg, and f; we want to show that Z is a locally
closed subscheme of Spec A. How do you study Z?7 Calculate its points in any A-algebra.

loc ~
a =

m

16



If Spec B € Aff 4, what’s Z(Spec B)? It’s the set of maps g : Spec B — Grg, such that we have a
commutative diagram

Spec B —X— Grg, — Grg,

S T

Spec A

Via our bundle-theoretic interpretation, this is the same as the set of pairs (Qp,d) with Qp € BG1,5(D),
0:Qplps & PgO, such that (Go x% Qp, Gy x%1 §) = (Pp,v)p. This then corresponds to reduction of the
structure group of (Pp)p to Gy that extend the obvious one on D°. This is then the same as a section of
(G2/G1) X1 (Pp) s — Spec B[t] extending the obvious one over Spec B((t)). (Defined X x¢ Z = G(X x Z)
last time, if this fpgc quotient was representable). The proposition will then follow from the following lemma:

Lemma: Let Y be a quasi-affine scheme over Spec A[t] for some k-algebra A. Let s : Spec A((t) — Yay)
be a section of Y. Consider the A-space

* sp extends to Spec BJt],

Zy : Spec B — { 0 if not

Then Zy — Spec A is a locally closed embedding, closed if YV is affine.

Proof of Lemma: If Y < Y” is an open embedding (so s passes to a section s’ for Y”), we claim Zy — Zy-
is a schematic open embedding. Indeed, let f : Spec — Zy/ correspond to t : Spec B[t] — Yl’?[[t]]. Given
h : Spec C — Spec B, we have

(Zy Xz, Spec B)(Spec C)

is % if h*t sends Spec C[t] into Y and () otherwise. So this fiber product is the intersection ¢t~![Y] N Spec B
in Spec B, which is open.

So we can assume WLOG that Y is affine. Note that Y — Zy commutes with projective limits, so we
may assume Y = A! (since if Y = Spec R is affine, R = Aft; : i € I]/)(f; : j € J) so Y = Spec A x4 A, and
fiber products and direct products are all projective limits). But in this case, s : Spec A((t)) — Y corresponds
to f =2 s _oo fut" € A(t). Thus Zy is the closed subscheme defined by f,, = 0 for n < 0.

So that finishes the proof of the proposition. Now onto the topological fundamental group of G and
mo(Grg). Assume G is connected, k = k, and let p = chark. If f: G — G,, is a character, we get a map of
étale fundamental groups

’

Fe PG (1) = 7 (Cm) (<) = 27

Wl

where the “p’” means maximal prime-to-p quotient. Define
m(G) = {a € 7 (G)(~1) : Vf, fra € Z}

where Z is embedded in Z?' in the usual way. (Note that throwing away stuff at finitely many primes doesn’t
change this, so doing the prime-to-p quotient should be morally ok).

Then, for example, m1(G,,) = Z (matching up with the usual topological fundamental group over C).
Note: m1(G) = m(G/Ry(G)), and moreover if G is reductive then m1(G) is (the prime-to-p quotient of?)
the quotient of X, (T') by the lattice of coroots (where T is the maximal torus).

Let F = k(t), © = k[t]. If 7 : G — G is a finite (connected) cover with kernel A such that p {|A|, then
get

G(F) — HY(F,A) = A(-1).
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Taking a limit, get g : G(F) — Wft’p,(G)(—l). Example: If G = G,,, then these connected covers are just
Gm — Gy, with 2+ 2V for p{ N, and the map G,,(F) = F* — A(—1) = Z/NZ takes f to ord(f) + NZ.
Taking the limit we get F* — ZP" given by f ord(f), landing in Z. Corollary (to the example): Every
¢ actually sends G(F') into 71 (G).

Remark: If 7 : G — G is as before, then 7 : G(O) — G(O) is surjective (follows from infinitesimal lifting
property for m, which is étale). So pg gives B : G(F)/G(O) = Grg(k) — 7m1(G). Note that G((¢))(k) and
Grg (k) are Zariski dense in G(t) and Grg, respectively. Then:

Proposition: The maps ¢¢ and P are Zariski locally constant. Moreover, the induced maps 7o (G ((t)) —
m1(G) and 7y(Grg) — m1(G) are bijective. (Remark: G[t] = @G[t}/(t") is connected).

Proof: (i) It is enough to prove this for P.. Since Grg is ind-finite, it’s enough to show that for
every M = Spec R that’s connected affine finite-type over k and every f : M — G((t)), the composition
M(k) — G(F) — m1(G) is constant. Let 7 : G — @ be a finite cover as before, and A = kerm. We want
M (k) = m(G) — A(—1) to be constant. Now, since M is affine, a map f to the loop group G((t)) is the
same as a map ¢ : Spec R((t)) — G. Let B € H} (G, A) be the class of G, so ¢*f3 € H} (Spec R((t)), A).
Apply:

Lemma: Let M = Spec R be connected affine finite type over k, let A be a finite abelian group with
p1|A], and let

a € H} (Spec R(1), A).

Then for all x € M(k), let a(z) be the restriction of a to the fiber of Spec R((t)) — SpecR over z, so
a(x) € H} (Speck(t), A) = A(—1). Then a(z) is independent of z.

Proof: We may assume M is smooth, and that A = uy. Then a corresponds to a uy-torsor on
V = Spec R[], so a line bundle £ on v together with a trivialization L&Y 22 Oy,. Then L extends to
V' = Spec R[t] and L®N =20y, for a € Z. Then a(z) = a mod N for all z.
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7 Lecture - 03/07/2014

Erratum: The statement Grg reduced iff Hom(G, G,,) = 1 last time is only valid if chark = 0 (or at least
> 0, where this > depends on G). This won’t really matter to us since we don’t care about the reducedness
much anyway.

Setup: k = k, G/k connected linear algebraic group, F = k((t)), O = k[t]. Change of notation from last

time: The thing we called 71(G) last time will now be called 7 (G)?" (contained in ﬂft’p/(G)(—l)). This

time, define 7 (G) = 71(G/Ry(G)) in general, and if G is reductive and T C G is a maximal torus define

71(G) as X, (T) modulo the coroot lattice. (Then the 7 (G)?" from last time is the prime-to-p part of this).
Last time: Had G(F) = G((t))(k) and defined a map

G G(F) = 7} (G) = lim ker(G — G)(-1)
G—G

coming from Galois cohomology (where G was a connected prime-to-p cover). Know that this factors through
to B : Grg(k) — Wf/ (@), and that this is Zariski locally constant. So we get maps mo(G((t))) — m1(G)¥’
and m(Grg) — 71 (G)?'.

Remains to be shown: These two maps are isomorphisms. In fact, we have an isomorphism mo(G((t)))
m0(Gre) and surjections m (G) — mo(Grg) — m (G)F'.

Proof: The first isomorphism comes from G[t] being connected. So now, consider mo(G((t)). If G = G,
then G((t) this is connected because it’s lim Al[t] and each of these are connected. If G is unipotent then
G((t)) is connected from the G, case; so mo(G((t))) = mo(G/R,(G))((t) in general and thus we may assume
WLOG that G is reductive (since this also doesn’t change the 7 of G).

Case G = SLy: The statement predicts G((¢)) is connected, which is true and follows from a proof
analogous to the proof that SLa(R) is connected (every element of G(F) is a product of unipotent elements
so is connected to 1, and G(F) is dense).

Case G = T a torus: Assume WLOG that G = G,,, and know 7o(G,((t))) = mo(Grg,,) = Z given by
taking the order of an element. But this is m1(G,).

General case (for G reductive): Choose a maximal torus T' C G. Get diagram

Il

mo(T(t)) —— mo(G(1))

]

(TP ——— T (G)¥'.

The left vertical map is an isomorphism because mo(T((t))) =
horizontal map is surjective since 71 (G)P is a quotient of X, (T
Also, note the top horizontal map is surjective because it’s

mo(T (1)) = mo(B(#)) = mo(G (1))

and G = UgEG gBg~1.

Now, let u be the map 7o(T((t)) = mo(G((t))). Also, note that the map mo(T((£))) — 1 (G)? factors
through 71 (G) because the bottom horizontal map does; let v : mo(T'(t))) — 71(G) be this map. To finish
proving the claim we need to show that ker(v) C ker(u). But the kernel of v is just the coroot lattice in X, (T').
Then let oV : G,,, — T be a coroot; it extends to SLas — G but SLa((%)) is connected so oV (G,,((t) C G(t)
is in G((t))°. This finishes the proof.

m(T) = m(T)* = X,(T). The bottom
). So the right vertical map is surjective.

Example: Let G = GL,,, B the usual Borel, and T' = G}, the usual maximal torus. Then Grp — Grg is
bijective on K-points for algebraically closed fields K, but mo(Grp) = Z™ while mo(Grg) = Z, so these are
not isomorphic!
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Proposition: Let G — G be a finite connected prime-to-p cover. Then Grz — Grg identifies Grz with a
union of connected components of Grg.

Corollary: If G is reductive (and p > 0) then Grg is a union of connected components in Gryg X Grg/gder -
(Need p to not divide the order of the kernel G — G4 x G/G%*").

“Proof” of proposition: Let A = ker(éY — G). Will only show the proposition modulo nilpotents (but
could refine the argument to make it work in general). First, Grgz — Grg is a proper schematic map. Also,
for all K/k algebraically closed, img(Grg(K) — Grg(K)) is Grg(K) intersected with a certain union of
connected components (independent of K'). Moreover, Grg — Grg is injective on R-points for all R. As a
proper such map, it is a closed immersion.

To prove Grgz — Grg is injective on R-points we want to use GrgGIOb. Take X =P}, 2 = {oc}, X° = Al
and consider Gr%Ob(Spec R) — Gr&°"(Spec R). Then for (Px,~) € Gr&°(Spec R), use SES

0= H}(P', A) — HL(P',G) — HL(P',G)
(with [P;] in the last group) and map down to
0= Hélt(AlaA) - Hélt(Alaé) - Hé}t(AlvG) - HéQt(AlaA) =0

and get that there exists a unique JBX that’s a G-bundle giving Px and such that f’g /X0 is trivial. Now use
something like G(R[t]) — G(R]t) fpqc locally...

Now study G[t]-orbits. Let k be any field and G a linear algebraic group. Review of orbits: Let X be a
scheme of finite type over k with a left action of G. Then:

Theorem: (1): For all # € X(k), G(k) -« C X (k) is open in its Zariski closure. So we may veiew it as a
reduced locally closed subscheme of X7, call this Orb(x).

(2) If © € X (k) then Orb(x) is defined over k.

Now let X be an ind-scheme of ind-finite type with a left action of some pro-algebraic group H (which
will be G[[t] in our case). We say the action is nice if, for every closed subscheme Z of X, there’s a closed
subscheme Z’ D Z such that:

(1) Z’ is stable under H,
(2) The action of H on Z' factors through a finite-type quotient.
In this situation we can define orbits as before.

The group G[t] (which we recall is a pro-algebraic group) acts by left translations on Grg. Proposition:
The action is nice.

Proof: For G = GL,,, then Grgr, = liglLattfy and Latt) is stable by GL,[t], and the action factors
through GL,,[t]/(t*")/ General case: Choose embedding G — G’ = GL,, x G, with G'/G quasi-affine, so
Grg — Grg is a locally closed immersion. Write Grgr = limy Zn where Zpy is a closed subscheme, G'[[t]-
stable, that factors through G'[t]/(t"). Then Grg = @N Grg Xarg ZnN, and this has the right properties.

So now we can talk about G[t]-orbits in Grg. What are these orbits? Our goal is to describe these if G
is connected reductive. Example: G =T is a torus. Then for all u € X.(T), let t* = u(t) € T(k(t)). Then
Crigd = [1,, Speck and these Speck’s are the T'[t[-orbits. (?7)

Now take G a general connected reductive group. Fix T'C B C G, fix @ = ®(T,B) and 9p = )~ .4+ Q.
Then set

X ()t ={p € Xu(T) :Va € T (o, u) > 0}

and for p € X, (T') write u(t) = t* € G(k(t)).
Theorem: The orbits of G[[¢] on Grg are exactly the Orb(t*) for u € X, (T)". In particular, they are
defined over k.

Proof: This is exactly the Cartan decomposition; for all extensions K/k we have

GE@®) = [ GEID*GE[D).

HEX.(T)*+
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Theorem: If A € X, (T)+ then

Orb(t*) = | J Orb(e"),
n<A

where p runs over X, (T)4 and we say pp < XN if X —p =37 A4 naa with ng € N. (So Orb(t*) € Orb(t)
iff pu is a weight of V), the irreducible representation of G with highest weight ).
Proof: Assume WLOG that k = k, and take O = k[t]. Let v € X*(T) be anti-dominant, and let (p, W,)
be the irreducible representation of G with lowest weight v. If A € X, (T); and g € G(O)t**G(O) then
plg) € tV End(W, ® O) but p(g) ¢ t VT End(W, ® O). So if u, A € X.(T)* and Orb(t*) C Orb(t)),
then for all v € X*(T) anti-dominant taking g € G(O)t*G(0O) gives p(g) € t" End(W, @ O) but p(g) ¢
tm+H End(W, ® 0). Thus (v, A) < (v, 1) so (r, A —p) < 0. So p— A=Y cas Nac With n, € Rsg. To
get A >y need A — p is in the coroot lattice. But this follows from the fact that ¢* and t* are in the same
connected component.

Definition: A subset Y C X, (T) is saturated if, for every a € ®, every p € Y, and every 0 < i < (u, a),
we have p —ia €Y.

Fact: Let A € X, (T)+. Then the set of weights of V), is the smallest saturated subset of X, (T") containing

A
To prove the other direction of the proposition, we need

Y ={pe X (T):t" € Orb(t*)}
is saturated, for A € X,(T) fixed. Proof: Let « € ®, and let T C L, C G be the associated rank-1

subgroup. Assume WLOG that G = L,. By a previous corollary (and replacing G by G% x G//G%") we
may replace G by SLy or GLs and then do a direct calculation.
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8 Lecture - 03/12/2014

Continuing from last time: k is a field, G/k connected reductive, T a maximal torus. Wanted to study the
G[t]-orbits in Grg = G(t)/G[t]. The orbits are exactly the sets Orb(t*) = G[t] - t* for A € X, (T)* (where
t* is just A(t) viewed as an element of Grg(k)). Then said that

Orb(tr) = U Orb(t*),

HEA

and reduced the proof to a GLy calculation that was left as an exercise.
The GLs calculation in a simple case: recall we have

GrgL_o = ligLattéV
N

where Latt) was a space of lattices in k((¢))? with tVk[t]? € £ C t~Nk[t]? with some quotient condition.
We saw this mapped into [[ Gr(r, Viy) for V,, = t=Nk[t]?/tN k[t]%.

To make things explicit, let e; = (1,0) and ey = (0,2) in k((#))?. Take a basis of Vi as consisting of all
tie; and tley for —N < i < N. Let’s show that

o _[1 0
=101

is in the closure of the orbit
A [t 0
t__o t‘l]'

We work in Latt}. First, note

[ ‘ Z ] € GLy(k) — [ “Ct dtb_l }Orb(t’\)
(if ad # 0). This corresponds to the subspace with basis (bei;t + dt~les,des). On the other hand, ¢°
corresponds to the subspace with basis e1, e5. Take limits d — 0 (with b # 0).
Remark: One thing we know about these strata at this point is that Orb(#) is smooth (as a finite-type
quotient of G[t]).
The G,,-action. Let Y be a k-scheme. Then we have a G,,-action on the k-space Y (t)), by

R* xY(R(1)) = Gm(R) x Y (#)(R) = Y(#)(R) = Y (R(1))

coming from the action of R* on R(t)), by (a, f(¢)) — f(at). (Note R* acts by R-algebra automorphisms).
Example: If y is quasi-affine of finite type, choose Y < A% then the action is a - (fi(t),..., fx(t)) =
(fl(at)v LR fN(at))'

In particular, we get an action § of G,, on G((t)). This action is by group automorphisms and it stabilizes
G[t], so it gives an action 6 on Grg. Now assume G is connected reductive (with maximal torus and Borel
T C B). Note if A € X.(T) then t* € Grg is fixed by G,,. So Orb(t") is G,,-stable.

Note Grg is ind-projective so the map G,, x {x} — Grg extends uniquely to ¢ : P! x {x} — Grg, given
by defining ¢(0, z) = lim,_,¢ é(a)x and ¢(o0, z) = limg_o0 6(a)x.

Also, the k-algebra maps k < k[t] — k (with the latter being evaluation at 0) give G — G[t] — G, with
the latter map being g — ¢(0).

Fact: (a) The fixed point set of G,, on Grg(k) is Usex. Gt*, and its connected components are the
Gt* for A € X.(T)*.

(b) For all # € Orb(t}), lim,_,0d(a)x € Gt*. More precisely, if + = gt* with g € G[t], then this limit is
g(0)t*.
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Prove this by showing (b) and concluding (a). This in particular shows that

Gig= [] orb

AEX.(T)*

is the Bialynicki-Birula decomposition (named after one person; hereafter BB decomposition). What is this
decomposition?

Theorem (BB): If X/k is a smooth proper variety with a G,,-action, and if we let X7,...,X? be the
connected components of X®m then:
(i) Each X7 is smooth.
(ii) We have a (unique) decomposition X = [[;_, X" into G,,-stable locally closed smooth subschemes with
“retraction” maps %Jr : Xf — X7 satisfying:
(iii) ;" |xe = idxe.
(iv) X;" ={z € X : lim,0az € X7}.
(v) v+ X;7 — X? is Zariski locally on X? of the form 72 : V x X7 — X7, where V = A" with the diagonal
action of G,,.
(vi) For all € X7, T,.(X;") = (T.X)° @ (T, X)*: this comes from T, X having a G,,-action so having an
decomposition into eigenspaces @,,c (T X)" for A = A", and (T, X)* = @, ~, (T X)".
Moreover, if X is just smooth, we know it satisfies all of these except (ii) and (iv) in general. Also know
that if z € X and limax exists and is in X? then x € X;". (But in our case we know that this limit exists
aways so we're ok).

Back to our situation: We have retractions Orb(t*) — Gt* that satisfy (v). Fact: Gt* = G/ Stabg(t) =
G/ Py where

P, = Stabg(A\) ={g € G: }in(l] t~ gt exists}
—

is the standard parabolic subgroup of G corresponding to the set of simple roots a with (A, ) = 0. In
particular, Gt* is smooth projective rational and geometrically simply connected. (Y rational iff k(Y) is

purely transcendental). Consequence: Orb(t*) is also rational, and erom’p/ (Orb(tY)) = 1.
The dimension of Orb(t}): For z € Grg(k), identify T, Grg with g(())/g[t] in the obvious way (for
g = Lie(G)y). If A € X, (T') the action of G, on T}» Grg is given by
(a, f(t) =t A at)tt = Aa) f(at)A(a) ™

where fA(t) = t*f(t)t=>. Write g = b ® @, 9, the root space decomposition. Then if f(t) € g((t) is of
the form

fo= > Xt

0>i>—o0

with Xz = Hl + Za qu, have

a-f(t) = Z (Hi + Za@"MXi‘") a't'.

i<0
So
@(Tﬂ Grg)" = @ gati.
n>0 acdt i<0:
(a,\)+i>0
So

dim Orb(t") = dim @(Tyr Gra)" = Y (@A) = (2p, )

n>0 acdt
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where p =13 o1 .
Consequence of this formula: Orb(t}) is geometrically simply connected. Proof: Orb(t*) is projective and
normal (by Faltings) and rational, and thus geometrically simply-connected (see SGA1 somewhere). Then,

the boundary of Orb(t) is

> Oorb(th),

n<A

and the dimension of this thing is sup{{p, u) : p < A} < (2p, A} — 2. By Grothendieck’s purity theorem,
ﬂ__i]eom(orb(tA)) — ﬂ_i]eom(m).

Fact: For all A\, Orb(t}) is paved by affine spaces. Proof: Remember we had evaluation-by-zero map
eo : G[t] — G. Let I be the Iwahori subgroup e;'[B] 2 Iy = ker(ep). The Iwasawa decomposition gives
Orb(t*) = [ ew It"*?, and the Cartan decomposition gives Tt"* = Iot** is a finite-type quotient of Iy and
hence on affine space as Iy is pro-unipotent.

The Tannakian category. Start with a review of perverse sheaves. Let X/k be a scheme of finite type, and
¢ a prime not dividing char k. Let D%(X) = D%(X,Q,) be the triangulated category of bounded constructible
Qg-complexes (which can be actual complexes using the pro-étale site!) Operations on K € DbC(X ): Can
take the shift K[n] with K[n]* = K" and the Tate twist K(n).

What does “bounded constructible” mean? Bounded means that sheaf cohomology H'K is zero for |i| > 0.
Constructible means that there exists a stratification X = |J X,, such that for all a and all i, H'K|x,, is
lisse (locally constant of finite type - here locally constant is with respect to the pro-étale topology).

Some operations on this category: Given f : X — Y, have f,, fi : Dg(X) — Dg(Y) and f*, f' —
D%(Y) — D%(X), which form adjoint pairs (f*, f.) and (fi, f') in the usual way. (Note that we write f.,
etc. to mean the derived version, not Rf,). Have (Poincaré-Verdier) duality functors D : D% (X)°P — Db (X)
with Do D = id. This is compatible with our other operations in that Do f, = fyo D and likewise for others.
Also, have external tensor product operation X

D%(X1) x D%(Xs) — D%(X; x X»)

given by (K1, Ky) — mf K1 ®F 75 Ko; this is exact.

Definition: Perv(X), the category of (constructible self-dual) perverse sheaves is the full subcategory of
D%(X) with objects being complexes K € D2(X) such that:
(1) There exists a stratification X = J, X, such that, for every a € A and every i € Z we have H' (i, K) =
H'K|x, is Lisse and is 0 if ¢ > — dim X,.
(2) There exists a stratification X = J,_, X, such that H(i!, K) is Lisse and 0 for i < —dim X,,. (Note this
is (1) for DK).

Note D(Perv(X)) = Perv(X).
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9 Lecture - 03/26/2014

Let k be a field, X/k a scheme of finite type, G/k a linear algebraic group. Had categories defined Perv(X) of
perverse sheaves, Pervg(X) of G-equivariant perverse sheaves, and a faithful forgetful functor Pervg(X) —
Perv(X) (fully faithful if G connected, so equivalent to a full subcategory of Perv(X)). (Note in general:
Perve (X) should be the category of perverse sheaves on the quotient [X/G]; this is literally true if X/G is
actually a scheme rather than a stack).

What was a G-equivariant perverse sheaf? Will only talk about it in the connected case, where we said
it’s a full subcategory of Perv(X). Which one? Note we have two obvious maps G x X — X, the action
map a and the projection-to-the-2nd-coordinate map p. Then Pervg(X) is the full subcategory of objects
K with a* K = p*K. It’s stable by subquotients but not extensions in general.

Change of group: Assume G is connected and H C G is normal and connected and acts trivially on X.
Then Pervg/u(X) = Pervg(X).

Homogeneous spaces. Suppose that k = k and that G acts transitively on X. Fix a point 2y € X (k) and
let H = Stabg(xg). Then Pervg(X) is equivalent to the category of finite-dimensional representations of
H/H®°. Moreover every K € Pervg(X) is a lisse sheaf put in degree —dim X. Why this is true: The stack
quotient [X/G] is isomorphic to [{zo}/H], and Perv([{zo}/H]) is isomorphic to this category. (Need to do
some more to formalize this argument but that’s the idea).

Now assume: k = k, G is connected, X has finitely many G-orbits X = |J X4, jo : Xo — X, do =
dim X, and for all z € X (k), Stabg(z) is connected. Then:

Proposition: The simple objects of Pervg(X) are the jou (Q x, [da])-

Proof: Obviously these are simple and mutually non-isomorphic. Then let K € Perv(X) be a simple
object in Pervg(X). Write K = ji.(L[d]) for j : Z — X locally closed smooth and connected, d = dim Z,
L lisse on Z and simple. Then supp(K) = Z is G-stable so Z = Uawes Xa- Pick a € B such that X, is open
in Z, so X, is dense and K|x, is in Pervg(X)a). So K|x. = Q[ds], but K = jo.(K|x,)-

Ind-schemes: Let X be an ind-scheme of ind-finite type. Write X = lian with X, of finite type. The
transition maps i m : X, — X;, are closed immersions, so the 7, . are t-exact and fully faithful. Then we
can define @Perv(Xn).

Now let GG be a pro-algebraic group acting on X, assuming that the action is nice: X = lim X,,, G = lim G,
with G, linear algebraic groups such that for all n, X,, is G-stable and the action of G on X, factors through
G.,. Assume further that all of the G,,’s are connected. Then, for all m > n, Pervg, (X,,) = Perve,, (X,).
So, define

Pervg(X,) = lim Pervg,, (X,) =Pervg, (X)),

—

Pervg(X) = lim Pervg (Xn) =limPerve, (X,,).
This is a full thick subcategory of Perv(X).
Example: G is connected reductive over k, X = Grg with G[[t] acting on it, define the Satake category as
Sat(G) = Perv(Grg). If we take G 2 B DO T as usual, recall Grg was the disjoint union of A € X, (T)+

of Orb(t}). Let jy be the inclusion Orb(t*) < Grg; if we set dy = dim Orb(t*) = (2p, \). Let
IC\ = jxQp,0rp(0)[dr].

Proposition: Sat(G) is Noetherian and Artinian, and if k = k then the simple objects are these ICy’s.
Proof: We us the previous proposition; we just need to check that if applies. So we need to check that
every Stabgpy (). Suffices to take x = t* for A € X, (T)4. Then the stabilizer is

{g € G[t] : gt* € *G[t]} = G[t] Nt G[t]t .

Then for all N, let Ky be the kernel of G[t] — G[t]/(t"V); since N is connected and acts trivially on t*
for N > 0, we just need to show that (G[t] N t*G[t]t~*)/Ky is connected, and this is the stabilizer of the
action of G[t]/(t") on t*.
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A number of ways to do this. One way: if « € ® = (T, G) have map pu,, : G, — G (for instance, if o > 0
then 1 [G,] is the subgroup of R, (B) corresponding to the root space g, C Lie R, (B)). Choose orderings
on ®* and ®~. Then the map

p:V=A"xTx0®* g (za)acad+ 2, Ya)acs—) — Hua(ﬂca)znua(ya)

[e3

is an open embedding with dense image (“the big Bruhat cell”). We use p on k[t]/(t")-points. Let a =
(o, 2,Ya) € V(K[t]/(tN)); then

P ula)t™ = a(t N zq, 2, £ N y,)

with the first (o, A)’s nonnegative and the second ones nonpositive. So get
p(VIE /AN 0t (V] /M) = u({(mm Z,Yq) such that Vo € @7, ord(y,) > (o, )\>})

is connected, and is open and dense in what we're looking for.

Proposition: Sat(G) is a semisimple abelian category. (This means that every object is a direct sum of
I1Cys).

Proof: we want to show that Extéat(G)(K, L) =0 for all K, L € sat(G). We may assume K = IC) and
L = IC, (and get the general case by induction). Three cases:
(1) X and p are not comparable. Then Ext vanishes (even in the category of all perverse sheaves) by general
properties of the ji,’s.
(2) A = p. Suppose we have an extension

0—-ICy—>K—=IC,—0
in Sat(G). One argument we could give: since Sat(G) is a full subcategory of Perv(Gr), have
EXtéat — EXt%)erv = EXt%)rb(t*)(@b@é) = Hl(OTb(t)\)E7 @5) =0

since Orb(t") is simply connected; but simple-connectedness is hard and we didn’t prove it (just stated it).
Another proof: Given our extension, K has no subobject or quotient supported in Orb(t*) — Orb(t*)
so K = j.jiK. But j3K is G[t]-equivariant on Orb(t}), so is constant, so j;K splits as Q,[d)] ® Q,[d,].
Passing back to K via jj. gives what we want.
(3) # < X (which is equivalent to the case where A < p by duality). So have inclusion maps %, j of
Orb(t*), Orb(t*) into Orb(t*), and inclusions a,b of Orb(t*) and of Orb(t*) \ Orb(t*) into Orb(t*). Then
have IC,, = ¢,i*IC,, so

Hom(ICy,IC,[1]) = Hom(i"ICy,i"IC,[1]).
Now, this fits into an exact sequence
Hom(a*i*IC), a!i*ICu[l}) — Hom(i*IC)y,i"IC,,[1]) — Hom(b*¢*IC, b* " IC,[1]).

This comes from the following: If L € D%(Orb(t*)) have exact triangle a.a'L — L — b,b*L — - - -, get exact
triangle by applying the second coordinate of RHom(—,—) to this, then take long exact sequence for that
(.

Now, can check that Hom(a*i*ICy,a'i*IC,[1]) = 0 because the two parts are concentrated in different
degrees (< —1 and > 0, respectively). Similarly can look at Hom(b*i*ICy, b*i*IC},[1]) and find formally that
b*i*IC is concentrated in degrees < —1 and b*i*IC),[1] in degree —1. This doesn’t quite rule out that this
Hom is zero; to do that we need to apply the following theorem that implies b*¢*IC' is actually concentrated
in degrees < —2 and finishes the proof of the theorem.

Theorem (Lusztig): For all A\, p € X,.(T)4+ with g < X, ICy on Orb(t") is concentrated in even perverse
degrees. This follows from the following lemma:
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Lemma: For x € Orb(t"), the fiber (ICy), is concentrated in degrees = dy (mod 2). (This implies
theorem as follows: IC\|opp(iny is a G[t]-equivariant complex so PH K(r Cxlorpny) are G[t]-equivariant
perverse sheaves hence constant hence P H*(—) = H*~9(—) = 0 unless k — du = d) (mod 2) by the lemma.
But A — 1 is a sum of coroots hence dy + du = dy —d, = (A — p,2p) = 0).

How do you prove the lemma? Z = Orb(t*) has a resolution of singularities 7 : Z — Z called the gener-
alized Bott-Samelson resolution such that he geometric fibers of m are paved by affine spaces. By the decom-
position theorem IC, is a direct factor of 7.(Q,, Z[d,]). Hence IC) , is a direct factor of H*~%(7~![x],Q,),
which is concentrated in degree = d) (mod 2) (by using excision exact sequence repeatedly, and that affine
spaces only have things concentrated in degree 0).
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10 Lecture - 03/28/2014

Continuing from last time: G is connected reductive, k = k. Have action of G[t] on Grg, and the Satake
category is the category of equivariant perverse sheaves, Pervg(Grg). Theorem: Sat(G) C Perv(Grg)
is full, thick, and semisimple. The simple objects are

IC\ = jx1 Q001 [(20, N)]-

The proof we gave used the generalized Bott-Samelson resolution, which we didn’t talk about; but it will
come up again soon and we’ll discuss it then.

What if k is not algebraically closed? Then Sat(G) is a full and thick subcategory (only uses connected-
ness of G) and still Artinian and Noetherian, but is not semisimple in general. The simple objects are still
the intersection complexes IC), but can have nontrivial extensions; if A = 0 is the trivial cocharacter, t* = 1
so Orb(t*) = Speck and ICy = Q; then Extéat(g) (ICy,IC)) is the group of extensions of Q, by itself in
the category of ¢-adic representations of the absolute Galois group of k. Example: If £ = [F; then have a

.. . =2 . .
nontrivial extension, namely Q, with Frob, acting by

1 1
ol

Remark: If R is a k-algebra, G, [t](R) = R[t]* acts by k-algebra isomorphisms on R((t) (by a - f(t) =
f(at)), so get a* : Spec R((t)) — Spec R((t) for all a € R[t]*. If Y is a k-scheme we get an action of G, [t]
on Y(t) by a-p=poa* for u:SpecR[t] = Y. If Y = G is a smooth affine group scheme then G,,[t] acts
on G((t)) by group automorphisms and preserves G[t], so passes to an action 0 of G,,[t] on Grg extending
the previous action 6 of G,,. This is the Virasoro action; combining it with the natural action of G[t] we
get an action of G[t] x G,,[¢t] (with the action of G,,[t] on G[t] what we just defined).

Corollary: If k = k and G is connected reductive then every object of Sat(G) is G[t] x G,,[t]-equivariant.
Hence Sat(G) is independent of the choice of ¢ we made. (Proof: Since this group is connected we can use
the simple definition of equivariant; and every object of Sat(G) is a sum of IC)\’s and the IC)’s are obviously
equivariant).

The convolution product. Our Satake category Sat(G) is supposed to be a Tannakian category but
we haven’t defined the tensor product! And moreover, the usual tensor product doesn’t preserve perverse
sheaves. So we need something else. Convolution diagram: have maps p = 7w xid : G(t)) x Grg — Grg X Grg
and ¢ : G((t) x Grg — G(t) x¢I Grg, both of which are G[t]-torsors. Recall that G((t) x %Il Grg is the
quotient (G((t) x Grg)/G[t] via the action g-(x,y) = (xg~', gy). This has a map m : G(t) x M1 Grg — Grg,
and the composition m o ¢ is just the action map (z,y) — xy.

Now, an incorrect explanation of what we want to do: assume that everything is a scheme of finite type.
Let Ki, Ky € Perv(Grg); then we want to define Ky K Ko € Perv(Grg x Grg) such that p*(K; X K») is
a shifted perverse sheaf equivariant for the action ¢ - (z,y) = (zg,y). If Ky € Sat(G) then p*(K; K K») is
G[t] x G[t]-equivariant for the action (g1, g2) - (z,y) = (g1, g2y). In particular it is G[[t]-equivariant for the
action g - (z,y) = (zg~*, gy). So there exists a unique K;XK, € Perv(G(t) xl! Grg) with

P (K1 R K,) = ¢* (KiXK>).

Then set the convolution product to be Ki *x Ko = m, (Kngg).

If Ky € Sat(G), then KXK, is G[t]-equivariant for g(z,y) = (gz,y), so Ki x K is G[t]-equivariant.
We still need to prove perversity, and more importantly actually define the things we want in the context
we have (where things aren’t schemes of finite type).

How it actually works: Fix K;, K € Perv(Grg). Choose Z C Grg closed and G[t]-stable of finite
type such that Z D supp(K7) Usupp(K2). Let H C G[t] be a closed subgroup such that G' = G[t]/H is
a linear algebraic group and such that H acts trivially on Z. Then have p : p~1[Z x Z] — Z x Z, which
is a G[t]-torsor, and this factors through the quotient map p='[Z x Z] to Y = p~![Z x Z]/H, giving a
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G'-torsor p' : Y — Z x Z. Similarly have ¢ : p~1[Z x Z] — q[p~![Z x Z]] and get ¢’ : Y — q[p~[Z x Z]]
which is also a G’-torsor. Then do the exact same thing described above but for this restricted setting rather
than the full spaces. So if K € Sat(G) there exists a unique K1XKy € Perv(g[p~![Z x Z]]) such that
(p)* (K1 R Ky) = (¢')*(K1RK>), define Ky * Ky = m,(K1XK5). This is G[{]-equivariant if K is.
Theorem: (1) For all K7 € Perv(Grg) and K» € Sat(G) the product K7 x K is perverse.
(2) If k = k then (Sat(G), *) has a unique symmetric monoidal structure such that w : Sat(G) — Q,-vect
given by K — @,.; H(Grg, K) is symmetric monoidal and w is additive, exact, and faithful.
The proof of this theorem will take us a while and a bit of machinery. We’ll start by introducing global
versions of everything. What do we mean by this? Let X/k be a smooth curve, geometrically connected.
Recall that if z € X (k) and @X,z = k[t] we get Grg = Grgc’b via

Spec R = {(M,7) : M € BG(Xg),v: M|xg = Mo }/~,

where X° = X \ {z}, M? is the trivial G-bundle on everything, and BG is the stack of G-bundles.
What about the loop group G((t))? For all k-algebras R, let Dp = Spec R[t] 2 D%, = Spec R((t)). Let
G((t)#"°" be the k-space

Spec R — {(M,~,9) : (M,v) € Gr%;lOb(SpecR),c; :M|p, = M°|p,}/~.
Let G[t]"°" be the map
Spec R+ {(M,~,8) € G(t)&"°"(Spec R) : 67! € Aut( o) = G(R(1)) is actually in G(R[t])}.

What make this work is the Beauville-Laszlo theorem; this tells us BG(Xp) is described by the category of
gluing data (M, N, B) for M € BG(Xg), N € BG(Drg), and 3 : M|ps = N|pg, is an isomorphism. Get that

G(t)#°"(Spec R) = {(M, N, 8,7, B)}/~

where each of the things in this tuple is as above. Then, can define a map G((t)) — G((t))&°" by g —
(M X5, M}, ,1,1,g7") and this is an isomorphism by BL. Moreover, G[t] gets identified with G[t]&'
and the projection map G((t)) — Grg corresponds to the projection map G((t))8°" — Gr%bb given by
(M, ~,0) = (M, 7).

The Beilinson-Drinfeld affine Grassmannian (G can be any smooth affine group scheme): Define Grx by

Spec R = {(x, M,~) : 2 € X(R), M € BG(Xg),y: M|xg = M }/~,

where X%, is Xg minus I';, the graph of X. Then we have a map Grx — X given by (z, M,~) — z. Why
stop here? Let Grxn be the k-space Spec R — {(z1,...,2n, M,7)}/~ where z; € X(R), M € BG(XR), and
7 is an isomorphism of M with M° over Xg \ |JT,,. Similarly have a map GRx» — X™.

Remark: If z1,..., 2, € X (k) are such that z; # x; for all i # j, then Grxn|(z, .. 2.) = Grg x --- x Grg.
If x € X(k) then Grxn|(y, .. o) = Grg. If A, C X™ is the fat diagonal (the set of all tuple (z1,...,2,) with
x; = x; for some i # j) then Grxn|xn\p, = Grx x -+ x Grx.

Exercise: Gryi = A x Grg.

We salso have global versions of G[[t] and G((t)). Define G(t)) x» by mapping Spec R to {(x1,...,2n, M,v,6)}/~
for (z1,...,2n,M,y) € Grxn(SpecR) and 6 : M|p, , = M??m)’ Here, if (Xgr|yr, )" = Spf A we take
D,y = Spec A and D,y = D(y,) \UT,,. Then G[t]x~ is defined by mapping Spec R to the subset of
classes (1, ...,%n, M,v,0) such that 65" € Aut(M%?,T )) = G((’)szi)) is actually in G(Op,, ).

Multiplication: G((t)x~ is a group k-space over X" with product (z1,...,zn, M,7,0)-(x1,...,zn, M',v',0") =
(z1,...,2n, N,a, 8) where N € BG(XRg) corresponds to the gluing data (M|XR\UF1~“M/|D(11)7 (v)~10),
a =+, and § =4§. We also have a map G((t)x» — Grxn» bu (x1,...,2,, M,7,0) = (z1,...,2,, M,~) which
induces an isomorphism G(t) xn /G[[t]xn» = Grxn.

Lemma: G[[t]x~ is a scheme. G((t)x~ is an ind-scheme. Grxn is an ind-scheme of ind-finite type, which
is ind-projective over X™ iff G is reductive. (Proof: Reduce to G = GL,, and use the Grassmannian; follow
the proof for the original affine Grassmannian).
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11 Lecture - 04,/02/2014

Beilinson-Drinfeld affine Grassmannians, continuing from last time: had Grx» given by Spec R — [z1, ..., 2y, M, 7],
G(t) xn given by Spec R — [21,...,Tpn, M,~,0d], with subgroup G[t]x~.

Today (for doing geometric Satake) will only need cases n = 1,2. However, introduce notation Gr, =
Grxn, and so on, and write Gr = Gry.

Remark: If X = A! then Gr = Grg xAl. (Proof: Comes from the simply transitive action G, on
A' by translations; for a € G, let u, be the action map. We can lift this to an action v, on Gr by
(v, M,~) — (z+a,u* ,M,u* 7). The actions v, and p, are compatible with the projection Gr — Al. Since
Grg = Gro get an isomorphism Grg xG, — Gr by (p,a) — v (p)).

Remark 2: Virasoro action. The group that acts on Grg is not G,,[t] but Auty aig(k[t]). Since Gr — X
is an étale locally trivial Grg-bundle, the transition isomorphisms are given by the Virasoro action.

Remark 3: Let A € X x X be the diagonal. Then Gra|x2\a = (G7 x Gr)|x2\a and Gra|a = Gr.

The local convolution diagram: Wanted to have convolution map Grg x Gry, — Grg. Started by lifting
via p = 7 x id to G((t)) x Grg, which has the action map to Grg. But this is a bundle so want to descend it
via a map ¢ : G(t) x Grg — G(t) xS Grg. Then for K, K, € Sat(G) there exists a unique K;XK, on
G((t) xCl Grg such that “¢* (K1KK,) = p*(K; K Ks). By definition took K; % Ky = m., (K KK,).

Global convolution diagram. Let G be the thing sending Spec R to (x1, 2, N1, Na, 01, 62) modulo equiva-
lence, where x1, 79 € X(R), N1, Ny € BG(XRg), and §; are isomorphisms of N; with M° on Xz \ T',,. Now,
as before start with Gr x Gr, have map p&°® from G((t) x Gr to this, have map ¢&°P : G((t) x Gr — G, and
map me°P : G — Gr; and all of these live over X2.

Note: If we take the fiber over (z,x), get back the local diagram. As before can define the convolution
product using this diagram. If K; € Pervgpy, (G,) and Ko € Perv(G,) then there exists a unique K XK, €
Perv(G) such that ¢ ¢8°P* (K1 XK,) = pglob* (K| K K;). We set Ky #8°° Ky = m2°P(K;XK,). This is
G[t]-equivariant if Ko is.

Case X = A': Gr = Grg xA!, and project to Grg via m;. If L € Sat(G) and Ly € Perv(Grg) then set
K; =7 Li[1] = Li W Qy 1 [1]. Then we have

(K1 #8°P Ko)|a = (L1 % La) K Q1 [1].

Proof: Over A, the global diagram is the local diagram crossed with A'.

The fusion product: Have inclusions j : gr2|X2\A — Gro and i : Gr = Gra|a — Gra. Also, know
gr2|X2\A >~ (Gr x gr)|X2\A and can take inclusion j' : (Gr x QT)|X2\A — Gr x Gr. Definition: If K1, Ky €
Perv(Gr), their fusion product is

Kix Ky = ]l*((]/)*Kl X KQ) S Prev(grg).

Remark: If K; is G[t]-equivariant then j*(K; x Ko) = j*(K; ##1°P K5). (Exercise).

Theorem: If K, Ko are universally locally acyclic (ULA) with respect to Gr — X, then i*(K; x K») is
perverse. Moreover, if K; is G[t]-equivariant then K; x Ky = K; #5810 K.

In particular, if X = Al and K; = L; &@Z’Al [1] then Ly % Ly = ¢* (K1 = K3)[—1] so Ly * Lo is perverse and
we get commutativity isomorphism L; % Ly & Lo x L1. (However we’ll have to modify this commutativity
constraint by a sign later on, because we need compatibility with global sections...)

Nearby and vanishing cycles. Will take k = k for convenience. Consider the following situation (all new
notation). Let X be a k-scheme of finite type, f : X — A! a function. Let U be the inverse image of A\ {0}
and j : U — X the inclusion; also let Y be the fiber over 0 and 7 : Y — X the inclusion.

Let S = Spec Ogl,(o) (the Henselianization). Have s < S (the special point) and 7 < S (generic point);

if we take S to be the normalization (integral closure); get s < S still and 77 — S. Can base change our
entire original picture to get i : Y — X = Xz and j : X5 — Xg. Also have 7: Xz — U.

What are nearby cycles? If K € DY(U), set K =i j,n*K € Db(Y) which has an action of ¢(n,7).
(This action is quasi-unipotent). Let 7' be a generator of the prime-to-p part of 7$%(n,7) (where p is the
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characteristic of k). We have an exact triangle
Ui K =YK — K — -,

We then write N for the logarithm of the unipotent part of 7" acting on 97 K.
Vanishing cycles: If K € D%(X) then have i*K — i*j,j*K by adjunction and then a map from this

to ¥rj*K. The cone of that map is the complex of vanishing cycles ® ;K. There is a way to make this
functorial. We get an exact triangle

'K )" K - OpK — -+ .
Theorem: (i): If K € Perv(U) then ¢y K[—1] € Perv(Y).
(ii) If K € DY(X) and K|y € Perv(U) then TFAE:

(a) K = j1.j*K and i*K[—1] € Perv(Y).
(b) @K = 0 and the unipotent part of 7" is 1.
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Situation: k = k with characteristic p, have f : X — A! and fibers Y,U over {0},A! \ {0}. We let
S = Spec Ogl\ (0} (where the h means henselization), let i be the generic point of S, and I = 7$*(n,7) which

we think of as an inertia group. Had a nearby cycle functor ¢; : D5(U) — D%(Y) and vanishing cycles
functor @ : DY(X) — D%(Y) (both with actions of inertia).

Recall: Have 1 — P — I — I, — 1 with I; the tame inertia (isomorphic to ZP(1)) and P the wild inertia
(a pro-p group). Facts (correcting what we had last time):
(1) i*j.K = RI'(I,¢sK) = RU(I;, (s K)¥). We all (yK)Pthe tame nearby cycles LK. If T is a pro-
generator of I; then we have an exact triangle i*j, K — w}K — w}K — «-+ (where the second map is
defined by T — 1).
(2) We have an exact triangle i* K — ¢;j* K — @K — ---.

Some properties of ¢y and ®:
(A) ¢y and ®¢ commute with duality (i.e. ¥ s(DK) = D(¢sK), etc.).
(B) Base change: If you have g : X’ — X and U’ lying over U, have ¢ ;9. — g+, and g*¢y — 14;¢* (and
similarly for ®). Proper base change says the first map is an isomorphism if g is proper, and smooth base
change says the second is an isomorphism if g is smooth.

Example: (a): f=id: X = A' — A'. Then ¢1qQ,¢, = Qy and ®;qQy 1 = 0. (b): If f: X — Al is
smooth then wf@“] = @I,Y and <I>f@g7X =0.

Theorem (from last time):

) ¥ y[—1] sends Perv(U) to Perv(Y).
) Let K € D%(X) be such that j*K € Perv(U). Then TFAE:
) K = j1,j*K (which means that if K is in Perv(X) then i*K[—1] € Perv(Y)).
) —

Proof: (i) is in BBD. For (ii), start by showing (b) = (a). If ®;K = 0 then *K = ¢,j*K. By (i),
i*K[—1] € Perv(Y) so K €? D=, We also have ®;(DK) = 0 and j*DK € Pev(U) so DK €P D=0 so
K € PervX. If K — L is in Perv(X) with L = i,i*L then PH*K —» i*L because i* is right-exact; but
PH%*K = 0 and thus i*L = 0 and thus L = 0. So K has no quotient supported on Y and neither does DK
(and thus K has no subobjects there) so K = j.j* K by one of the characterizations of the middle extension.

Back to the convolution diagram (which we screwed up last time) - can’t use G((¢)) x Gr in the middle.

Instead we need another space G((t) x Gr which has maps p#°® and ¢8°" to Gr x Gr and to Gr, and a map
mePGr — Gry. (Everything lies over X x X. Recall X/k is a smooth curve, G/k is connected reductive,
and k = k).

What’s this new space? Define it by

—_~—

G(t) x gr(Spec R) = {(w1, x2, M1, M2, 71,72, B1)}/~

where (z;, M;,7;) € Gr(Spec R) and $3; is an isomorphism between M; and M° on D,,. The map p&°P is
the obvious one (forgetting 31) and ¢&'°" is the one going to (1,22, M1, M}, v1,5) (using the definition of
G from last time) where MY corresponds via B-L to the gluing data (Ma2|xp\r s s Ml\sz,ﬁl_lfyg) and 7} is
the gluing of (v; 'y, v; ' B1)-

In the case X = A': Have X = A C X? the diagonal, and Gra|a = Gr and Gralx2\a = (Gr x Gr)|x2\A-
Over A remember that Gr = Gr xA! and the global diagram becomes isomorphic to the local diagram times
Al. Over X2\ A the Gr x Gr is isomorphic to Gra; claim that if we put in this isomorphism the diagram
commutes (so that (K7, K») € Gr x Gr corresponds to K1 X K5 in Gry under the isomorphism).

Proof of commutativity: Fix x1, 2o with T',, "', = (. Then fix an element of G(t)) x Gr over (x1, z3); this
is tuple (M, Mo, v1,72, 81). We know p#'°P takes this to the pair (M, ;) and (Ma,¥2) and the isomorphism
takes it to some (N, 7). Also, ¢#'°" takes it to (N1, Na,d1,d2) and then m®°P goes to some (N’,~'); we need
to show (N,v) = (N',v).

What are all of these things? Well, by B-L we know N corresponds to the gluing data of M?| Xp\T

zq,w0 )
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Yo : Ma|p, = MP°, and 7 : Ml\DI2 =~ MO and v = id. Also (Ny,d;) = (Mj,v1) and Ny corresponds to
(M1|XR\FI275;172) and 62 = ld Finally, N/ = N2 and ’}// = 5152 =71.
Or does the diagram maybe not commute? Not sure... But can replace it by defining a section s :

gr x Gr — G(t) x Gr (by taking 1 = 71[p,,) and can show that going from Gr x Gr all of the way over to
Gro via this section and ¢#°P and m is the same as the usual isomorphism. N

Hence: (K1#8°PKj)|x2\a = (K1KK3)| x2\a. Recall that we wanted to prove Ky 8P Ky = m P (K KK,)
is equal to ji.((K1 M K3)|x2\a). But we were only going to prove it when K; = L; K Q4 (1] for L; €
Perv(Grg). How will we prove this? By showing the vanishing cycles are zero; need that ® s (K #8°° K5) = 0,
where f : Gro — X2 — X is the structure map for Gro composed with the map (21, x2) — o1 — 2. As mslob
is ind-projective, it’s enough to show ®(K; @Kg) = 0. (Why is m#°? ind-projective? Its fibers are twisted
Grg’s and can conclude it from that).

Why is ®(K,XK5) = 07 Recall it’s defined so that p~![K;XKj] = ¢~ '[K;XK,]. But this was a bit of
a lie since we haven’t defined this inverse image of such things; actually we had p and ¢ factor through Z,
giving p’, ¢’ that are torsors under a finite type quotient of G[¢] and required (p')*[K; X Ks] = (¢')*[K1KK3].
But these p’, ¢’ are smooth so by smooth base change we need to show ®(K; X K5) = 0.

This is where we need some hypothesis since it’s not true that ®(K; X K5) = 0 in general. But in our
case, K; = L; X Qy 1[1]. So

(K R Ky) = (L1 R Ly) K (Q, K Qy)[2]

by identifying (Gr x Gr)|a = Grg x Grg xA. But then we have a map Grg x Grg xA! — Gr x Gr —

Al x A" — A! defined by (1, 22) + 21 — x5 on the last map, which is smooth, and thus get ®(Q,XQ,) = 0.
This finishes the proof of the theorem that the fusion product equals the convolution product.
Corollary:

(Ly * Lo) ®Qy g1 [1] = 4% (K #8°° Kp)[—1] = (K1 K Ks|x2\a[-1])

is perverse. (Proof: From the exact triangle i* — 1y — ®5).

Corollary: Let a : Grg — Speck be the structural map. Then if L; € Sat(G) and Ly € Perv(Grg), we
have a.(Ly * Ly) = (asL1) ®% (a.Ly) and this is compatible with the commutativity isomorphisms of * and
®. (Proof: Proper base change).

Now: We want our fiber functor to be w : Sat(G) — Vect(Q,) given by K — @,., H'(Grg, K). But
this @ H' : D*(Vect(Q,)) — Vect(Q,) is not compatible with the commutativity constraints (there’s a sign
problem). We’ll fix this by modifying the commutativity constraint on .

33



13 Lecture - 04/09/2014

Parity vanishing. Recap: k = k, G connected reductive. Have defined * : Sat(G) x Sat(G) — Sat(G),
and have seen that this makes Sat(G) a symmetric monoidal category. Have also said that a. : Sat(G) —
Db(Vect@Z) is a tensor functor, for a : Grg — Spec k the obvious map. Why? For X = A', have diagram

Graxana —2— Gra — Gra|a
l lh la
X2\ A X2 A
X

If Ly, LeSat(G) and K; = L; K Qy x[1] then
(L1 % L) M Qy x[1] = Waon (K1 B Ka|x2\a)[—1].
So
ax (L1 % L) = ay W sop (K1 K K| x2\a)[—2]0 = ¥s(a x a) (K1 K K3| x2\a)[—2]0 = a4 L1 @ Lz @ (¥,Qy)o,

and the last thing is just Q,.

Problem: we want w : Sat(G) — Vectg, given by w(K) = @D,c;, H (Grg, K) to be symmetric monoidal.
But it isn’t because H* : Db(Vect@e) — VeCt@[ isn’t; the way we defined our commutativity constraints in
the derived category gives us some sign problems.

Solution: We modify the isomorphism ICy * IC,, = IC,,  IC) by multiplying it by (—1){2*T#) This
works thanks to the parity vanishing theorem:

Theorem (Lusztig): For all A € X,.(T)*, H*(IC,) is concentrated in degree = (2p, \) (mod 2).

Proof (Ngo-Polo): Write Oy = Orb(t}). Start by considering minimal elements in X, (T)* \ {0}.

Lemma: Let A € X, (T)" \ {0} be minimal. Then there are two possibilities:

(i) Either A is minuscule (i.e. (A\,a) <1 for all @ € ®* and then X is minimal in X, (7)*; or
(ii) A =~V is a coroot for v a maximal root. (Call this A being quasi-minuscule).
In case (i), Oy = O, is smooth so

H*(ICy) = H*(Ox,Qy)[(2p, \)].

But we’ve seen that O, is paved by affine spaces, so H* (O, Qy) is concentrated in even degree.
In case ii), Oy = O\ U Oy with Oy a point. Let

P={g€G:limt— oot gt~ exists}.

This is a parabolic subgroup and there exists £ — G/P an Al'-bundle with £ = O,. Can show that there
exists a P!-bundle £ O £ such that £ = O, extends to £ — Oy. By the decomposition theorem, H*(ICy)
is a direct factor of H*(L,Q,)[(2p, \)]. Since L is a bundle over G/P which is paved by affine spaces, get
that this cohomology is concentrated in even degrees.

Next: The n-fold convolution diagram. Remember the (local) convolution diagram

G(t) x Gre

PW/ \

Grg x Grg G(t) xCM Grg —2— Grg
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In fact, we can reinterpret this by noting that G((t) xI*l Grg = Grg x Grg again; we get this isomorphism
by taking ¢’ : G((t)) x Grg — Grg x Grg defined by (g,2) — (7(g),gx), and find this factors through
G((t) xC Grg and the resulting map is an isomorphism. Via this isomorphism m just becomes projection
onto the second factor.

We use this point of view to get an n-fold convolution diagram:

G(#)" ! x Grg

m
Grg Grg — Grg

where m,, is projection onto the last coordinate, and ¢ is given by

(g1, gn—1,2) = (7(g1), 7(g192)s - -, 7(g1 - Gn—1), 91 - * - Gn—1).

Now, if Ly, ..., L, € Sat(G) then there exists a unique LiX- XL, such that
gn(La--BL,) = pi (L & - K Ly),

where again we interpret this as actually being an equality for pullbacks on finite-type subobjects/quotients...
Define Ly*- - L, = M, (L1® e @Ln) Using a global diagram as before, we get the following interpretation
(for X = Al): if U is X™ minus the fat diagonal and A = X is the thin diagonal, then Gr"|y = Gr,|v
embeds in Gr, via j, and Gr,|a = Gr = Grg x X embeds in it by . If K; = L; K Q, x[1] € Perv(Gr), then

Ly Ly ®Qy x[1] = i1 (L1 K-+ K Ly |)[1 — nl,

this is perverse, and you can calculate it by using iterated W. In particular, a.(Ly * -+ % L,,) = (a1 * L1) ®
e ® (a*Ln).
Now, fix A1,...,A—n € X, (T)*". Let

6/\1 X ;6)\” = qn[p;1[6>q XX 6/\n]]a

which is the support of I C’,\1®~-~®I C»,. This is closed in Grg. Notes: this product of intersection
complexes is the intersection complex of this set we’ve just defined (“being the intersection complex” is local
in the smooth topology). Moreover,

mn[6>\1 ; s /;5)\”] = 5)\1+...+)\n.

By the decomposition theorem, we see that ICy, ...+, is a direct factor of an appropriate shift of IC), *
<o IC . S0 aICy 4.4, is adirect factor of an appropriate shift of a tensor product of the a,.IC),. The
theorem will then follow from:

Lemma: Every A € X, (T)" is a sum of minuscule and quasi-minuscule characters in X, (T) \ {0}.

We conclude that any a,IC) is concentrated in either even or odd degree.

Recalling what the decomposition theorem was: Let F': X — Y be a proper map between [ -sheaves of
finite type. Let K be a pure ¢-adic complex on X (e.g. the intersection complex). Then

(f*K)Yﬁq = @pHZ(f*K)[fz]a
i€z
and each PH'(f,K)|y, is a semisimple perverse sheaf.

So, if we know that there exists U < Y open sense such that some Hi(f*K)|yﬁ is @“j, then ICy[-- -]
is a direct factor of (f.K)ly, .

35



Now: We wanted Sat(G) with * to be symmetric monoidal and w a symmetric monoidal exact faithful
additive functor. Have almost everything; fixed everything up so that the symmetric monoidal stuff works,
and it’s immediate that w is additive and exact (the latter because Sat(G) is semisimple). Why is w faithful?
Since w is exact, suffices to show that K # 0 implies w(K) # 0. So we just need to check that every w(IC))
is nonzero, but this is @,., H'(Ox, IC)), and we know that H~2/(0,,1C)) is Q,.

Note that intersection cohomology satisfies hard Lefschetz, hence H* (O, ICy) # 0 for integers

—(2p,0), —(2p, ) + 2, —(2p, ) + 4,...,(2p,0) — 2,(2p, {).

So, dimw(ICy) = 1 implies (2p,\) = 0, i.e. t* is central in G(k(2)).

Also, note that the unit object in Sat(G) is 1Cy.

The point of all that we’ve done is to say that Sat(G) is a Tannakian category; the one part of the
definition we’re missing is “rigid”. Remember that if F' is a field, a neutralized Tannakian category over
F is a triple (C,®,w) where (C,®) is a F-linear rigid abelian tensor category and w : C — Vectp is a
faithful exact tensor functor, and End(1) = F. (F-linear means that all hom-sets are F-vector spaces and
composition is F-bilinear). Abelian tensor category means that we have an abelian category and a tensor
category such that tensor products are additive. What does rigid mean? Two things:

(i) Internal Homs exist: For every K,L € C, the functor C — Set given by T — Hom(T ® K, L) is
representable; the representing object is the internal hom Hom (K, L). It comes with an evaluation map
evk,r, : Hom(K,L) ® K — L. Also, internal Homs must be compatible with tensor products.

(ii) Every object is reflexive: For any K, let K¥ = Hom(K,1); then ev : K¥ ® K — 1 plus the commutativity
constraint gives map K ® KV — 1. Comparing this with the evaluation map KV ® KV — 1 get a map
ik : K — KYV. We say K is reflexive if this ix is an isomorphism.

Example: Let G be an affine group scheme over F. Let Rep be the category of representations of G
on finite-dimensional F' vector spaces, ® the usual tensor product, and w the forgetful functor. Then this
defines a neutralized Tannakian category.

In fact this is the only example! If (C,®,w) is a neutralized Tannakian category, let Aut®(w) be the
group k-space sending a k-algebra R to Aut®(w ®p R). Theorem: (1) If (C,®,w) = Rep then the obvious
morphism G — Aut®(w) is an isomorphism. (2) For any (C,®,w), Aut®(w) is representable by an affine
group scheme G over F', and the obvious functor C — Repg; is an equivalence of categories. (Grothendieck,
Deligne, Milne, Rivano).
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14 Lecture - 04/11/2014

Theorem: For k = k and G connected reductive, (Sat(G), *,w) is a neutralized Tannakian category. (The
algebraically closed assumption isn’t strictly necessary).

Proof: We know everything except that Sat(G) is rigid. Actually, it’s enough to prove that objects
with dimw(K) = 1 have *-inverses. (Prove that for 1-dimensional objects this inverse is the dual, and
for a general object with dimension, d, can define the dual as KY = (/\d*1 K) % (/\d K)~1. Then prove
Hom(K,L) =KV % L).

So how do we prove that K € Sat(G) with dimw(K) = 1 has an inverse? Well, such a K must be IC)
where A such that (A, ) = 0 for every root A. But this means IC\ = Qg x, s0 K~ = Qy-».

In fact, we can prove a formula for the dual in general; if 7 : G((t)) — Grg is the projection and
inv : G((t)) — G((t)) is the inversion map, then K" is the unique element of Sat(G) such that 7*KV =
D(inv*r*K).

Remark: Last time said that if A\1,...,\, € X.(T)" then IC) is a direct factor if ICy, *--- x IC), up
to a shift. But since they are both perverse sheaves, the shift must be zero.

Remark: What about k # k? Then * is still defined and still related to * in the same way. However,
Sat(G) is no longer necessarily semisimple. We can fix the commutativity constraint because if K € Sat(G)
is indecomposable, then it’s supported on a connected component of Grg so its simple constituents ICy (up
to twist) all have the same parity of (2p, A).

Let k = k and G connected reductive. Let G’ = Aut®(w); this is an affine group scheme over Q,. Main
theorem: G’ = G@e. In other words, there’s a ®-equivalence of categories between Sat(G) and Rep@@ such
£

that w corresponds to the forgetful functor. (Here G is the dual group).

Lemma: G’ is a connected reductive group over Q,.

Proof: First check that G’ is of finite type. This is equivalent to there existing K € Sat(G) such that every
L € Sat(G) is a subquotient of some K*". Choose Ai,...,\, generating the semigroup X.(7)" and take
KZIC)\@--~EBIC,\n.

Then, G’ is reductive because Sat((G) is semisimple. It’s connected because connectedness is equivalent to
saying that if K # 0,1, then (K) (the smallest thick subcategory of Sat(G) containing all K®™) is not stable
by * (if G’ # (G')° then G’ — T" with T" nontrivial finite, so Repr < Rep, and the regular representation
of K’ would be stable). So, let K = ICy, @ ---® IC),; then ICox, y...12x, ¢ (K).

So we know G’ is connected reductive; how do we prove it’s @@Z (the geometric Satake isomorphism)?

Strategy: Pick G’ 2 B’ D T’, and take X*(T")*. So far we know X,(7”)" is isomorphic to the simple
objects of Sat(@), which is isomorphic to Repg and this to X, (T)* = X*(T), via A — [IC,] (in the
reverse direction).
The next step is to prove the following statements:
A) A connected reductive group H over an algebraically closed F is uniquely determined by (X*(Tx)*, +, <
).
(B) The bijection X*(T") = X,(T)" is compatible with <, where if A, u are two elements (in either set) then
A=< piff p—A=>" a0y with o positive roots (or coroots) and a; € Rxo.
(C) X*(T")* = X,.(T)4 is compatible with +, hence extends to an isomorphism of groups 7 : X*(T") &
X (T).
(D) 7 takes the root lattice to the coroot lattice and respects <.
To prove these, we’ll need two big inputs, one from geometry and one from representation theory:
Theorem A: Let piq, ..., pun € Xu(T)*. Then

ICu, % %1C,, = ICy i, ® P 1P
v<p1+Fpn

Moreover, if A = vy + -+ vy, € Xo(T)" with v; € Wy, for all ¢ (where W is the Weyl group) then IC) is a
subquotient of IC),, % --- % IC,, . (The first equality is not so hard; the “moreover” is more involved).

37



Theorem B: Let H be a connected reductive group over F such that F = F (no assumptions on the
characteristic). Fix H D By 2 Ty and Wy = W (Ty, H). Let p1,...,pu, € X*(Ty)t and let v; € Wyp;
such that A = vy + -+ v, € X*(Ty)". Then V) (the highest weight representation associated to \) is a
subquotient of V,,, ® ---®@V,, .

Proof of Step (B): Let A € X*(Ty)™, and let V) be the highest weight representation associated to \.
Set

Dom_y = {p € X*(Te)t : p < A}

Proposition: Let A, u € X*(Ty)". Then TFAE:

(1) A < p.

(ii) There exists F C X*(Ty )" finite such that for all kK € N, Dom_,\ € Wy F + Zle W .

(iii) There exists a representation U € Repy such that for all k£ € N, every simple subquotient of VA®k is a
subquotient of U @ V,&F.

Corollary: ¢ : X*(T")" = X.(T)" preserves < (this is Step (B)).

Proof of Corollary: Let A\,u € X, (T)T. If A < pu, let F C X,(T)" be a finite set as in (ii) and
L=@@,cpIC,. By (i) <= (iii), t(\) < ¢(u) iff for all k there exists K such that every simple subquotient
of IC’;‘\’c is a subquotient of K x IC’;l. Let k£ € N and let IC, a simple subquotient of IC’f\k. Then v < kX so
v<FkxsoveWF +> Wy, soby Theorem A, IC, is a subquotient of L IC;k. So

Conversely, suppose ¢(A) < (). By the proposition there’s K € Sat(G) such that IC;* is a subquotient
of K x1 CZ’“. Then the supports satisfy

Ok = supp(IC3¥) C supp(K + IC;F) = | Ou,shp € Ovsip
=1

if v > vy,...,v,. Then Theorem A implies that kA < v + ku for all k, so A < pu.

Proof of Proposition: (iii) = (i): If (iii) holds then there exists v € X*(Ty)" such that for all k,
kA <v4kup. So A< p.
(ii) == (iii): Assume (ii) holds; take U = @, cp Vo. If k € N and V, is a subquotient of VO then y < Ak
implies x < Ak so x € WF + > Wp. By Theorem B, V, is a subquotient of U ® Vlf
(i) = (ii): This is the hard part; we’ll prove it in the special case of H = GLy. What happens if we take
X*(TH) = X*7 It’s Z2. Then (X*)+ = {()\1,)\2) . )\1 Z )\2}, and ()\17)\2) S (M17M2) iff ()\1,)\2) < (,ul,ug) iff
A1+ A2 =p1 + pe and A < pg. Fix A = (A1, \2) and p = (1, p2) with A < p, and let k € N. Then

Dom oy = {(a1,a2) € Z% : a1 + ag = kM + Ao, kAy > ag > %k()\l + A2}
Moreover, %k()\l + X)) = %k(ul + p2) > kps. Then
> Wu={( <= 1+ (k—Opz, (k—Lpy + lpz) : 0 < £ <k},
and we can take F' = {(0,0), (1, —=1), ..., (11 — 2, 2 — pi1)}-
Step (C): v : X*(T)*" = X*(T")" respects addition (so extends to an isomorphism of X*(7T) = X*(T")).
Proof: For all a,3 € X)(T")", then a + f is the biggest element v € X*(T")* such that V, is a direct

summand of V,, ® V. Also, for all A\ € X, (T)F, A+ p is the biggest v € X, (T)* such that IC,, is the direct
summand of ICy x IC,,.

Step (D): ¢ preserves < (not just <): Let @' € X*(T”) and Q¥ C X,(T') be the root (coroot) lattice.
Lemma: Let A\, u € X*(Ty). Then TFAE:

(HA<n

2)A<pand p— X €Qgy.
Given this lemma, proving (D) is clear; need to show that ¢ identifies the root and coroot lattice.
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15 Lecture - 04/16/2014

Proof of Geometric Satake: Had G connected reductive over k = k. Showed Sat(G) with x and w was a
Tannakian category, and let G’ be its Tannakian group over Q,. Our goal is to prove G/ = G.

From what we proved last time: We know G’ is a linear algebraic group that’s connected reductive.
Moreover if G’ 2 B O T’, saw we had an isomorphism ¢ : X, (T)" — X*(T)" which was compatible with
addition and preserved the “weird Bruhat order <”. Thus it extended to an isomorphism X, (7") = X*(T").

What was left from our setup last time was proving Step (D), that +(QY) = Q' where QV is the coroot
lattice of X, (T) and @’ the root lattice of X*(T), and Step (A) that a connected reductive group over an
ACF is uniquely determined by X*(T')" together with +, <.

Proof of Step (D): Start with a Lemma 1: H connected reductive over F' = F. Let H D By D Ty and
X*(Ty) 2 Qu as usual, and let Qf; = Qu N X*(Ty)*. Then if « € X*(Ty), have a € QF; iff there is
p € X*(Ty)™" such that 2p — € X*(Ty) ™' and Vs, is a direct factor V, ® V..

Remark: This lemma lets us characterize (Q¥)™ and Q7 in terms of things that we already know are
compatible under ¢; thus: Corollary: ¢(QV) = Q. (Note that the condition of the lemma is stable by sums:
if we have (o, p11) and (g, o) satisfying it and we set p = p1 + p2 and @ = a1 + g then 2u—a € X*(Ty) ™t
and ... 7))

Corollary (of the last corollary): ¢ respects <. This follows from the following: Lemma 2: Let A\, u €
X*(Ty). TFAE: (i) A < p, (i) A < pand u— X\ € QF;.

Proof of Lemma 1: = : If « is a positive root, take p such that (u,a) = 2. Then 2u — o = a+ o (1),
50 Vau—q is a direct summand of V,, ® V,, by Theorem B (from last time). The <= direction is trivial.

Step (A): Goal is to prove that if H, H' are two connected reductive groups over an algebraically closed
field (of characteristic zero?) F = F, with root data of H being (X, ®,A, XY, ®V, AY) and for H' being
(X’7<I>’,A’,X’\/,<I>'V,A’v). If we have an isomorphism ¢ : (X1, <, +) — (X"'r7 <,+) then H = H'.

Proof: (From paper of T. Richarz): Since such an H is determined uniquely by its root data, we just
need to show that ¢ gives an isomorphism of the root data. First, ¢ extends to ¢ : X = X’ and dualizing
gives /¥ 1 (X')V =2 XV,

Next, t(A) = A’ (i.e. ¢ preserves simple roots) because A is the set of minimal elements of the set
{aeX: :a>0,a# 0} same for A’. Then, (Y[AY] = AY because if a € A get o¥ € AY; want to
show 1*(aV) = 1(«)Y. For this, note that for all u € X'T, (1/,u(a)V) is the unique m € N such that
21— mu(e) € X' but 2u — (m + 1)i(e) ¢ X'T (exercise), and similar statement for pairing with (—, o¥).
So get (1, (a)¥) = (= (1), a¥).

Finally: ¢[®] = ®": The Weyl groups W, W’ are generated by s, for & € A and o € A’, respectively. So
¢ intertwines the actions of W and W', so ® = W'A’ = ([WA] = +[®] and similarly for ¢Y[®""]

So that deals with the easy parts of geometric Satake, proving it modulo the two big theorems stated
last time. Now let’s start working on those. 7
Theorem A: Let G be connected reductive with k = k. Let 1, ..., u, € Xi(T)*. Then

IC, *--%1C,, = @ VA . ®IC
AZp1+-Fpn
where VP;\IW’ PR Q-vector space determining the multiplicities, such that
() X =p1+ -+ pn, V), ., is 1-dimensional.
(ii) A= w1 + - - + wp by, with w; € W then dimV;fh___wn > 1.
Proof of this uses the n-fold convolution diagram. For all A € X, (T)", let Oy be the orbit of t* in Grg.
For all Ay,..., A\, X.(T)F, we have g, ' of a twisted product is the same as p,! of an untwisted product.

Notation: Write
Oxprry = Ox X -+ XO)

n
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and

Also let ICy,,... x, = ICM@ e @ICAH, which we showed was the intersection complex of 6,\1}“,)\”. Note
that 6/\1,..‘)% is stratified by the O,, .. ., for v, <A;.

We need the following notion of Goresky-MacPherson: Let f : X = JU, — Y = (Y3 be a map of
stratified schemes of finite type over k. Assume that f is proper surjective birational and for all a, f[X,] is
a union of strata Yz. We say f is stratified semi-small if, for all o, 8 such that f[X,] O Ys and all y € Y3(k),
we have

dim f~'y] N X, < %(dimXa — dimYjp)

Theorem (G-M): If f is stratified semi-small then f,/Cx € Perv(Y).
Some part of this statement might be wrong??77?
Definition: f is stratified locally trivial if for all «, 8 with f[a] D Yp, the map

f|f71[Y/3]ﬁXa : f_l[YB] NX, — Y5

is a Zariski-locally trivial fibration.

Assume the theorem applies. Assume that f.ICx = P 5 Vp @ ICy,. Where ICy, is the intermediate
extension of the intersection complex on Y3.

Proposition (Haines): Suppose that X,Y are proper. Fix § and y € Yg(k). Then dimVjs is the
number of irreducible components of f~![y] of dimension 3(dimX — dimYj), which is the dimension of
HAmYs (f-1[y], ICx).

Go back to our affine Grassmannian, fix g = (p1,...,pn) € Xu(T)", and let m, = mn|5u1 . Have

----- Hn
map OM1,~~7Mn - OM for =1+ -+ + pn-
Theorem (Ngo-Polo, Haines): m,, is stratified semi-small and stratified locally trivial (with the stratifi-
cations given before).

The main tool in the proof of theorem A will be “semi-infinite strata”. Let B C G be the Borel, so we
get Grp — Grg which is an isomorphism on k-points. Have 2: my(Grp) — mo(Grr) = X.(T). For all
v € X.(T) let S, be the image of the corresponding connected component in Grg, so

Sy (k) = B(E[t)t" G(k[t])/G(E[).

Notation: For A € X, (T)", let Q()\) be the weights of TV on Vy, so {v € X.(T) : Yw € W,wr < A}.

Theorem (Ngo-Polo, Gortz-Haines-Kottwitz-Revmon) For all v € X, (T) and A € X,.(T)", S, NOx # 0
only if v € Q(A), and in that case S, N O, (a locally closed subscheme of Oy with k-points S, (k) N Ox(k))
is of pure dimension (p, v + A).
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16 Lecture - 04/18/2014

Fix the lemma from last time (about the characterization of Q};). What it should be:

Lemma: @7, is generated (as a semigroup) by the set of @ € X*(Ty) such that there exists p € X*(Ty)*
with 2pu —a € X*(Ty)" and Va,—q < V, ®V,,. (Last time said “equal” but couldn’t figure out why this was
stable by sums... Answer is it’s not!)

Now: Look at Grg 2 Oy = G[t]t*, and also take S, C Grg given by S, (k) = B(k[t])t” for v € X, (T).

Theorem: For all v € X, (T) and for all A € X, (T)* then S, N O, is ) unless v € Q(A) (the weights of
V), and in that case it’s of pure dimension (p, A + v).

Proof: Let 2p¥ =3 vcqvs @' : Gy — T. Via 2pY, G, acts on Grg (by left multiplication), and:

(a) The O, are stable.

(b) The fixed points are the t* for A € X,(T).

(c) For all z € S, (k), we have lim, 0 2p" (u)x = t”.

If x € S, (k) N Ox(k) then t¥ is this limit which is in Oy (k) so v € Q(N).

The second part follows easily from the statement that (when v € Q(\)) we have that Hz(S, N Oy, ICY)
is concentrated in degree (2p,v). To prove this statement, use following steps:

(A) Prove everything in the case where ) is minuscule or quasi-minuscule; can explicitly compute S, MO
there. (Remark: Messed up the definition of minuscule last time because we’re not working with a semisimple
group; if A is a set of X, (7)™ \ X.(Z) where Z is the center, have two possibilities: Either A is minimal in
X, (T)* and (A, ) <1 for all & € ®* (in which case A is minimal) or there is A € ®* such that (\,a) > 2
then A € ¥ + X.(Z) for § a maximal root (in which case A is quasi-minuscule)).

(B) In general write A = Ay + - -+ + A, with each A; minuscule or quasi-minuscule. Using setup from last
time, have my : Oy — O, and know IC} is a direct factor of my.ICy = ICy, *---x ICy,. So

H*(a,\ n SV,IC)\) — H*(é)\ N SV7mA*[Cﬁ),

and by proper base change this latter thing is H} (m;,'[S,], IC,). But m;, ! decomposes as | J, S, NOy where
v runs over tuples with v, +--- 4+ v, = - -
nu, and

SK = Syl X SV1+U2 X e X SV1+...+Vn — GI‘Z .

Also,

SZHGA% (SVI mO>\1) X X (SVn ﬂa)\n)

and this induces

H? (S, N0y, ICy) = Q) H:(Sy, N0y, ICy,).
i=1
Use the stratification spectral sequence to deduce that H*(Sz N Oy, IC)) is concentrated in degree (2p,v).
Now, recall the notation that for for = (1, ..., pun) with p; € X, (T)*, set g = pg + - - + i, and then
the natural map m,, : O, — O, is semi-small (?).
Corollary: Take A € X,(T)T such that A < p. Then for all z € Oy (k), dim mﬂl(x) <{p,pu—A).

Proof: The fibers are all isomorphic, so it’s enough to do it for one . Now, Sy N O, is open dense in Oy by
the preceding theorem. So it’s enough to show dimm,, 1(SANO0y) < {p,pn — A). But we have a stratification

LH(SHN0y) CSm N (Sn0y) = | SN0,

PN
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and each S, N Uﬁ is a product of S,, N O,,. But the dimension of S,, N O, is {p,v; + w;), and the sum of
this over all 7 is < (p, A + p).

Back to Theorem A: Write mﬁ*IC’ﬁ = @)\SH Vlf‘ ® ICy. We wanted to show that:
(i) dim V! =1,
(ii) If A ;wlul + o+ Wity € Xi(T)T with w; € W, we have dimVu’\ > 1.

Proof: (i) is obvious because m, is birational. For (ii), reduce to n = 2, and then it’s an easy direct
calculation. This proves Theorem Al

Theorem B: If H is connected reductive over F' = F', and we take p1, ..., pun, € X*(Tg)t and wy, ..., w, €
Wy such that A = wypg + -+ + Appin € X*(Ty) ", then V) is a direct summand of V,,, ® ---®@V,,,. (Due to
Kumar, Matheiu; known as the PRV conjecture).

Idea of proof (for characteristic zero): Take A\, u € X*(Ty)*T, W € Wy, and v € Wy - (A+wp) dominant.
Goalis V, = VA®V,. Let X = H/By = U%WH X, for X, = ByvBg/Bpg. Then have the Schubert variety
X, for any w; the Bott-Samelson resolution is a resolution of singularities )?w — X, (with )?w smooth).
This X,, lives in X x X. Now, A, u give line bundles £y, £, over X.

Kumar proves: H°(Xy, Lo(A ) = Vy ® V,, and H' of this is zero for i > 0. But this H° is the
U(h)-submodule generated by ey ® e, (the weight vectors for A and wyu). On the other hand, this H® also
decomposes as

B V' @Homy,, (Cr & Vy, Vi)
0eX*(Tw)

where by is the Borel, Cy is C with by acting through A, and V,, is the sub-U (b )-module of V,, generated
by ew,. This Homy, serves as a space of multiplicities, and it’s 1-dimensional in the case § = v.

So this (sketchily) proves Theorem B, finishing the proof of geometric Satake! At least, the case of it we’ve
stated, where k is algebraically closed. Now we move on to the case where k isn’t necessarily algebraically
closed. Fix an algebraic closure k, and set I' = Gal(k/k) and G = G(Q,) x T.

Theorem (Timo Richarz): The category (Sat(G), *) (which we can still form, and fix the commutativity
constraint, etc.) is equivalent to (RepZ;, ®) where Repi; is the category of finite-dimensional continuous
Qy-representations p of ZG such that p| &@,) is algebraic.

We will need: Corollary: There is an exact tensor functor Reps; — Sat(G) that’s a section of w :

Sat(G) — Vecg, given by w(K) = @Hi(GrG7E, K%) (which has an action of G(Q,)). This follows from

Sat(Gy) — Sat(G).
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17 Lecture - 04/23/2014

Pseudo-representations: Let I be a profinite group, £ prime. Trying to construct continuous homomorphisms
' — H(Q,) for H connected reductive (where H = G). If H = GL,, then p is just an n-dimensional
representation of IT".

Know that if p,p’ : T' — GL,(Q,) are semisimple then they're equivalent iff tr(p(y)) = tr(p(7)) for all
v € T. A pseudo-representation of dimension n is a continuous function 7' : I' — Q, satisfying the same
properties as trp (due to Wiles, Taylor, ...):

1. T(1) = n.
2. T(vy") =T(v'y) for all v,y € T.

3. Za’ E(U)Ta(gla v 7gn+1) = 0 for all Y1yevorYnt1 € I.
For condition 3, let ¢ : S;, 11 — {£1} be the sign function. If ¢ € S,, ;1 has cycle decomposition H(igj) e z%))
define T, : T"*1 — Q, by

_ (4) (@)
To(V1s- s Yns1) *HT(’YZ’I i,,,j)'
Can prove trace satisfies 3. Theorem (Taylor): Each such T is of the form trp for p : I — GL,(Q)
continuous semisimple.

Problem: What if H # GL,,? Try a Tannakian approach: For every ¢ : H — GLx, give compatible T,
satisfying (1), (2), (3). This gives family of maps p, : I' = GL,(Q,). How do we know this comes from
p:T — H(Q,). This approach doesn’t seem very doable.

Lafforgue’s Solution: Instead of just trp, use all conjugacy-invariant functions on H(Q,) and in fact
all simultaneous-conjugacy invariant functions on H(Q,)"’s. (Notation: Let H(Q,) act on H"(Q,)" by
conjugacy, denoted by v - (71,...,%) = (yyy™1). If p: T — H(Q), for all f: H(Q,)" — Q, regular
invariant by conjugacy (????) have that Ty, : I'™ — Q, given by (71,...,7) — f(p(71),- .., p(7n)) depends
only on he conjugacy class of p. Let H"//H be the coarse quotient Spec O(H™)" | and take E C Q, finite
over Qy such that H is defined and spit over F.

Theorem (V. Lafforgue): The map ¢ + (T,,)n, feo(sn/m) induces a bijection between conjugacy classes

of continuous p : I' — H(Q,) that are semisimple (i.e. mZur is reductive) with families of E-algebra maps
=, :O(H"//H) — C(I'™,Q,) such that:

(0) There exists E'/F finite with img=,, C C(I'", E").

(1) For all m,n >0, forall ¢ : {1,...,m} — {1,...,n}, for all f € O(H"//H), and for all (y1,...,7,) € '™,
we have

En(F) () = Em(H)(ve)

where f<(g;) = f(9¢())-
(2) For all n > 0, for all f € O(H™//H), and for all (71, ...,Yn+1) € I™TL, have

~

Ent1(F) 15 57) = En(H) (15 -+ -5 Y15 YTn¥nt1)

~

where f(gl7 o 7gn) = f(gla s agn—lagngn-i-l)-
Moreover, if our correspondence identifies p with (Z,,) (given by =, (f) = T,,) then there exists m such that
for all profinite quotients T' — T, then if Z,,(H™//H) C C(T"",Q,) then p factors through T.

Remark: If H = GLy, by the work of Procesi, O(H"//H) is generated (as an algebra) by functions
(915---9n) = tr(giy - - 9si.). So (E,) satisfying (1) and (2) are uniquely determined by Z;(tr). Then find
that (Z,,) satisfies (1) and (2) iff Z;(tr) is a pseudo-representation. So this is an actual generalization!
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Invariant theory. Let E be a field (E = E, char E = 0 unless said otherwise), H connected reductive
over E, X an affine variety over E with a (left) action by H. Notation: O(X)# is the H-invariant in O(X),
if x € X(F) then H, is the stabilizer and Hz is the orbit.

The Reynolds operator (characteristic zero): For all V' € Repy, V = V @ Vi where Vj is the sum
of all nontrivial irreducible subrepresentations. The Reynolds operator is the projection Ry : V — VH
corresponding to this decomposition. Then R, is H-equivariant, functorial in V. If V is in IndRepy;
(possibly infinite-dimensional but every vector in a finite-dimensional subrepresentation, e.g. V = O(X))
define R, : V — VH as the limit of the finite-dimensional ones. In particular get Rx : O(X) — O(X)#,
which is O(X)*-linear because if a € O(X)¥ then b~ ab is H-equivariant.

Theorem: (i) O(X)H is finitely-generated. (True in positive characteristic too, but proof harder).

(ii) Let X//H = Spec O(X)H# be the coarse quotient, mx : X — X//H. Then 7x satisfies the following
property for all affine H-varieties Y

Hompy (X,Y) = Hom(X//H,Y)

where we go from the RHS to the LHS via pullbacks.

(iii) I Y, Y’ C X are closed and H-invariant then mx|y is isomorphic to my : Y — Y//H, and 7x (Y NY’) =
mx(Y)Nrx(Y').

(iv) For every = € (X//H)(E) there exists a unique closed H-orbit in 73 [z].

Proof: (i) First note O(X)* is Noetherian; if J C O(X)# is an ideal and I = JO(X), then Il = Rx(I) =
J-Rx(O(X)) =J. Case when X =V € Repy: Write O(V) = D, cyy O(V)n, with

OV)n ={f € OV) : (M) = \"f(v)¥A € Gy, }.

This is preserved by H and induces O(V)” = @, .y O(V)E. But @,>10(V) is finitely generated as an
ideal, so O(V) is finitely generated.

General case: There exists a H-equivariant closed immersion X — V € Repy; then O(V)H — O(X)H.
Why does X < V exist? Choose W C O(X) a finitely-generated H-invariant subspace generated O(X) as
an algebra. Then take X — W* by x — (v — v(x)).

(ii) obvious. (iii) follows from the arguments in the first part of (i). (e.g. if J = O(Y) and J = O(Y")
take I = JO(X) and I’ = J'O(X) and want (I + I')¥ = 17 + (I')¥ but both equal J + J’).

(iv): uniqueness follows from (iii). Existence: take an H-orbit in 7~![X] of minimal dimension.

Theorem (Kempf, strong Hilbert-Mumford theorem): Let E be a perfect field of any characteristic. Let
xr € X(F), let O be a closed orbit contained in Hx. Then there exists A : G,, — H such that lim;_,o A(¢)x
exists and is in O.

Remark: what does lim;_,o A(t)z exists? It means A extends to a map A' — X, and the value at 0 is in
0.

Application by Richardson: Let E = E be of characteristic zero, and H acts on H™ as before. Say an
element g = (g1,...,9n) € H" is semisimple if A(g), the Zariski closure of {(g1,...,g,) in H, is reductive.

Corollary: Let (g1,...,9,) € H. TFAE:

(i) (91,---,9n) is semisimple.
(i) H - (g1, .-, 9n) is closed.

Definition: If g € H™(F) then a Levi decomposition of g is a decomposition g = sn such that A(s) is a
Levi subgroup of A(g) and A(n) C R(A(g)). If n = 1 this is just the Jordan decomposition.

Corollary: Levi decompositions always exist (but are not always unique in general). If g = sn is a Levi
decomposition then H, = Hy; N Hy,, and there exists A : G,,, = H with lim A(t)g = s. B

Sketch of proof of Kempf’s theorem (for E = E case): Take # € X, and let O be a closed orbit in Hz.
Then there exists a curve C' in Hz such that € C(E) such that C N O # (. Then there exists a rational
map ¢(t) : Spec E[t] — G with limg(t)z € O. So g(t) € H(E((t))). Use Cartan decomposition to get
hi(t), ho(t) € H(E[t]) and p : G, — H such that hy(t)g(t) = t*ha(t). Set h; = h;(0). Let y = lim g(¢)x.
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Then h1y = lim hy (¢)g(t)z = lim ha(¢)t"2z € O. But it is not always true that h1y = lim ho(0)t#2. Claim: (a)
lim t*hox always exists, and (b) if X =V € Repy and y = 0, then hyy = lim hot*x does hold. Claim implies
theorem: there exists f : X — V that’s H-equivariant such that O = f=1[0] (easy) then lim t*hox € O so
lim hy '##hox € O (a 1-parameter subgroup of H). Proof of claim: Assume X = V. Then hy(t)x = hox +£(t)
for e € V[t] and £(0) = 0. Decompose V into G,,-eigenspaces for the action via u: G,, - H, V =P V;;
then

ho()z =Y ((haw)i +(t);) = "> ((haw)i + (1)) = Y _ t'((haw)i + £(t):).

Then the limit of t*ho(t)z existing means (hex); = 0 for i < 0. So the limit t*hox exists.
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18 Lecture - 04/25/2014

Theorem: Let E/Qy be a finite extension, H connected reductive split, I" profinite group. Let H act on H" by
diagonal conjugation. Suppose for all n € N you have an E-algebra morphism Z,, : O(H"//H) — C(I'™, E)
such that:
(1) E, is functorial in {1,...,n}.
(2) Ent1(H (155 ¥n41) = EalF) (15 -+ Yo Ynt1)- _
Then there exists £’/ F finite and p : T' — H(E’) unique up to H(Q,)-conjugacy such that Z,,(f)(y1,...,vn) =
flp(v1),--., p(yn)) and mzm is reductive. Moreover there’s m > 0 such that for all ' — T, if 5, :
O(H™//H) — C(T", E) then p factors through T.

Remark: Invariants for other groups (assuming algebraically closed characteristic zero base field). Procesi:
The algebra of conjugacy invariants on O(n)" or Sp(N)¥ is generated by

(glv s 791\7) = tr(Eil (gi1)7 s vgir(gir))

for ¢; being either id or T (in the orthogonal case) or id or g ~ J "¢ "J (in the symplectic case).
Zar

Proof of theorem: Remember that we say that (g1,...,g,) € H(Q,)" is semisimple if (g1, ..., gn) isa
reductive subgroup and that (g1, ..., gy) is semisimple iff H (g1, ..., g,) is closed (?7). We also have seen that
(H™//H)(Q,) is isomorphic to the closed H-orbits in H"(Q,), which is the same as the set of semisimple
(91,---,9n) modulo conjugacy.

Let (71,---,v,) € ™. we have a character O(H"//H) — Q, given by f +— Z,(f)(71,---,7n); this
gives a point of (H"//H)(Q,). We write £3%(v1,...,vn) for the corresponding semisimple conjugacy class in
H™(Q,). We also write &,(v1, . .,vn) for the fiber over this point.

If (g1, -, 9n) € E5 (71, -y Yn), We set
Clg1,---,9n) = Zu({g1,- -, 9n)) D(g1,.--.9n) = Zu(C(g15- -, 9n)),

both reductive group. Let

={(n,v1,---, ) :n>0,71,...,7, €T},
={(n,71,---,7) €N :dim (g, .., g,) maximal }
J\f2 ={(n71,...,Yn) €N :dimC(g1,...,gn) minimal },
N3 ={(n,71,.-,7) € N' ¢ |10(C(g1, - -, gn)) minimal },
All of these are taken for fixed (g1,...,9n) € £5(71,...,7m). Anyway, fix (n,71,...,7) € N? and a

corresponding (g1, ..., gn)- B
Lemma: Let m > 0, let 61,...,d, € I'. Then there exists a unique hy,...,h, € H(Q,) such that
(91, -, Gn, b1, h )eﬁnim(%, ;). We have C(g1,...,9n,h1,- ., hm) =C(g1,...,9n) and hq,... by, €

D(g1,...,9n). Moreover:
i) Ifp>0and ¢:{L,...,p} = {1,...,n} then
(917' . 7g’rLahC(1)a . 7hC(p)) € 6:1,112(71’5((]))

(11) Take m = 2. Then (g1, <oy 0n, hlhg) S {flil(%,élég).
Proof: Pick (z1,..., 20,1, ym) € &%m (Vi 05). Is (x1,...,2,) semisimple? By condition (1) of the
theorem applied to the inclusion {1,...,n} — {1,...,n+ m}, have (z1,...,2,) € &.(71,...,7n). Hence

JE— 1 -
(g1y- -y 9n) “"is conjugate to (a subgroup of) a Levi subgroup of (x1,...,x,) . (We know there exists
a cocharacter yi : G,, 5 — Hg, such that limpu(t)(z1,...,2,) exists and is conjugate to (g1,...,9m)-
Then p, = {g € H : limu(t)gu(t)~! exists} is a parabolic subgroup of Hg, with Levi Zg(p). Then
(X1, ., Tn) “c P, and (g1,...,9n) “"is contained in a conjugate of Zg(w)). In particular,

Zar —FFFZar Zar

dim (g1, ..., 9n) < dim{(x1,...,zp) <dim (X1, ..oy Tny Y1y ooy Ym)
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7 B ———
As (n,71,...,7vn) is in 'L, these are equalities so (g1, ..., gn) “ and (T1,...,Tn) " are conjugate.

So (x1,...,%n) € E°(M15- -+, Yn) SO We may assume ; = g;. Take h; = y;. We have (g4, hj) € v52,, (74, 05)
and (hq,...,hy) is unique up to C(g1, .. ., gn)-conjugacy. We have C(g1,...,9n,P1,-- -, hm) C C(g1,.-,9n)

ar

and (z1,...,Tn) = {(T1,- s Tn,Y1,- .. ,ym)Zar. So (n+m,7i,8;) € N1 As (n,vi) € N3 we get C(g;, hj) =
C(gi) so hi,...,hm € D(g1,...,9m) so are uniquely determined. Then (i) and (ii) follow from (1) and (2)
of the statement plus uniqueness.

End of proof of theorem: Let p: I' — H(Q,) be defined by: for each v € ', p(7) is the unique element
of H(Qy) such that (g1,...,9n,p(7)) € €51 (1, .-, 7n,7). Then we need to check:
(A) There’s E'/E finite such that p[y] C H(E’) (immediate if we can prove continuity without knowing
this?): Just choose E' with g1,...,9, € H(E’).
(B) By (i) in the lemma, for all 41,...,d,, € ' we have

(915 +39nsp(01), -, p(0n)) € §5 (V155 Vns B0, -+ On).-

(C) By (B) and (ii) of the lemma, for all d1,...,d2 € I" we have

(917 <o 9ns p(él)p(52)) € 578{:—1(715 cee ,")/7“(5152),

so p(81)p(d2) = p(0162).
(D) Let m €N, 61,...,0,, €T, and f € O(H™//H). Then

(g17"'7gnap(51)7"'7p(6m)> S :rgzim(’yl) "77177/7617"-’671)-

By applying (1) of the theorem to {1,...,m} — {1,...,n+m} given by j — j+n, we get (p(d1),...,p(0m)) €
En(Brr. 0 ke F(p(01). 2 p(3un)) = Eon (F)rr- ).
(E) p is continuous: Note p[I'] € D(gi,...,gn); we want to show that, for all f € O(D(g1,...,9n)), fop:
[ — Q, is continuous. Claim: ¢ : O(HE ™ //Hg) — O(D(gy,...,gn)) given by f i+ (g+ f(g1,---,9n,9))
is surjective. Granting this, for f € O(D(g1,...,9n)) let f' € O(HE//Hg:) be such that ¢(f') = f. Then
FOO) = P11 G0 P) = Bya (F )11 - 7os7y) 35 contimuons.

Proof of claim: ¢ is the composition of ¢, : O(Hp ™ //Hg) — O(Hg'//C(g1,--.,gn)) given by f
(g = f(g17 s ,gn;g)) and the restriction map g2 : O(HE’//C(gla s 7gn>) - O(D(gl7 s 7gn)>

Proof that go is surjective: D(g1,...,9n) = C(g1,---,9n) - D(gs+) is a closed C(g1,...,gn)-invariant
subvariety of Hgs so D(g1,...,9n)//C(g1,- .., gn) has a closed embedding to Hg///C (g1, ..., gn). Proof that
q1 is surjective: The set Y = Hp/((g1,-..,9n) X Hg) is closed in Hgf'l and Hpgs-invariant. Then Y//Hg/
has a closed embedding to Hp:'//Hp/, and is isomorphic to Hg//C(g1,...,gn) Via g+ (g1,-- -, Gn, 9)-

———Zar —FF—FZar

(F) p is semisimple because p(I') = {(g1,.--,9n)
Proof of the last statement of the theorem: p(7) is uniquely characterized by all f € O(H"*!//H). But this
is because f(gh s 7gnvp(7)) = En+1(f)(717 o J’ynvfy) o
Remark: What happens if we work with F, rather than Q,? Everything works, if you use the right
definitions. Definition: k a field, G/k reductive; we say a subgroup I' of G(k) is G-completely reducible if
for all parabolics P C G such that I' C P(K) there exists a Levi with T' C L(k). The theorem goes through
if we replace ‘semisimple” with this everywhere. (Remark: If G = GL(V) this says that the representation
V of T' is semisimple). Proposition: if L is a Levi of G with I" C L(k), then I' is G-CR iff it’s L-CR.
Theorem (Bate-Martin-Rhorle): Suppose k = k, let I' C G(k), let T' be a maximal torus in Zg(T') and
let L =Zg(T) (soT C L(k)). Then I is completely reducible iff T is not contained in any proper parabolic
of L. Cor (BMR): Let g1,...,9n € G(k). Then (g1,...,gn) is completely reducible iff G(k) - (g1,...,9n) is
closed.
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19 Lecture - 04/30/2014

Aim today: repeat the first lecture in more detail. Let X/F, be a curve (smooth proper geometrically
connected). Let F' = F,(X), |X]| the closed points of X, for all v € |X]| let F}, 2 O, be the completion,
and A the restricted direct product H/ F, with respect to the O,’s. Let G/F, be a connected reductive split
algebraic group.

To deal with levels: Let N C X be a finite subscheme, and let Oy = O(N) and Ky = ker(G(O) —
G(Op)). Fix a lattice E in Z(F)\Z(A). Then can define the space of cusp forms

Ogusp — CEUSP(G(F)\G(A)/KNE7@Z)7

a smooth function f is a cusp form iff for all P C G parabolic proper subgroups and for all g € G(A),

/ f(ng)dn =0
Np(F)\Np(A)

where Np = R, (P). Then CS"P has an action of the Hecke algebra Hy = C.(Ky\G(A)/ Ky, Qy).
Theorem (V. Lafforgue): There exists a canonical decomposition of H y-modules

o — I,

(where ¢ runs over all isomorphism classes of continuous semisimple (i.e. o(T' F)Zar is reductive) unram-
ified outside of N homomorphism o : Gal(F/F) = T'y — G(Q,)), which is compatible with the Satake
isomorphism at places v ¢ N (since Hy = ®/UE‘X‘ HNw)-

Idea: For number fields we’d use Shimura varieties to construct global correspondences. For function
fields, have analogues of these for every group G and every cocharacter. These are moduli stacks of shtukas.
For all finite I, for all level levels N, and for all irreducible representations W of G, we have a Deligne-
Mumford stack Cht; w,n (G-bundle with additional structure). These are all substacks of a big ind-stack
shtuka Chtr y all living over (X \ N)I. Now, W corresponds to a cocharacter A : G,,, — GI. If X is not
minuscule, then Cht;wy — (X \ N)! is not always smooth. We consider the (intersection) cohomology
(with compact support) of Cht; y ., in the middle degree, seen as an ind-constructible sheaf over (X/N)?.
Namely, for Chtrw,n/Z have an open dense smooth substack of dimension d; call it U and the embedding
j. Then set

IConty 1w = (1:Qeu[d))[—|1]]
Look at
ROW!(OhtLW,N/Ea ICChtN,I,W)'

This has an action of H, and expect it to contain all of the cuspidal representations.

But there are some annoying technical problems to get around. First of all, we can restrict to the generic
point 7 of (X \ N)! to get a representation of w$t(n,7) which is not T'f, (the thing we want a representation
of). By Drinfeld, if the sheaf were constructible then it would be lisse on some open of the form U’ for
U #(in X\ N, and we would then get a representation of I'L, in that case. Lafforgue: Define a subspace
of “Hecke-finite” elements (elements that are in a finite-dimensional H y-invariant subspace) and show that
it is stable by enough elements to make Drinfeld’s lemma work.

Result: Get Hr n,w, an inductive limit(?) of finite-dimensional representations of Hy x I'L. Heuristic
(for G = GLy): This Hy n. should be @, A, ® W,1 where A, is a representation of Hy and W, is a
representation of GLL (which is just W with the action of 'L, coming from T'L, — G(Q,)! and then the
original action W). Expect A, = (7,)%~ where 7, is the thing corresponding to o under local Langlands.
Moreover: we have smooth maps from Cht; yw and from the closure of the orbit corresponding to W in
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Grx: to a fixed thing x. (Closure of the orbit: Note W corresponds to A : G,, — G, and recall that
Gryr — X! is locally isomorphic to (Gr(;)I x X1 outside of the orbits; can consider Oy in (Grg)l and then
we take Oy x X7 outside the diagonals and take its closure in Gryr).

Also have geometric Satake: Repg; — Pervgp(Gry:) given by taking W irreducible to ICo where
O is the closure of the orbit corresponding to W. Will then get a map from Repgs; — Perv(Cht; n) by
W = ICcht; y.w- Modulo generalizing the stuff about Drinfeld’s lemma, we get a functor H from Repg; to
the category of inductive limits of finite-dimensional representations of H x F%, sending W to something
we denote Hy w, n.

Proposition: (a) For all ¢ : I — J we have X¢ : Hyw,n = Hjwe n functorial in W, where W¢ is
W given the action of G/ coming from (* : G’ — GI. This is ['/-equivariant and H y-equivariant. Also
X¢o¢" = X¢ O X¢'-

(b) If I =0 and W = 1, then Hy; y = CS™P with the action of Hy.

Write Bung n(Fq) = G(F)\G(A)/Ky. Recall our heuristic for G = GL,, that H; n w should be @, A,®
W,1. If this is true then let ¢; : I — {0} be the only map, and for all x : 1 — WS (i.e. x € Wdiagenal &)
and & : W — 1 (ie. ¢ € (Wr)dagonal &) and all (v;)ie; with 5; € T'L, consider Sy, ¢ w,(4;), an operator on
CSUsP defined by a chain of maps

1

IR

cusp = H(z) X;I
Ce Hy 1 Hioy 1 — Hyoywe —— Hiw

J{(%)

Hioya G Hiopwe g~ Hiw

cusp
Ce

Hy 1

IR

On A, ® W, this is equal to multiplication by (z, (o(v:))§); but S; ;¢ (4,) makes sense in general (despite
its very complicated definition). Idea: define then diagonalize these to get the decomposition.
Note: The functions (g;)ier — (x, (g:)€) (with g; € GT) for W, z, € varying are all functions in O(é\\@l//é)
Proposition: (a) S7 ¢ w, () only depends on the corresponding function f € 0(@\\@1//@ So simplify
notation and call it Sy ; (-,
(b) f+ S1,,v,) is a map of Q-algebras

O(G\\G'//G) = Endy (CZP).

(c) As the parameters vary, the operators Sy s (,,) generate a commutative subalgebra B of Endo, (CS"P).

Let n > 0 and v : B — Q, a character. Note we have G"//G = G\\G{*"}//G (where the action
for the domain is given by conjugacy) by (g1,...,9n) = (1,91,...,9n). S0 g, n} gives a Q-algebra map
En O(G")/G) — B — Q,.

Proposition: The (Z,,,), are a pseudo-representation in the sense of last week. We get o, : I'r — G(Qy)
continuous semisimple such that the on v-eigenspaces of B on Cg"P, S I,f,(v) acts by multiplication by
flow()-

So we have a decomposition. Somewhat harder is that it’s a decomposition that actually means something
to us:

Key proposition (more difficult): If v € [X \ N| and if V' is an irreducible representation of G, then let
hv,, be the corresponding element of Hy , = C.(G(O,)\G(Fy)/G(Oy),Qp). Then hy, acts on CS™P as
S{1,2},f,(Frob,1) Where f(g1,92) = tr(g1g5 ', V) and Frob = Frob, is any lift of the (geometric) Frobenius at
v.
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