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1 Lecture - 02/05/2014
Fix a finite field Fq, prime number ` - q, let X/Fq be a smooth projective geometrically connected curve.
Let F = Fq(X) be the function field of the curve (e.g. F = Fq(T ) for X = P1). Let |X| be the closed points
of X (the places of F ), let A =

∏′
v∈|X| Fv which contains O =

∏
v∈|X|Ov. Take G/Fq a split connected

reductive group.
Automorphic forms: Levels are given by finite closed subschemes N ⊆ X, set ON = Fq[N ] and KN =

ker(G(O) → G(ON )). Take Z = Z(G), fix a lattice Ξ ⊆ Z(F )\Z(A). Then G(F )\G(A)/KNΞ has finite
volume (using Haar measure giving G(O) volume 1). Consider the space of functions

C∞c (G(F )\G(A)/KNΞ,Q`)

as our “automorphic forms”. A function f in this space is called cuspidal if, for all parabolic P ⊆ G,
NP = Ru(P ), then∫

NP (F )\NP (A)

f(nx)dn = 0

for all x ∈ G(A). Let

Ccusp = Ccusp(G(F )\G(A)/KNΞ,Q`) ⊆ C∞c (G(F )\G(A)/KNΞ,Q`)

be the space of such cusp forms; this is a finite-dimensional Q`-vector space.
Hecke algebra: TakeHN = C∞c (KN\G(A)/KN ,Q`) with convolution product; this acts on C∞c (G(F )\G(A)/KNΞ,Q`)

by right convolution, preserving Ccusp.
Dual group of G: Fix T ⊆ G a split maximal torus. The group of characters X∗ = X∗(T ) has a subset

of roots and the set of cocharacters X∗(T ) has a subset of coroots ϕ∨. The tuple (X∗, ϕ,X∗, ϕ
∨) is the

root data of G, and completely determines the reductive group. The dual group Ĝ is defined as the spit
reductive group with root data (X∗, ϕ

∨, X∗, ϕ). Examples: if G = GLn then Ĝ = GLn; if G = SO2n then
Ĝ = SO2n, if G = Sp2n then Ĝ = SO2n+1 and vice versa, if G = GSp2n then Ĝ = GSpin2n+1, if G = SLn
then Ĝ = PGLn...

Definition: A Langlands parameter for G is a continuous group homomorphism σ : Gal(F/F ) → Ĝ(Q`)
such that:

• σ is defined over a finite extension of Q` (automatic for GLn; maybe for others?)

• σ is semisimple (i.e. the Zariski closure of the image of σ is a reductive subgroup of Ĝ).

• σ is almost everywhere unramified.

We say two parameters are equivalent, σ ∼ σ′, if they’re conjugate under Ĝ(Q`). (E.g. a Langlands
parameter for GLn is an n-dimensional `-adic Galois representation of Gal(F/F )).

Main theorem (V. Lafforgue): There exists a canonicalHN -equivariant decomposition Ccusp =
⊕

[σ],σ unramifiedHσ

compatible with the Satake isomorphism at places of X \N .
Remark: For GLn this is known (Drinfeld for n = 2, L. Lafforgue for n ≥ 3).
Very rough sketch of proof: Suppose that the theorem is true. Then for every finite set I we get a functor

Rep(ĜI)→ Rep(HN ×ΓIF ) (where ΓF is the absolute Galois group), given by sending W to
⊕

σHσ ⊗WσI

(where W has ΓIF acting through σI). We have:

• H∅,1 = Ccusp.

• For all ξ : I → H, we have a ΓJF -equivariant isomorphism (functorial in W ) Xξ : HI,W
∼= HJ,W ξ where

W ξ is W with ĜJ acting via ξ∗ : ĜJ → ĜI .
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How do we get back to Langlands parameters from this formalism? Fix I finite, W ∈ Rep(ĜI), (γi) ∈ ΓIF .
Fix Ĝ-equivariant maps x : 1→W diag and ξ : W diag → 1 (so x ∈W Ĝ−diag and ξ ∈ (W ∗)Ĝ−diag). Then get
that

Ccusp = H∅,1 ∼= H{0},1 → H{0},Wdiag
∼= HI,W → HI,W

∼= H{0},Wdiag → H{0},1 ∼= Ccusp

where the arrows are x, (γi), and ξ, respectively. This whole big thing gives an endomorphism SI,W,x,ξ,(γi) of
End(Ccusp). On the factorHσ of Ccusp, trace through and find it’s multiplication by the scalar 〈ξ, (σ(γi)) · γ〉.

Lafforgue’s crucial observations:
(1) As we vary I,W, x, ξ, (γi), these scalars totally determine σ, so we get back Ccusp = Hσ by simultaneously
diagonalizing the SI,W,x,ξ,(γi).
(2) We only need to have the functors W 7→ HI,W plus some basic properties to make this work. (We’ll get
those functors by using the cohomology of moduli stacks of shtukas).

Explanation of (1): First note that, asW,x, ξ vary the functions (gi) 7→ 〈ξ, (gi)x〉 are exactly the functions
in O(Ĝ\\Ĝi//Ĝ) (“coarse quotient” - take ring of functions, take invariants).

If W,x, ξ correspond to f then SI,W,x,ξ,(γi) depends on W,x, ξ only through f ; write it as SI,f,(γi). A
simultaneous eigenvalue of these SI,f,(γi) gives a morphism of algebras

O(Ĝ\\ĜI//Ĝ)→ Cont(ΓIF ,Q`).

Write I = {0, 1, . . . , n}. Note that we have maps Ĝn//Ĝ→ Ĝ\\ĜI//Ĝ by (g1, . . . , gn) 7→ (1, g1, . . . , gn).
Proposition (Lafforgue, based on results Richardson). Let Γ be a profinite group, H a split connected

reductive group, E/Q` a finite extension. Suppose give, for all n > 0, we’re given algebra maps Ξn :
O(Hn//H)→ Cont(Γn, E) such that

1. (Ξn) is functorial for maps ξ : {1, . . . , n} → {1, . . . ,m}.

2. For all n, for all f ∈ O(Hn//H), if f̂ ∈ O(Hn+1/H) is given by f̂(g1, . . . , gn+1) = f(g1, . . . , gn−1, gngn+1)

then Ξn+1(f̂)(γ1, . . . , γn+1) = Ξn(f)(γ1, . . . , γn−1, γnγn+1).

Then, there exists E′/E finite and σ : ΓF → H(E), a semisimple continuous group homomorphism, such
that Ξn(F )(γ1, . . . , γn) = f(σ(γ1), . . . , σ(γn)) for all f . Moreover, σ is unique modulo H(Q`)-conjugacy.

Case H = GLr: let χst be the character of the standard representation; then τ = Ξ1(χst) : Γ → E

determines all of the Ξn(F ). Moreover, there’s a condition on τ given by
∧r+1

St = 0 (?).
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2 Lecture - 02/07/2014
Part I. The geometric Satake equivalence.

Introduction: Classical Satake. Let k be a finite field, K = k((t)), O = k[[t]]. Fix a split connected
reductive group G/k. The unramified Hecke algebra is

HG = C∞c (G(O)\G(K)/G(O),Q`)

for some ` not equal to the characteristic of k. We give this a convolution product (via Haar measure on
G(K) with the volume of G(O) equal to 1).

Example: G = T ∼= Gnm a torus. The dual group T̂ is the torus with cocharacters X∗(T̂ ) = X∗(T ) (so
we think of T̂ as being “X∗(T )⊗Z Gm”). Now, we have

X∗(T̂ ) = X∗(T ) ∼= T (K)/T (O) = TO)\T (K)/T (O)

where the isomorphism is given by µ 7→ µ(t). This gives an isomorphism of Q`-algebras

HT ∼= Q`[X∗(T̂ )] = Q`[T̂ ]

(where the first thing is a group algebra, isomorphic to K0(RepT̂ )⊗Q`, and the second thing is the rational
functions on T̂ . Here, RepT̂ is the category of algebraic representations, and K0 is the Grothendieck group,
which has multiplication given by tensor product).

General case: Fix Borel subgroup B ⊆ G, split maximal torus T ⊆ B. Set |ph = ϕ(T,G) and ϕ+ =
ϕ(T,B). Define

X∗(T )+ = X∗(T̂ )+ = {µ ∈ X∗(T ) : ∀α ∈ ϕ+, 〈α, µ〉 > 0}.

Cartan decomposition: G(k) =
∐
µ(t)∈X∗(T )+ G(O)µ(t)G(O). Then, if we set cµ to be the indicator function

of G(O)µ(t)G(O), the collection of these as µ runs over X∗(T )+ is a basis of HG as a Q`-vector space.
Satake transform: Set N = Ru(B), give Haar measure dn on N(K) such that the volume of N(O) is 1.

Let δ : B(K) → R+ be the modular function (so δ(g) = |αρ(g)|, αρ =
∑
α∈ϕ+ α, seen as a character of B

via B � B/N ∼= T ).
Definition: For all f ∈ HG, define Sf : T (K)→ Q` by

Sf(g) = δ(g)1/2

∫
N(K)

f(gn)dn = δ(g)−1/2

∫
N(K)

f(ng)dn.

Then Sf ∈ HT .
Theorem: Let W = W (T,G). Then S induces an isomorphism of algebras

HG ∼= HWT ∼= Q`[X∗(T)]W ∼= Q`[T/W ] ∼= K0(RepĜ)⊗Z Q`

(where the last isomorphism takes a class [V ] in K0 to the function g 7→ tr(g, V )).
Corollary: Characters HG → Q` are the same as Q`-points of T̂ /W , which are the same as semisimple

conjugacy classes in Ĝ(Q`).
Aside: Now, recall last time that Ccusp(G) ∼=

⊕
σHσ by a HN -equivariant map; the character by which

HG(k) acts on Hσ corresponds to σ(Frobx). (???)
Example: G = GLn, usual B and T ... Then HG ∼= Q`[T±1

1 , . . . , T±nn ].
Idea of proof of Theorem:

(1) Show that S is a morphism of algebras (“easy” calculation using the Iwasawa decomposition).
(2) Show S(HG) ⊆ HWT (also easy).
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(3) Show S : HG → HWT is an isomorphism of vector spaces. Had a basis basis cµ defined earlier of HG for
µ ∈ X∗(T )+. Define a basis {dµ} of HWT by setting, W (µ) = {w ∈W : wµ = µ} and

dµ =
1

|W (µ)|
∑
w∈W

wµ ∈ Q`[X∗(T̂ )]W .

Define the “matrix” (αλµ) by

Scλ =
∑

µ∈X∗(T̂ )+

aλµdµ.

Order X ∗ (T̂ ) by λ ≤ µ iff µ− λ is a positive sum of stuff in (ϕ∨)+. Calculate

aλµ = Scλ(µ(t)) = δ(µ(t))−1/2 · vol(G(O)λ(t)G(O) ∩N(K)µ(t)G(O)).

Lemma (F. Herzig): This volume is zero unless µ ≤ λ, and is |k|〈ρ,λ〉 if µ = λ. So (αλ,µ) is “lower-
triangular” and has nonzero diagonal entries so is invertible. Thus HG ∼= K0(RepĜ)⊗Z Q`.

Question: Can we upgrade this to an equivalence of (Tannakian) categories? Something isomorphic to
repĜ? Sheaf-to-function dictionary. If X/Fq is a scheme of finite type, K a constructible `-adic complex on
X, this passes to tK : X(Fq)→ Q` given by x 7→ tr(Frobx). The set of all TK/X⊗Fqn ’s determines the class
of K in K0 of the `-adic complexes.

Suggests: On LHS, use `-adic complexes on some scheme-line objectX/k such thatX(k) = G(O)\G(K)/G(O).
Issues: this quotient is X∗(T )+ which is discrete for any reasonable geometric structure. Instead, use `-adic
sheaves on G(K)/G(O) (affine Grassmannians) and take G(O)-equivariant sheaves. But |G(K)/G(O)| is
infinite so isn’t X(k) for any scheme of finite type; thus our affine Grassmannian will be an ind-scheme.

The RHS is RepĜ, a semisimple abelian category. The LHS thus cannot be Db
c (`-adic complexes) or

Shc (constructible sheaves). We’ll have to use perverse sheaves. Bonus: k can be any field (We’ll take k = k
to simplify).

The affine Grassmannian. Schemes as functors of points. Fix a commutative ring R (later we’ll take
R = k), and AffR to be the category of affine schemes over SpecR. The Zariski (étale, fppf, fpqc) topology
on AffR is defined by taking as covering families as the families {fi : Si → S}i∈I such that

• All of the fi’s are (open immersions, étale, flat of finite presentation, flat).

• There exists J ⊆ I finite such that S =
⋃
j∈J fj [Sj ].

Then, take PSh(AffR) to be all functors Affop
R → set, and Sh(AffR) the fpqc sheaves of sets on AffR.

There’s an exact sheafification functor PSh(AffR)→ Sh(AffR) which we’ll denote F 7→ Fsh.
Define an R-space as an fpqc sheaf on AffR. Example: if X/R is a scheme, then X : S 7→ HomR(S,X)

is an R-space. The map X 7→ X is functorial and induces a fully faithful functor SchR → Sh(AffR) (by
Yoneda + a bit more).

Faithfully flat descent (Grothendieck): Let {fi : Si → S}i∈I be a family of morphisms of R-schemes.
A descent datum for quasicoherent sheaves WRT this family consists of quasicoherent sheaves Fi on Si
for all i and isomorphisms ϕij : π∗iFi ∼= π∗jFj as schemes on Si ×S Sj . These must satisfy the usual
cocycle condition: for every i, j, k the following diagram commutes (where πi : Si ×S Sj ×S Sk → Si and
πij : Si ×S Sj ×S Sk → Si ×S Sj are the obvious things):

π∗iFi π∗kFk

π∗jFj .

π∗ikϕik

π∗i ϕij π∗jkϕjk
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A morphism ψ : (Fi, ϕij)→ (F ′i , ϕ′ij) of descent data is a family of morphisms ψi : Fi → F ′i such that

π∗iFi π∗jFj

π∗iF ′i π∗jF ′j

ϕij

π∗i ϕi π∗jϕj

ϕ′ij

Then get a category of descent data for our family {fi : Si → S}. If F is a quasicoherent sheaf on S, then
we get a descent datum consisting of the f∗i F and the canonical map. This assignment is functorial.

Theorem (Grothendieck): Assume that {fi : Si → S} is a fpqc cover. Then the functor from quasicoherent
sheaves to descent data above is an equivalence of categories. (I.e. a descent datum “glues” together to a
quasicoherent sheaf). (Later we’ll see this means the functor S 7→ QCoh(S) is a fpqc stack).

In particular, affine schemes over S are given as relative Spec’s of quasicoherent OS-algebras. So you can
descend affine schemes.
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3 Lecture - 02/14/2014
Last time: Defined R-spaces as the category Sh(AffR) for the fpqc topology. Also had PSh(AffR) with
sheafification functor (that’s exact) to Sh(AffR). Yoneda: Have fully faithful embedding SchR into R-spaces
by mapping X to the sheaf SpecA 7→ X(A).

How about projective and inductive limits? In Psch(AffR) these are calculated term-by-term, i.e.

(lim−→Pi)(SpecA) = lim−→Pi(SpecA).

What about in Sh(AffR)? Projective limits and directed ( = filtered) inductive limits are calculated term
by terms. General inductive limits: calculate limit in PSh(AffR) and sheafify. (Example of where we need
to do this: quotients).

Digression: How do you define “geometric” properties of R-spaces and morphisms of them? A few ways:
(1) Schematic morphisms. If f : X → Y is a morphism of R-spaces. Say f is schematic (or representable,
but some people define that using algebraic spaces) if, for all morphisms S → Y with S a R-scheme, S×Y X
is also a scheme. Then, if f : X → Y is schematic, say it satisfies a property (P) of morphisms of schemes
(that’s stable under base change and fpqc local on the target), we say f has property (P) if for every S → Y
with S a scheme, the base change S ×X Y → S has property (P). Examples of these: closed/open/locally
closed immersions, quasicompact, universally closed, affine, proper, quasi-affine, (locally) quasi-finite / finite
type / finite presentation (fibers of dimension d), flat, smooth, unramified, étale, ...

(2) Properties defined directly on functors of points. Most important are formally smooth/unramified/étale:
Let f : X → Y be a map of R-spaces. Then f is formally smooth/unramified/étale if for every surjective
R-algebra B → A with nilpotent kernel, and for every commutative diagram

SpecA X

SpecB Y

f
g

there exists (at least one / at most one / exactly one) g that fits in the diagram.
(3) Some properties are originally defined for schemes but can be checked on functors of points. Definition:

An R-space X is locally of finite presentation (type) if for every directed inductive system (Ai) of R-algebras
of finite presentation/type, if A = lim−→Ai then the map lim−→X(SpecAi) → X(SpecA) is an isomorphism.
A map f : X → Y is locally of finite presentation/type if for every SpecA in AffR and for every point
y : S = SpecA (i.e. y ∈ Y (S)) then the A-space f−1[y] given by

SpecB 7→ {x ∈ X(SpecB) : f(x) = y on SpecB}.

Theorem: This is compatible with the usual definitions for schemes (and compatible with the previous
definition for schematic morphisms, but more general since works for non-schematic ones!!!).

Other examples: quasi-compact, separated, proper, smooth/unramified/étale, open immersions ( = étale
+ universally injective), ...

Ind-schemes: A (strict N-)ind-scheme is an R-space X that can be written as

X = lim−→
n∈N

Xn

with the Xn’s R-schemes and the transition maps Xn → Xn+1 closed immersions. Will just say “ind-scheme”
to mean this in our context (in general could define ind-schemes over other index sets, and drop the “strict”
= closed immersion). If X is an ind-scheme, an equality (isomorphism?) X = lim−→Xn with the Xn’s schemes
is called an ind-presentation.

Examples:
∐
n∈N P1 (is this the same as the disjoint union of schemes???), lim−→An (this is definitely not

a scheme!) By following stuff: this is ind-affine and ind-finite type.
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Definition: We say that an ind-scheme X is of ind-finite type (ind-affine, ind-proper, ind-projective, ...)
if for every ind-presentation X = lim−→Xn, the schemes Xn are of finite type (affine, proper, projective)... We
say X is reduced (integral) if there exists an ind-presentation with Xn reduced (integral) - not necessarily
true for all!

Lemma: Let X be an ind-scheme, Y → X a schematic closed immersion. Then:
(i) Y is an ind-scheme.
(ii) If Y is a quasicompact scheme and X = limnXn is an ind-presentation, then Y → X factors through
some Xn.
(iii) If X = limXn = limX ′n are two ind-presentations with Xn, X

′
n quasicompact, then for all n, there exists

m such that Xn → X factors through X ′m → X.
Examples: Define:

• Ga[[t]] as the R-space SpecA 7→ A[[t]].

• Ga((t)) as the R-space SpecA 7→ A((t)) = A[[t]](1/t).

• Ga[t]/(tn) as the R-space SpecA 7→ A[t]/(tn).

Then Ga[t]/(tn) is an affine group that’s a scheme of finite type (isomorphic to AnR). Also, Ga[[t]] =
lim←−Ga[t]/(tn) is an affine group scheme (isomorphic to

∏
N A1

R
∼= SpecA[xn : n ∈ N]). Finally, Ga((t)) is a

group ind-scheme but not a scheme: for all n, let t−nGa[[t]] be Ga[[t]] and let t−nGa[[t]] ↪→ t−(n+1)Ga[[t]] be
the embedding corresponding to multiplication by t on Ga[[t]]. Then Ga((t)) = lim−→ t−nGa[[t]]. This is not of
ind-finite type. But, what we can do is take a quotient of R-spaces (i.e. fpqc quotient, quotient as sheaves
so computed as quotient as presheaves then sheafifying)

GrGa = Ga((t))/Ga[[t]] = lim−→ t−nGa[[t]]/Ga[[t]] ∼= lim−→An

which is a group ind-scheme of ind-finite type that’s ind-affine.
Remark: If R is Noetherian, then ind-finite type implies locally of finite presentation.
Loop and arc spaces, the affine Grassmannian. Let X be an R-scheme. Its arc space is X[[t]] given

by SpecA 7→ X(A[[t]]), its loop space X((T ) is SpecA 7→ X(A((t))), and its space of n-th order jets is
X[t]/(tn+1) taking SpecA 7→ X(A[t]/(tn+1)).

Why the names? The infinitesimal (pointed) disc over R is DR = SpecR[[t]] (and D◦R = SpecR((t))).
Then X[[t]](SpecA) = Hom(DA, XA) and X((t))(SpecA) = Hom(D◦A, XA).

Facts: The functors X 7→ arc/loop/jet space commute with projective limits. Also, X[[t]] = lim←−X[t]/(tn).
If X → Y is an étale morphism of schemes, then the following squares are Cartesian:

X[[t]] Y [[t]]

X Y

X[t]/(tn) Y [t]/(tn)

X Y

(this follows from infinitesimal lifting property of étale maps). So X[[t]]→ Y [[t]] and X[t]/(tn)→ Y [t]/(tn)
are schematic and étale, and they are open immersions if the original map X → Y is.

Proposition (1) X[t]/(tn) and X[[t]] are schemes, affine if X is affine, X[t]/(tn) is of finite type if X is.
The maps X[[t]]→ X[t]/(tn+1)→ X[t]/(tn) are affine.
(2) If X is affine of finite presentation (over R) then X((t)) is an ind-scheme. Moreover the map X[[t]] →
X((t)) is a schematic closed immersion.
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Remarks: (1) X((t)) is almost never ind-finite type. (2) It’s not an ind-scheme in general if X is not
affine (even if X = P1 for instance). Maybe even not true if X is affine but not finite type/presentation?

Proof: (1) Did example of X = A1 above; idea now is to reduce proof to that example. Case where X
affine: X = SpecR[ti]/(fj) for some set of variables (ti)i∈I and relations (fj)

j∈J . Then X = SpecR⊗AJ AI ;
since forming arc spaces commutes with projective limits, get

X[[t]] = SpecR×A1[[t]]J A1[[t]]I .

So X[[t]] is an affine scheme (same for X[t]/(tn)). If X is finite type then we can take I finite so this gives
X[t]/(tn) of finite type. General case: Choose affine cover X =

∐
Vi. Then the Vi[[t]] are an affine cover of

X[[t]], and same for X[t]/(tn).
(2) Again, done the X = A1 case. Generalize to the X affine of finite presentation again; get X =

SpecR ⊗AJ AI for I, J finite. But finite projective limits commute with direct inductive limits so X((t)) is
an ind-scheme.

Remark: If X is is smooth over R, then X[t]/(t2) is the tangent bundle TX of X. Also, X[t]/(tn+1)→
X[t]/(tn) is a torsor under TX ×x X[t]/(tn).

Example we care most about: R = k a field, G is linear algebraic group over k. Then G[t]/(tn) is a
linear algebraic group that projects to G; the kernel of this projection is a unipotent group (because they’re
successive extensions of Lie(G)). The arc space G[[t]] is a pro-algebraic group, and the kernel of G[[t]]→ G
is pro-unipotent (think of G[[t]] as “G(O)′′). Then G((t)) is a group ind-scheme that’s ind-affine with G[[t]]
a closed subgroup (think of as “G(K)”).

Definition: The affine Grassmannian of G is GrG = G((t))/G[[t]] (think of as “G(K)/G(O)′′).
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4 Lecture - 02/26/2014
First, some comments from last time: disjoint unions are schemes and are the same as schemes and R-
schemes. Last time tried to show that A∞((t)) was ind-affine, but actually the argument wouldn’t work and
it’s not N-ind-affine.

The affine Grassmannian of GLn. Let k be a field, Affk the affine schemes over k with the fpqc topology.
Recall a k-space is a fpqc sheaf on Affk. The affine Grassmannian for GLn, GrGLn , is the fpqc quotient
GLn((t))/GLn[[t]] of group-ind-schemes in the category of k-spaces. In other words, it’s the fpqc sheafification
of the presheaf

SpecA 7→ GLn(A((t)))

GLn(A[[t]])
.

Goal: Show this is an ind-projective ind-scheme (i.e. an inductive limit over N of projective schemes, with
the transition maps immersions).

Definition: Let X be a scheme. A vector bundle on X is a locally free OX -module of finite rank (i.e.
a finite locally free OX -module). Remark: Usually we should be careful about what topology we mean
for “locally” but here it’s okay because finite locally rank is the same as flat of finite presentation and as
projective of finite presentation, so we get the same for the Zariski and fpqc topologies (and the fppf and
étale topologies too). Let Vect(X) be the category of vector bundles on X. It’s an exact category (i.e. can
talk about exact functors) but not an abelian category.

Lattices: If A is a commutative ring, a lattice in A((t))n is a sub-A[[t]]-module L such that there exists
N with tNA[[t]]n ⊆ L ⊆ t−NA[[t]]n, and t−NA[[t]]n/L is a locally free A-module. Define Lattn to be the
functor taking SpecA to the set of lattices in A((t))n; this is actually a k-space (exercise). If we fix N in the
definition, we have subfunctor LattNn ; note

Lattn = lim−→LattNn .

Fix N , set VN = t−Nk[[t]]n/tNk[[t]]n, a k-vector space of dimension 2Nn together with a nilpotent
endomorphism t. Remember that the Grassmannian Gr(r, VN ) is the k-space taking SpecA to the set of
quotients of VN ⊗k A that are finite locally free of rank r (following Grothendieck, use quotients rather than
subspaces). Grothendieck: Gr(r, VN ) is representable by a projective scheme over k.

Fact:

LattNn ↪→
∐

0≤r≤2N

Gr(r, VN )

by L 7→ t−Nk[[t]]n/L, and claim this is a representable closed immersion. A corollary of this will be that
LattNn is a projective scheme and that the transition maps LattNn → LattN+1

n are closed immersions, so
Lattn is an ind-projective ind-scheme.

Proof of Fact: Fix r and try to describe the subfunctor LattNn ∩ Gr(r, VN ). This is the subfunctor of
M such that kerVN � M is stable by t. How do you prove that this is a representable closed immersion?
Take a scheme SpecA, take a map f : SpecA → Gr(r, V ), look at the fiber product, P and check that
P is a closed subscheme of SpecA. So suppose that f corresponds to M ∈ Gr(r, VN )(SpecA) and let
K = ker(VN ⊗ A → M). Then the fiber product P is the A-space given by mapping SpecB to a point if
K ⊗B is stable by t, and ∅ otherwise. We may assume that A is Noetherian (all spaces are locally of finite
type). Then K is of finite presentation and M is a vector bundle, so Hom(K,M) is represented by a vector
bundle V. Then the composition K ⊗B → VN ⊗B →M ⊗B is a global section of the vector bundle. Since
V is a scheme, has the zero section V0 as a closed subscheme, and P = V0 ×V SpecA is a closed subscheme
of SpecA.

If we just cared about GLn we’d be basically done; show that Lattn is isomorphic to the affine Grass-
mannian for GLn directly. But for other groups lattices don’t work so well, so we want another perspective
that generalizes. Consider the perspective of local bundles. Recall that the “infinitesimal disk over k” is
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D = Spec k[[t]], which contains D◦ = Spec k((t)). Definition: If A is a k-algebra, an A-family of vector
bundles over D (or D◦) is a module over A[[t]] (or A((t)), respectively) that is finite locally free, where the
“locally” is fpqc locally on SpecA (i.e. there exists A → B faithfully flat such that M ⊗A[[t]] B[[t]] is free
over B[[t]], and similarly for B((t))).

Define categories VectA(D) and VectA(D◦) as the A-families of vector bundles over the appropriate
space (both are exact categories, and there’s a restriction from one to the other). Lemma: VectA(D) is
equivalent to the category of projective systems (Mn, αn)n∈N with Mn finite locally free over A[t]/tn and
αnMn+1/t

n ∼= Mn. (Proof: Nakayama’s lemma).
Then, define GrlocGLn

as the functor taking SpecA to the set of pairs (M,γ) moduli equivalence, with
M ∈ VectA(D) and γ an isomorphism M |D◦ ∼= M◦A|D◦ . (Here M◦ = k[[t]]n). Note there are no nontrivial
automorphism, and remark that this is a sheaf by faithfully flat descent.

Global bundles: Fix a smooth curve X, and x ∈ |X| with k(x) = k. Fix D ∼= Spec ÔX,x and X◦ = X \x.
Then have diagram

Vect(XA) VectA(D)

Vect(X◦A) VectA(D◦).

Define GrglobGLn
by taking SpecA to pairs (MX , γ) with MX ∈ Vect(XA) and γ : MX |X◦A ∼= M◦X |X◦A where

M◦X = OnX . Remark: This is a sheaf, and we have an obvious restriction map GrglobGLn
→ GrlocGLn

The Beauville-Laszlo Theorem: Define the category of gluing data (over a fixed A) as the category of
triple (MX◦ ,MD, β) where MX◦ ∈ Vect(X◦A), MD ∈ VectA(D), and β an isomorphism M◦X |D◦A ∼= MD|D◦A .
Then the theorem (due to B-L over C at least) is that the obvious functor from Vect(XA) to this category
of gluing data is an equivalence. Remark: if A is Noetherian this is faithfully flat descent (A Noetherian
implies DA → XA is flat, but not true in general). Will omit the proof of this because, if we’re careful, we
can just reduce to the Noetherian case everywhere.

Corollary: GrglobGLn
∼= GrlocGLn

.
Vector bundles vs. Lattices: Remark: GrlocGLn

(SpecA) is the set of sub-A[[t]]-modulesMD ⊆M◦D⊗A((t))

such that MD is locally on A free of rank n and such that there exists N with tNM◦D◦A ⊆ MD ⊆ t−NM◦D◦A
.

Can define Grloc,NGLn
to be the subfunctor for fixed N . Similarly for global ones: if j : X◦ ↪→ X is the inclusion,

then GrlocGLn
(SpecA) is the same as the set of sub-OX -modules MX ↪→ j∗j

∗OnX that is a vector bundle such
(automatic that there exists N with OnX(−Nx) ⊆MX ⊆ OnX(Nx)).

We have four maps:
(1) Grloc,N → LattNn given by MD →MD.
(2) Grglob,N → LattNn given by MX →MX |D.
(3) LattNn → Grloc,N given by L 7→ L.
(4) LattNn → Grglob,N given by taking L to the preimage MX of L/tNA[[t]]n by the map M◦X(−NX) →
M◦X(−Nx)/M◦X(Nx) ∼= t−NA[[t]]n/tNA[[t]]n.

Proposition: These are all well-defined bijections.
Proof: We just need to prove they’re well-defined since they’re evidently mutual inverses. Actually sufficient
to prove (1) and (4) are well-defined since (2) and (3) come from composing those with restriction maps
from global Grassmannian to local.

(1): Let M ∈ Grloc(SpecA) with tNA[[t]]n ⊆ M ⊆ t−NA[[t]]n. We want to show N = t−NA[[t]]/M
is a finite locally free A-module. But t−2NM/M is a locally free A-module, so enough to show that N ↪→
t−2NM/M splits. Enough to show that t−NA[[t]] ↪→ t−2NM splits as a map of A-modules. But

t−NA[[t]] ↪→ t−2NM ↪→ t−3NA[[t]]n

obviously splits and restrict this.
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(4): Take a lattice L ∈ LattNn (SpecA) and map it to MX ⊆ OnX(−Nx); need to check this is a vector
bundle. Since LattNn is of finite type, there exists A′ ⊆ A Noetherian and L′ ∈ LattNn (SpecA′) such that
L = L′ ⊗A′[[t]] ⊗A[[t]]. Question: Is MX = f∗M ′X for f : XA → XA′? Answer: Yes, use that t−NA′[[t]]n/L
is A′-flat and exact sequence

0→MX → OnXA(−Nx)→ t−NA[[t]]n/L → 0.

So we may assume that A is Noetherian. Then MX is coherent and we just need to show it’s flat. Enough to
show that for all maximal ideals m⊗ k(m) is flat over OXk(m)

; using flatness of t−NA[[t]]n/L we may assume
that A is a field. If A is a field, then Mx is flat iff it’s torsion-free, bu Mx ⊆ OnXA(−Nx).

Next time: GrGLn
∼= GrlocGLn

∼= GrglobGLn
∼= Lattn.

12



5 Lecture - 02/28/2014

Last time: Showed GrlocGLn
, GrglobGLn

, Lattn were ind-projective ind-schemes that were all isomorphic to each
other. What about the affine Grassmannian GrGLn? Recall that GrlocGLn

(SpecA) is the set of pairs (MD, γ)
with MD ∈ VectA(D) and γ : MD|D◦ ∼= M◦D◦ . (Define M◦D = A[[t]]n and M◦D◦ = A((t))◦). On the other
hand

GLn((t))(SpecA) = AutVectA(D◦)(M
◦
D◦)

and

GLn[[t]](SpecA) = AutVectA(D)(M
◦
D).

So can define a map

π : GLn((t))→ GrlocGLn

by g 7→ (M◦D, g), since we can interpret g as an automorphism of M◦D◦ . Further note that π is GLn[[t]]-
equivariant for the right action on GLn((t)) and the trivial action on GrlocGLn

, so π passes to π : GrGLn →
GrlocGLn

.
Proposition: π is an isomorphism.

Proof: Let P be the presheaf quotient GLn((t))/GLn[[t]]. Then π also gives πpsh : P → GrlocGLn
. Have that

for all A, πpsh : P(SpecA) → GrlocGLn
(SpecA) is injective, so π is injective on points (as sheafification is

exact). Note that the image of πpsh(SpecA) is the set of (MD, γ) ∈ GrlocGLn
such that MD is trivial. But

each MD is locally trivial on A, so π is surjective.
Corollary: GrGLn is an ind-projective ind-scheme.
Example: GrGm is a commutative group ind-scheme. If K/k is a field extension, GrGm(SpecK) is

the lattices in K((t)), so is isomorphic to Z (sending a lattice to the valuation of a generator). Thus
(GrGm)red ∼=

∐
Z Spec k.

Fact (proof is an exercise): Gr◦Gm , the connected component of the identity, is the (infinite-dimensional)
formal group with Lie algebra k((t))/k[[t]]. (This formal group is the functor sending SpecA to the set of
sequences (an)n∈Z with an ∈ A nilpotent and an = 0 for n�∞).

G-bundles. Let G be an affine group scheme over k, and X/k a scheme which for convenience we’ll assume
to be quasicompact. A (principal) G-bundle over X is determined by any of the following three definitions:
(1) A sheaf P on (Sch/X)fpqc (or (Aff/X)fpqc) which is a torsor under G (i.e. G acts on P on the left, such
that G× P ∼= P × P via the map (g, s) 7→ (gs, s), and there exists an fpqc cover Y → X with P(Y ) 6= ∅).
(2) A scheme X̃ → X with a left action of G (in SchX) such that there exists a faithfully flat map Y → X

such that Y ×X X̃ ∼= Y ×G in a G-equivariant way.
(3) A faithfully flat X̃ → X with a left action of G such that G× X̃ ∼= X̃ ×X X̃ via (g, x) 7→ (gx, x).

Notation: let BG(X) be the groupoid of G-bundles over X (objects are G-bundles and morphisms are
isomorphisms of G-bundles).

Proof that the definitions are equivalent (i.e. they give equivalent categories):
(1) =⇒ (2): If P is a G-bundle as in (1), take Y → X faithfully flat such that P(Y ) 6= ∅. Let s ∈ P(Y ) =
Hom(Y,P). Define c : Y ×X Y → G by letting c(y1, y2) be the unique g ∈ G such that s(y2) = gs(y1). Let
Ỹ = Y × G, let ϕ : Ỹ ×X Y → Y ×X Ỹ be the map ((y1, g), y2) 7→ (y1, (y2, c(y1, y2)g)). This is a descent
datum for Ỹ with respect to Y → X. As Ỹ /Y is affine, this is effective, i.e. there’s X̃ → X such that
Ỹ = X̃ ×X Ỹ . The left G-action on Ỹ (by h · (y, g) = (y, gh−1)) is compatible with ϕ hence also descends
to X̃. Then this X̃ satisfies the conditions of (2).

(2) =⇒ (3): Let X̃ → X be as in (2). We want to check that X̃ → X is faithfully flat. But there exists
Y → X faithfully flat such that Y ×X X̃ → Y is faithfully flat. So X̃ → X is faithfully flat (since that’s an
fpqc-local condition). Also, G×X X̃ → X̃ ×X X̃ becomes an isomorphism because it’s an isomorphism after
a faithfully flat base change.

13



(3) =⇒ (2): Take Y = X̃

(2) =⇒ (1): Take P defined by Y 7→ HomX(Y, X̃).
Fiber bundles associated to a G-scheme. Definition: Let P or X̃ be a G-bundle over X. Let Z be a

scheme with a left G-action. If the quotient

X̃ ×G Z = G\(X̃ × Z)

exists (i.e. if the fpqc quotient is representable by a scheme), we call it ZP . For example, this is okay if Z is
affine.

Proposition: If G is smooth (e.g. if k has characteristic zero), then every G-bundle is locally trivial in
the étale topology.
Proof: Let X̃ → X be a G-bundle; want to trivialize it over an étale cover of X. First, it becomes smooth
after a faithfully flat base change (as it becomes isomorphic to G ×X X, and G is smooth). So WLOG
X̃ → X is smooth, and étale (Zariski) locally on X it becomes X̃ → An ×X → X where the first map is
étale and the second is the projection. Choose a ∈ An(k); then Y = X×An×X X̃ → X is étale and trivializes
X̃ → X (where the map X → An ×X is the section for our a).

Let P be a GLn-bundle over X, let E◦ be the standard representation of GLn (i.e. E◦ = Ank ). Then E◦P
is a rank-n vector bundle.

Proposition: GLn-bundles over X correspond to rank-n vector bundles over X via P 7→ E◦P (i.e. this
defines an equivalence of categories).
Proof: The inverse functor sends a rank-n vector bundle E to the GLn-bundle P given by Y 7→ IsomY (E◦Y , EY ).

Tannakian point of view: Let RepG be the category of algebraic representations of G. Let Vect(X)
be the vector bundles on X. If P is a G-bundle on X, we get a functor FP : RepG → Vect(X) given by
V 7→ VP .

Proposition: The category of G-bundles over X is equivalent to the category of exact tensor functors
FP : RepG → Vect(X), via the above equivalence. (Recall Vect(X) isn’t an abelian category, but it is an
exact category).

Note: The trivial G-bundle goes to the functor V 7→ V ⊗k OX .
Proof: Construct the inverse functor. Let F : RepG → Vect(X) be an exact tensor functor. If V is a

locally finite representation (i.e. V = lim−→i∈I), define F (V ) = lim←−i∈I F (Vi). Note F (V ) is a flat OX -module
(as a limit of vector bundles). Apply this to the ring of regular functions on G, k[G], with the left regular
action. Then A = F (k[G]) is a commutative OX -algebra because F is a tensor functor. Take X̃ = SpecX(A).
Then X̃ → X is flat.

Now, if we let 1 be the trivial representation on G, have

0→ 1→ k[G]→ k[G]/1→ 0.

Since F is exact get exact sequence

0→ OX → A→ F (k[G]/1)→ 0

with F (k[G]/1) flat over OX . So for all x ∈ X, k(x) → A⊗ k(x) is injective, and A is faithfully flat over
OX . Also, the second G-action on k[G] gives a G-action on X̃. Next,

X̃ ×X X̃ = SpecX(A⊗OX A) = SpecX(F (k[G]⊗k k[G])).

But by properties of the regular representation, k[G] ⊗k k[G] ∼= k[G] ⊗k k[G] where k[G] has k[G] as the
underlying vector space but the trivial action. So A⊗OX A ∼= A⊗OX k[G]. So

X̃ ×X X̃ ∼= X̃ × Spec k[G] ∼= X̃ ×G,

and can find this is G-equivariant.
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Now, talk about changing the group of a G-bundle. Let ρ : G→ H be a morphism of groups.
Extension of structure group: Have BG(X) → BH(X) given by P 7→ HP (with the action of G via ρ);

in Tannakian point of view this is F 7→ F ◦ ρ∗.
Reduction of structure group: Let PH be a H-bundle on X. A reduction of the structure group of PH

to G is a G-bundle P with an isomorphism HP ∼= PH . Now, PH corresponds to a functor FPH : RepH →
Vect(X), and have ρ∗ : RepH → RepG.

Exercise: If ρ is a closed immersion, there’s a natural bijection between reductions of PH to G (modulo
isomorphism) and sections (H/G)PH → X.

Remark: G-bundles over X (up to isomorphism) are classified by Čech cohomology H1
fpqc(X,G). If

G ↪→ H is normal, we have an exact sequence

H1
fpqc(X,G)→ H1

fpqc(X,H)→ H1
fpqc(X,H/G).

This is actually true even if G is not normal in H. This is how you do the exercise...
Application: SLn-bundles over X are isomorphic to rank-n vector bundles E/X together with an iso-

morphism det(E) ∼= GX (where det(E) =
∧n

E = (GLn/SLn)E). Along the same lines, O(n)-bundles on X
are equivalent to rank-n vector bundles E together with σ : E ∼= E∗ with σ = σ>.

G-bundles on the formal disk. Recall D = Spec k[[t]] and D◦ = Spec k((t)). An A-family of G-bundles on
D (or D◦) is an exact tensor functor RepG → VectA(D) (or VectA(D◦)). These give categories BGA(D)
and BGA(D◦). Remark: BGA(D) is equivalent to compatible systems of G-bundles on SpecA[t]/tn.

Corollary (of BL theorem): Let X be a smooth curve, x ∈ |X| such that k(x) = k, pick Spec ÔX,x ∼= D.
Let X◦ = X \{x}. Then BG(XA) is isomorphic to triple (PX◦ , PD, B) with PX◦ ∈ BG(X◦A), PD ∈ BGA(D),
and β : PX◦ |D◦ ∼= PD|D◦ .
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6 Lecture - 03/05/2014
Remark: Formula for (Gr◦Gm)(SpecA) last time was wrong; should be the set of tuples (an) over n ≤ 0 with
an ∈ A nilpotent and an = 0 fir n� 0 (at least for SpecA connected...)

Today: The affine Grassmannian for an arbitrary linear algebraic group G/k (recall this means smooth
of finite type). Remember GrG = G((t))/GJtK. Want to prove that GrG is an ind-scheme of int-finite type,
which is ind-projective iff G is reductive (i.e. that Ru(Gk) = 1 in our context). Also, want to calculate
π0(GrG). (Remark: GrG is reduced iff Hom(G,Gm) = 1; lines up with us seeing that GrGLn is not reduced!)

Notation: Let P 0
∗ be the trivial G-bundle (or trivial family of G-bundles, etc.) over whatever the base ∗

is.
As in the GLn case, we’re doing to prove this by way of working with spaces Grloc

G and Grglob
G . These are

defined by

Grloc
G (SpecA) = {(PD, λ) : PD ∈ BGA(D), γ : PD|D◦ ∼= P 0

D◦},

Grglob
G (SpecA) = {(PX , γ) : PX ∈ BG(XA), γ : PX |X◦A ∼= P 0

X◦A
}.

where again D◦ = Spec k((t)) ⊆ Spec kJtK = D are the formal disc (with and without the origin removed)
and X is a smooth curve with x ∈ |X| such that k(x) = k, Spec ÔX,x ∼= D, and X◦ = X \ {0}. As in the
GLn case, the BL theorem tells us that the restriction map Grglob

G → Grloc
G is an isomorphism.

As in the case of GLn, we identify G((t)) = Aut(P 0
D◦) and GJtK = Aut(P 0

D). We then get a map
π : G((t))→ Grloc

G given by γ 7→ (P 0
D, γ), which passes to π : GrG → Grloc

G .
Proposition: π is an isomorphism.

Proof: The proof is exactly the same as for GLn. The nontrivial point is showing that PD ∈ BGA(D) is
trivial locally on A. This follows from the fact that G is of finite type (since then RepG has a ⊗-generator,
and we can trivialize its image under RepG → VectA(D) and thus trivialize anything). Also need to use
smoothness throughout the argument.

So we now have three isomorphic things GrG ∼= Grloc
G
∼= Grglob

G ; how do we prove that they are actually
ind-schemes? Let G1 → G2 be a map of linear algebraic groups. Then we get a map GrG1

→ GrG2
of affine

Grassmannians. Assume G1 → G2 map is a closed immersion; then:
Proposition: In this situation, if G2/G1 is quasi-affine (affine) then the map GrG1

→ GrG2
is a schematic

locally closed immersion (schematic closed immersion). Thus if we know G2 is an ind-scheme of ind-finite
type, so is G1.

Remark: In general GrG1
→ GrG2

is strange (may not be schematic, may not be immersion...). For
example, if B ⊆ G is a Borel subgroup, then the induced map GrB(K)→ GrG(K) is an isomorphism for all
K/k but GrB → GrG is not. Note that in this case we have G(K((t))) = B(K((t)))G(KJ[Kt]).

Corollary: For every G, GrG is an ind-scheme of ind-finite type, and moreover GrG is ind-proper iff it’s
ind-projective iff G is reductive.

Proof of Corollary: If G is reductive, pick any embedding G ↪→ GLn; then GLn/G is affine (proof of
this that works in characteristic p in 3rd edition of GIT somewhere), so GrG → GrGLn is a schematic closed
immersion. So GrG is an ind-projective ind-scheme. If G is not reductive then after extending k (which
preserves ind-projectivity), have embedding Ga → G with G/Ga is affine. Then GrGa (which is ind-affine)
is closed in GrG, which means GrG cannot be ind-projective.

So it remains to show that that GrG is an ind-scheme of ind-finite type for a general linear algebraic
group G. Pick an embedding G ↪→ GLn. By Chevalley’s theorem, there’s a finite-dimensional representation
V of GLn and a line ` ⊆ V such that G = StabGLn(`). Thus G acts on ` by some character χ; then can
embed G ↪→ GLn ×Gm = G′ by g 7→ (g, χ(g)−1). Then G′ acts on v (with Gm acting by homotheties), and
for all v ∈ `\{0}, G = StabG′(v). So G′/G ∼= G′ ·v ⊆ V is quasi-affine. We know that GrG′ = GrGLn ×GrGm
is an ind-scheme of ind-finite type, and thus so is GrG (via the proposition).

Proof of Proposition: Let SpecA ∈ Affk, and fix an A-point f : SpecA→ GrG2 = Grloc
G2

, so f corresponds
to a pair (PD, γ). Let Z be the fiber product of GrG1

→ GrG2
and f ; we want to show that Z is a locally

closed subscheme of SpecA. How do you study Z? Calculate its points in any A-algebra.

16



If SpecB ∈ AffA, what’s Z(SpecB)? It’s the set of maps g : SpecB → GrG1 such that we have a
commutative diagram

SpecB GrG1 GrG2

SpecA

g

f

Via our bundle-theoretic interpretation, this is the same as the set of pairs (QD, δ) with QD ∈ BG1,B(D),
δ : QD|D◦ ∼= P 0

D◦ , such that (G2 ×G1 QD, G2 ×G1 δ) ∼= (PD, γ)B . This then corresponds to reduction of the
structure group of (PD)B to G1 that extend the obvious one on D◦. This is then the same as a section of
(G2/G1)×G1 (PD)B → SpecBJtK extending the obvious one over SpecB((t)). (Defined X̃ ×G Z = G(X̃ ×Z)
last time, if this fpqc quotient was representable). The proposition will then follow from the following lemma:

Lemma: Let Y be a quasi-affine scheme over SpecAJtK for some k-algebra A. Let s : SpecA((t))→ YA((t))

be a section of Y . Consider the A-space

ZY : SpecB 7→
{
∗ sB extends to SpecBJtK,
∅ if not .

Then ZY → SpecA is a locally closed embedding, closed if Y is affine.
Proof of Lemma: If Y ↪→ Y ′ is an open embedding (so s passes to a section s′ for Y ′), we claim ZY → ZY ′

is a schematic open embedding. Indeed, let f : Spec → ZY ′ correspond to t : SpecBJtK → Y ′BJtK. Given
h : SpecC → SpecB, we have

(ZY ×ZY ′ SpecB)(SpecC)

is ∗ if h∗t sends SpecCJtK into Y and ∅ otherwise. So this fiber product is the intersection t−1[Y ] ∩ SpecB
in SpecB, which is open.

So we can assume WLOG that Y is affine. Note that Y 7→ ZY commutes with projective limits, so we
may assume Y = A1 (since if Y = SpecR is affine, R = A[ti : i ∈ I]/)(fj : j ∈ J) so Y = SpecA×AJ AI , and
fiber products and direct products are all projective limits). But in this case, s : SpecA((t))→ Y corresponds
to f =

∑
n�−∞ fnt

n ∈ A((t)). Thus ZY is the closed subscheme defined by fn = 0 for n < 0.

So that finishes the proof of the proposition. Now onto the topological fundamental group of G and
π0(GrG). Assume G is connected, k = k, and let p = char k. If f : G→ Gm is a character, we get a map of
étale fundamental groups

f∗ : πét,p′

1 (G)(−1)→ πét,p′

1 (Gm)(−1) = Ẑp
′

where the “p′” means maximal prime-to-p quotient. Define

π1(G) = {α ∈ πét,p′

1 (G)(−1) : ∀f, f∗α ∈ Z}

where Z is embedded in Ẑp
′
in the usual way. (Note that throwing away stuff at finitely many primes doesn’t

change this, so doing the prime-to-p quotient should be morally ok).
Then, for example, π1(Gm) = Z (matching up with the usual topological fundamental group over C).

Note: π1(G) ∼= π1(G/Ru(G)), and moreover if G is reductive then π1(G) is (the prime-to-p quotient of?)
the quotient of X∗(T ) by the lattice of coroots (where T is the maximal torus).

Let F = k((t)), O = kJtK. If π : G̃→ G is a finite (connected) cover with kernel A such that p - |A|, then
get

G(F )→ H1(F,A) = A(−1).
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Taking a limit, get ϕG : G(F )→ πét,p′

1 (G)(−1). Example: If G = Gm, then these connected covers are just
Gm → Gm with x 7→ xN for p - N , and the map Gm(F ) = F× → A(−1) = Z/NZ takes f to ord(f) +NZ.
Taking the limit we get F× → Ẑp′ given by f 7→ ord(f), landing in Z. Corollary (to the example): Every
ϕG actually sends G(F ) into π1(G).

Remark: If π : G̃→ G is as before, then π : G̃(O)→ G(O) is surjective (follows from infinitesimal lifting
property for π, which is étale). So ϕG gives ϕG : G(F )/G(O) = GrG(k) → π1(G). Note that G((t))(k) and
GrG(k) are Zariski dense in G((t)) and GrG, respectively. Then:

Proposition: The maps ϕG and ϕG are Zariski locally constant. Moreover, the induced maps π0(G((t)))→
π1(G) and π0(GrG)→ π1(G) are bijective. (Remark: GJtK = lim←−G[t]/(tn) is connected).

Proof: (i) It is enough to prove this for ϕG. Since GrG is ind-finite, it’s enough to show that for
every M = SpecR that’s connected affine finite-type over k and every f : M → G((t)), the composition
M(k) → G(F ) → π1(G) is constant. Let π : G̃ → G be a finite cover as before, and A = kerπ. We want
M(k) → π1(G) → A(−1) to be constant. Now, since M is affine, a map f to the loop group G((t)) is the
same as a map ϕ : SpecR((t)) → G. Let β ∈ H1

ét(G,A) be the class of G̃, so ϕ∗β ∈ H1
ét(SpecR((t)), A).

Apply:
Lemma: Let M = SpecR be connected affine finite type over k, let A be a finite abelian group with

p - |A|, and let

α ∈ H1
ét(SpecR((t)), A).

Then for all x ∈ M(k), let α(x) be the restriction of α to the fiber of SpecR((t)) → SpecR over x, so
α(x) ∈ H1

ét(Spec k((t)), A) = A(−1). Then α(x) is independent of x.
Proof: We may assume M is smooth, and that A = µN . Then α corresponds to a µN -torsor on

V = SpecRJtK, so a line bundle L on v together with a trivialization L⊗N ∼= OV . Then L extends to
V ′ = SpecRJtK and L⊗N ∼= taOV ′ for a ∈ Z. Then α(x) = a mod N for all x.
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7 Lecture - 03/07/2014
Erratum: The statement GrG reduced iff Hom(G,Gm) = 1 last time is only valid if char k = 0 (or at least
� 0, where this� depends on G). This won’t really matter to us since we don’t care about the reducedness
much anyway.

Setup: k = k, G/k connected linear algebraic group, F = k((t)), O = kJtK. Change of notation from last
time: The thing we called π1(G) last time will now be called π1(G)p

′
(contained in πét,p′

1 (G)(−1)). This
time, define π1(G) = π1(G/Ru(G)) in general, and if G is reductive and T ⊆ G is a maximal torus define
π1(G) as X∗(T ) modulo the coroot lattice. (Then the π1(G)p

′
from last time is the prime-to-p part of this).

Last time: Had G(F ) = G((t))(k) and defined a map

ϕG : G(F )→ πp
′

1 (G) = lim←−
G̃→G

ker(G̃→ G)(−1)

coming from Galois cohomology (where G̃ was a connected prime-to-p cover). Know that this factors through
to ϕG : GrG(k) → πp

′

1 (G), and that this is Zariski locally constant. So we get maps π0(G((t))) → π1(G)p
′

and π0(GrG)→ π1(G)p
′
.

Remains to be shown: These two maps are isomorphisms. In fact, we have an isomorphism π0(G((t))) ∼=
π0(GrG) and surjections π1(G)→ π0(GrG)→ π1(G)p

′
.

Proof: The first isomorphism comes from GJtK being connected. So now, consider π0(G((t))). If G = Ga
then G((t)) this is connected because it’s lim←−N A1JtK and each of these are connected. If G is unipotent then
G((t)) is connected from the Ga case; so π0(G((t))) ∼= π0(G/Rv(G))((t)) in general and thus we may assume
WLOG that G is reductive (since this also doesn’t change the π1 of G).

Case G = SL2: The statement predicts G((t)) is connected, which is true and follows from a proof
analogous to the proof that SL2(R) is connected (every element of G(F ) is a product of unipotent elements
so is connected to 1, and G(F ) is dense).

Case G = T a torus: Assume WLOG that G = Gm, and know π0(Gm((t))) = π0(GrGm) ∼= Z given by
taking the order of an element. But this is π1(Gm).

General case (for G reductive): Choose a maximal torus T ⊆ G. Get diagram

π0(T ((t))) π0(G((t)))

π1(T )p
′

π1(G)p
′
.

∼=

The left vertical map is an isomorphism because π0(T ((t))) = π1(T ) = π1(T )p
′

= X∗(T ). The bottom
horizontal map is surjective since π1(G)p

′
is a quotient of X∗(T ). So the right vertical map is surjective.

Also, note the top horizontal map is surjective because it’s

π0(T ((t))) = π0(B((t)))→ π0(G((t)))

and G =
⋃
g∈G gBg

−1.
Now, let u be the map π0(T ((t))) → π0(G((t))). Also, note that the map π0(T ((t))) → π1(G)p

′
factors

through π1(G) because the bottom horizontal map does; let v : π0(T ((t))) → π1(G) be this map. To finish
proving the claim we need to show that ker(v) ⊆ ker(u). But the kernel of v is just the coroot lattice inX∗(T ).
Then let α∨ : Gm → T be a coroot; it extends to SL2 → G but SL2((t)) is connected so α∨(Gm((t))) ⊆ G((t))
is in G((t))◦. This finishes the proof.

Example: Let G = GLn, B the usual Borel, and T = Gnm the usual maximal torus. Then GrB → GrG is
bijective on K-points for algebraically closed fields K, but π0(GrB) ∼= Zn while π0(GrG) ∼= Z, so these are
not isomorphic!
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Proposition: Let G̃→ G be a finite connected prime-to-p cover. Then GrG̃ → GrG identifies GrG̃ with a
union of connected components of GrG.

Corollary: If G is reductive (and p� 0) then GrG is a union of connected components in Grad×GrG/Gder .
(Need p to not divide the order of the kernel G→ Gad ×G/Gder).

“Proof” of proposition: Let A = ker(G̃ → G). Will only show the proposition modulo nilpotents (but
could refine the argument to make it work in general). First, GrG̃ → GrG is a proper schematic map. Also,
for all K/k algebraically closed, img(GrG̃(K) → GrG(K)) is GrG(K) intersected with a certain union of
connected components (independent of K). Moreover, GrG̃ → GrG is injective on R-points for all R. As a
proper such map, it is a closed immersion.

To prove GrG̃ → GrG is injective on R-points we want to use Grglob
G . Take X = P1

k, x = {∞}, X◦ = A1,
and consider Grglob

G̃
(SpecR)→ Grglob

G (SpecR). Then for (PX , γ) ∈ Grglob
G (SpecR), use SES

0 = H1
ét(P1, A)→ H1

ét(P1, G̃)→ H1
ét(P1, G)

(with [Px] in the last group) and map down to

0 = H1
ét(A1, A)→ H1

ét(A1, G̃)→ H1
ét(A1, G)→ H2

ét(A1, A) = 0

and get that there exists a unique P̃X that’s a G̃-bundle giving PX and such that P̃X̃/X◦ is trivial. Now use

something like G̃(R[t]) � G̃(R]t) fpqc locally...

Now study GJtK-orbits. Let k be any field and G a linear algebraic group. Review of orbits: Let X be a
scheme of finite type over k with a left action of G. Then:

Theorem: (1): For all x ∈ X(k), G(k) · x ⊆ X(k) is open in its Zariski closure. So we may veiew it as a
reduced locally closed subscheme of Xk, call this Orb(x).
(2) If x ∈ X(k) then Orb(x) is defined over k.

Now let X be an ind-scheme of ind-finite type with a left action of some pro-algebraic group H (which
will be GJtK in our case). We say the action is nice if, for every closed subscheme Z of X, there’s a closed
subscheme Z ′ ⊇ Z such that:
(1) Z ′ is stable under H,
(2) The action of H on Z ′ factors through a finite-type quotient.
In this situation we can define orbits as before.

The group GJtK (which we recall is a pro-algebraic group) acts by left translations on GrG. Proposition:
The action is nice.

Proof: For G = GLn, then GrGLn = lim−→LattNn and LattNn is stable by GLnJtK, and the action factors
through GLn[t]/(t2N )/ General case: Choose embedding G ↪→ G′ = GLn × Gm with G′/G quasi-affine, so
GrG → GrG′ is a locally closed immersion. Write GrG′ = limN ZN where ZN is a closed subscheme, G′JtK-
stable, that factors through G′[t]/(tN ). Then GrG = lim−→N

GrG×GrG′ZN , and this has the right properties.
So now we can talk about GJtK-orbits in GrG. What are these orbits? Our goal is to describe these if G

is connected reductive. Example: G = T is a torus. Then for all µ ∈ X∗(T ), let tµ = µ(t) ∈ T (k((t))). Then
Grred

T =
∐
µ Spec k and these Spec k’s are the T JtK-orbits. (??)

Now take G a general connected reductive group. Fix T ⊆ B ⊆ G, fix Φ+ = Φ(T,B) and ∂ρ =
∑
α∈Φ+ α.

Then set

X∗(T )+ = {µ ∈ X∗(T ) : ∀α ∈ Φ+, 〈α, µ〉 ≥ 0}

and for µ ∈ X∗(T ) write µ(t) = tµ ∈ G(k((t))).
Theorem: The orbits of GJtK on GrG are exactly the Orb(tµ) for µ ∈ X∗(T )+. In particular, they are

defined over k.
Proof: This is exactly the Cartan decomposition; for all extensions K/k we have

G(K((t))) =
∐

µ∈X∗(T )+

G(KJtK)tµG(KJtK).
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Theorem: If λ ∈ X∗(T )+ then

Orb(tλ) =
⋃
µ≤λ

Orb(tµ),

where µ runs over X∗(T )+ and we say µ ≤ λ if λ − µ =
∑
α∈∆+ nαα with nα ∈ N. (So Orb(tµ) ⊆ Orb(tλ)

iff µ is a weight of Vλ, the irreducible representation of Ĝ with highest weight λ).
Proof: Assume WLOG that k = k, and take O = kJtK. Let ν ∈ X∗(T ) be anti-dominant, and let (ρ,Wv)
be the irreducible representation of G with lowest weight v. If λ ∈ X∗(T )+ and g ∈ G(O)tλG(O) then
ρ(g) ∈ t〈ν,λ〉 End(Wv ⊗ O) but ρ(g) /∈ t〈ν,λ〉+1 End(Wv ⊗ O). So if µ, λ ∈ X∗(T )+ and Orb(tµ) ⊆ Orb(tλ),
then for all ν ∈ X∗(T ) anti-dominant taking g ∈ G(O)tµG(O) gives ρ(g) ∈ t〈ν,λ〉 End(Wv ⊗ O) but ρ(g) /∈
t〈ν,µ〉+1 End(Wv ⊗ O). Thus 〈ν, λ〉 ≤ 〈ν, µ〉 so 〈ν, λ− µ〉 ≤ 0. So µ − λ =

∑
α∈∆+ nαα with nα ∈ R≥0. To

get λ ≥ µ need λ− µ is in the coroot lattice. But this follows from the fact that tλ and tµ are in the same
connected component.

Definition: A subset Y ⊆ X∗(T ) is saturated if, for every α ∈ Φ, every µ ∈ Y , and every 0 ≤ i ≤ 〈µ, α〉,
we have µ− iα ∈ Y .

Fact: Let λ ∈ X∗(T )+. Then the set of weights of Vλ is the smallest saturated subset of X∗(T ) containing
λ.

To prove the other direction of the proposition, we need

Y = {µ ∈ X∗(T ) : tµ ∈ Orb(tλ)}

is saturated, for λ ∈ X∗(T )+ fixed. Proof: Let α ∈ Φ, and let T ⊆ Lα ⊆ G be the associated rank-1
subgroup. Assume WLOG that G = Lα. By a previous corollary (and replacing G by Gad × G/Gder) we
may replace G by SL2 or GL2 and then do a direct calculation.

21



8 Lecture - 03/12/2014
Continuing from last time: k is a field, G/k connected reductive, T a maximal torus. Wanted to study the
GJtK-orbits in GrG = G((t))/GJtK. The orbits are exactly the sets Orb(tλ) = GJtK · tλ for λ ∈ X∗(T )+ (where
tλ is just λ(t) viewed as an element of GrG(k)). Then said that

Orb(tλ) =
⋃
µ≤λ

Orb(tµ),

and reduced the proof to a GL2 calculation that was left as an exercise.
The GL2 calculation in a simple case: recall we have

GrGL−2 = lim−→
N

LattN2

where LattN2 was a space of lattices in k((t))2 with tNkJtK2 ⊆ L ⊆ t−NkJtK2 with some quotient condition.
We saw this mapped into

∐
Gr(r, VN ) for Vn = t−NkJtK2/tNkJtK2.

To make things explicit, let e1 = (1, 0) and e2 = (0, 2) in k((t))2. Take a basis of VN as consisting of all
tie1 and tie2 for −N ≤ i < N . Let’s show that

t0 =

[
1 0
0 1

]
is in the closure of the orbit

tλ =

[
t 0
0 t−1

]
.

We work in Latt12. First, note[
a b
c d

]
∈ GL2(k) =⇒

[
at b
c dt−1

]
Orb(tλ)

(if ad 6= 0). This corresponds to the subspace with basis (be1t + dt−1e2, de2). On the other hand, t0
corresponds to the subspace with basis e1, e2. Take limits d→ 0 (with b 6= 0).

Remark: One thing we know about these strata at this point is that Orb(tλ) is smooth (as a finite-type
quotient of GJtK).

The Gm-action. Let Y be a k-scheme. Then we have a Gm-action on the k-space Y ((t)), by

R× × Y (R((t))) = Gm(R)× Y ((t))(R)→ Y ((t))(R) = Y (R((t)))

coming from the action of R× on R((t)), by (a, f(t)) 7→ f(at). (Note R× acts by R-algebra automorphisms).
Example: If y is quasi-affine of finite type, choose Y ↪→ AN , then the action is a · (f1(t), . . . , fN (t)) =
(f1(at), . . . , fN (at)).

In particular, we get an action δ of Gm on G((t)). This action is by group automorphisms and it stabilizes
GJtK, so it gives an action δ on GrG. Now assume G is connected reductive (with maximal torus and Borel
T ⊆ B). Note if λ ∈ X∗(T ) then tλ ∈ GrG is fixed by Gm. So Orb(tλ) is Gm-stable.

Note GrG is ind-projective so the map Gm × {x} → GrG extends uniquely to ϕ : P1 × {x} → GrG, given
by defining ϕ(0, x) = lima→0 δ(a)x and ϕ(∞, x) = lima→∞ δ(a)x.

Also, the k-algebra maps k ↪→ kJtK � k (with the latter being evaluation at 0) give G→ GJtK→ G, with
the latter map being g 7→ g(0).

Fact: (a) The fixed point set of Gm on GrG(k) is
⋃
λ∈X∗(T )Gt

λ, and its connected components are the
Gtλ for λ ∈ X∗(T )+.
(b) For all x ∈ Orb(tλ), lima→0 δ(a)x ∈ Gtλ. More precisely, if x = gtλ with g ∈ GJtK, then this limit is
g(0)tλ.

22



Prove this by showing (b) and concluding (a). This in particular shows that

GrG =
∐

λ∈X∗(T )+

Orb(tλ)

is the Bialynicki-Birula decomposition (named after one person; hereafter BB decomposition). What is this
decomposition?

Theorem (BB): If X/k is a smooth proper variety with a Gm-action, and if we let X◦1 , . . . , X◦r be the
connected components of XGm , then:
(i) Each X◦i is smooth.
(ii) We have a (unique) decomposition X =

∐r
i=1X

+
i into Gm-stable locally closed smooth subschemes with

“retraction” maps γ+
i : X+

i → X◦i satisfying:
(iii) γ+

i |X◦i = idX◦i .
(iv) X+

i = {x ∈ X : lima→0 ax ∈ X◦i }.
(v) γ+

i : X+
i → X◦i is Zariski locally on X◦i of the form π2 : V ×X◦1 → X◦1 , where V ∼= An with the diagonal

action of Gm.
(vi) For all x ∈ X◦i , Tx(X+

i ) = (TxX)◦ ⊕ (TxX)+: this comes from TxX having a Gm-action so having an
decomposition into eigenspaces

⊕
n∈Z(TxX)n for λ 7→ λn, and (TxX)+ =

⊕
n≥1(TxX)n.

Moreover, if X is just smooth, we know it satisfies all of these except (ii) and (iv) in general. Also know
that if x ∈ X and lim ax exists and is in X◦i then x ∈ X+

i . (But in our case we know that this limit exists
aways so we’re ok).

Back to our situation: We have retractions Orb(tλ)→ Gtλ that satisfy (v). Fact: Gtλ = G/StabG(tλ) =
G/Pλ where

Pλ = StabG(λ) = {g ∈ G : lim
t→0

t−λgtλ exists}

is the standard parabolic subgroup of G corresponding to the set of simple roots α with 〈λ, α〉 = 0. In
particular, Gtλ is smooth projective rational and geometrically simply connected. (Y rational iff k(Y ) is
purely transcendental). Consequence: Orb(tλ) is also rational, and πgeom,p

′

1 (Orb(tλ)) = 1.
The dimension of Orb(tλ): For x ∈ GrG(k), identify Tx GrG with g((t))/gJtK in the obvious way (for

g = Lie(G)k). If λ ∈ X∗(T ) the action of Gm on Ttλ GrG is given by

(a, f(t)) 7→ t−λfλ(at)tλ = λ(a)f(at)λ(a)−1

where fλ(t) = tλf(t)t−λ. Write g = h ⊕
⊕

α∈Φ gα, the root space decomposition. Then if f(t) ∈ g((t)) is of
the form

f(t) =
∑

0>i�−∞
Xit

i

with Xi = Hi +
∑
αX

α
i , have

a · f(t) =
∑
i<0

(
Hi +

∑
α

a〈α,λ〉Xα
i

)
aiti.

So ⊕
n≥0

(Ttλ GrG)n =
⊕

α∈Φ+,i<0:
〈α,λ〉+i≥0

gαt
i.

So

dimOrb(tλ) = dim
⊕
n≥0

(Ttλ GrG)n =
∑
α∈Φ+

〈α, λ〉 = 〈2ρ, λ〉
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where ρ = 1
2

∑
α∈Φ+ α.

Consequence of this formula: Orb(tλ) is geometrically simply connected. Proof: Orb(tλ) is projective and
normal (by Faltings) and rational, and thus geometrically simply-connected (see SGA1 somewhere). Then,
the boundary of Orb(tλ) is∑

µ<λ

Orb(tµ),

and the dimension of this thing is sup{〈ρ, µ〉 : µ < λ} ≤ 〈2ρ, λ〉 − 2. By Grothendieck’s purity theorem,

πgeom1 (Orb(tλ)) = πgeom1 (Orb(tλ)).

Fact: For all λ, Orb(tλ) is paved by affine spaces. Proof: Remember we had evaluation-by-zero map
e0 : GJtK → G. Let I be the Iwahori subgroup e−1

0 [B] ⊇ I0 = ker(e0). The Iwasawa decomposition gives
Orb(tλ) =

∐
w∈W Itwλ, and the Cartan decomposition gives Ttwλ = I0t

wλ is a finite-type quotient of I0 and
hence on affine space as I0 is pro-unipotent.

The Tannakian category. Start with a review of perverse sheaves. Let X/k be a scheme of finite type, and
` a prime not dividing char k. Let Db

c(X) = Db
c(X,Q`) be the triangulated category of bounded constructible

Q`-complexes (which can be actual complexes using the pro-étale site!) Operations on K ∈ Db
C(X): Can

take the shift K[n] with K[n]i = Kn+i and the Tate twist K(n).
What does “bounded constructible” mean? Bounded means that sheaf cohomologyHiK is zero for |i| � 0.

Constructible means that there exists a stratification X =
⋃
Xα such that for all α and all i, HiK|Xα is

lisse (locally constant of finite type - here locally constant is with respect to the pro-étale topology).
Some operations on this category: Given f : X → Y , have f∗, f! : Db

C(X) → Db
C(Y ) and f∗, f ! →

Db
C(Y ) → Db

C(X), which form adjoint pairs (f∗, f∗) and (f!, f
!) in the usual way. (Note that we write f∗,

etc. to mean the derived version, not Rf∗). Have (Poincaré-Verdier) duality functorsD : Db
C(X)op → Db

C(X)
with D ◦D ∼= id. This is compatible with our other operations in that D ◦f∗ = f! ◦D and likewise for others.
Also, have external tensor product operation �

Db
C(X1)×Db

C(X2)→ Db
C(X1 ×X2)

given by (K1,K2) 7→ π∗1K1 ⊗L π∗2K2; this is exact.
Definition: Perv(X), the category of (constructible self-dual) perverse sheaves is the full subcategory of

Db
C(X) with objects being complexes K ∈ Db

C(X) such that:
(1) There exists a stratification X =

⋃
αXα such that, for every α ∈ A and every i ∈ Z we have Hi(i∗αK) =

HiK|Xα is Lisse and is 0 if i > −dimXα.
(2) There exists a stratification X =

⋃
αXα such that Hi(i!αK) is Lisse and 0 for i < −dimXα. (Note this

is (1) for DK).
Note D(Perv(X)) = Perv(X).
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9 Lecture - 03/26/2014
Let k be a field, X/k a scheme of finite type, G/k a linear algebraic group. Had categories defined Perv(X) of
perverse sheaves, PervG(X) of G-equivariant perverse sheaves, and a faithful forgetful functor PervG(X)→
Perv(X) (fully faithful if G connected, so equivalent to a full subcategory of Perv(X)). (Note in general:
PervG(X) should be the category of perverse sheaves on the quotient [X/G]; this is literally true if X/G is
actually a scheme rather than a stack).

What was a G-equivariant perverse sheaf? Will only talk about it in the connected case, where we said
it’s a full subcategory of Perv(X). Which one? Note we have two obvious maps G ×X → X, the action
map a and the projection-to-the-2nd-coordinate map p. Then PervG(X) is the full subcategory of objects
K with a∗K ∼= p∗K. It’s stable by subquotients but not extensions in general.

Change of group: Assume G is connected and H ⊆ G is normal and connected and acts trivially on X.
Then PervG/H(X) ∼= PervG(X).

Homogeneous spaces. Suppose that k = k and that G acts transitively on X. Fix a point x0 ∈ X(k) and
let H = StabG(x0). Then PervG(X) is equivalent to the category of finite-dimensional representations of
H/H◦. Moreover every K ∈ PervG(X) is a lisse sheaf put in degree −dimX. Why this is true: The stack
quotient [X/G] is isomorphic to [{x0}/H], and Perv([{x0}/H]) is isomorphic to this category. (Need to do
some more to formalize this argument but that’s the idea).

Now assume: k = k, G is connected, X has finitely many G-orbits X =
⋃
Xα, jα : Xα ↪→ X, dα =

dimXα, and for all x ∈ X(k), StabG(x) is connected. Then:
Proposition: The simple objects of PervG(X) are the jα!∗(Q`,Xα [dα]).
Proof: Obviously these are simple and mutually non-isomorphic. Then let K ∈ Perv(X) be a simple

object in PervG(X). Write K = j!∗(L[d]) for j : Z ↪→ X locally closed smooth and connected, d = dimZ,
L lisse on Z and simple. Then supp(K) = Z is G-stable so Z =

⋃
α∈B Xα. Pick α ∈ B such that Xα is open

in Z, so Xα is dense and K|Xα is in PervG(X)α). So K|Xα = Q`[dα], but K = jα!∗(K|Xα).
Ind-schemes: Let X be an ind-scheme of ind-finite type. Write X = lim−→Xn with Xn of finite type. The

transition maps in,m : Xn → Xm are closed immersions, so the in,m∗ are t-exact and fully faithful. Then we
can define lim−→Perv(Xn).

Now letG be a pro-algebraic group acting onX, assuming that the action is nice: X = lim−→Xn, G = lim←−Gn
with Gn linear algebraic groups such that for all n, Xn is G-stable and the action of G on Xn factors through
Gn. Assume further that all of the Gn’s are connected. Then, for all m ≥ n, PervGn(Xn) ∼= PervGm(Xn).
So, define

PervG(Xn) = lim−→
m

PervGm(Xn) = PervGn(Xn),

PervG(X) = lim−→
n

PervG(Xn) = lim−→
n

PervGn(Xn).

This is a full thick subcategory of Perv(X).
Example: G is connected reductive over k, X = GrG with GJtK acting on it, define the Satake category as

Sat(G) = PervGJtK(GrG). If we take G ⊇ B ⊇ T as usual, recall GrG was the disjoint union of λ ∈ X∗(T )+

of Orb(tλ). Let jλ be the inclusion Orb(tλ) ↪→ GrG; if we set dλ = dimOrb(tλ) = 〈2ρ, λ〉. Let

ICλ = jλ!∗Q`,Orb(tλ)[dλ].

Proposition: Sat(G) is Noetherian and Artinian, and if k = k then the simple objects are these ICλ’s.
Proof: We us the previous proposition; we just need to check that if applies. So we need to check that

every StabGJtK(x). Suffices to take x = tλ for λ ∈ X∗(T )+. Then the stabilizer is

{g ∈ GJtK : gtλ ∈ tλGJtK} = GJtK ∩ tλGJtKt−λ.

Then for all N , let KN be the kernel of GJtK → G[t]/(tN ); since N is connected and acts trivially on tλ

for N � 0, we just need to show that (GJtK ∩ tλGJtKt−λ)/KN is connected, and this is the stabilizer of the
action of G[t]/(tN ) on tλ.
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A number of ways to do this. One way: if α ∈ Φ = Φ(T,G) have map µα : Ga → G (for instance, if α > 0
then µα[Ga] is the subgroup of Ru(B) corresponding to the root space gα ⊆ LieRu(B)). Choose orderings
on Φ+ and Φ−. Then the map

µ : V = A|Φ
+| × T × Φ|Φ

−| → G ((xα)α∈Φ+ , z, (yα)α∈Φ−) 7→
∏

µα(xα)z
∏
α

µα(yα)

is an open embedding with dense image (“the big Bruhat cell”). We use µ on k[t]/(tN )-points. Let a =
(xα, z, yα) ∈ V (k[t]/(tN )); then

tλµ(a)t−λ = a(t〈α,λ〉xα, z, t
〈α,λ〉yα)

with the first 〈α, λ〉’s nonnegative and the second ones nonpositive. So get

µ(V [t]/tN ) ∩ tλµ(V [t]/tN )t−λ = µ
(
{(xα, z, yα) such that ∀α ∈ Φ−, ord(yα) ≥ 〈α, λ〉}

)
is connected, and is open and dense in what we’re looking for.

Proposition: Sat(G) is a semisimple abelian category. (This means that every object is a direct sum of
ICλ’s).

Proof: we want to show that Ext1
Sat(G)(K,L) = 0 for all K,L ∈ sat(G). We may assume K = ICλ and

L = ICµ (and get the general case by induction). Three cases:
(1) λ and µ are not comparable. Then Ext vanishes (even in the category of all perverse sheaves) by general
properties of the j!∗’s.
(2) λ = µ. Suppose we have an extension

0→ ICλ → K → ICλ → 0

in Sat(G). One argument we could give: since Sat(G) is a full subcategory of Perv(Gr), have

Ext1
Sat ↪→ Ext1

Perv
∼= Ext1

Orb(tλ)(Q`,Q`) = H1(Orb(tλ)k,Q`) = 0

since Orb(tλ) is simply connected; but simple-connectedness is hard and we didn’t prove it (just stated it).
Another proof: Given our extension, K has no subobject or quotient supported in Orb(tλ) − Orb(tλ)

so K = jλ!∗j
∗
λK. But j∗λK is GJtK-equivariant on Orb(tλ), so is constant, so j∗λK splits as Q`[dλ] ⊕ Q`[dλ].

Passing back to K via jλ!∗ gives what we want.
(3) µ ≤ λ (which is equivalent to the case where λ ≤ µ by duality). So have inclusion maps i, j of

Orb(tµ), Orb(tλ) into Orb(tλ), and inclusions a, b of Orb(tµ) and of Orb(tµ) \ Orb(tµ) into Orb(tµ). Then
have ICµ = i∗i

∗ICµ so

Hom(ICλ, ICµ[1]) = Hom(i∗ICλ, i
∗ICµ[1]).

Now, this fits into an exact sequence

Hom(a∗i∗ICλ, a
!i∗ICµ[1])→ Hom(i∗ICλ, i

∗ICµ[1])→ Hom(b∗i∗ICλ, b
∗i∗ICµ[1]).

This comes from the following: If L ∈ Db
c(Orb(t

µ)) have exact triangle a∗a!L→ L→ b∗b
∗L→ · · · , get exact

triangle by applying the second coordinate of RHom(−,−) to this, then take long exact sequence for that
(?).

Now, can check that Hom(a∗i∗ICλ, a
!i∗ICµ[1]) = 0 because the two parts are concentrated in different

degrees (≤ −1 and ≥ 0, respectively). Similarly can look at Hom(b∗i∗ICλ, b
∗i∗ICµ[1]) and find formally that

b∗i∗ICλ is concentrated in degrees ≤ −1 and b∗i∗ICµ[1] in degree −1. This doesn’t quite rule out that this
Hom is zero; to do that we need to apply the following theorem that implies b∗i∗ICλ is actually concentrated
in degrees ≤ −2 and finishes the proof of the theorem.

Theorem (Lusztig): For all λ, µ ∈ X∗(T )+ with µ ≤ λ, ICλ on Orb(tµ) is concentrated in even perverse
degrees. This follows from the following lemma:
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Lemma: For x ∈ Orb(tλ), the fiber (ICλ)x is concentrated in degrees ≡ dλ (mod 2). (This implies
theorem as follows: ICλ|Orb(tµ) is a GJtK-equivariant complex so pHK(ICλ|Orb(tµ)) are GJtK-equivariant
perverse sheaves hence constant hence pHk(−) = Hk−dµ(−) = 0 unless k− dµ ≡ dλ (mod 2) by the lemma.
But λ− µ is a sum of coroots hence dλ + dµ ≡ dλ − dµ = 〈λ− µ, 2ρ〉 = 0).

How do you prove the lemma? Z = Orb(tλ) has a resolution of singularities π : Z̃ → Z called the gener-
alized Bott-Samelson resolution such that he geometric fibers of π are paved by affine spaces. By the decom-
position theorem ICλ is a direct factor of π∗(Q`, Z̃[dλ]). Hence ICλ,x is a direct factor of H∗−d(π−1[x],Q`),
which is concentrated in degree ≡ dλ (mod 2) (by using excision exact sequence repeatedly, and that affine
spaces only have things concentrated in degree 0).
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10 Lecture - 03/28/2014

Continuing from last time: G is connected reductive, k = k. Have action of GJtK on GrG, and the Satake
category is the category of equivariant perverse sheaves, PervGJtK(GrG). Theorem: Sat(G) ⊆ Perv(GrG)
is full, thick, and semisimple. The simple objects are

ICλ = jλ!∗Q`,Orb(tλ)[〈2ρ, λ〉].

The proof we gave used the generalized Bott-Samelson resolution, which we didn’t talk about; but it will
come up again soon and we’ll discuss it then.

What if k is not algebraically closed? Then Sat(G) is a full and thick subcategory (only uses connected-
ness of G) and still Artinian and Noetherian, but is not semisimple in general. The simple objects are still
the intersection complexes ICλ, but can have nontrivial extensions; if λ = 0 is the trivial cocharacter, tλ = 1
so Orb(tλ) = Spec k and ICλ = Q`; then Ext1

Sat(G)(ICλ, ICλ) is the group of extensions of Q` by itself in
the category of `-adic representations of the absolute Galois group of k. Example: If k = Fq then have a
nontrivial extension, namely Q2

` with Frobq acting by[
1 1
0 1

]
.

Remark: If R is a k-algebra, GmJtK(R) = RJtK× acts by k-algebra isomorphisms on R((t)) (by a · f(t) =
f(at)), so get a∗ : SpecR((t)) → SpecR((t)) for all a ∈ RJtK×. If Y is a k-scheme we get an action of GmJtK
on Y ((t)) by a · µ = µ ◦ a∗ for µ : SpecRJtK→ Y . If Y = G is a smooth affine group scheme then GmJtK acts
on G((t)) by group automorphisms and preserves GJtK, so passes to an action δ of GmJtK on GrG extending
the previous action δ of Gm. This is the Virasoro action; combining it with the natural action of GJtK we
get an action of GJtK oGmJtK (with the action of GmJtK on GJtK what we just defined).

Corollary: If k = k and G is connected reductive then every object of Sat(G) is GJtKoGmJtK-equivariant.
Hence Sat(G) is independent of the choice of t we made. (Proof: Since this group is connected we can use
the simple definition of equivariant; and every object of Sat(G) is a sum of ICλ’s and the ICλ’s are obviously
equivariant).

The convolution product. Our Satake category Sat(G) is supposed to be a Tannakian category but
we haven’t defined the tensor product! And moreover, the usual tensor product doesn’t preserve perverse
sheaves. So we need something else. Convolution diagram: have maps p = π× id : G((t))×GrG → GrG×GrG
and q : G((t))×GrG → G((t))×GJtK GrG, both of which are GJtK-torsors. Recall that G((t))×GJtK GrG is the
quotient (G((t))×GrG)/GJtK via the action g ·(x, y) = (xg−1, gy). This has a mapm : G((t))×GJtKGrG → GrG,
and the composition m ◦ q is just the action map (x, y) 7→ xy.

Now, an incorrect explanation of what we want to do: assume that everything is a scheme of finite type.
Let K1,K2 ∈ Perv(GrG); then we want to define K1 �K2 ∈ Perv(GrG×GrG) such that p∗(K1 �K2) is
a shifted perverse sheaf equivariant for the action g · (x, y) = (xg, y). If K2 ∈ Sat(G) then p∗(K1 �K2) is
GJtK×GJtK-equivariant for the action (g1, g2) · (x, y) = (xg1, g2y). In particular it is GJtK-equivariant for the
action g · (x, y) = (xg−1, gy). So there exists a unique K1�̃K2 ∈ Perv(G((t))×GJtK GrG) with

p∗(K1 �K2) = q∗(K1�̃K2).

Then set the convolution product to be K1 ∗K2 = m∗(K1�̃K2).
If K1 ∈ Sat(G), then K1�̃K2 is GJtK-equivariant for g(x, y) = (gx, y), so K1 ∗ K2 is GJtK-equivariant.

We still need to prove perversity, and more importantly actually define the things we want in the context
we have (where things aren’t schemes of finite type).

How it actually works: Fix K1,K2 ∈ Perv(GrG). Choose Z ⊆ GrG closed and GJtK-stable of finite
type such that Z ⊇ supp(K1) ∪ supp(K2). Let H ⊆ GJtK be a closed subgroup such that G′ = GJtK/H is
a linear algebraic group and such that H acts trivially on Z. Then have p : p−1[Z × Z] → Z × Z, which
is a GJtK-torsor, and this factors through the quotient map p−1[Z × Z] to Y = p−1[Z × Z]/H, giving a
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G′-torsor p′ : Y → Z × Z. Similarly have q : p−1[Z × Z] → q[p−1[Z × Z]] and get q′ : Y → q[p−1[Z × Z]]
which is also a G′-torsor. Then do the exact same thing described above but for this restricted setting rather
than the full spaces. So if K2 ∈ Sat(G) there exists a unique K1�̃K2 ∈ Perv(q[p−1[Z × Z]]) such that
(p′)∗(K1 �K2) = (q′)∗(K1�̃K2), define K1 ∗K2 = m∗(K1�̃K2). This is GJtK-equivariant if K1 is.

Theorem: (1) For all K1 ∈ Perv(GrG) and K2 ∈ Sat(G) the product K1 ∗K2 is perverse.
(2) If k = k then (Sat(G), ∗) has a unique symmetric monoidal structure such that ω : Sat(G) → Q`-vect
given by K 7→

⊕
i∈I H

i(GrG,K) is symmetric monoidal and ω is additive, exact, and faithful.
The proof of this theorem will take us a while and a bit of machinery. We’ll start by introducing global

versions of everything. What do we mean by this? Let X/k be a smooth curve, geometrically connected.
Recall that if x ∈ X(k) and ÔX,x = kJtK we get GrG ∼= Grglob

G via

SpecR 7→ {(M,γ) : M ∈ BG(XR), γ : M |X◦R ∼= M0
X◦R
}/∼,

where X◦ = X \ {x}, M0 is the trivial G-bundle on everything, and BG is the stack of G-bundles.
What about the loop group G((t))? For all k-algebras R, let DR = SpecRJtK ⊇ D◦R = SpecR((t)). Let

G((t))glob be the k-space

SpecR 7→ {(M,γ, δ) : (M,γ) ∈ Grglob
G (SpecR), δ : M |DR ∼= M0|DR}/∼ .

Let GJtKglob be the map

SpecR 7→ {(M,γ, δ) ∈ G((t))glob(SpecR) : δγ−1 ∈ Aut(M◦
D∅R

) ∼= G(R((t))) is actually in G(RJtK)}.

What make this work is the Beauville-Laszlo theorem; this tells us BG(XR) is described by the category of
gluing data (M,N, β) for M ∈ BG(X◦R), N ∈ BG(DR), and β : M |D◦R ∼= N |D◦R is an isomorphism. Get that

G((t))glob(SpecR) ∼= {(M,N, δ, γ, β)}/∼

where each of the things in this tuple is as above. Then, can define a map G((t)) → G((t))glob by g 7→
(M0, X◦R,M

0
DR
, 1, 1, g−1) and this is an isomorphism by BL. Moreover, GJtK gets identified with GJtKglob

and the projection map G((t)) → GrG corresponds to the projection map G((t))glob → Grglob
G given by

(M,γ, δ) 7→ (M,γ).
The Beilinson-Drinfeld affine Grassmannian (G can be any smooth affine group scheme): Define GrX by

SpecR 7→ {(x,M, γ) : x ∈ X(R),M ∈ BG(XR), γ : M |X◦R ∼= M0
X◦R
}/∼,

where X◦R is XR minus Γx, the graph of X. Then we have a map GrX → X given by (x,M, γ) 7→ x. Why
stop here? Let GrXn be the k-space SpecR 7→ {(x1, . . . , xn,M, γ)}/∼ where xi ∈ X(R), M ∈ BG(XR), and
γ is an isomorphism of M with M0 over XR \

⋃
Γxi . Similarly have a map GRXn → Xn.

Remark: If x1, . . . , xn ∈ X(k) are such that xi 6= xj for all i 6= j, then GrXn |(x1,...,xn)
∼= GrG× · · ·×GrG.

If x ∈ X(k) then GrXn |(x,...,x)
∼= GrG. If ∆n ⊆ Xn is the fat diagonal (the set of all tuple (x1, . . . , xn) with

xi = xj for some i 6= j) then GrXn |Xn\Dn ∼= GrX × · · · × GrX .
Exercise: GrA1 = A1 ×GrG.
We salso have global versions ofGJtK andG((t)). Define G((t))Xn by mapping SpecR to {(x1, . . . , xn,M, γ, δ)}/∼

for (x1, . . . , xn,M, γ) ∈ GrXn(SpecR) and δ : M |D(xi)
∼= M0

D(xi)
. Here, if (XR|⋃Γxi

)∧ = Spf A we take
D(xi) = SpecA and D◦(xi) = D(xi) \

⋃
Γxi . Then GJtKXn is defined by mapping SpecR to the subset of

classes (x1, . . . , xn,M, γ, δ) such that δ−1
γ ∈ Aut(M0

D◦
(xi)

) = G(OD◦
(xi)

) is actually in G(OD(xi)
).

Multiplication: G((t))Xn is a group k-space overXn with product (x1, . . . , xn,M, γ, δ)·(x1, . . . , xn,M
′, γ′, δ′) =

(x1, . . . , xn, N, α, β) where N ∈ BG(XR) corresponds to the gluing data (M |XR\⋃Γxi
,M ′|D(xi), (γ

′)−1δ),
α = γ, and β = δ. We also have a map G((t))Xn → GrXn bu (x1, . . . , xn,M, γ, δ) 7→ (x1, . . . , xn,M, γ) which
induces an isomorphism G((t))Xn/GJtKXn ∼= GrXn .

Lemma: GJtKXn is a scheme. G((t))Xn is an ind-scheme. GrXn is an ind-scheme of ind-finite type, which
is ind-projective over Xn iff G is reductive. (Proof: Reduce to G = GLn and use the Grassmannian; follow
the proof for the original affine Grassmannian).
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11 Lecture - 04/02/2014
Beilinson-Drinfeld affine Grassmannians, continuing from last time: had GrXn given by SpecR 7→ [x1, . . . , xn,M, γ],
G((t))Xn given by SpecR 7→ [x1, . . . , xn,M, γ, δ], with subgroup GJtKXn .

Today (for doing geometric Satake) will only need cases n = 1, 2. However, introduce notation Grn =
GrXn , and so on, and write Gr = Gr1.

Remark: If X = A1 then Gr ∼= GrG×A1. (Proof: Comes from the simply transitive action Ga on
A1 by translations; for a ∈ Ga let ua be the action map. We can lift this to an action νa on Gr by
(x,M, γ) 7→ (x+a, µ∗−aM,µ∗−aγ). The actions νa and µa are compatible with the projection Gr → A1. Since
GrG = Gr0 get an isomorphism GrG×Ga → Gr by (p, a) 7→ va(p)).

Remark 2: Virasoro action. The group that acts on GrG is not GmJtK but Autk-alg(kJtK). Since Gr → X
is an étale locally trivial GrG-bundle, the transition isomorphisms are given by the Virasoro action.

Remark 3: Let ∆ ⊆ X ×X be the diagonal. Then Gr2|X2\∆ = (Gr × Gr)|X2\∆ and Gr2|∆ = Gr.
The local convolution diagram: Wanted to have convolution map GrG×Grg → GrG. Started by lifting

via p = π× id to G((t))×GrG, which has the action map to GrG. But this is a bundle so want to descend it
via a map q : G((t))×GrG → G((t))×GJtK GrG. Then for K1,K2 ∈ Sat(G) there exists a unique K1�̃K2 on
G((t))×GJtK GrG such that “q∗(K1�̃K2) = p∗(K1 �K2). By definition took K1 ∗K2 = m∗(K1�̃K2).

Global convolution diagram. Let G̃ be the thing sending SpecR to (x1, x2, N1, N2, δ1, δ2) modulo equiva-
lence, where x1, x2 ∈ X(R), N1, N2 ∈ BG(XR), and δi are isomorphisms of Ni with M0 on XR \ Γxi . Now,
as before start with Gr × Gr, have map pglob from G((t))× Gr to this, have map qglob : G((t))× Gr → G̃, and
map mglob : G̃ → Gr; and all of these live over X2.

Note: If we take the fiber over (x, x), get back the local diagram. As before can define the convolution
product using this diagram. If K1 ∈ PervGJtK1(Gr) and K2 ∈ Perv(Gr) then there exists a unique K1�̃K2 ∈
Perv(G̃) such that “ qglob∗(K1�̃K2) = pglob∗(K1 � K2). We set K1 ∗glob K2 = mglob

∗ (K1�̃K2). This is
GJtK-equivariant if K2 is.

Case X = A1: Gr = GrG×A1, and project to GrG via π1. If L1 ∈ Sat(G) and L2 ∈ Perv(GrG) then set
Ki = π∗1Li[1] = Li �Q`,A1 [1]. Then we have

(K1 ∗glob K2)|∆ = (L1 ∗ L2) �Q`,A1 [1].

Proof: Over ∆, the global diagram is the local diagram crossed with A1.
The fusion product: Have inclusions j : Gr2|X2\∆ ↪→ Gr2 and i : Gr ∼= Gr2|∆ ↪→ Gr2. Also, know

Gr2|X2\∆ ∼= (Gr × Gr)|X2\∆ and can take inclusion j′ : (Gr × Gr)|X2\∆ → Gr × Gr. Definition: If K1,K2 ∈
Perv(Gr), their fusion product is

K1 ? K2 = j!∗((j
′)∗K1 �K2) ∈ Prev(Gr2).

Remark: If K1 is GJtK-equivariant then j∗(K1 ? K2) = j∗(K1 ∗glob K2). (Exercise).
Theorem: If K1,K2 are universally locally acyclic (ULA) with respect to Gr → X, then i∗(K1 ? K2) is

perverse. Moreover, if K1 is GJtK-equivariant then K1 ? K2 = K1 ∗glob K2.
In particular, if X = A1 and Ki = Li�Q`,A1 [1] then L1 ∗L2 = i∗(K1 ?K2)[−1] so L1 ∗L2 is perverse and

we get commutativity isomorphism L1 ∗ L2
∼= L2 ∗ L1. (However we’ll have to modify this commutativity

constraint by a sign later on, because we need compatibility with global sections...)
Nearby and vanishing cycles. Will take k = k for convenience. Consider the following situation (all new

notation). Let X be a k-scheme of finite type, f : X → A1 a function. Let U be the inverse image of A1 \{0}
and j : U → X the inclusion; also let Y be the fiber over 0 and i : Y → X the inclusion.

Let S = SpecOhA1,(0) (the Henselianization). Have s ↪→ S (the special point) and η ↪→ S (generic point);
if we take S to be the normalization (integral closure); get s ↪→ S still and η ↪→ S. Can base change our
entire original picture to get i : Y → X = XS and j : Xη → XS . Also have π : Xη → U .

What are nearby cycles? If K ∈ Db
c(U), set ψK = i

∗
j∗π
∗K ∈ Db

c(Y ) which has an action of πét
1 (η, η).

(This action is quasi-unipotent). Let T be a generator of the prime-to-p part of πét
1 (η, η) (where p is the
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characteristic of k). We have an exact triangle

i∗j∗K → ψfK → ψfK → · · · .

We then write N for the logarithm of the unipotent part of T acting on ψfK.
Vanishing cycles: If K ∈ Db

c(X) then have i∗K → i∗j∗j
∗K by adjunction and then a map from this

to ψf j∗K. The cone of that map is the complex of vanishing cycles ΦfK. There is a way to make this
functorial. We get an exact triangle

i∗K → ψf j
∗K → ΦfK → · · · .

Theorem: (i): If K ∈ Perv(U) then ψfK[−1] ∈ Perv(Y ).
(ii) If K ∈ Db

c(X) and K|U ∈ Perv(U) then TFAE:
(a) K = j!∗j

∗K and i∗K[−1] ∈ Perv(Y ).
(b) ΦfK = 0 and the unipotent part of T is 1.
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12 Lecture - 04/04/2014

Situation: k = k with characteristic p, have f : X → A1 and fibers Y, U over {0},A1 \ {0}. We let
S = SpecOhA1\{0} (where the h means henselization), let η be the generic point of S, and I = πét

1 (η, η) which
we think of as an inertia group. Had a nearby cycle functor ψf : Db

c(U) → Db
C(Y ) and vanishing cycles

functor Φf : Db
c(X)→ Db

c(Y ) (both with actions of inertia).
Recall: Have 1→ P → I → It → 1 with It the tame inertia (isomorphic to Ẑp(1)) and P the wild inertia

(a pro-p group). Facts (correcting what we had last time):
(1) i∗j∗K = RΓ(I, ψfK) = RΓ(It, (ψfK)P ). We all (ψfK)P the tame nearby cycles ψtfK. If T is a pro-
generator of It then we have an exact triangle i∗j∗K → ψtfK → ψtfK → · · · (where the second map is
defined by T − 1).
(2) We have an exact triangle i∗K → ψf j

∗K → ΦfK → · · · .
Some properties of ψf and Φf :

(A) ψf and Φf commute with duality (i.e. ψf (DK) ∼= D(ψfK), etc.).
(B) Base change: If you have g : X ′ → X and U ′ lying over U , have ψfg∗ → g∗ψfg and g∗ψf → ψgfg

∗ (and
similarly for Φ). Proper base change says the first map is an isomorphism if g is proper, and smooth base
change says the second is an isomorphism if g is smooth.

Example: (a): f = id : X = A1 → A1. Then ψidQ`,Gm = Q` and ΦidQ`,A1 = 0. (b): If f : X → A1 is
smooth then ψfQ`,U = Q`,Y and ΦfQ`,X = 0.

Theorem (from last time):
(1) ψf [−1] sends Perv(U) to Perv(Y ).
(2) Let K ∈ Db

c(X) be such that j∗K ∈ Perv(U). Then TFAE:
(a) K = j!∗j

∗K (which means that if K is in Perv(X) then i∗K[−1] ∈ Perv(Y )).
(b) ΦfK = 0.

Proof: (i) is in BBD. For (ii), start by showing (b) =⇒ (a). If ΦfK = 0 then i∗K = ψf j
∗K. By (i),

i∗K[−1] ∈ Perv(Y ) so K ∈p D≤0. We also have Φf (DK) = 0 and j∗DK ∈ Pev(U) so DK ∈p D≤0 so
K ∈ PervX. If K � L is in Perv(X) with L = i∗i

∗L then pH0i∗K � i∗L because i∗ is right-exact; but
pH0i∗K = 0 and thus i∗L = 0 and thus L = 0. So K has no quotient supported on Y and neither does DK
(and thus K has no subobjects there) so K = j!∗j

∗K by one of the characterizations of the middle extension.
Back to the convolution diagram (which we screwed up last time) - can’t use G((t)) × Gr in the middle.

Instead we need another space ˜G((t))× Gr which has maps pglob and qglob to Gr × Gr and to G̃r, and a map
mglobG̃r → Gr2. (Everything lies over X ×X. Recall X/k is a smooth curve, G/k is connected reductive,
and k = k).

What’s this new space? Define it by

˜G((t))× Gr(SpecR) = {(x1, x2,M1,M2, γ1, γ2, β1)}/∼

where (xi,Mi, γi) ∈ Gr(SpecR) and β1 is an isomorphism between M1 and M0 on Dx2
. The map pglob is

the obvious one (forgetting β1) and qglob is the one going to (x1, x2,M1,M
′
2, γ1, γ

′
2) (using the definition of

G̃ from last time) where M ′2 corresponds via B-L to the gluing data (M2|XR\ΓX2
,M1|DX2 , β

−1
1 γ2) and γ′2 is

the gluing of (γ−1
1 γ2, γ

−1
1 β1).

In the case X = A1: Have X = ∆ ⊆ X2 the diagonal, and Gr2|∆ = Gr and Gr2|X2\∆ = (Gr × Gr)|X2\∆.
Over ∆ remember that Gr ∼= Gr×A1 and the global diagram becomes isomorphic to the local diagram times
A1. Over X2 \∆ the Gr × Gr is isomorphic to Gr2; claim that if we put in this isomorphism the diagram
commutes (so that (K1,K2) ∈ Gr × Gr corresponds to K1 �K2 in Gr2 under the isomorphism).

Proof of commutativity: Fix x1, x2 with Γx1∩Γx2 = ∅. Then fix an element of ˜G((t))× Gr over (x1, x2); this
is tuple (M1,M2, γ1, γ2, β1). We know pglob takes this to the pair (M1, γ1) and (M2, γ2) and the isomorphism
takes it to some (N, γ). Also, qglob takes it to (N1, N2, δ1, δ2) and then mglob goes to some (N ′, γ′); we need
to show (N, γ) = (N ′, γ′).

What are all of these things? Well, by B-L we know N corresponds to the gluing data of M0|XR\Γx1,x2 ,
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γ2 : M2|Dx1 ∼= M0, and γ1 : M1|Dx2 ∼= M0, and γ = id. Also (N1, δ1) = (M1, γ1) and N2 corresponds to
(M1|XR\Γx2 , β

−1
1 γ2) and δ2 = id. Finally, N ′ = N2 and γ′ = δ1δ2 = γ1.

Or does the diagram maybe not commute? Not sure... But can replace it by defining a section s :

Gr × Gr → ˜G((t))× Gr (by taking β1 = γ1|Dx2 ) and can show that going from Gr × Gr all of the way over to
Gr2 via this section and qglob and m is the same as the usual isomorphism.

Hence: (K1∗globK2)|X2\∆ = (K1�K2)|X2\∆. Recall that we wanted to proveK1∗globK2 = mglob
∗ (K1�̃K2)

is equal to j!∗((K1 � K2)|X2\∆). But we were only going to prove it when Ki = Li � Q`,A1 [1] for Li ∈
Perv(GrG). How will we prove this? By showing the vanishing cycles are zero; need that Φf (K1∗globK2) = 0,
where f : Gr2 → X2 → X is the structure map for Gr2 composed with the map (x1, x2) 7→ x1−x2. As mglob

is ind-projective, it’s enough to show Φ(K1�̃K2) = 0. (Why is mglob ind-projective? Its fibers are twisted
GrG’s and can conclude it from that).

Why is Φ(K1�̃K2) = 0? Recall it’s defined so that p−1[K1�̃K2] ∼= q−1[K1�̃K2]. But this was a bit of
a lie since we haven’t defined this inverse image of such things; actually we had p and q factor through Z,
giving p′, q′ that are torsors under a finite type quotient of GJtK and required (p′)∗[K1�K2] = (q′)∗[K1�̃K2].
But these p′, q′ are smooth so by smooth base change we need to show Φ(K1 �K2) = 0.

This is where we need some hypothesis since it’s not true that Φ(K1 �K2) = 0 in general. But in our
case, Ki = Li �Q`,A1 [1]. So

Φ(K1 �K2) = (L1 � L2) � Φ(Q` �Q`)[2]

by identifying (Gr × Gr)|∆ ∼= GrG×GrG×∆. But then we have a map GrG×GrG×A1 → Gr × Gr →
A1×A1 → A1 defined by (x1, x2) 7→ x1−x2 on the last map, which is smooth, and thus get Φ(Q`�Q`) = 0.

This finishes the proof of the theorem that the fusion product equals the convolution product.
Corollary:

(L1 ∗ L2) �Q`,A1 [1] = i∗(K1 ∗glob K2)[−1] = ψf (K1 �K2|X2\∆[−1])

is perverse. (Proof: From the exact triangle i∗ → ψf → Φf ).
Corollary: Let a : GrG → Spec k be the structural map. Then if L1 ∈ Sat(G) and L2 ∈ Perv(GrG), we

have a∗(L1 ∗ L2) = (a∗L1)⊗L (a∗L2) and this is compatible with the commutativity isomorphisms of ∗ and
⊗. (Proof: Proper base change).

Now: We want our fiber functor to be ω : Sat(G) → Vect(Q`) given by K 7→
⊕

i∈ZH
i(GrG,K). But

this
⊕
Hi : Db(Vect(Q`))→ Vect(Q`) is not compatible with the commutativity constraints (there’s a sign

problem). We’ll fix this by modifying the commutativity constraint on ∗.
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13 Lecture - 04/09/2014

Parity vanishing. Recap: k = k, G connected reductive. Have defined ∗ : Sat(G) × Sat(G) → Sat(G),
and have seen that this makes Sat(G) a symmetric monoidal category. Have also said that a∗ : Sat(G) →
Db(VectQ`) is a tensor functor, for a : GrG → Spec k the obvious map. Why? For X = A1, have diagram

Gr2|X2\∆ Gr2 Gr2|∆

X2 \∆ X2 ∆

X

j

h

i

a

s

If L1, L∈Sat(G) and Ki = Li �Q`,X [1] then

(L1 ∗ L2) �Q`,X [1] = Ψs◦h(K1 �K2|X2\∆)[−1].

So

a∗(L1 ∗L2) = a∗Ψs◦h(K1 �K2|X2\∆)[−2]0 = Ψs(a×a)∗(K1 �K2|X2\∆)[−2]0 = a∗L1⊗a∗L2⊗ (ΨsQ`)0,

and the last thing is just Q`.
Problem: we want ω : Sat(G)→ VectQ` given by ω(K) =

⊕
i∈ZH

i(GrG,K) to be symmetric monoidal.
But it isn’t because H∗ : Db(VectQ`)→ VectQ` isn’t; the way we defined our commutativity constraints in
the derived category gives us some sign problems.

Solution: We modify the isomorphism ICλ ∗ ICµ ∼= ICµ ∗ ICλ by multiplying it by (−1)〈2ρ,λ+µ〉. This
works thanks to the parity vanishing theorem:

Theorem (Lusztig): For all λ ∈ X∗(T )+, H∗(ICλ) is concentrated in degree ≡ 〈2ρ, λ〉 (mod 2).
Proof (Ngo-Polo): Write Oλ = Orb(tλ). Start by considering minimal elements in X∗(T )+ \ {0}.
Lemma: Let λ ∈ X∗(T )+ \ {0} be minimal. Then there are two possibilities:

(i) Either λ is minuscule (i.e. 〈λ, α〉 ≤ 1 for all α ∈ Φ+ and then λ is minimal in X∗(T )+; or
(ii) λ = γ∨ is a coroot for γ a maximal root. (Call this λ being quasi-minuscule).

In case (i), Oλ = Oλ is smooth so

H∗(ICλ) = H∗(Oλ,Q`)[〈2ρ, λ〉].

But we’ve seen that Oλ is paved by affine spaces, so H∗(Oλ,Q`) is concentrated in even degree.
In case ii), Oλ = Oλ ∪O0 with O0 a point. Let

P = {g ∈ G : lim t→∞tλgt−λ exists}.

This is a parabolic subgroup and there exists L → G/P an A1-bundle with L ∼= Oλ. Can show that there
exists a P1-bundle L ⊇ L such that L ∼= Oλ extends to L � Oλ. By the decomposition theorem, H∗(ICλ)
is a direct factor of H∗(L,Q`)[〈2ρ, λ〉]. Since L is a bundle over G/P which is paved by affine spaces, get
that this cohomology is concentrated in even degrees.

Next: The n-fold convolution diagram. Remember the (local) convolution diagram

G((t))×GrG

GrG×GrG G((t))×GJtK GrG GrG

p=π×id q

m

.
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In fact, we can reinterpret this by noting that G((t))×GJtK GrG ∼= GrG×GrG again; we get this isomorphism
by taking q′ : G((t)) × GrG → GrG×GrG defined by (g, x) 7→ (π(g), gx), and find this factors through
G((t))×GJtK GrG and the resulting map is an isomorphism. Via this isomorphism m just becomes projection
onto the second factor.

We use this point of view to get an n-fold convolution diagram:

G((t))n−1 ×GrG

GrnG GrnG GrG

pn=πn−1×id qn

mn

where mn is projection onto the last coordinate, and q is given by

q(g1, . . . , gn−1, x) = (π(g1), π(g1g2), . . . , π(g1 · · · gn−1), g1 · · · gn−1x).

Now, if L1, . . . , Ln ∈ Sat(G) then there exists a unique L1�̃ · · · �̃Ln such that

q∗n(L1�̃ · · · �̃Ln) = p∗n(L1 � · · ·� Ln),

where again we interpret this as actually being an equality for pullbacks on finite-type subobjects/quotients...
Define L1∗· · ·∗Ln = Mn∗(L1�̃ · · · �̃Ln). Using a global diagram as before, we get the following interpretation
(for X = A1): if U is Xn minus the fat diagonal and ∆ = X is the thin diagonal, then Grn|U = Grn|U
embeds in Grn via j, and Grn|∆ = Gr ∼= GrG×X embeds in it by i. If Ki = Li �Q`,X [1] ∈ Perv(Gr), then

L1 ∗ · · · ∗ Ln �Q`,X [1] = i∗j!∗(L1 � · · ·� Ln|U )[1− n],

this is perverse, and you can calculate it by using iterated Ψ. In particular, a∗(L1 ∗ · · · ∗ Ln) = (a1 ∗ L1)⊗
· · · ⊗ (a∗Ln).

Now, fix λ1, . . . , λ− n ∈ X∗(T )+. Let

Oλ1
×̃ · · · ×̃Oλn = qn[p−1

n [Oλ1
× · · · ×Oλn ]],

which is the support of ICλ1
�̃ · · · �̃ICλn . This is closed in GrnG. Notes: this product of intersection

complexes is the intersection complex of this set we’ve just defined (“being the intersection complex” is local
in the smooth topology). Moreover,

mn[Oλ1
×̃ · · · ×̃Oλn ] = Oλ1+···+λn .

By the decomposition theorem, we see that ICλ1+···+λn is a direct factor of an appropriate shift of ICλ1 ∗
· · · ∗ ICλn . So a∗ICλ1+···+λn is a direct factor of an appropriate shift of a tensor product of the a∗ICλi . The
theorem will then follow from:

Lemma: Every λ ∈ X∗(T )+ is a sum of minuscule and quasi-minuscule characters in X∗(T ) \ {0}.
We conclude that any a∗ICλ is concentrated in either even or odd degree.

Recalling what the decomposition theorem was: Let F : X → Y be a proper map between Fq-sheaves of
finite type. Let K be a pure `-adic complex on X (e.g. the intersection complex). Then

(f∗K)YFq
∼=
⊕
i∈Z

pHi(f∗K)[−i],

and each pHi(f∗K)|YFq
is a semisimple perverse sheaf.

So, if we know that there exists U ↪→ Y open sense such that some Hi(f∗K)|YFq
is Q`,U , then ICλ[· · · ]

is a direct factor of (f∗K)|YFq
.

35



Now: We wanted Sat(G) with ∗ to be symmetric monoidal and ω a symmetric monoidal exact faithful
additive functor. Have almost everything; fixed everything up so that the symmetric monoidal stuff works,
and it’s immediate that ω is additive and exact (the latter because Sat(G) is semisimple). Why is ω faithful?
Since ω is exact, suffices to show that K 6= 0 implies ω(K) 6= 0. So we just need to check that every ω(ICλ)
is nonzero, but this is

⊕
i∈ZH

i(Oλ, ICλ), and we know that H−〈2ρ,λ〉(Oλ, ICλ) is Q`.
Note that intersection cohomology satisfies hard Lefschetz, hence Hi(Oλ, ICλ) 6= 0 for integers

−〈2ρ, `〉,−〈2ρ, `〉+ 2,−〈2ρ, `〉+ 4, . . . , 〈2ρ, `〉 − 2, 〈2ρ, `〉.

So, dimω(ICλ) = 1 implies 〈2ρ, λ〉 = 0, i.e. tλ is central in G(k((t))).
Also, note that the unit object in Sat(G) is IC0.
The point of all that we’ve done is to say that Sat(G) is a Tannakian category; the one part of the

definition we’re missing is “rigid”. Remember that if F is a field, a neutralized Tannakian category over
F is a triple (C,⊗, ω) where (C,⊗) is a F -linear rigid abelian tensor category and ω : C → VectF is a
faithful exact tensor functor, and End(1) = F . (F -linear means that all hom-sets are F -vector spaces and
composition is F -bilinear). Abelian tensor category means that we have an abelian category and a tensor
category such that tensor products are additive. What does rigid mean? Two things:
(i) Internal Homs exist: For every K,L ∈ C, the functor C → Set given by T 7→ Hom(T ⊗ K,L) is
representable; the representing object is the internal hom Hom(K,L). It comes with an evaluation map
evK,L : Hom(K,L)⊗K → L. Also, internal Homs must be compatible with tensor products.
(ii) Every object is reflexive: For any K, let K∨ = Hom(K, 1); then ev : K∨⊗K → 1 plus the commutativity
constraint gives map K ⊗ K∨ → 1. Comparing this with the evaluation map K∨ ⊗ K∨∨ → 1 get a map
iK : K → K∨∨. We say K is reflexive if this iK is an isomorphism.

Example: Let G be an affine group scheme over F . Let RepG be the category of representations of G
on finite-dimensional F vector spaces, ⊗ the usual tensor product, and ω the forgetful functor. Then this
defines a neutralized Tannakian category.

In fact this is the only example! If (C,⊗, ω) is a neutralized Tannakian category, let Aut⊗(ω) be the
group k-space sending a k-algebra R to Aut⊗(ω⊗F R). Theorem: (1) If (C,⊗, ω) = RepG then the obvious
morphism G → Aut⊗(ω) is an isomorphism. (2) For any (C,⊗, ω), Aut⊗(ω) is representable by an affine
group scheme G over F , and the obvious functor C → RepG is an equivalence of categories. (Grothendieck,
Deligne, Milne, Rivano).
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14 Lecture - 04/11/2014

Theorem: For k = k and G connected reductive, (Sat(G), ∗, ω) is a neutralized Tannakian category. (The
algebraically closed assumption isn’t strictly necessary).

Proof: We know everything except that Sat(G) is rigid. Actually, it’s enough to prove that objects
with dimω(K) = 1 have ∗-inverses. (Prove that for 1-dimensional objects this inverse is the dual, and
for a general object with dimension, d, can define the dual as K∨ = (

∧d−1
K) ∗ (

∧d
K)−1. Then prove

Hom(K,L) = K∨ ∗ L).
So how do we prove that K ∈ Sat(G) with dimω(K) = 1 has an inverse? Well, such a K must be ICλ

where λ such that 〈λ, α〉 = 0 for every root λ. But this means ICλ = Q`,tλ , so K−1 = Q`,t−λ .
In fact, we can prove a formula for the dual in general; if π : G((t)) → GrG is the projection and

inv : G((t)) → G((t)) is the inversion map, then K∨ is the unique element of Sat(G) such that π∗K∨ =
D(inv∗π∗K).

Remark: Last time said that if λ1, . . . , λn ∈ X∗(T )+ then ICλ is a direct factor if ICλ1
∗ · · · ∗ ICλn up

to a shift. But since they are both perverse sheaves, the shift must be zero.
Remark: What about k 6= k? Then ∗ is still defined and still related to ? in the same way. However,

Sat(G) is no longer necessarily semisimple. We can fix the commutativity constraint because if K ∈ Sat(G)
is indecomposable, then it’s supported on a connected component of GrG so its simple constituents ICλ (up
to twist) all have the same parity of 〈2ρ, λ〉.

Let k = k and G connected reductive. Let G′ = Aut⊗(ω); this is an affine group scheme over Q`. Main
theorem: G′ = ĜQ` . In other words, there’s a ⊗-equivalence of categories between Sat(G) and RepĜQ`

such

that ω corresponds to the forgetful functor. (Here Ĝ is the dual group).
Lemma: G′ is a connected reductive group over Q`.

Proof: First check that G′ is of finite type. This is equivalent to there existing K ∈ Sat(G) such that every
L ∈ Sat(G) is a subquotient of some K∗n. Choose λ1, . . . , λn generating the semigroup X∗(T )+ and take
K = ICλ ⊕ · · · ⊕ ICλn .

Then, G′ is reductive because Sat(G) is semisimple. It’s connected because connectedness is equivalent to
saying that if K 6= 0, 1, then 〈K〉 (the smallest thick subcategory of Sat(G) containing all K⊕n) is not stable
by ∗ (if G′ 6= (G′)◦ then G′ � Γ with Γ nontrivial finite, so RepΓ ↪→ RepG′ , and the regular representation
of K ′ would be stable). So, let K = ICλ1 ⊕ · · · ⊕ ICλn ; then IC2λ1+···+2λn /∈ 〈K〉.

So we know G′ is connected reductive; how do we prove it’s ĜQ` (the geometric Satake isomorphism)?
Strategy: Pick G′ ⊇ B′ ⊇ T ′, and take X∗(T ′)+. So far we know X∗(T

′)+ is isomorphic to the simple
objects of Sat(G), which is isomorphic to RepG′ and this to X∗(T )+ = X∗(T̂ ), via λ 7→ [ICλ] (in the
reverse direction).

The next step is to prove the following statements:
(A) A connected reductive group H over an algebraically closed F is uniquely determined by (X∗(TH)⊥,+,≤
).
(B) The bijection X∗(T ′) ∼= X∗(T )+ is compatible with ≺, where if λ, µ are two elements (in either set) then
λ ≺ µ iff µ− λ =

∑
aiαi with αi positive roots (or coroots) and ai ∈ R≥0.

(C) X∗(T ′)+ ∼= X∗(T )+ is compatible with +, hence extends to an isomorphism of groups τ : X∗(T ′) ∼=
X∗(T ).
(D) τ takes the root lattice to the coroot lattice and respects ≤.

To prove these, we’ll need two big inputs, one from geometry and one from representation theory:
Theorem A: Let µ1, . . . , µn ∈ X∗(T )+. Then

ICµ1 ∗ · · · ∗ ICµn = ICµ1+···+µn ⊕
⊕

v<µ1+···+µn

IC⊕avv .

Moreover, if λ = ν1 + · · ·+ νn ∈ X∗(T )+ with νi ∈Wµi for all i (where W is the Weyl group) then ICλ is a
subquotient of ICµ1

∗ · · · ∗ ICµn . (The first equality is not so hard; the “moreover” is more involved).
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Theorem B: Let H be a connected reductive group over F such that F = F (no assumptions on the
characteristic). Fix H ⊇ BH ⊇ TH and WH = W (TH , H). Let µ1, . . . , µn ∈ X∗(TH)+ and let νi ∈ WHµi
such that λ = ν1 + · · · + νn ∈ X∗(TH)+. Then Vλ (the highest weight representation associated to λ) is a
subquotient of Vµ1

⊗ · · · ⊗ Vµn .

Proof of Step (B): Let λ ∈ X∗(TH)+, and let Vλ be the highest weight representation associated to λ.
Set

Dom≺λ = {µ ∈ X∗(TH)+ : µ ≺ λ}.

Proposition: Let λ, µ ∈ X∗(TH)+. Then TFAE:
(i) λ ≺ µ.
(ii) There exists F ⊆ X∗(TH)+ finite such that for all k ∈ N, Dom≺kλ ⊆WHF +

∑k
i=1WHµ.

(iii) There exists a representation U ∈ RepH such that for all k ∈ N, every simple subquotient of V ⊗kλ is a
subquotient of U ⊗ V ⊗kµ .

Corollary: ι : X∗(T ′)+ ∼= X∗(T )+ preserves ≺ (this is Step (B)).
Proof of Corollary: Let λ, µ ∈ X∗(T )+. If λ ≺ µ, let F ⊆ X∗(T )+ be a finite set as in (ii) and

L =
⊕

ν∈F ICν . By (i)⇐⇒ (iii), ι(λ) ≤ ι(µ) iff for all k there exists K such that every simple subquotient
of IC∗kλ is a subquotient of K ∗ IC∗lµ . Let k ∈ N and let ICν a simple subquotient of IC∗kλ . Then ν ≤ kλ so
ν ≺ kλ so ν ∈WF +

∑
Wµi so by Theorem A, ICν is a subquotient of L ∗ IC∗kµ . So

Conversely, suppose ι(λ) ≺ ι(µ). By the proposition there’s K ∈ Sat(G) such that IC∗kλ is a subquotient
of K ∗ IC∗kµ . Then the supports satisfy

Okλ = supp(IC∗kλ ) ⊆ supp(K ∗ IC∗kµ ) =

n⋃
i=1

Oνi+kµ ⊆ Oν+kµ

if ν ≥ ν1, . . . , νn. Then Theorem A implies that kλ ≤ ν + kµ for all k, so λ ≺ µ.
Proof of Proposition: (iii) =⇒ (i): If (iii) holds then there exists ν ∈ X∗(TH)+ such that for all k,

kλ ≤ v + kµ. So λ ≺ µ.
(ii) =⇒ (iii): Assume (ii) holds; take U =

⊕
v∈F Vv. If k ∈ N and Vχ is a subquotient of V ⊗kλ then χ ≤ λk

implies χ ≺ λk so χ ∈WF +
∑
Wµ. By Theorem B, Vχ is a subquotient of U ⊗ V kµ .

(i) =⇒ (ii): This is the hard part; we’ll prove it in the special case of H = GL2. What happens if we take
X∗(TH) = X∗? It’s Z2. Then (X∗)+ = {(λ1, λ2) : λ1 ≥ λ2}, and (λ1, λ2) ≤ (µ1, µ2) iff (λ1, λ2) ≺ (µ1, µ2) iff
λ1 + λ2 = µ1 + µ2 and λ1 ≤ µ1. Fix λ = (λ1, λ2) and µ = (µ1, µ2) with λ ≤ µ, and let k ∈ N. Then

Dom≺kλ = {(a1, a2) ∈ Z2 : a1 + a2 = kλ1 + λ2, kλ1 ≥ a1 ≥
1

2
k(λ1 + λ2)}.

Moreover, 1
2k(λ1 + λ2) = 1

2k(µ1 + µ2) ≥ kµ2. Then∑
Wµ = {(` ⇐= 1 + (k − `)µ2, (k − `)µ1 + `µ2) : 0 ≤ ` ≤ k},

and we can take F = {(0, 0), (1,−1), . . . , (µ1 − µ2, µ2 − µ1)}.

Step (C): ι : X∗(T )+ ∼= X∗(T ′)+ respects addition (so extends to an isomorphism of X∗(T ) ∼= X∗(T ′)).
Proof: For all α, β ∈ X)(T ′)+, then α + β is the biggest element γ ∈ X∗(T ′)+ such that Vγ is a direct
summand of Vα⊗Vβ . Also, for all λµ ∈ X∗(T )+, λ+µ is the biggest ν ∈ X∗(T )+ such that ICν is the direct
summand of ICλ ∗ ICµ.

Step (D): ι preserves ≤ (not just ≺): Let Q′ ⊆ X∗(T ′) and Qv ⊆ X∗(T ) be the root (coroot) lattice.
Lemma: Let λ, µ ∈ X∗(TH). Then TFAE:

(i) λ ≤ µ
(2) λ ≺ µ and µ− λ ∈ QH .

Given this lemma, proving (D) is clear; need to show that ι identifies the root and coroot lattice.
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15 Lecture - 04/16/2014

Proof of Geometric Satake: Had G connected reductive over k = k. Showed Sat(G) with ∗ and ω was a
Tannakian category, and let G′ be its Tannakian group over Q`. Our goal is to prove G′ = Ĝ.

From what we proved last time: We know G′ is a linear algebraic group that’s connected reductive.
Moreover if G′ ⊇ B′ ⊇ T ′, saw we had an isomorphism ι : X∗(T )+ → X∗(T )+ which was compatible with
addition and preserved the “weird Bruhat order ≺”. Thus it extended to an isomorphism X∗(T ) ∼= X∗(T ′).

What was left from our setup last time was proving Step (D), that ι(Q∨) = Q′ where Q∨ is the coroot
lattice of X∗(T ) and Q′ the root lattice of X∗(T ), and Step (A) that a connected reductive group over an
ACF is uniquely determined by X∗(T )+ together with +,≺.

Proof of Step (D): Start with a Lemma 1: H connected reductive over F = F . Let H ⊇ BH ⊇ TH and
X∗(TH) ⊇ QH as usual, and let Q+

H = QH ∩ X∗(TH)+. Then if α ∈ X∗(TH), have α ∈ Q+
H iff there is

µ ∈ X∗(TH)+ such that 2µ− α ∈ X∗(TH)+ and V2µ−α is a direct factor Vµ ⊗ Vµ.
Remark: This lemma lets us characterize (Q∨)+ and Q+ in terms of things that we already know are

compatible under ι; thus: Corollary: ι(Q∨) = Q′. (Note that the condition of the lemma is stable by sums:
if we have (α1, µ1) and (α2, µ2) satisfying it and we set µ = µ1 +µ2 and α = α1 +α2 then 2µ−α ∈ X∗(TH)+

and ... ? )
Corollary (of the last corollary): ι respects ≤. This follows from the following: Lemma 2: Let λ, µ ∈

X∗(TH). TFAE: (i) λ ≤ µ, (ii) λ ≺ µ and µ− λ ∈ Q+
H .

Proof of Lemma 1: =⇒ : If α is a positive root, take µ such that 〈µ, α〉 = 2. Then 2µ− α = α+ sα(µ),
so V2µ−α is a direct summand of Vµ ⊗ Vµ by Theorem B (from last time). The ⇐= direction is trivial.

Step (A): Goal is to prove that if H,H ′ are two connected reductive groups over an algebraically closed
field (of characteristic zero?) F = F , with root data of H being (X,Φ,∆, X∨,Φ∨,∆∨) and for H ′ being
(X ′,Φ′,∆′, X ′∨,Φ′∨,∆′∨). If we have an isomorphism ι : (X+,≤,+)→ (X ′

+
,≤,+) then H ∼= H ′.

Proof: (From paper of T. Richarz): Since such an H is determined uniquely by its root data, we just
need to show that ι gives an isomorphism of the root data. First, ι extends to ι : X ∼= X ′ and dualizing
gives ι∨ : (X ′)∨ ∼= X∨.

Next, ι(∆) = ∆′ (i.e. ι preserves simple roots) because ∆ is the set of minimal elements of the set
{α ∈ X : α ≥ 0, α 6= 0}, same for ∆′. Then, ι∨[∆′

∨
] = ∆∨ because if α ∈ ∆ get α∨ ∈ ∆∨; want to

show ια(α∨) = ι(α)∨. For this, note that for all µ ∈ X ′
+, 〈µ′, ι(α)∨〉 is the unique m ∈ N such that

2µ −mι(α) ∈ X ′+ but 2µ − (m + 1)i(α) /∈ X ′+ (exercise), and similar statement for pairing with 〈−, α∨〉.
So get 〈µ, ι(α)∨〉 = 〈ι−1(µ), α∨〉.

Finally: ι[Φ] = Φ′: The Weyl groups W,W ′ are generated by sα for α ∈ ∆ and α ∈ ∆′, respectively. So
ι intertwines the actions of W and W ′, so Φ′ = W ′∆′ = ι[W∆] = ι[Φ] and similarly for ι∨[Φ′

∨
]

So that deals with the easy parts of geometric Satake, proving it modulo the two big theorems stated
last time. Now let’s start working on those.

Theorem A: Let G be connected reductive with k = k. Let µ1, . . . , µn ∈ X∗(T )+. Then

ICµ1
∗ · · · ∗ ICµn =

⊕
λ≤µ1+···+µn

V λµ1,...,µn ⊗ ICλ

where V λµ1,...,µn is a Q`-vector space determining the multiplicities, such that
(i) If λ = µ1 + · · ·+ µn, V λµ1,...,µn is 1-dimensional.
(ii) If λ = w1µ1 + · · ·+ wnµn with wi ∈W then dimV λµ1,...,µn ≥ 1.

Proof of this uses the n-fold convolution diagram. For all λ ∈ X∗(T )+, let Oλ be the orbit of tλ in GrG.
For all λ1, . . . , λnX∗(T )+, we have q−1

n of a twisted product is the same as p−1
n of an untwisted product.

Notation: Write

Oλ1,...,λn = Oλ1
×̃ · · · ×̃Oλn
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and

Oλ1,...,λn = Oλ1
×̃ · · · ×̃Oλn .

Also let ICλ1,...,λn = ICλ1
�̃ · · · �̃ICλn , which we showed was the intersection complex of Oλ1,...,λn . Note

that Oλ1,...,λn is stratified by the Oν1,...,νn for νu ≤ λi.
We need the following notion of Goresky-MacPherson: Let f : X =

⋃
Uα → Y =

⋃
Yβ be a map of

stratified schemes of finite type over k. Assume that f is proper surjective birational and for all α, f [Xα] is
a union of strata Yβ . We say f is stratified semi-small if, for all α, β such that f [Xα] ⊇ Yβ and all y ∈ Yβ(k),
we have

dim f−1[y] ∩Xα ≤
1

2
(dimXα − dimYβ)

Theorem (G-M): If f is stratified semi-small then f∗ICX ∈ Perv(Y ).
Some part of this statement might be wrong????

Definition: f is stratified locally trivial if for all α, β with f [α] ⊇ Yβ , the map

f |f−1[Yβ ]∩Xα : f−1[Yβ ] ∩Xα → Yβ

is a Zariski-locally trivial fibration.
Assume the theorem applies. Assume that f∗ICX =

⊕
β Vβ ⊗ ICYβ . Where ICYβ is the intermediate

extension of the intersection complex on Yβ .
Proposition (Haines): Suppose that X,Y are proper. Fix β and y ∈ Yβ(k). Then dimVβ is the

number of irreducible components of f−1[y] of dimension 1
2 (dimX − dimYβ), which is the dimension of

HdimYB (f−1[y], ICX).
Go back to our affine Grassmannian, fix µ = (µ1, . . . , µn) ∈ X∗(T )+, and let mµ = mn|Oµ1,...,µn . Have

map Oµ1,...,µn → Oµ for µ = µ1 + · · ·+ µn.
Theorem (Ngo-Polo, Haines): mµ is stratified semi-small and stratified locally trivial (with the stratifi-

cations given before).

The main tool in the proof of theorem A will be “semi-infinite strata”. Let B ⊆ G be the Borel, so we
get GrB → GrG which is an isomorphism on k-points. Have ∼=: π0(GrB) → π0(GrT ) = X∗(T ). For all
ν ∈ X∗(T ) let Sν be the image of the corresponding connected component in GrG, so

Sν(k) = B(kJtK)tνG(kJtK)/G(kJtK).

Notation: For λ ∈ X∗(T )+, let Ω(λ) be the weights of T∨ on Vλ, so {ν ∈ X∗(T ) : ∀w ∈W,wν ≤ λ}.
Theorem (Ngo-Polo, Gortz-Haines-Kottwitz-Revmon) For all ν ∈ X∗(T ) and λ ∈ X∗(T )+, Sν ∩ Oλ 6= ∅

only if ν ∈ Ω(λ), and in that case Sν ∩ Oλ (a locally closed subscheme of Oλ with k-points Sν(k) ∩ Oλ(k))
is of pure dimension 〈ρ, ν + λ〉.
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16 Lecture - 04/18/2014

Fix the lemma from last time (about the characterization of Q+
H). What it should be:

Lemma: Q+
H is generated (as a semigroup) by the set of α ∈ X∗(TH) such that there exists µ ∈ X∗(TH)+

with 2µ−α ∈ X∗(TH)+ and V2µ−α ↪→ Vµ⊗Vµ. (Last time said “equal” but couldn’t figure out why this was
stable by sums... Answer is it’s not!)

Now: Look at GrG ⊇ Oλ = GJtKtλ, and also take Sν ⊆ GrG given by Sν(k) = B(kJtK)tν for ν ∈ X∗(T ).
Theorem: For all ν ∈ X∗(T ) and for all λ ∈ X∗(T )+ then Sν ∩ Oλ is ∅ unless ν ∈ Ω(λ) (the weights of

Vλ), and in that case it’s of pure dimension 〈ρ, λ+ ν〉.
Proof: Let 2ρ∨ =

∑
α∨∈Φ∨+ α

∨ : Gm → T . Via 2ρ∨, Gm acts on GrG (by left multiplication), and:
(a) The Oλ are stable.
(b) The fixed points are the tλ for λ ∈ X∗(T ).
(c) For all x ∈ Sν(k), we have limu→0 2ρ∨(u)x = tν .
If x ∈ Sν(k) ∩Oλ(k) then tν is this limit which is in Oλ(k) so ν ∈ Ω(λ).

The second part follows easily from the statement that (when ν ∈ Ω(λ)) we have that H∗c (Sν ∩Oλ, ICλ)
is concentrated in degree 〈2ρ, ν〉. To prove this statement, use following steps:

(A) Prove everything in the case where λ is minuscule or quasi-minuscule; can explicitly compute Sν ∩Oλ
there. (Remark: Messed up the definition of minuscule last time because we’re not working with a semisimple
group; if λ is a set of X∗(T )+ \X∗(Z) where Z is the center, have two possibilities: Either λ is minimal in
X∗(T )+ and 〈λ, α〉 ≤ 1 for all α ∈ Φ+ (in which case λ is minimal) or there is λ ∈ Φ+ such that 〈λ, α〉 ≥ 2
then λ ∈ βν +X∗(Z) for β a maximal root (in which case λ is quasi-minuscule)).

(B) In general write λ = λ1 + · · ·+ λn with each λi minuscule or quasi-minuscule. Using setup from last
time, have mλ : Oλ → Oλ and know ICλ is a direct factor of mλ∗ICλ = ICλ1

∗ · · · ∗ ICλn . So

H∗(Oλ ∩ Sν , ICλ) ↪→ H∗(Oλ ∩ Sν ,mλ∗ICµ),

and by proper base change this latter thing is H∗c (m−1
µ [Sν ], ICµ). But m−1

µ decomposes as
⋃
ν Sν ∩Oλ where

ν runs over tuples with ν1 + · · ·+ νn =
nu, and

Sν = Sν1 × Sν1+ν2 × · · · × Sν1+···+νn ↪→ GrnG .

Also,

Sν ∩Oλ ∼= (Sν1 ∩Oλ1
)× · · · × (Sνn ∩Oλn)

and this induces

H∗c (Sν ∩Oλ, ICλ) ∼=
n⊗
i=1

H∗c (Sνi ∩Oλi , ICλi).

Use the stratification spectral sequence to deduce that H∗(Sν ∩Oλ, ICλ) is concentrated in degree 〈2ρ, ν〉.
Now, recall the notation that for for µ = (µ1, . . . , µn) with µi ∈ X∗(T )+, set µ = µ1 + · · ·+ µn and then

the natural map mµ : Oµ → Oµ is semi-small (?).
Corollary: Take λ ∈ X∗(T )+ such that λ ≤ µ. Then for all x ∈ Oλ(k), dimm−1

µ (x) ≤ 〈ρ, µ− λ〉.
Proof: The fibers are all isomorphic, so it’s enough to do it for one x. Now, Sλ ∩Oλ is open dense in Oλ by
the preceding theorem. So it’s enough to show dimm−1

µ (Sλ ∩Oλ) ≤ 〈ρ, µ− λ〉. But we have a stratification

m−1
µ (Sλ ∩Oλ) ⊆ m−1

µ (Sλ ∩Oλ) =
⋃

ν:ν=λ

Sν ∩Oµ
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and each Sν ∩ Oµ is a product of Sνi ∩ Oµi . But the dimension of Sνi ∩ Oµi is 〈ρ, νi + µi〉, and the sum of
this over all i is ≤ 〈ρ, λ+ µ〉.

Back to Theorem A: Write mµ∗ICµ =
⊕

λ≤µ V
λ
µ ⊗ ICλ. We wanted to show that:

(i) dimV µµ = 1,
(ii) If λ = w1µ1 + · · ·+ wnµn ∈ X∗(T )+ with wi ∈W , we have dimV λµ ≥ 1.

Proof: (i) is obvious because mµ∗ is birational. For (ii), reduce to n = 2, and then it’s an easy direct
calculation. This proves Theorem A!

Theorem B: IfH is connected reductive over F = F , and we take µ1, . . . , µn ∈ X∗(TH)+ and w1, . . . , wn ∈
WH such that λ = w1µ1 + · · ·+∧nµn ∈ X∗(TH)+, then Vλ is a direct summand of Vµ1

⊗ · · · ⊗ Vµn . (Due to
Kumar, Matheiu; known as the PRV conjecture).

Idea of proof (for characteristic zero): Take λ, µ ∈ X∗(TH)+, W ∈WH , and ν ∈WH · (λ+wµ) dominant.
Goal is Vν ↪→ Vλ⊗Vµ. Let X = H/BH =

⋃
v∈WH

Xv for Xv = BHvBH/BH . Then have the Schubert variety
Xw for any w; the Bott-Samelson resolution is a resolution of singularities X̃w → Xw (with X̃w smooth).
This X̃w lives in X ×X. Now, λ, µ give line bundles Lλ,Lµ over X.

Kumar proves: H0(X̃w,Lw(λ, µ)) ↪→ Vλ ⊗ Vµ, and Hi of this is zero for i > 0. But this H0 is the
U(h)-submodule generated by eλ ⊗ ewµ (the weight vectors for λ and wµ). On the other hand, this H0 also
decomposes as⊕

θ∈X∗(TH)

V ∨θ ⊗HombH (Cλ ⊗ Vwµ, Vθ)

where bH is the Borel, Cλ is C with bH acting through λ, and Vwµ is the sub-U(bH)-module of Vµ generated
by ewµ. This HombH serves as a space of multiplicities, and it’s 1-dimensional in the case θ = ν.

So this (sketchily) proves Theorem B, finishing the proof of geometric Satake! At least, the case of it we’ve
stated, where k is algebraically closed. Now we move on to the case where k isn’t necessarily algebraically
closed. Fix an algebraic closure k, and set Γ = Gal(k/k) and LG = Ĝ(Q`) o Γ.

Theorem (Timo Richarz): The category (Sat(G), ∗) (which we can still form, and fix the commutativity
constraint, etc.) is equivalent to (RepcLG,⊗) where RepcLG is the category of finite-dimensional continuous
Q`-representations ρ of LG such that ρ|Ĝ(Q`)

is algebraic.
We will need: Corollary: There is an exact tensor functor RepĜ → Sat(G) that’s a section of ω :

Sat(G) → VecQ` given by ω(K) =
⊕
Hi(GrG,k,Kk) (which has an action of Ĝ(Q`)). This follows from

Sat(Gk) ↪→ Sat(G).
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17 Lecture - 04/23/2014
Pseudo-representations: Let Γ be a profinite group, ` prime. Trying to construct continuous homomorphisms
Γ 7→ H(Q`) for H connected reductive (where H = Ĝ). If H = GLn then ρ is just an n-dimensional
representation of Γ.

Know that if ρ, ρ′ : Γ → GLn(Q`) are semisimple then they’re equivalent iff tr(ρ(γ)) = tr(ρ′(γ)) for all
γ ∈ Γ. A pseudo-representation of dimension n is a continuous function T : Γ → Q` satisfying the same
properties as tr ρ (due to Wiles, Taylor, ...):

1. T (1) = n.

2. T (γγ′) = T (γ′γ) for all γ, γ ∈ Γ.

3.
∑
σ ε(σ)Tσ(g1, . . . , gn+1) = 0 for all γ1, . . . , γn+1 ∈ Γ.

For condition 3, let ε : Sn+1 → {±1} be the sign function. If σ ∈ Sn+1 has cycle decomposition
∏

(i
(j)
1 · · · i(j)rj )

define Tσ : Γn+1 → Q` by

Tσ(γ1, . . . , γn+1) =
∏

T (γ
(j)
i1
· · · γ(j)

irj
).

Can prove trace satisfies 3. Theorem (Taylor): Each such T is of the form tr ρ for ρ : Γ → GLn(Q`)
continuous semisimple.

Problem: What if H 6= GLn? Try a Tannakian approach: For every ψ : H → GLN , give compatible Tϕ
satisfying (1), (2), (3). This gives family of maps ρϕ : Γ → GLn(Q`). How do we know this comes from
ρ : Γ→ H(Q`). This approach doesn’t seem very doable.

Lafforgue’s Solution: Instead of just tr ρ, use all conjugacy-invariant functions on H(Q`) and in fact
all simultaneous-conjugacy invariant functions on H(Q`)n’s. (Notation: Let H(Q`) act on Hn(Q`)n by
conjugacy, denoted by γ · (γ1, . . . , γn) = (γγiγ

−1)). If ρ : Γ → H(Q`), for all f : H(Q`)n → Q` regular
invariant by conjugacy (????) have that Tf,ρ : Γn → Q` given by (γ1, . . . , γn) 7→ f(ρ(γ1), . . . , ρ(γn)) depends
only on he conjugacy class of ρ. Let Hn//H be the coarse quotient SpecO(Hn)H , and take E ⊆ Q` finite
over Q` such that H is defined and spit over E.

Theorem (V. Lafforgue): The map ϕ 7→ (Tf,ρ)n,f∈O(Hn//H) induces a bijection between conjugacy classes

of continuous ρ : Γ→ H(Q`) that are semisimple (i.e. ρ(Γ)
Zar

is reductive) with families of E-algebra maps
Ξn : O(Hn//H)→ C(Γn,Q`) such that:
(0) There exists E′/E finite with img Ξn ⊆ C(Γn, E′).
(1) For all m,n > 0, for all ζ : {1, . . . ,m} → {1, . . . , n}, for all f ∈ O(Hn//H), and for all (γ1, . . . , γn) ∈ Γn,
we have

Ξn(fζ)(γi) = Ξm(f)(γζ(i))

where fζ(gi) = f(gζ(i)).
(2) For all n > 0, for all f ∈ O(Hn//H), and for all (γ1, . . . , γn+1) ∈ Γn+1, have

Ξn+1(f̂)(γ1, . . . , γn) = Ξn(f)(γ1, . . . , γn−1, γnγn+1)

where f̂(g1, . . . , gn) = f(g1, . . . , gn−1, gngn+1).
Moreover, if our correspondence identifies ρ with (Ξn) (given by Ξn(f) = Tf,ρ) then there exists m such that
for all profinite quotients Γ � Γ, then if Ξm(Hm//H) ⊆ C(Γm,Q`) then ρ factors through Γ.

Remark: If H = GLN , by the work of Procesi, O(Hn//H) is generated (as an algebra) by functions
(g1, . . . , gn) 7→ tr(gi1 · · · gir ). So (Ξn) satisfying (1) and (2) are uniquely determined by Ξ1(tr). Then find
that (Ξn) satisfies (1) and (2) iff Ξ1(tr) is a pseudo-representation. So this is an actual generalization!
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Invariant theory. Let E be a field (E = E, charE = 0 unless said otherwise), H connected reductive
over E, X an affine variety over E with a (left) action by H. Notation: O(X)H is the H-invariant in O(X),
if x ∈ X(E) then Hx is the stabilizer and Hx is the orbit.

The Reynolds operator (characteristic zero): For all V ∈ RepH , V = V H ⊕ VH where VH is the sum
of all nontrivial irreducible subrepresentations. The Reynolds operator is the projection RV : V � V H

corresponding to this decomposition. Then Rv is H-equivariant, functorial in V . If V is in IndRepH
(possibly infinite-dimensional but every vector in a finite-dimensional subrepresentation, e.g. V = O(X))
define Rv : V � V H as the limit of the finite-dimensional ones. In particular get RX : O(X) � O(X)H ,
which is O(X)H -linear because if a ∈ O(X)H then b 7→ ab is H-equivariant.

Theorem: (i) O(X)H is finitely-generated. (True in positive characteristic too, but proof harder).
(ii) Let X//H = SpecO(X)H be the coarse quotient, πX : X � X//H. Then πX satisfies the following
property for all affine H-varieties Y :

HomH(X,Y ) ∼= Hom(X//H, Y )

where we go from the RHS to the LHS via pullbacks.
(iii) If Y, Y ′ ⊆ X are closed and H-invariant then πX |Y is isomorphic to πY : Y � Y//H, and πX(Y ∩Y ′) =
πX(Y ) ∩ πX(Y ′).
(iv) For every x ∈ (X//H)(E) there exists a unique closed H-orbit in π−1

X [x].
Proof: (i) First note O(X)H is Noetherian; if J ⊆ O(X)H is an ideal and I = JO(X), then IH = RX(I) =
J ·RX(O(X)) = J . Case when X = V ∈ RepH : Write O(V ) =

⊕
n∈NO(V )n, with

O(V )n = {f ∈ O(V ) : f(λv) = λnf(v)∀λ ∈ Gm}.

This is preserved by H and induces O(V )H =
⊕

n∈NO(V )Hn . But ⊕n≥1O(V )Hn is finitely generated as an
ideal, so O(V )H is finitely generated.

General case: There exists a H-equivariant closed immersion X ↪→ V ∈ RepH ; then O(V )H � O(X)H .
Why does X ↪→ V exist? Choose W ⊆ O(X) a finitely-generated H-invariant subspace generated O(X) as
an algebra. Then take X →W ∗ by x 7→ (v 7→ v(x)).

(ii) obvious. (iii) follows from the arguments in the first part of (i). (e.g. if J = O(Y ) and J ′ = O(Y ′)
take I = JO(X) and I ′ = J ′O(X) and want (I + I ′)H = IH + (I ′)H , but both equal J + J ′).

(iv): uniqueness follows from (iii). Existence: take an H-orbit in π−1[X] of minimal dimension.

Theorem (Kempf, strong Hilbert-Mumford theorem): Let E be a perfect field of any characteristic. Let
x ∈ X(E), let O be a closed orbit contained in Hx. Then there exists λ : Gm → H such that limt→0 λ(t)x
exists and is in O.

Remark: what does limt→0 λ(t)x exists? It means λ extends to a map A1 → X, and the value at 0 is in
O.

Application by Richardson: Let E = E be of characteristic zero, and H acts on Hn as before. Say an
element g = (g1, . . . , gn) ∈ Hn is semisimple if A(g), the Zariski closure of 〈g1, . . . , gn〉 in H, is reductive.

Corollary: Let (g1, . . . , gn) ∈ H. TFAE:
(i) (g1, . . . , gn) is semisimple.
(ii) H · (g1, . . . , gn) is closed.

Definition: If g ∈ Hn(E) then a Levi decomposition of g is a decomposition g = sn such that A(s) is a
Levi subgroup of A(g) and A(n) ⊆ R(A(g)). If n = 1 this is just the Jordan decomposition.

Corollary: Levi decompositions always exist (but are not always unique in general). If g = sn is a Levi
decomposition then Hg = Hs ∩Hn, and there exists λ : Gm → H with limλ(t)g = s.

Sketch of proof of Kempf’s theorem (for E = E case): Take x ∈ X, and let O be a closed orbit in Hx.
Then there exists a curve C in Hx such that x ∈ C(E) such that C ∩ O 6= ∅. Then there exists a rational
map g(t) : SpecEJtK → G with lim g(t)x ∈ O. So g(t) ∈ H(E((t))). Use Cartan decomposition to get
h1(t), h2(t) ∈ H(EJtK) and µ : Gm → H such that h1(t)g(t) = tµh2(t). Set hi = hi(0). Let y = lim g(t)x.
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Then h1y = limh1(t)g(t)x = limh2(t)tµx ∈ O. But it is not always true that h1y = limh2(0)tµx. Claim: (a)
lim tµh2x always exists, and (b) if X = V ∈ RepH and y = 0, then h1y = limh2t

µx does hold. Claim implies
theorem: there exists f : X → V that’s H-equivariant such that O = f−1[0] (easy) then lim tµh2x ∈ O so
limh−1

2 tµh2x ∈ O (a 1-parameter subgroup of H). Proof of claim: Assume X = V . Then h2(t)x = h2x+ε(t)
for ε ∈ V JtK and ε(0) = 0. Decompose V into Gm-eigenspaces for the action via µ : Gm → H, V =

⊕
Vi;

then

h2(t)x =
∑

((h2x)i + ε(t)i) =⇒ tµ
∑

((h2x)i + ε(t)i) =
∑

ti((h2x)i + ε(t)i).

Then the limit of tµh2(t)x existing means (h2x)i = 0 for i < 0. So the limit tµh2x exists.
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18 Lecture - 04/25/2014
Theorem: Let E/Q` be a finite extension, H connected reductive split, Γ profinite group. LetH act onHn by
diagonal conjugation. Suppose for all n ∈ N you have an E-algebra morphism Ξn : O(Hn//H)→ C(Γn, E)
such that:
(1) Ξn is functorial in {1, . . . , n}.
(2) Ξn+1(f)(γ1, . . . , γn+1) = Ξn(f̂)(γ1, . . . , γnγn+1).
Then there exists E′/E finite and ρ : Γ→ H(E′) unique up toH(Q`)-conjugacy such that Ξn(f)(γ1, . . . , γn) =

f(ρ(γ1), . . . , ρ(γn)) and ρ(Γ)
Zar

is reductive. Moreover there’s m > 0 such that for all Γ � Γ, if Ξm :
O(Hm//H)→ C(Γm, E) then ρ factors through Γ.

Remark: Invariants for other groups (assuming algebraically closed characteristic zero base field). Procesi:
The algebra of conjugacy invariants on O(n)N or Sp(N)N is generated by

(g1, . . . , gN ) 7→ tr(εi1(gi1), . . . , εir (gir ))

for εi being either id or > (in the orthogonal case) or id or g 7→ J>g>J (in the symplectic case).
Proof of theorem: Remember that we say that (g1, . . . , gn) ∈ H(Q`)n is semisimple if 〈g1, . . . , gn〉

Zar
is a

reductive subgroup and that (g1, . . . , gn) is semisimple iff H(g1, . . . , gn) is closed (??). We also have seen that
(Hn//H)(Q`) is isomorphic to the closed H-orbits in Hn(Q`), which is the same as the set of semisimple
(g1, . . . , gn) modulo conjugacy.

Let (γ1, . . . , γn) ∈ Γn. we have a character O(Hn//H) → Q` given by f 7→ Ξn(f)(γ1, . . . , γn); this
gives a point of (Hn//H)(Q`). We write ξssn (γ1, . . . , γn) for the corresponding semisimple conjugacy class in
Hn(Q`). We also write ξn(γ1, . . . , γn) for the fiber over this point.

If (g1, . . . , gn) ∈ ξssn (γ1, . . . , γn), we set

C(g1, . . . , gn) = ZH(〈g1, . . . , gn〉) D(g1, . . . , gn) = ZH(C(g1, . . . , gn)),

both reductive group. Let

N = {(n, γ1, . . . , γn) : n > 0, γ1, . . . , γn ∈ Γ},

N 1 = {(n, γ1, . . . , γn) ∈ N : dim 〈g1, . . . , gn〉 maximal }
N 2 = {(n, γ1, . . . , γn) ∈ N 1 : dimC(g1, . . . , gn) minimal },
N 3 = {(n, γ1, . . . , γn) ∈ N 1 : |π0(C(g1, . . . , gn)) minimal },

All of these are taken for fixed (g1, . . . , gn) ∈ ξssn (γ1, . . . , γn). Anyway, fix (n, γ1, . . . , γn) ∈ N 3 and a
corresponding (g1, . . . , gn).

Lemma: Let m > 0, let δ1, . . . , δn ∈ Γ. Then there exists a unique h1, . . . , hm ∈ H(Q`) such that
(g1, . . . , gn, h1, . . . , hm) ∈ ξssn+m(γi, δj). We have C(g1, . . . , gn, h1, . . . , hm) = C(g1, . . . , gn) and h1, . . . , hm ∈
D(g1, . . . , gn). Moreover:
(i) If p > 0 and ζ : {1, . . . , p} → {1, . . . , n} then

(g1, . . . , gn, hζ(1), . . . , hζ(p)) ∈ ξssn+p(γi, δζ(j)).

(ii) Take m = 2. Then (g1, . . . , gn, h1h2) ∈ ξssn+1(γi, δ1δ2).
Proof: Pick (x1, . . . , xn, y1, . . . , ym) ∈ ξssn+m(γi, δj). Is (x1, . . . , xn) semisimple? By condition (1) of the

theorem applied to the inclusion {1, . . . , n} ↪→ {1, . . . , n + m}, have (x1, . . . , xn) ∈ ξn(γ1, . . . , γn). Hence
〈g1, . . . , gn〉

Zar
is conjugate to (a subgroup of) a Levi subgroup of 〈x1, . . . , xn〉

Zar
. (We know there exists

a cocharacter µ : Gm,Q` → HQ` such that limµ(t)(x1, . . . , xn) exists and is conjugate to (g1, . . . , gm).
Then pµ = {g ∈ H : limµ(t)gµ(t)−1 exists} is a parabolic subgroup of HQ` with Levi ZH(µ). Then

〈x1, . . . , xn〉
Zar
⊆ Pµ and 〈g1, . . . , gn〉

Zar
is contained in a conjugate of ZH(µ)). In particular,

dim 〈g1, . . . , gn〉
Zar
≤ dim 〈x1, . . . , xn〉

Zar
≤ dim 〈x1, . . . , xn, y1, . . . , ym〉

Zar
.
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As (n, γ1, . . . , γn) is in N 1, these are equalities so 〈g1, . . . , gn〉
Zar

and 〈x1, . . . , xn〉
Zar

are conjugate.
So (x1, . . . , xn) ∈ ξssn (γ1, . . . , γn) so we may assume xi = gi. Take hi = yi. We have (gi, hj) ∈ γssn+m(γi, δj)

and (h1, . . . , hn) is unique up to C(g1, . . . , gn)-conjugacy. We have C(g1, . . . , gn, h1, . . . , hm) ⊆ C(g1, . . . , gn)

and 〈x1, . . . , xn〉
Zar

= 〈x1, . . . , xn, y1, . . . , ym〉
Zar

. So (n+m, γi, δj) ∈ N 1. As (n, γi) ∈ N 3 we get C(gi, hj) =
C(gi) so h1, . . . , hm ∈ D(g1, . . . , gm) so are uniquely determined. Then (i) and (ii) follow from (1) and (2)
of the statement plus uniqueness.

End of proof of theorem: Let ρ : Γ → H(Q`) be defined by: for each γ ∈ Γ, ρ(γ) is the unique element
of H(Q`) such that (g1, . . . , gn, ρ(γ)) ∈ ξssn+1(γ1, . . . , γn, γ). Then we need to check:
(A) There’s E′/E finite such that ρ[γ] ⊆ H(E′) (immediate if we can prove continuity without knowing
this?): Just choose E′ with g1, . . . , gn ∈ H(E′).
(B) By (i) in the lemma, for all δ1, . . . , δm ∈ Γ we have

(g1, . . . , gn, ρ(δ1), . . . , ρ(δn)) ∈ ξssn+m(γ1, . . . , γn, δ1, . . . , δn).

(C) By (B) and (ii) of the lemma, for all δ1, . . . , δ2 ∈ Γ we have

(g1, . . . , gn, ρ(δ1)ρ(δ2)) ∈ ξssn+1(γ1, . . . , γn, δ1δ2),

so ρ(δ1)ρ(δ2) = ρ(δ1δ2).
(D) Let m ∈ N, δ1, . . . , δm ∈ Γ, and f ∈ O(Hm//H). Then

(g1, . . . , gn, ρ(δ1), . . . , ρ(δm)) ∈ ξssn+m(γ1, . . . , γm, δ1, . . . , δn).

By applying (1) of the theorem to {1, . . . ,m} → {1, . . . , n+m} given by j 7→ j+n, we get (ρ(δ1), . . . , ρ(δm)) ∈
ξm(δ1, . . . , δm), i.e. f(ρ(δ1), . . . , ρ(δm)) = Ξm(f)(δ1, . . . , δm).
(E) ρ is continuous: Note ρ[Γ] ⊆ D(g1, . . . , gn); we want to show that, for all f ∈ O(D(g1, . . . , gn)), f ◦ ρ :
Γ → Q` is continuous. Claim: q : O(Hn+1

E′ //HE′) → O(D(g1, . . . , gn)) given by f 7→ (g 7→ f(g1, . . . , gn, g))
is surjective. Granting this, for f ∈ O(D(g1, . . . , gn)) let f ′ ∈ O(Hn+1

E′ //HE′) be such that q(f ′) = f . Then
f(ρ(γ)) = f ′(g1, . . . , gn, ρ(γ)) = Ξn+1(f ′)(γ1, . . . , γn, γ) is continuous.

Proof of claim: q is the composition of q1 : O(HN+1
E′ //HE′) → O(HE′//C(g1, . . . , gn)) given by f 7→

(g 7→ f(g1, . . . , gn, g)) and the restriction map q2 : O(HE′//C(g1, . . . , gn))→ O(D(g1, . . . , gn)).
Proof that q2 is surjective: D(g1, . . . , gn) = C(g1, . . . , gn) · D(g∗) is a closed C(g1, . . . , gn)-invariant

subvariety of HE′ so D(g1, . . . , gn)//C(g1, . . . , gn) has a closed embedding to HE′//C(g1, . . . , gn). Proof that
q1 is surjective: The set Y = HE′((g1, . . . , gn) ×HE′) is closed in Hn+1

E′ and HE′ -invariant. Then Y//HE′

has a closed embedding to Hn+1
E′ //HE′ , and is isomorphic to HE′//C(g1, . . . , gn) via g 7→ (g1, . . . , gn, g).

(F) ρ is semisimple because ρ(Γ)
Zar

= 〈g1, . . . , gn〉
Zar

.
Proof of the last statement of the theorem: ρ(γ) is uniquely characterized by all f ∈ O(Hn+1//H). But this
is because f(g1, . . . , gn, ρ(γ)) = Ξn+1(f)(γ1, . . . , γn, γ).

Remark: What happens if we work with F` rather than Q`? Everything works, if you use the right
definitions. Definition: k a field, G/k reductive; we say a subgroup Γ of G(k) is G-completely reducible if
for all parabolics P ⊆ G such that Γ ⊆ P (K) there exists a Levi with Γ ⊆ L(k). The theorem goes through
if we replace ‘semisimple” with this everywhere. (Remark: If G = GL(V ) this says that the representation
V of Γ is semisimple). Proposition: if L is a Levi of G with Γ ⊆ L(k), then Γ is G-CR iff it’s L-CR.

Theorem (Bate-Martin-Rhorle): Suppose k = k, let Γ ⊆ G(k), let T be a maximal torus in ZG(Γ) and
let L = ZG(T ) (so Γ ⊆ L(k)). Then Γ is completely reducible iff Γ is not contained in any proper parabolic
of L. Cor (BMR): Let g1, . . . , gn ∈ G(k). Then 〈g1, . . . , gn〉 is completely reducible iff G(k) · (g1, . . . , gn) is
closed.
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19 Lecture - 04/30/2014
Aim today: repeat the first lecture in more detail. Let X/Fq be a curve (smooth proper geometrically
connected). Let F = Fq(X), |X| the closed points of X, for all v ∈ |X| let Fv ⊇ Ov be the completion,
and A the restricted direct product

∏′
Fv with respect to the Ov’s. Let G/Fq be a connected reductive split

algebraic group.
To deal with levels: Let N ⊆ X be a finite subscheme, and let ON = O(N) and KN = ker(G(O) →

G(ON )). Fix a lattice Ξ in Z(F )\Z(A). Then can define the space of cusp forms

Ccusp
c = Ccusp

c (G(F )\G(A)/KNΞ,Q`);

a smooth function f is a cusp form iff for all P ⊆ G parabolic proper subgroups and for all g ∈ G(A),∫
NP (F )\NP (A)

f(ng)dn = 0

where NP = Ru(P ). Then Ccusp
c has an action of the Hecke algebra HN = Cc(KN\G(A)/KN ,Q`).

Theorem (V. Lafforgue): There exists a canonical decomposition of HN -modules

Ccusp
c =

⊕
σ

Hσ

(where σ runs over all isomorphism classes of continuous semisimple (i.e. σ(ΓF )
Zar

is reductive) unram-
ified outside of N homomorphism σ : Gal(F/F ) = ΓF → Ĝ(Q`)), which is compatible with the Satake
isomorphism at places v /∈ N (since HN =

⊗′
v∈|X|HN,v).

Idea: For number fields we’d use Shimura varieties to construct global correspondences. For function
fields, have analogues of these for every group G and every cocharacter. These are moduli stacks of shtukas.
For all finite I, for all level levels N , and for all irreducible representations W of ĜI , we have a Deligne-
Mumford stack ChtI,W,N (G-bundle with additional structure). These are all substacks of a big ind-stack
shtuka ChtI,N all living over (X \ N)I . Now, W corresponds to a cocharacter λ : Gm → GI . If λ is not
minuscule, then ChtI,W,N → (X \ N)I is not always smooth. We consider the (intersection) cohomology
(with compact support) of ChtI,N,w, in the middle degree, seen as an ind-constructible sheaf over (X/N)I .
Namely, for ChtI,W,N/Ξ have an open dense smooth substack of dimension d; call it U and the embedding
j. Then set

ICChtN,I,W = (j!∗Q`,U [d])[−|I|]

Look at

R0π!(ChtI,W,N/Ξ, ICChtN,I,W ).

This has an action of HN , and expect it to contain all of the cuspidal representations.
But there are some annoying technical problems to get around. First of all, we can restrict to the generic

point η of (X \N)I to get a representation of πét
1 (η, η) which is not ΓIF (the thing we want a representation

of). By Drinfeld, if the sheaf were constructible then it would be lisse on some open of the form U I for
U 6= ∅ in X \N , and we would then get a representation of ΓIF in that case. Lafforgue: Define a subspace
of “Hecke-finite” elements (elements that are in a finite-dimensional HN -invariant subspace) and show that
it is stable by enough elements to make Drinfeld’s lemma work.

Result: Get HI,N,W , an inductive limit(?) of finite-dimensional representations of HN × ΓIF . Heuristic
(for G = GLn): This HI,N,w should be

⊕
σ Aσ ⊗WσI where Aσ is a representation of HN and WσI is a

representation of GLIF (which is just W with the action of ΓIF coming from ΓIF → Ĝ(Q`)I and then the
original action W ). Expect Aσ = (πσ)KN where πσ is the thing corresponding to σ under local Langlands.
Moreover: we have smooth maps from ChtI,N,W and from the closure of the orbit corresponding to W in
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GrXI to a fixed thing ∗. (Closure of the orbit: Note W corresponds to λ : Gm → GI , and recall that
GrXI → XI is locally isomorphic to (GrG)I ×XI outside of the orbits; can consider Oλ in (GrG)I and then
we take Oλ ×XI outside the diagonals and take its closure in GrXI ).

Also have geometric Satake: RepĜI → PervGJtK(GrXI ) given by taking W irreducible to ICO where
O is the closure of the orbit corresponding to W . Will then get a map from RepĜI → Perv(ChtI,N ) by
W 7→ ICChtI,N,W . Modulo generalizing the stuff about Drinfeld’s lemma, we get a functor H from RepĜI to
the category of inductive limits of finite-dimensional representations of HN × ΓIF , sending W to something
we denote HI,W,N .

Proposition: (a) For all ζ : I → J we have Xζ : HI,W,N
∼= HJ,W ζ ,N functorial in W , where W ζ is

W given the action of ĜJ coming from ζ∗ : ĜJ → ĜI . This is ΓJF -equivariant and HN -equivariant. Also
χζ◦ζ′ = χζ ◦ χζ′ .
(b) If I = ∅ and W = 1, then H∅,1,N = Ccusp

c with the action of HN .
Write BunG,N (Fq) = G(F )\G(A)/KN . Recall our heuristic forG = GLn thatHI,N,W should be

⊕
σ Aσ⊗

WσI . If this is true then let ζI : I → {0} be the only map, and for all x : 1 → W ζI (i.e. x ∈ W diagonal Ĝ)
and ξ : W ζI → 1 (i.e. ζ ∈ (W ∗)diagonal Ĝ) and all (γi)i∈I with γi ∈ ΓIF , consider SI,x,ξ,W,(γi), an operator on
Ccusp
c defined by a chain of maps

Ccusp
c H∅,1 H{0},1 H{0},W ζi HI,W

Ccusp
c H∅,1 H{0},1 H{0},W ζi HI,W

= ∼= H(x) χ−1
ζI

(γi)

= ∼= H(ξ) χζI

On Aσ ⊗WσI this is equal to multiplication by 〈x, (σ(γi))ξ〉; but SI,x,ξ,(γi) makes sense in general (despite
its very complicated definition). Idea: define then diagonalize these to get the decomposition.

Note: The functions (gi)i∈I 7→ 〈x, (gi)ξ〉 (with gi ∈ GI) forW,x, ξ varying are all functions inO(Ĝ\\ĜI//Ĝ).
Proposition: (a) SI,x,ξ,W,(γi) only depends on the corresponding function f ∈ O(Ĝ\\ĜI//Ĝ). So simplify

notation and call it SI,f,(γi)
(b) f 7→ SI,f,(γi) is a map of Q`-algebras

O(Ĝ\\ĜI//Ĝ)→ EndHN (Ccusp
c ).

(c) As the parameters vary, the operators Sf,I,(γi) generate a commutative subalgebra B of EndCHN (Ccusp
c ).

Let n > 0 and ν : B → Q` a character. Note we have Ĝn//Ĝ ∼= Ĝ\\Ĝ{0,...,n}//Ĝ (where the action
for the domain is given by conjugacy) by (g1, . . . , gn) 7→ (1, g1, . . . , gn). So θ{0,...,n} gives a Q`-algebra map
Ξn,ν : O(Ĝn//Ĝ)→ B → Q`.

Proposition: The (Ξn,ν)n are a pseudo-representation in the sense of last week. We get σν : ΓF → Ĝ(Q`)
continuous semisimple such that the on ν-eigenspaces of B on Ccusp

c , SI,f,(γi) acts by multiplication by
f(σv(γi)).

So we have a decomposition. Somewhat harder is that it’s a decomposition that actually means something
to us:

Key proposition (more difficult): If v ∈ |X \N | and if V is an irreducible representation of Ĝ, then let
hV,v be the corresponding element of HN,v = Cc(G(Ov)\G(Fv)/G(Ov),Q`). Then hV,v acts on Ccusp

c as
S{1,2},f,(Frob,1) where f(g1, g2) = tr(g1g

−1
2 , V ) and Frob = Frobv is any lift of the (geometric) Frobenius at

v.
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