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| Representations of topological
groups

.1 Topological groups

Definition I.1.1. A topological group is a topological set G' with the structure of a group such
that the multiplication map G x G — G, (z,y) — xy and the inversion map G — G,z — z~!
are continuous.

We usually will denote the unit of G by 1 or e.

Example 1.1.2. - Any group with the discrete topology is a topology group. Frequently
used examples include finite groups, free groups (both commutative and noncommutative)
and “arithmetic” matrix groups such as GL,,(Z) and SL,,(Z).

- The additive groups of R and C are topological groups.

- The group GL,,(C), with the topology given by any norm on the C-vector space M,,(C),
is a topological group (see exercise [[.5.1.1)), hence so are all its subgroups if we put the
induced topology on them. For example S* := {z € C||z| = 1}, GL,(R), SU(n), SO(n)
etc.

- The additive group of @, and the group GL,,(Q,) are topological groups. (See exercise
L5.1.4)

Definition 1.1.3. We say that a topological space X is locally compact if every point of X has a
compact neighborhood.

Remark 1.1.4. If X is Hausdorff, this is equivalent to the fact that every point of X has a basis of
compact neighborhoods.

Note that we do not assume that neighborhoods of points in topological spaces are open.

Notation I.1.5. Let G be a group, and let A, B C G, x € G and n > 1. We use the following

notation :
zA = {xy,y € A} and Az = {yx,y € A}

Ireference ?



I Representations of topological groups

AB ={yz,y € A,z € B}
AV =AA.. A (n factors)
ATt ={yye A}
Definition 1.1.6. We say that a subset A of G is symmetric if A = A~

Proposition 1.1.7. Let GG be a topological group.

(1). If U is an open subset of G and A is any subset of G, then the sets UA, AU and U~! are
open.

(2). If U is a neighborhood of 1 in G, then there is an open symmetric neighborhood V' of 1
such that V? C U.

(3). If H is a subgroup of G, then its closure H is also a subgroup of G.

(4). If H is an open subgroup of G, then it is also closed.

(5). If A and B are compact subsets of G, then the set AB is also compact.

(6). Let H be a subgroup of G. Then the quotient G /| H (with the quotient topology) is :
(a) Hausdorffif H is closed;
(b) locally compact if G is locally compact;

(c) a topological group if H is normal.

Proof. (1). For x € G, we denote by [, : G — G (resp. r, : G — G) left (resp. right)
multiplication by z. We also denote by ¢ : G — G the map x — x~!. By the axioms for
topological groups, all these maps are continuous.

Now note that U™! = . (U), AU = J,c4 5 (U) and UA = U, v 5 (U). So U,
AU and U A are open.

z€EA

(2). We may assume that U is open. Let m : GXG — G, (z,y) — xy. Then m is continuous,
so W := s7}(U) is open. We have (1,1) € T because 1> = 1 € U. By definition of the
product topology on GG x (5, there exists an open subset {2 > 1 of GG such that 2 x 2 C W.
We have Q? C U by definition of W. Let V = QN Q~!. We know that Q! is open by (a),
so V is open, and it is symmetric by definition. We clearly have 1 € V and V2 C Q2 C U.

(3). Consider the map u : G x G — G, (x,y) — zy~'; then a nonempty subset A of G is a
subgroup if and only if u(A x A) C A. Alos, by the axioms of topological groups, the map
u is continuous. Hence, for every Z C G x G, u(Z) C ﬁ) Applying this to H x H
(whose closure is H x H), we see that H is a subgroup of G.

(4). Wehave G = H U ((G— H)H). If H is open, then (G — H)H is also open by (a), hence
H is closed.



L1 Topological groups

(5). The multiplication map m : G x G — @ is continuous by hypothesis. As AB = m(Ax B)
and A x B is compact, the set AB is also compact.

(6). (a) Let z,y € G be such that tH # yH. By question (a), x(G — H)y~! is open,
so its complement zHy ! is closed. Also, by the assumption that xH # yH, the
unit 1 is not in zHy~!. By (b), there exists a symmetric open set 1 € U such that
U? C G — aHy *. Let’s show that Uz H N UyH = @, which will prove the result
because UxH (resp. UyH) is an open neighborhood of xH (resp. yH) in G/H.
If UzH N UyH # @, then we can find uy,us € U and hy,hy € H such that
u1rhy = ugyhy. But then xhihy 'y~ = v uy € xHy ' NU?, which is not possible.

(b) Let zH € G/H. If K is a compact neighborhood of z in G, then its image in G/ H
is a compact neighborhood of xH in G/ H.

(c) If H is normal, then G/ H is a group. Let’s show that its multiplication is continuous.
Let x,y € G. Any open neighborhood of xyH in G/H is of the form UzyH, with
U an open neighborhood of xy in G. By the continuity of multiplication on G,
there exists open neighborhoods V' and W of x and y in G such that VW C U.
Then V H and W H are open neighborhoods of xH and yH in G/H, and we have
(VH)(WH) Cc UH. (Remember that, as H is normal, AH = H A for every subset
A of G.) Let’s show that inversion is continuous on G/H. Let x € G. Any open
neighborhood of 27! H in G/ H is of the form U H, with U an open neighborhood of
21 in G. By question (a), the set U~! is open, so U ' H is an open neighborhood of
xH in G/H, and we have (U™'H)™' = HU = UH.

[]

Remark 1.1.8. In particular, if GG is a topological group, then G /m is a Hausdorff topological
group. We are interested in continuous group actions of G on vector spaces, so we could re-
place G by G /m to study them. Hence, in what follows, we will only consider Hausdorff
topological groups (unless otherwise specified).

Definition 1.1.9. A compact group (resp. a locally compact group) is a Hausdorft and compact
(resp. locally compact) topological group.

Example 1.1.10. Among the groups of example finite discrete groups and the groups
S1, SU(n) and SO(n) are compact. All the other groups are locally compact. We get a non-
locally compact group by considering the group of invertible bounded linear endomorphisms of
an infinite-dimensional Banach space (see exercise|l.5.1.1).

Translation operators : Let GG be a group, x € GG and f : G — C be a function. We define two
functions L, f, R, f : G — Cby :

L.f(y)=f(z"'y)  and  R,f(y) = f(ya).

We chose the convention so that L,, = L, o L, and R,, = R, o R,. Note that, if G is a
topological group and f is continuous, then L, f and R, f are also continuous.




I Representations of topological groups

Function spaces : Let X be a topological set. If f : X — C is a function, we write

Wﬂmzigﬂﬂ@Hﬂﬁ+wl

We also us the following notation :

- ¥ (X) for the set of continuous functions f : X — C;

(X)) for the set of bounded continuous functions f : X — C (i.e. elements f of ¢'(X)
such that || f]|sc < +00);

%o(X) for the set of continuous functions X — C that vanish at infinity (i.e. such that, for
every ¢ > 0, there exists a compact subset K of X such that |f(z)| < ¢ for every z ¢ K);

- %.(X) for the set of continuous functions with compact support from X to C.

Note that we have €' (X) D %,(X) D %,(X) D %.(X), with equality if X is compact. The
function ||.||« is @ norm on %, (X) and its subspaces, and 6,(X') and %, (X)) are complete for this
norm (but not €.(X), unless X is compact).

Definition I.1.11. Let G be a topological group. A function f : G — C is called left (resp. right)
uniformly continuous if || L, f — f|loc — 0asz — 1 (resp. || Rof — flloo = 0 asx — 1).

Proposition 1.1.12. If f € 6.(G), then f is both left and right uniformly continuous.

Proof. We prove that f is right uniformly continuous (the proof that it is left uniformly con-
tinuous is similar). Let K be the support of f. Let ¢ > 0. For every x € K, we choose a
neighborhood U, of 1 such that |f(zy) — f(z)| < § for every y € U,; by proposition [.1.7} we
can find a symmetric open neighborhood V,, of 1 such that V;? C U,. We have K C |, Vs
As K is compact, we can find z1,...,2, € K such that K C |J_, z;V,,. Let V = ., Va..
this is a symmetric open neighborhood of 1.

We claim that, if y € V, then ||R,f — f|loc < €. Indeed, let y € V, and let z € G. First
assume that x € K. Then there exists ¢ € {1,...,n} such that z € x;V,,. Then we have
xy € x;Vy, Vy, C ;U hence

[f(xy) — f(0)] < [f(zy) = fle)] + [f(2:) = f@) <5+ 5 =&

Now assume that zy € K. Then there exists ¢ € {1,...,n} such that xy € x;V,,, and we have
r=uxzyy ' € x;V,,V,, C x;U,,. Hence

[f(xy) = f(0)] < [f(zy) = [l + [f(2:) = f@) <5+ 5 =&

Finally, if z, zy ¢ K, then f(x) = f(zy) = 0, and of course | f(zy) — f(z)| < e.

2reference ?
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1.2 Haar measures

Remark 1.1.13. We put the topology given by ||.||« on %,(G). Then a function f € %,(G) is
left (resp. right) uniformly continuous if and only if the map G — %,(G), © — L, f (resp.
xr — R, f) is continuous at the unit of G.

Using the fact that L,, = L, o L, and R,, = R, o IR, and the operators L, and I?, pre-
serve 6.(G), we see that the proposition above implies that, if f € %.(G), then the two maps
G — %.(G) sending x € G to L, f and to R, f are continuous.

.2 Haar measures

Definition 1.2.1. Let X be a topological space.

(1). The o-algebra of Borel sets on X is the o-algebra on X generated by the open subsets of
X. A Borel measure on X is a measure on this o-algebra.

(2). A regular Borel measure on X is a measure p on the o-algebra of Borel sets of X satisfying
the following properties :

(a) For every compact subset /& of X, u(K) < +oo;

(b) u is outer regular for every Borel subset F of X, we have
u(E) = inf{p(U),U > E open};

(c) p 1is inner regular : for every 2 C X that is either Borel of finite measure or open,
we have j(E) = sup{u(K), K C E compact}.

Notation 1.2.2. We denote by .7 (X) the subset of nonzero f € %.(X) such that f(X) C R,.

Theorem 1.2.3 (Riesz representation theorem). Let X be a locally compact Hausdorff space,
and let A : 6.(X) — C be a linear functional such that A(f) > 0 for every f € €+(X).[| Then
there exists a unique regular Borel measure 1 on X such that, for every f € €.(X),

M) = | pa

i

Definition 1.2.4. Let G be a locally compact group. A left (resp. right) Haar measure on G is a
nonzero regular Borel measure ;¢ on G such that, for every Borel set F of G and every z € G,
we have u(xE) = u(E) (resp. pu(Ex) = p(E)).

Example 1.2.5. (1). If G is a discrete group, then the counting measure is a left and right Haar
measure on G.

3Such a linear functional is called positive.
“4Reference ?
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I Representations of topological groups

(2). Lebesgue measure is a left and right Haar measure on the additive group of R.

Proposition 1.2.6. Let G be a locally compact group and pu be a regular Borel measure on G.

(1). Let Ji be the Borel measure on G defined by i(E) = 1(E™1). Then v is a left Haar measure
if and only 11 is a right Haar measure.

(2). The measure i is a left Haar measure on G if and only if we have : for every f € €.(G),
for everyy € G, fG L,fdp = fG fdpu.

(3). If w is a left Haar measure on G, then (U) > 0 for every nonempty open subset of G and
S fdp > 0 for every f € € (G).

1

Proof. (1). First, note that s is a regular Borel measure on GG because x — x~" is a homeo-

morphism from G to itself.
If E C GisaBorel setand z € F, then ji( Ex) = p(x~'E~1). This implies the statement.

(2). Let z € G, and let p, be the Borel measure on G defined by . (F) = p(zFE). (This is
indeed a regular Borel measure on G, because y — xy is a homeomorphism from G to
itself.) Then, for every measurable function f : G — C, we have fG fdp, = |, o Lafdp.
(This is obvious for characteristic functions of Borel subsets, and we get the general case
by approximating f by linear combinations of characteristic functions.)

On the one hand, the measure p is a left Haar measure if and only if p = pu, for every
x € (G. On the other hand, by the uniqueness in the Riesz representation theorem (and the
paragraph above), for z € G, we have 1 = yu, if and only |, o fdp = J. o Lz fdp for every
f € €.(G). The statement follows.

(3). Suppose that there exists a nonempty open subset U of G such that 4(U) = 0. Then
u(xU) = 0 for every x € GG, so we may assume that 1 € U. Let K be a compact subset
of G. Then K C |J,j 2U, so there exist z1, ..., 2, € K such that K C (J;_, z;U. As
w(x;U) = 0 for every i, this implies that p(K) = 0. But then, by inner regularity of 1, we
get 1(G) = 0, which contradicts the fact that £ is nonzero.

Let f € €. (G). Then U := {z € G|f(x) > 3| f|l} is a nonempty open subset of &, so
1(U) > 0. But we have f > 1| f|lo v, hence [, fdp > 5| flloope(U) > 0.

]

Theorem 1.2.7. Let GG be a locally compact group. Then :
(1). There exists a left Haar measure on G.

(2). If py and o are two left Haar measures on G, then there exists ¢ € R~ such that j1o = cjiy.
By proposition this theorem implies the similar result for right Haar measures.

Proof. We first prove existence. The idea is very similar to the construction of Lebesgue measure

12



1.2 Haar measures

on R. Suppose that ¢ > 0, and that ¢ € CI(R) is bounded by 1 and very close to the character-
istic function of the interval [0, ¢|. If f € %.(R) does not vary too quickly on intervals of length
¢, then we can approximate f by a linear combination of left translates of ¢ : f ~ > ¢;L,, ¢,
and then [ fdu ~ Y ¢;L,, [ pdu. As ¢ — 0, we will be able to approximate every f € 6.(R)
(because we know that these functions are uniformly continuous), and we’ll be able to define
[ fdp by going to the limit. On a general locally compact group, we replace the intervals by
smaller and smaller compact neighborhoods of 1.

Now here is the rigorous proof. Let f, o € CF(G). Then U := {z € G|p(z) > 1|l¢|~} isa
nonempty open subset of G and we have ¢ > 1{/¢||1y. As the support of f is compact, it can be
covered by a finite number of translates of U, so there exist z1,...,2, € Gandcy,...,c, € Ry
such that f < >  ¢;L,,. Hence, if we define (f : ¢) to be the infimum of all finite sums
Y or ¢ withey, ..., ¢, € Ry and such that there exist 1, ..., z, € G with f <> ¢;L,. ¢,
we have (f : ¢) < +00. We claim that :

(1.2.0.0.1) (f:p)=(Laf:p) Yz EG

(1.2.0.0.2) (it for) < (fi:o)+(f2ato)

(1.2.0.0.3) (cf:p)=c(f:p) Yc=0

(1.2.0.0.4) (fizp)<(farp) iffi < fo

(1.2.0.0.5) (f:p)> Hg; H:

(1.2.0.0.6) (fro)<(f:)Wrp) VY eE (G)-{0}

The first four properties are easy. For the fifth property, note that, if f < > | ¢;L,, ¢, then

e =S el (z ) ol
=1 =1

Finally, the last property is a consequence of the following fact : Let ¢ € 4.7 (G). If we have
<> ciLyandy < Zm diLy;p, then f <370 > 70 cidjLiyy, ¢

Now we fix fo € %.(G). By [.2.0.0.5] we know that (fy : ¢) > 0. We define
Icp . C(oﬂch(G) — RZO by

—

1) = 5,
By[[.2.0.0.1H1.2.0.0.4] we have

I,(f) = 1,(L.f) VzeG
(fl + f2) < L (f1) + Lp(f)
I (cf) =cl,(f) VYc>0

I(f1) < 1,(f) if fi < fo

If the second inequality were an equality (that is, if I, were additive), we could extend I, to a
positive linear functional on %.(G) and apply the Riesz representation theorem. This is not quite
true, but we have the following result :

13



I Representations of topological groups

Claim : For all fi, fo € €.7(G) and € > 0, there exists a neighborhood V" of 1 in G such that
we have I,(f1) + I,(f2) < I,(f1 + f2) + € whenever supp(p) C V.

Let’s first prove the claim. Choose a function ¢ € %.7(G) such that g(z) = 1 for every
x € supp(f1+ f2), and let ) be a positive real number. Let h = f; + fo+dg. We define functions
hl, hg G — R>0 by

_ s it fi) £ 0
hi(m)_{ 0" it f() < 0.

Note that h; is equal to , hence continuous on the open subset {x € G|h(x) # 0}. As G is the
union of this open subset and of the open subset G — supp(f;) (on which h; is also continuous),
this shows that h; is continuous, hence h; € €7 (G). Note also that we have f; = h;h.

By proposition|I.1.12] there exists a neighborhood V' of 1 such that, for: € {1,2} andz,y € G
with y~'z € V, we have |h;(z) — h;(y)| < §. Let p € €.7(G) be such that supp(p) C V. If
C1,...,6n € Rygand xy, ..., 2, € G aresuch that h < Z;n:l ¢j Ly, then, for every = € G and
ie{1,2},

filz) = ) < chgo T L2)hi(z) < Zc]go o '2)(hi(z4) + 6),
because @(z; ') = 0 unless z; 'z € V. Hence

(fr:@)+ (fa:0) <> eilhalay) + ha(z;) +20).
j=1
Since hy + ho < 1, we get

n

(@) + (i) <(1+20)) ¢

j=1
hence, taking the infimum over the families (¢4, .. ., ¢,) and dividing by (fo : ), we get

Lo(f1) + Lo(f2) < (1+20)1p(h) < (14 20)(Lo(fr + f2) +01,(9))-

The right-hand side of this tends to 1,,(f1 + f2) as J tends to 0, so we get the desired inequality
by taking o small enough. This finishes the proof of the claim.

We come back to the construction of a left Haar measure on G. For every f € €.7(G), let
Xr=1[fo: /)N (f: fo)] CR Let X =T] e+ () X s> endowed with the product topology.
Then, by Tychonoff’s theorem, E]X is a compact Hausdorff space. It is the space of functions
I:%"(G) — Rsuchthat I(f) € X for every f (with the topology of pointwise convergence).
Also, by [1.2.0.0.6] we have I, € X for every ¢ € 6.7 (G). For every neighborhood V" of 1 in

Sreference ?
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1.2 Haar measures

G, let K(V) be the closure of {I,|supp(y) C V} in X. We have K (V') # & for every V, so
KWVi)n...K(V,) D> K(N;_, Vi) # @ for every finite family Vi, ..., V}, of neighborhoods of 1
in G. As X is compact, this implies that the intersection of all the sets K (V') is nonempty. We
choose an element / of this intersection.

Let’s show that [ is invariant by left translations, additive and homogenous of degree 1. (That
is, it has the same properties as [, but it is also additive instead of just subadditive.) Let
fi,fo € €1 (G), ¢ € Rsg, z € G and € > 0. Choose a neighborhood V' of 1 in G such
that I,(f1) + I,(f2) < I,(fi + f2) + € whenever supp(¢) C V; this exists by the claim. By
definition of I, it is in the closure {/,| supp(y) C V'}, which means that there exists ¢ € €. (G)
such that supp(¢) C V and |I(aL,g) — I,(aL,g)| < e forg € {f1, fa, i + f2},y € {1,2} and
a € {1,c}. Then we get :

(Lo fr) = 10O < [I(Lafr) = Tp(La fo)l + [Lo(La fr) = Lo(f)] + o (f1) = I(f1)] < 2e,
[I(cfr) = cI(f)] < [(cfr) = Lo(efo)l + Ho(chr) = elp(f)l + lelo(f1) — el (f)] < e(1+¢)

and
[L(fr+ f2) = I(fr) = I(f2)| < [Lp(f1 + fo) — L,(f1) — L1,(f2)]
+HI(f1+ fa) = L(fr + fo)| + [L(f1) = Lo(fu)] + [L(f2) — L (f2)] < 4e.

As ¢ is arbitrary, this implies that I(L.f1) = I(f1), I(cfi) = «¢I(f1) and
I(fi+ f2) = I(f1) + 1(f2).

Now we extend [ to a linear functional 4.(G) — C, that we will still denote by /. Let
f € 6.(G). Then we can write f = (fi — f2) +i(g1 — g2), with f1, f2, 91, 92 € €. (G) U {0}
(for example, take f; = max(0,Re(f)), fo = max(0,—Re(f)), g1 = max(0,Im(f)) and
g2 = max(0,Im(f))). Weset I(f) = I(f1) — I(f2) + i(L(g1) — I(g2)) (with the convention
that [(0) = 0) If f = (Fl — Fg) + Z(Gl — Gz), with Fl,Fz,Gl,GQ € ng(G) @) {O}, then
Fi + fo = F» + f1 and G1 + go = G5 + ¢1, so we get the same result for I(f). Also, it is
easy to check that [ is a linear functional from %.(G) to C, and it is positive by construction.
By the Riesz representation theorem, there exists a regular Borel measure ;1 on G such that
I(f) = |, o fdp. By proposition this measure is a left Haar measure.

We now prove the second statement of the theorem (uniqueness of left Haar measure up to
a constant). Let u1, s be two left Haar measures on G. By the uniqueness in the Riesz repre-
sentation theorem (and the fact that €."(G) generates 6.(G)) it suffices to find a positive real
number ¢ such that [ fdu, = ¢ [ fdus, for every f € €5 (G). By proposition [.2.6] we have
Jo fdpz > 0 forevery f € €F(G). So it suffices to show that, if f, g € €. (G), we have

J fduy _ [ gdp
[ fdpe [ gdus

(x)

Let f, g € €.F(G). Let V; be a symmetric compact neighborhood of 1, and set

A = (supp(f))Vo U Vo(supp(f))

15



I Representations of topological groups

and
B = (supp(g)) Vo U Vo (supp(g)).

Then A and B are compact by proposition If y € Vj, the functions x — f(xy) — f(yx)
and x — g(zy) — g(yz) are supported on A and B respectively.

Let ¢ > 0. By proposition |I.1.12] there exists a symmetric neighborhood V' C V;, of 1 such
that, for every = € G and every y € V, we have |f(zy) — f(yz)| < € and |g(zy) — g(yx)| < e.
Let h € €.7(Q) be such that supp(h) C V and h(z) = h(z~!) for every z € G. Then

( /G hdps) /G Fduy) = /G b)) ()
= /G Gh(y)f(yfr)dul(fr)duz(y)-

(We use the left invariance of j;. Also, we can apply Fubini’s theorem, because all the functions
are supported on compact sets, and compact sets have finite measure.) Similarly, we have

( /G ) /G fdpa) = /G )0 ()

— . h(y_lx)f(y)d,lh ($)d,u2(?/)

ha™ ) f (y)dpa (@) dps (y)

Q

X

I
S—a o

. h(y) f(zy)dp (x)dps(y).

Hence

([ m)( [ g = ([ mdp)([ gam)

as supp(h) C V. Dividing by ([, fdus2)( ., hdpusz), we get

1( [ [ e = ([ s [ sae)

Similarly, we have

‘(/Ghdm)(/Ghdm)_l—(/ngm)(/ngm)‘l' Sem(B)(/nguz)_l-

Taking the sum gives

/ h(y)(f(zy) — f (yx))dm(x)ug(y)‘
GxG

< 5#1(14)/ hdps,
G

< e (A)( /G fp).

Jo Fdm [ 9dm
Jo fdpe [ gdps

p1(4) 1 (B)
=c (fodNZ " fod:u2) .
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1.2 Haar measures

As € is arbitrary, this gives the desired equality (*).

We now want to compare left and right Haar measures.

Proposition 1.2.8. Let G be a locally compact group. Let x € G. Then there exists A(x) € Ry
such that, for every left Haar measure p on G, we have p(Ezx) = A(z)u(E). Moreover,
A : G — Ryq is a continuous group homomorphism (where the group structure on R is given
by multiplication) and, for every left Haar measure j.on G, every x € G and every f € L'(G, ),

we have
/RﬁfduzA(xl)/ fdu.
G G

Proof. Let x € G, and p be a left Haar measure on (G. Then the measure y, defined by
e (E) = p(FEx) is also a left Haar measure on G, so, by the uniqueness statement in theo-
rem[[.2.7] there exists A(x) € R such that yi, = A(x)p, thatis, u(Ex) = A(z)u(E) for every
Borel subset E of GG. Suppose that X is another left Haar measure on GG. Then, again by theorem
there exists ¢ > 0 such that A = cu, and so we get, fo every Borel subset £ of G,

AMEx) = cu(Ex) = cA(x)u(E) = A(x)A\(E).
This proves the first statement.

We prove that A is a morphism of groups. Let x,y € G, and let E be a Borel subset of G such
that u(E) # 0. Then

A(zy)u(E) = p(Ery) = A(y)u(Ez) = A(y)A(z)u(E),
hence A(zy) = A(z)A(y).

We now prove the last statement. If £ is a Borel subset of G and x € G, then R, 1 = 1g,-1,
So we get

/G RyLpdp = p(Bx ) = Aa)u(E) = Alz) /G vodu

by definition of A. This proves the result for f = y . The general case follows by approximating
f by linear combinations of functions 1.

Finally, we prove that A is continuous. Let f € %.f(G). We know that the function
G — %.(G), x — R, [ is continuous (see remark [L1.13), so the function G — C,
x +— [, R,-1 fdyu is also continuous. But we have just seen that [, R, fdu = A(z) [, fdp,
and we know that [, fdu > 0 by proposition Hence A is continuous.

]

Definition 1.2.9. The function A of the previous proposition is called the modular function of
GG. We say that the group G is unimodular if A = 1 (that is, if some (or any) left Haar measure
on ( is also a right Haar measure).

17



I Representations of topological groups

Remark 1.2.10. Suppose that o : G — G is a homeomorphism such that for every x € G, we
have 3(z) € G satisfying : for every y € G, a(zy) = f(x)a(y). (For example, a could be right
translation by a fixed element of G, or a continuous group isomorphism with continuous inverse.)
Then we can generalize the construction of proposition m to get a A(a) € R satisfying :
for every f € €.(G), for every left Haar measure ;. on G,

o) /G Fal2))dp(x) = /G f()du()

(or equivalently p(a(E)) = A(a)u(E) for every Borel subset £ of G). Moreover, if §: G — G
satisfies the same conditions as «, then so does « o 5 and we have A(a o §) = A(a)A(f).

Example 1.2.11. (1). Any compact group is unimodular. Indeed, if G is compact, then A(G)
is a compact subgroup of R, but the only compact subgroup of R~ is {1}. In particular,
a compact group G has a unique left and right Haar measure p such that 4(G) = 1; we call
this measure the normalized Haar measure of G.

(2). Any discrete group is unimodular. Indeed, we have a left Haar measure on G that is also a
right Haar measure : the counting measure.

(3). If GG is commutative, then left and right translations are equal on GG, so G is unimodular.

(4). The groups GL,(R) and GL,,(C) are unimodular. (This is proved in exercise[[.5.3.2(c) for
GL,(R), and the same proof works for GL,,(C).)

(5). The group of invertible upper triangular matrices in M, (R) is not unimodular (see exercise
d)). In fact, its modular function is

A (8 g) — Jac™.

(6). Remember the commutator subgroup [G,G| is the subgroup generated by all the
xyx~ty~ L, for z,y € G. It is a normal subgroup of GG, and every group morphism from G
to a commutative group is trivial on |G, G]. In particular, the modular function A is trivial
on [G, G], so G is unimodular if G = [G, G]. More generally, using the first example, we
see that GG is unimodular if the quotient group G/|G, G| is compact.

Proposition 1.2.12. Let G be a locally compact group, and let yu be a left Haar measure on G.
We define a right Haar measure v on G by v(E) = u(E~1) (see proposition .

Then, for every f € €.(G), we have
| e dneta) = [ @) = [ A @)

We also write this property as dv(x) = A(x~Y)du(x), or du(x™) = A(z=)du(x).

18



L3 Representations

Proof. We prove the first equality. It is actually true for every f € L'(G,u). If f is character-
istic function of a Borel subset F, then © — f (x_l) is the characteristic function of F~!, so
[ fx™t)du(z) = [ fdv by definition of v. We get the general result by approximation f by
linear combination of characteristic functions of Borel subsets.

We prove the second equality. Consider the linear function A : %.(G) — C,
f— [A@ ) f(x)du(x). As A takes its values in Ry, A is positive. Also, for every
y € G, we have

A(R,f) = /G Fay) A dp() = Ay) /G ORI
- /G (@) A dpu(z) = A(f)

(using the left invariance of ;1 and the fact that A is a morphism of groups). So the unique
regular Borel measure p that corresponds to A by the Riesz representation theorem is a right
Haar measure (see proposition[[.2.6). By theorem [[.2.7] there exists ¢ > 0 such that p = cv. To
finish the proof, it suffices to show that ¢ = 1. Suppose that ¢ # 1. Then we can find a compact
symmetric neighborhood U of 1 such that, for every z € U, we have [A(z™!) — 1| < £|c — 1].
As U is symmetric, we have u(U) = v(U), hence

¢ = Hu(U) = |ev(U) = u(U)| =

[ @) = Dduto)| < e 1n©),
U

which contradicts the fact that ;i (U) # 0 (by proposition [[.2.6)).

1.3 Representations

In this section, G is a topological group.

1.3.1 Continuous representations

Definition 1.3.1.1. If V and W are normed C-vector spaces, we denote by Hom(V, W) the C-
vector space of bounded linear operators from V' to I/, and we put on it the topology given by
the operator norm ||.||,,. We also write End (V') for Hom(V, V'), and GL(V') for End(V')*, with
the topology induced by that of End (V).

Definition 1.3.1.2. Let VV be a normed C-vector space. Then a (continuous) representation of G
on V' is a group morphism p from G to the group of C-linear automorphisms of V' such that the
actionmap G x V — V, (g,v) — p(g)(v), is continuous.
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I Representations of topological groups

We refer to the representation by (p, V'), p or often simply by V. Sometimes, we don’t ex-
plicitely name the map p and write the action of G on V" as (g, v) — gv.

Remark 1.3.1.3. - The definition makes sense if V' is any topological vector space (over a
topological field).

- If (p, V) is a continuous representation of G, then the action of every g € G on V is a
continuous endomorphism of V', so we get a group morphism p : G — GL(V'). But this
morphism is not necessarily continuous, unless V' is finite-dimensional (see proposition
[L3.5.1). An example of this is given by the regular representations of G on L*(G) defined

in example

- If p: G — GL(V) is a morphism of groups that is continuous for the weak* topology
on End(V'), then it is not necessarily a continuous representation. (For example, take
G = GL(V), with the topology induced by the weak* topology on End(V'), and p = id.
This is not a continuous representation of G on V' if V' is infinite-dimensional.)

Example 1.3.1.4. - The trivial representation of G on V is the representation given by
p(x) = idy for every x € G. (It is a continuous representation.)

If V' is finite-dimensional, then the identity map of GL(1/) is a continuous representation
of GL(V)on V.

- If G = Standn € Z, the map G — C, z — 2" is a continuous representation of G' on
C.

The map p : R — GLy(C), x — <(1) “710) is a continuous representation of R on C2.

See example for the representations of G on its function spaces.

Definition 1.3.1.5. Let (p;, V1) and (pa, V2) be two representations of G. An intertwining opera-
tor (or G-equivariant map) from V; to V5 is a bounded C-linear map 7" : V; — V5 such that, for
every g € G and every v € V}, we have T'(p1(g)v) = p2(9)T (v).

We write Homg (V1, V) for the space of intertwining operators from V; to V5, and Endg(V;)
for the space of intertwining operators from V; to itself.

We say that the representations (p1, V1) and (p2, V3) are isomorphic (or equivalent) if there
exists intertwining operators 7' : V; — Vo and 77 : Vo, — Vj such that 7" o T = idy, and
ToT = idVg-

Definition 1.3.1.6. Let (p, V') be a representation of V.

(1). A subrepresentation of V' (or G-invariant subspace) is a linear subspace W such that, for
every g € G, we have p(g)(W) C W.

(2). The representation (p, V') is called irreducible if V' # 0 and if its only closed G-invariant
subspaces are 0 and V. Otherwise, the representation is called reducible.
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L3 Representations

(3). The representation (p, V') is called indecomposable if, whenever V- = W, & W, with W
and W5 two closed G-invariant subspaces of V', we have W; = 0 or W5 = 0.

(4). The representation (p, V') is called semisimple if there exists a family (W;);c; of closed
G-invariant subspaces of V' that are in direct sum and such that @,_, W; is dense in V. (If

I is finite, the direct sum is also closed in V/, so this implies that V' = &, ., W;.)

Remark 1.3.1.7. If (p, V) is a representation of G and W C V is a GG-stable subspace, then its
closure W is also stable by G.

Example 1.3.1.8. The representation p of R on C? given by p(z) = (1 T) is indecomposable

but not irreducible.

Lemma 1.3.1.9. Let (p1, V1) and (pa, Va) be two representations of G, and let T : 'V} — V5, be
an intertwining operator. Then Ker(T) is a subrepresentation of Vi, and Im(T') is a subrepre-
sentation of V5.

Proof. Let v € Ker(T) and ¢ € G. Then T(pi(9)(v)) = p29)(T(v)) = 0, so
p1(g)(v) € Ker(T).

Now let w € Im(7T), and choose v & Vi such that w = T(v). Then
pa(g)(w) = T(pr(g)(v)) € Tm(T).

Proposition 1.3.1.10. Ler V be a normed vector space and p : G — End (V') be a multiplicative
map. We denote by ||.||o, the operator norm on End(V'). Suppose that :

(a) Forevery g € G, we have ||p(g)]|op < 1;
(b) Foreveryv € V, themap G — V, g — p(g)(v) is continuous.

Then (p, V') is a continuous representation of G.

Proof. Let gy € G, vy € V, and € > 0. We want to find a neighborhood U of gin Ganda > 0
such that : g € U and [[v — wo|| < 6 = [|p(g)(v) — p(go) (vo)|| <e.

Choose a neighborhood U of g in G such that: g € U = ||p(g)(vo) — p(g0)(v0)]| < €/2, and
take 0 = £/2. Then, if g € U and ||v — vp|| < J, we have

lp(g)(v) = plgo)(vo)ll - < llp(g)(v) = p(g)(vo) |l + llp(g)(v0) = p(go) (w0l
12(g)llop[|v = vol| + /2
ef2+¢/2=c¢,

AAN

because [|p(g)lop < 1.
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I Representations of topological groups

Example 1.3.1.11. (1). We have defined, for every = € G, two endomorphisms L, and R, of
the space of functions on G, and these endomorphisms preserve ||.||.. So, by proposition

[.3.1.10/and remark [I.1.13] they define two representations of G on %.(G).

(2). Suppose that G is locally compact Hausdorff. We fix a left Haar measure dx on G, and
we denote LP((G) the LP spaces for this measure, for 1 < p < oco. The left invariance of
the measure implies that the operators L, preserve the LP norm, so we get a C-linear left
action of G on L?((), and, by proposition to show that it is a representation, we
just need to show that, if f € L?(G), the map G — L*(G), x — L, f is continuous. This
is not necessarily true if p = oo, but it is for 1 < p < oo, by proposition [[.3.1.13| below.
So we get a representation of G on LP(G) for 1 < p < co.

If we chose instead a right Haar measure on G, then the operators R, would define a
representation of G on LP(G) for 1 < p < oo. So, if G is unimodular, we get two
commuting representations of G on L*(G).

Definition 1.3.1.12. Let GG be a locally compact group with a left (resp. right) Haar measure dx,
and let L?(G) be the corresponding L? space. The representation of G on L*(G) given by the
operators L, (resp. R,) is called the left (resp. right) regular representation of G.

Proposition 1.3.1.13. Let G be a locally compact group, let 1 be a left Haar measure on GG, and
let LP(Q) be the corresponding L space. Suppose that 1 < p < oo.
Then, for every f € LP(G), we have | L,f — f||, = 0and |R.f — f|l, = 0asz — 1.

Proof. Suppose first that f € %.(G), and fix a compact neighborhood V' of 1. Then
K := V(supp f) U (supp f)V is compact by proposition [I.1.7, so u(K) < +oo. For every

x € V, we have supp(f), supp(Lyf), supp(R. f) € K, s0 | Lo f — fll, < u(EK)"7||Ls — fll
and || R, f — fll, < n(K)Y?||Rp.f — f|ls- The result then follows from proposition [[.1.12

Now let f be any element of LP(G). We still fix a compact neighborhood V' of 1, and we set
C = sup,cy A(x)"YP. Let ¢ > 0. There exists g € €.(G) such that ||f — g||, < . Then we
have, forz € V,

ILof = fllp < [ La(f = 9llp + 1Lag — gllp + llg = Fllp < 26 + [ Lag — gl
@as [ Lo (f = 9)lly = [If = gll) and
[Ref = fllp < [[Ra(f = 9)llp + 1 Beg = gllp + [lg = fllp < (1 + C)e + [ Reg — gllp
(as ||R.(f—9)|l, = A(x)"Y?|| f —gl|,). We have seen in the first part of the proof that || L,g—g||,

and ||R,g — g||, tend to 0 as z tends to 1, so we can find a neighborhood U C V of 1 such that
N\ Lof — fllp <3cand |[R,f — fll, < (2+ C)eforz € U.

]
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1.3.2 Unitary representations

Remember that a (complex) Hilbert space is a C-vector space V' with a Hermitian inner produclﬂ
such that V' is complete for the corresponding norm. If V' is a finite-dimensional C-vector space
with a Hermitian inner product, then it is automatically complete, hence a Hilbert space. We will
usually denote the inner product on all Hermitian inner product spaces by (., .) (unless otherwise
specified).

Notation 1.3.2.1. Let VV and W be Hermitian inner product spaces. For every continuous C-
linearmap 7" : V — W, we write T : W — V for the adjoint of 7', if it exists. Remember that
we have (T'(v),w) = (v,T*(w)) for every v € V and w € W, and that T* always exists if V/
and W are Hilbert spaces.

If V' is a subspace of V, we write V'* for the orthogonal of V’; it is defined by

(VHYE ={ve VW eV, (v,v) =0}.

Finally, we write U(V") for the group of unitary endomorphisms of V/, that is, of endomor-
phisms 7" of V that preserve the inner product ((T'(v), T(w)) = (v,w) for all v,w € V). A
unitary endomorphism 7' is automatically bounded and invertible (with inverse equal to 7).

The following result is an immediate corollary of proposition (and of the fact that
unitary operators have norm 1).

Corollary 1.3.2.2. IfV is a Hilbert space and p : G — U(V') is a morphism of groups, then the
following are equivalent :

(1). The map G xV =V, (g,v) — p(g)(v), is continuous.

(2). Foreveryv €V, themap G — V, g — p(g)(v), is continuous.

Definition 1.3.2.3. If V' is a Hilbert space, a unitary representation of G on V is a morphism of
groups p : G — U(V) satisfying the conditions of corollary [[.3.2.2

These representations are our main object of study.

Example 1.3.2.4. If (X, ;1) is any measure space, then L?(X) is a Hilbert space, with the follow-
ing inner product :

(f.g) = /X F(@)a@)du(z).

So if GG is a locally compact group, then the left regular representation and right regular repre-
sentations of (G are unitary representations of G' (on the same space if G is unimodular).

“We will always assume Hermitian inner products to be C-linear in the first variable.
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Remark 1.3.2.5. Note that p is still not necessarily a continuous map in general. (Unless
dime V' < +00.) For example, it is not continuous for the left regular representation of S*.

Also, note that we don’t need the completeness of V' in the proof, so corollary|l.3.2.2]is actually
true for any Hermitian inner product space.

Lemma 1.3.2.6. Let (p,V') be a unitary representation of G. Then, for every G-invariant sub-
space W of V, the subspace W+ is also G-invariant.

In particular, if W is a closed G-invariant subspace of V, then we have V = W & W+ with
W+ a closed G-invariant subspace.

Proof. Letv € W+ and g € G. Then, for every w € W, we have

(p(g)(v), w) = (v, p(g)"'w) =0

(the last equality comes from the fact that p(g)~*w € W), hence p(g)(v) € W,
[]

Lemma 1.3.2.7. Let (p1,Vi) and (p2,Va) be two unitary representations of G, and let
T : Vi — V4 be an intertwining operator. Then T* : Vo — Vi is also an intertwining oper-
ator.

Proof. Letw € V5 and g € G. Then, for every v € Vi, we have
(0, T*(p2(9)(w))) = (T(v), p2(9) (w)) = {p2(9) T (v), w) = (T(pr(g)~" (v)), w) =

(pr(g) " (v), T (w)) = (v, pr(g)T"(w)).
So T*(p2(9)(w)) = pr(g)(T™(w)).
O

Theorem 1.3.2.8. Assume that the group G is compact Hausdorff. Let (V,{.,.)o) be a Hilbert
space and p : G — GL(V') be a continuous representation of G on V. Then there exists a
Hermitian inner product (.,.) on V satisfying the following properties :

(1). There exist real numbers c,C > 0 such that, for every v € V, we have
cl{v,v)o| < [{v,v)| < C|{v,v)o|- In other words, the norms coming from the two in-
ner products are equivalent, and so V' is still a Hilbert space for the inner product (., .).

(2). The representation p is unitary for the inner product (., .).

Remark 1.3.1.  (a) If V is irreducible, it follows from Schur’s lemma (see theorem[[.3.4.T]) that
this inner product is unique up to a constant.
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(b) This is false for noncompact groups. For example, consider the representation p of R on C?
given by p(t) = ((1) i) . There is no inner product on C? that makes this representation
unitary (otherwise p(R) would be a closed subgroup of the unitary group of this inner
product, hence compact, but this impossible because p(R) ~ R).

Proof of the theorem. We define (.,.) : V x V' — C by the following formula : for all v, w € V,

(v, 0) = /G (p(9)0, pg)whod,

where dg is a normalized Haar measure on GG. This defines a Hermitian form on V', and we have
(p(g)v, p(g)w) = (v, w) for every v,w € V and g € G by left invariance of the measure.

If we prove property (1), it will also imply that (., .) is definite (hence an inner product), and so
we will be done. Let v € V. Then the two maps G — V sending v to p(g)(v) and to p(g)~*(v)
are continuous. As (G is compact, they are both bounded. By the uniform boundedness principle
(theorem [[.3.2.11), there exist A, B € R such that [|p(g) [0, < A and [|p(g)|l,, < B for
every g € (G. By the submultiplicativity of the operator norm, the first inequality implies that
lp(9)|| < AL forevery g € G. So the definition of (., .) (and the fact that G has volume 1) gives
property (1), withc = A2 and C' = B2

]

Corollary 1.3.2.9. If G is compact Hausdorff, then every nonzero finite-dimensional continuous
representation of G is semisimple.

Proof. We may assume that the representation is unitary by the theorem. We prove the corollary
by induction on dim V. The result is obvious if dim V' < 1, so assume that dim V' > 2 and that
we know the result for all spaces of strictly smaller dimension. If V' is irreducible, we are done.
Otherwise, there is a G-invariant subspace W C V such that W # 0. This subspace is closed
because it is finite-dimensional, and we have V = W & W~ with W+ invariant by lemma
As dim(W), dim(W+) < dim(V'), we can apply the induction hypothesis to W and W+ and
conclude that they are semisimple. But then their direct sum V' is also semisimple.

]

Remark 1.3.2.10. This is still true (but harder to prove) for infinite-dimensional unitary repre-
sentations of compact groups (see theorem[[V.2.1)), but it is false for infinite-dimensional unitary
representations of noncompact groups (if for example G is abelian and not compact, its regu-
lar representation is not semisimple by corollary and exercise |[I1.6.1.2(c)), or for finite-
dimensional (non-unitary) representations of noncompact groups (see example [[.3.1.8).

Theorem 1.3.2.11 (Uniform boundedness principle or Banach-Steinhaus theorem). Let V' and
W be normed vector spaces, and suppose that V' is a Banach space (i.e. that it is complete for
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the metric induced by its norm). Let (T;);c; be a family of bounded linear operators from V' to

w.

If the family (T;);cr is pointwise bounded (that is, if sup,¢; || T;(v)|| < +oo for every v € V),
then it is bounded (that is, sup,c; ||T;]|op < +00).

Proof. |||’| Suppose that sup,.; ||7;||,, = +00, and choose a sequence (i, ),>o of elements of [
such that || T}, [|,, > 4". We define a sequence (v,,),>0 of elements of V' in the following way :

-UOZO;

- For n > 1, we can find, thanks to lemma below, an element v,, of V' such that
[vn = vpa]l < 37" and | T;,, (va) | = 337" (175, [lop-

We have [[v, — vy,| < 237" for m > n, so the sequence (v,),>o is a Cauchy se-
quence; as V is complete, it has a limit v, and we have [|v, — v|| < 137" for every
n > 0. The inequality ||7;, (v,)|| > 237"||T},|lop and the triangle inequality now imply that
1T, (2)]| = 37 T;. lop = #(3)", and so the sequence (||T;, (z)||)n>o is unbounded, which
contradicts the hypothesis.

[]

Lemma 1.3.2.12. Let V and W be two normed vector spaces, and let T : V' — W be a bounded
linear operator. Then for any v € V and r > 0, we have

sup |[T(W)]| = 7| Tlop,

v'€B(v,r)
where B(v,r) = {v' € V||lv —'|| <r}.
Proof. For every x € V', we have

1T (@) < ST+ 2)[[ + T(v = 2)|) < max([|T (v + )|, [T(0 - 2)|).

N | —

Taking the supremum over = € B(0, ) gives the inequality of the lemma.

]

Finally, we have the following result, whose proof uses Schur’s lemma (theorem [[.3.4.1)) and
is given in exercise[[.5.5.9

Theorem 1.3.2.13. If G is a compact group, then every irreducible unitary representation of G
is finite-dimensional.

"Taken from a paper of Alan Sokal.
8Precise ref.
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1.3.3 Cyclic representations

Definition 1.3.3.1. Let (p, V') be a continuous representation of GG, and let v € V. Then the
closure W of Span{p(g)(v),g € G} is a subrepresentation of V, called the cyclic subspace
generated by v.

If V =W, we say that V is a cyclic representation and that v is a cyclic vector for V.

Example 1.3.3.2. An irreducible representation is cyclic, and every nonzero vector is a cyclic
vector for it.

The converse is not true. For example, consider the representation p of the symmetric group
&,, on C" defined by p(0)(z1,...,2n) = (To-1(1),-- -, To-1(n)), and let v = (1,0,...,0) € C".
Then the set p(S,,)(v) is the canonical basis of C™, hence it generates C", and so v is a cyclic
vector for p. But p is not irreducible, because C(1,1, ..., 1) is a subrepresentation.

Proposition 1.3.3.3. Every unitary representation of G is a direct sum of cyclic representations.

If the indexing set is infinite, we understand the direct sum to be the closed direct sum (that is,
the closure of the algebraic direct sum).

Proof. Let (m, V) be a unitary representation of G. By Zorn’s lemma, we can find a maximal
collection (W;);cr of pairwise orthogonal cyclic subspaces of V. Suppose that V' is not the direct
sum of the WW;, then there exists a nonzero vector v € (,., W;)*. By lemma the cyclic
subspace generated by v is included in (D, W;)*+, which contradicts the maximality of the

family (W;);c;. Hence V = @, ., Wi.
]

.3.4 Schur’s lemma

The following theorem is fundamental. We will not be able to prove it totally until we have the
spectral theorem for normal endomorphisms of Hilbert spaces (theorem [[.4.1).

Theorem 1.3.4.1 (Schur’s lemma). Let (pq, V1) and (pa, V3) be two representations of G, and let
T : Vi — V5 be an intertwining operator.

(1). If Vi is irreducible, then T is either zero or injective.
(2). If Vs is irreducible, then T is zero or has dense image.
(3). Suppose that V} is unitary. Then it is irreducible if and only if Endg (V1) = C - idy,.

(4). Suppose that Vi and V; are unitary and irreducible. Then Homg(V7, Vs) is of dimension
zero (if V1 and V5 are not isomorphic) or 1 (if Vi and V4 are isomorphic).

27



I Representations of topological groups

Proof. We prove the first two points. By lemma Ker(T) and Im(7T') are G-invariant
subspaces of V7 and V5. Moreover, Ker(T') is a closed subspace of V;. If V] is irreducible, then
its only closed invariant subspaces are 0 and V;; this gives the first point. If V5 is irreducible,
then its only closed invariant subspaces are 0 and V5; this gives the second point.

We prove the third point. Suppose first that V; is not irreducible. Then it has a closed invari-
ant subspace W such that 0 # W = Vj, and orthogonal projection on W is a GG-equivariant
endomorphism by lemma|l.3.4.3| So Endq (1)) strictly contains C - idy,.

Now suppose that V; is irreducible, and let 7" € End(V;). We want to show that 7' € Cidy,.
If V} is finite-dimensional, then 7" has an eigenvalue A, and then Ker(7 — Aidy, ) is a nonzero G-
invariant subspace of V7, hence equal to V7, and we get T = Aidy, . In general, we still know that
every T' € End(V) has a nonempty spectrum (by theorem [IL.1.1.3), but, if ) is in the spectrum
of T', we only know that 7" — Aidy is not invertible, not that Ker(7T' — Aidy/) # 0. So we cannot
apply the same strategy. Instead, we will use a corollary of the spectral theorem (theorem [l1.4.1)).
Note that the subgroup p;(G) of End(V;) satisfies the hypothesis of corollary because
V) is irreducible, so its centralizer in End(V}) is equal to Cidy,; but this centralizer is exactly
Endg(V1), so we are done.

We prove the fourth point. Let 7" : V; — V5 be an intertwining operator. Then 7™ : V, — V)
is also an intertwining operator by lemma [1.3.2.7, so 7*T € Endg(V;) and T7T* € Endg(V3).
By the third point, there exists ¢ € C such that 7T = cidy,. If ¢ # 0, then T is injective and

lc]

Im(T) is closed (because ||T'(v)|| > m”v” for every v € V4, see lemma|l.3.4.2), so 7" is an

isomorphism by the second point, and its inverse ¢~ 17T*; hence V; and V; are isomorphic, and
Home(V1, Va) ~ Endg(V1) is 1-dimensional. Suppose that ¢ = 0. If 7" # 0, then it has dense
image by the second point, but then 7* = 0 by the first point, hence 7" = (7*)* = 0, which
is absurd; so 7" = 0. So we have proved that, if Homg(V7, V5) # 0, then V; and V2 must be
isomorphic; this finishes the proof of the fourth point.

]

Lemma 1.3.4.2. Let V, W be two normed vector spaces, and let'T' : V. — W be a bounded
linear operator. Suppose that V' is complete. If there exists ¢ > 0 such that ||T(v)|| > c||v|| for
every v € V, then Im(T) is closed.

Proof. Let (v,)nen be a sequence of elements of V' such that the sequence (7'(vy,))nen con-
verges to a w € W. We want to show that w € Im(7). Note that, for all n,m € N, we have
v — vl < YT (vs) — T(vy,)||. This implies that (v, ),y is a Cauchy sequence, so it has a
limit v € V because V' is complete. As T is continuous, we have w = lim,,_, o T'(v,) = T'(v),
sow € Im(T).

]

Lemma 1.3.4.3. Let (p, V') be a unitary representation of G, let W be a closed subspace of 'V,
and let T be the orthogonal projection on W, seen as a linear endomorphism of V.

Then W is G-invariant if and only if 7 is G-equivariant.
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Proof. Suppose that w is (G-equivariant. Let w € W and g € G. Then
p(9)(w) = p(g)(m(w)) = w(p(g)(w)) € W. So W is invariant by G.

Conversely, suppose that W is G-invariant. By lemma [1.3.2.6, its orthogonal W is also
invariant by G. Let v € V and ¢ € G. We write w = 7(g) and w' = g — 7(g).

Then p(g)(v) = p(g)(w) + p(g)(w') with p(g)(w) € W and p(g)(w’) € W+, so
m(p(g)(v)) = p(g)(w).

[]

Corollary 1.3.4.4. If G is commutative, then every irreducible unitary representation of G is
1-dimensional.

So each unitary irreducible representation of G is equivalent to one (and only one) continuous
group morphism G — S*.

Proof. Let (p, V) be an irreducible unitary representation. As G is commutative, the operators
p(x) and p(y) commute for all z,y € G, so we have p(z) € Endg(V) for every z € G.
By Schur’s lemma, this implies that p(z) € C -idy for every x € G. In particular, every
linear subspace of V' is invariant by GG. As V' is irreducible, it has no nontrivial closed invariant
subspaces, so it must be 1-dimensional.

]

Example 1.3.4.5. Let G = R. Then every irreducible unitary representation of G is of the form
py : x — e for y € R. The representation p, factors through S' ~ R/Z if and only

y € 2nZ. (See exercise c¢) and (d).)

1.3.5 Finite-dimensional representations

Remember that, if V' is a finite-dimensional C-vector space, then all norms on V' are equivalent.
E] So V has a canonical topology, and so does End(V) (as it is also a finite-dimensional vector
space).

Proposition 1.3.5.1. Let V' be a normed C-vector space and p : G — GL(V') be a morphism of
groups. Consider the following conditions.

(i) The map G x V — V, (g,v) — p(g)(v), is continuous (i.e. p is a continuous represen-
tation of G on' V).

(ii) Foreveryv € V, the map G — V, g — p(g)(v), is continuous.

(iii) The map p : G — GL(V) is continuous.

reference ?
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Then we have (iii)=(i)=(ii). If moreover V is finite-dimensional, then all three conditions
are equivalent.

Proof.
(1)=-(i1) is obvious.

(ii)=-(iii) : Suppose that V' is finite-dimensional, and let (e, . . ., e, ) be a basis of V', and let
||.|| be the norm on V defined by || > "7, ze;|| = sup;<;<,, |:|. We use the corresponding
operator norm on End(V) and still denote it by ||.||. Let go € G and let ¢ > 0; we are
looking for a neighborhoord U of gy € G suchthat: g € U = ||p(g) — p(g0)]| < e.

For every i@ € {l,...,n}, the function G — V, g +— p(g)(e;), is contin-
uous by assumption, so there exists a neighborhood U; of gy in G such that :
g €U = |plg)e;) — plgo)(ei)| < e/n. Let U = (-, Ui. Then if g € U, for ev-
eryv = ., x;e; €V, we have

lp(g)(v) = pg0) (V)| < Z lz:llllo(g)(e:) = p(go) (el < Z |zile/n < e]jv]l,

which means that ||p(g) — p(g0)| < e.

(ii)=-(1) : Let g9 € G, vp € V, and € > 0. We want to find a neighborhood U of g and G
andad > Osuchthat: g € U and ||[v — vg]| < 0 = ||p(9)(v) — p(g0)(vo)]| < €.

Choose a 6 such that 0 < § < m, and let U be a neighborhood of gy in G such that

g € G=|plg) —plg)ll < sy Then, if g € U and llv — vol] < &, we have
llv]] < |Jvol| + 0, and hence

[p(9)(v) = p(go)(vo)ll < lp(g)(v) — p(g0) (V)] + llp(g0)(v) — p(go)(vo)]l
< ||,0(9)€— p(go) lllvll + [lp(go)ll[v — voll
< W(H’UOH +6) + [|p(g0)[|6
< €/2+¢/2=c¢.

.4 The convolution product and the group algebra

Let GG be a locally compact group, and let dz be a left Haar measure on G. We denote by LP(G)
the LP spaces for this measure. We also denote by A the modular function of G.
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L4 The convolution product and the group algebra

1.4.1 Convolution on L!(G) and the group algebra of &

Definition 1.4.1.1. Let f and ¢ be functions from G to C. The convolution of f and g, denoted
by f * g, is the function x — [, f(y)g(y~'x)dy (if it makes sense).

Proposition 1.4.1.2. Let f, g € L'(G). Then the integral [, f(y)g(y~'z)dy is absolutely con-
vergent for almost every x in G, so f*g is defined almost everywhere, and we have fxg € L'(G)
and

1+ gl < I F 1 llglh-

Proof. By the Fubini-Tonelli theorem and the left invariance of the measure on G, the function
G x G —C, (z,y) — f(y)g(y~'z) is integrable and we have

| 1wty oldsay = [ 15lsta)ldedy = |kl

GxG

So the first statement also follows from Fubini’s theorem, and the second statement is obvious.

O

Note that the convolution product is clearly linear in both arguments.

Proposition 1.4.1.3. Ler f, g € L'(Q).

(1). For almost every x € GG, we have
Fra@) = [ Fwat o)y
= / flzy)g(y™)dy
G
/Gf(y‘l)g(ym)A(y‘l)dy
/G F(ey ) g()Aly)dy
[ 7 Lugta)dy
G
[ 9t R, sy
G

(2). Forevery h € L'(G), we have

(fxg)xh=fx(gxh).

(In other words, the convolution product is associative.)
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(3). Forevery x € G, we have
Lo(f*g) = (Laf) *
and

R.(f *g) = [ * (R.9).

(4). If G is abelian, then f x g = g * f.

Proof. (1). We get the equalities of the first four lines by using the substitutions y — xy and
y — y~ L, the left invariance of dy and proposition [[.2.12 The last two lines are just
reformulations of the first two.

(2). For almost every x € (G, we have

((f % 9) % h)() = /Q(f=kg)(y)h(y‘1x)dy

= [ G by ) dzdy

:/Gf(Z) (/Gg(z‘ly)h(y‘lx)dy) dz
=/f(Z) (/ g(y)h(y‘lz‘lx)dy) dz

/f (g% h)(z w)dz
* (g * h))(x).

(3). This follows immediately from the definition and the equality of the first two lines in point
(1).
(4). This follows from (1) and from the fact that A = 1.
[]

Definition 1.4.1.4. A Banach algebra (over C) is an associative C-algebra A with a norm ||.||
making A a Banach space (i.e. a complete normed vector space) and such that, for every
xz,y € A, we have ||zy|| < ||z|||ly]| (i.e. the norm is submultiplicative). If A has a unit e,
we also require that ||e]| = 1.

Note that we do not assume that A has a unit. If it does, we say that A is unital.

Example 1.4.1.5. (a) If V is a Banach space, then End(V') is a unital Banach algebra.

(b) By propositions [[.4.1.2] and [[.4.1.3] the space L'(G) with the convolution product is a
Banach algebra. We call it the (L) group algebra of G.
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Remark 1.4.1.6. If the group G is discrete and dx is the counting measure, then §; := 1y is a
unit for the convolution product. In general, L!(G) does not always have a unit. (It does if and
only if G is discrete. We can actually see it as a subalgebra of a bigger Banach algebra that
does have a unit, the measure algebra .# (G) of G (see for example section 2.5 of [11]) :

Remember that a (complex) Radon measure on G is a bounded linear functional on %,(G)
(with the norm ||.||o.). We denote by .#Z (G) the space of Radon measures and by ||.|| its norm
(which is the operator norm); this is a Banach space. If p is a Radon measure, we write
f +— |, f(z)du(z) for the corresponding linear functional on €,(G). We define the convo-
lution product x4 * v of two Radon measures . and v to be the linear functional

fr— ; Gf(:vy)du(w)dV(y)-

Then it is not very hard to check that ||u % v|| < ||p||||v|| and that the convolution product is
associative on . (G). This makes .# (() into a Banach algebra, and the Dirac measure at 1 is a
unit element of .Z (G).

Note also that .# (() is commutative if and only if G is abelian. Indeed, it is obvious on the
definition of « that .# (G) is commutative if G is abelian. To show the converse, we denote by
d, the Dirac measure at z (so |, o fdo, = f(x)). Then we clearly have 6, * 6, = d,, for every
z,y € G. So, if 4 (G) is commutative, then d,, = J,, for every z,y € G, and this implies that
G is abelian.

Even though L'(G) does not contain the unit of .# (G), we have families of functions called
“approximate identities” that will be almost as good as d; in practice. In particular, we will be
able to prove that L'(G) is commutative if and only if G is abelian (see corollary [[.4.1.10).

Definition 1.4.1.7. A (symmetric, continuous) approximate identity with supports in a basis of
neighborhoods % of 1 in G is a family of functions (¢y)yes in €.7(G) such that, for every
U € %, we have

- supp(yv) C U;
- Qﬂ[](l’_l) = @Z)U(ZE), Vx € G,
- Jotbu(z)de = 1.

For some results, we don’t need the continuity of the ¢y or the fact that ¢y (z7!) = Yy (z).

Proposition 1.4.1.8. For every basis of neighborhoods 7 of 1 in G, there exists an approximate
identity with supports in % .

Proof. Let U € % . Then U contains a symmetric neighborhood V' C U of 1 and a com-
pact neighborhood K C V of 1, and, by corollary there exists a continuous function

0reference ?
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f+ X — [0,1] with compact support contained in V' such that fjx = 1. In particular, f # 0,
so f € €. (X). Define g : X — [0,2] by g(z) = f(x) + f(z™'). Then g € €7 (X) (because
gk = 2) and supp(g) C V' C U. Now take 1)y = mg.

]

Proposition 1.4.1.9. Let % be a basis of neighborhoods of 1 in G, and let (Yy)ycw be an
approximate identity with supports in % .

(1). Forevery f € LY(Q), we have ||¢Yy * f — flli = O0and || f x4y — fll1 = 0as U — {1}
In fact, we have :

|V * f— fll <supl||Ly f — fll
yeU

and

1f v = fll < Slel[IJ)HRyf — [l

(2). If f € L™(G) and f is left (resp. right) uniformly continuous, then ||y * f — f|leoc — 0
(resp. ||f * Vv — flloo = 0) as U — {1}. In fact, we have :

1Yy * f = flloo < sup Ly f = fll

and
|f * v — fllo < sup ||Ry f — fllo-
yeU

In point (2), note that if f : G — C is bounded and g € %.(G), then the integral defining
(f * g)(x) converges absolutely for every z € G.

Proof. (1). LetU € % . For every x € (G, we have
(o + £)a) = 1) = [ o)L @) = 1)y
(because [, vy (y)dy = 1). So
o f =1l = [ | [ vl (Laf@) = s
< Yu(y)|Lyf(x) — f(z)|dydz

GxG

< / Cu)|Ly — fllidy

<sup || Ly f — fl-
yeU
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The first convergence result then follows from the fact that || L, f — f|l; — Oasy — 1,
which is proposition
The proof of the second convergence result is similar (we get that

If *Yuv — flli < supyep [[Ryf — fll1 and apply proposition|1.3.1.13).
(2). Let U € % . Then for every x € G,

Wy * £)(x) — f(2)] < / Yo ()| Lyf (@) — f(x)|dy.

As ¢y (y) = 0 for y & U, this implies that
(o * f)(@) = flz)] < (21615 Ly f(2) — f(iL‘)|)(/G Yu(y)dy) = sup | Ly f(x) — f(x)].

Taking the supremum over x € GG gives

1w * f = flloo < sup[[Lyf — flloo-
yeU

So the first statement follows immediately from the definition of left uniform continuity.
The proof of the second statement is similar.

]

Corollary 1.4.1.10. (I). The Banach algebra L*(G) is commutative if and only if the group G
is abelian.

(2). Let .% be a closed linear subspace of L'(G). Then % is a left (resp. right) ideal if and
only if it is stable under the operators L, (resp. R.), x € G.

Proof. (1). If G is abelian, then we have already seen that L!(G) is commutative. Conversely,
suppose that L' (G) is commutative. Let 2,y € G. Let f € %.(G), and choose an approx-
imate identity (¢ )yes . By proposition [[.4.1.3, we have, for every U € %,

and
(Bof) * (Byvu) = (Rytu) * (Rof) = Ro(f + (Rythu)) = RaRy(f #hu) = Ray(f *¢u).

Evaluating at 1 gives (f*¢y)(zy) = (f*vy)(yx). But proposition|l.4.1.9|(and proposition
[.1.12) implies that || f * ¥y — f|leo — 0as U — {1}, so we get

flzy) = lim (f x¢p)(zy) = lm (f *v)(yz) = f(yz).

U—{1} U—{1}

As this is true for every f € %.(G), we must have zy = yx (this follows from local
compactness and Urysohn’s lemma).

reference ?
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Q).

We prove the result for left ideals (the proof for right ideals is similar). Suppose that .#
is a left ideal, and let z € G. Choose an approximate identity (¢y)yes. We know that
Yy x f — fin LY(G) as U — {1}, and so L,(¢Yy * f) — L,f as U — {1} (because
L, preserves the L' norm). But L, (¢y * f) = (L.y) * f by proposition ; as ./ is
a left ideal, we have (L,vy) x f € & forevery U € %, and as .# is closed, this finally
implies that L. f € .Z.

Conversely, suppose that .# is stable by all the operators L,, » € G. Let f € L'(G) and

g € J. By proposition [L4.1.3} we have f x g = [, f(y)Lygdy. By the definition of the
integral, the function f * g is in the closure of the span of the L,,g, y € G, and soitisin .%

by hypothesis (and because .# is closed).
]

1.4.2 Representations of G vs representations of L'(G)

Definition 1.4.2.1. A Banach x-algebra is a Banach algebra A with an involutive anti-
automorphism *. (That is, for every z,y € A and A\ € C, we have (z + y)* = z* + y*,

(Az)*

— X', (ey)" = y'a* and ()" = 2.

The anti-automorphism x is called an involution on the Banach algebra A.

Example 1.4.2.2. (a) C, with the involution z* = Z.

(b)

(c)

(d)

If G is a locally compact group with a left Haar measure, then L'(G) with the con-
volution product and the involution * defined by f*(z) = A(z)™!'f(2~!) is a Banach
x-algebra (note that f* is in L'(G) and that we have [, f*(z)dz = [, f(z)dz and
Jo | /7 (@)|dz = [, | f(x)|dx by proposition[[.2.12} so || f*|[; = || f][1)- It is commutative if

and only G is abelian, and it has a unit if and only G is discrete.

If X is a locally compact Hausdorff space, the space %, (X ) with the norm ||. ||, the usual
(pointwise) multiplication and the involution  defined by f*(z) = m 1S a commutative
Banach x-algebra. It has a unit if and only if X is compact (and the unit is the constant
function 1).

Let H be a Hilbert space. Then End(H), with the operator norm and the involution
T —— T* (where T™ is the adjoint of T" as above) is a unital Banach x-algebra. It is
commutative if and only if dim¢(H) = 1.

Definition 1.4.2.3. (i) If A and B are two Banach x-algebras, a x-homomorphism from A to

(i)
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B is a morphism of C-algebras u : A — B that is bounded as a linear operator and such
that u(z*) = u(z)*, for every x € A.

A representation of a Banach x-algebra A on a Hilbert space H is a x-homomorphism
7w from A to End(H). We say that the representation is nondegenerate if, for every
v € H — {0}, there exists x € A such that w(x)(v) # 0.
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We will need the following result, which we will prove in the next section. (See corollary
[I1.3.9)

Proposition 1.4.2.4. Let V be a Hilbert space. Then, for every T € End(H) such that
TT* =T*T, we have
T = Yo 772"

Corollary 1.4.2.5. Let A be a Banach x-algebra such that ||x*|| = ||x|| for every x € A, and let
7 be a representation of A on a Hilbert space V. Then ||r||,, < 1.

Proof. By definition, the operator 7 is bounded; let C' = ||7|l,,. Let x € A, and let
T = n(z*x) € End(H). Note that 7" = T™*. For every n > 1, we have

I < Cli@ )T < Cllaf™
(because ||z*|| = ||=||). On the other hand, we have
— T n||l/n
Tllop = lim 17"

by proposition hence
(@) llp = (@) @2 = ITIY2 < ( lam V7|2 = |lo].

op op

In other words,

T||op < 1.

O

We now fix a locally compact group G as before. We will use vector-valued integrals, as
defined in exercise and the properties proved in exercises[[.5.6.2]and[[.5.6.3]

Theorem 1.4.2.6. (1). Let (7,V') be a unitary representation of G. We define a map from
LY(G) to the space of linear endomorphisms of V, still denoted by , in the following way

Sif f € LYG), we set

w(f) = /Gf(m)w(a:)daz,
by which we mean that
"N = [ f@m@s

for every v € V (the integral converges by exercise[[.5.6.3). Then this is a nondegenerate
representation of the Banach x-algebra L'(G) on V, and moreover we have, for every
r € G and every f € L'(G),

w(Lof) = n(z)n(f) and w(R.f)=Az) x(f)m(z)".
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(2).

(3).

(4).

Proof.

38

Every nondegenerate representation 7 of the Banach x-algebra L'(G) on a Hilbert space
V' comes from a unitary representation m of the group G as in point (1).

Moreover, if (Vy)uea is an approximate identity, then, for every v € G and every v € V,
we have

m(x)(v) = lim 7(Lyvy)(v).

U—{1}

Let (m,V) be a unitary representation of G, and 7w : L*(G) — End(V) be the asso-

ciated x-homomorphism. Then a closed subspace W of V' is G-invariant if and only if
7(f)(W) C W for every f € L'(G).

Let (w1, V1) and (2, Va) be unitary representations of G, and 7; : L'(G) — End(V}),
1 = 1,2, be the associated x-homomorphisms. Then a bounded linear map T’ : V| — V5 is
G-equivariant if and only if T o 71, (f) = 7a(f) o T for every f € L(QG).

(1). If f € L'(@G), then the map «(f) : V — V is clearly C-linear, and we have for
everyv € V :

I (f I—II/f v)da|| </|f Mvllde < ollllf,

so the endomorphism 7(f) of V' is bounded and ||7(f)|lo, < [|f]l1. Also, it is easy to
see that the map 7 : Ll(G) — End(H) sending f to 7(f) is C-linear, and the equality
l7(f)llop < || f]l1 implies that it is also bounded (we also see that ||7||,, is bounded by 1,
as it should according to corollary [.4.2.5]).

Let f,g € L'(G). Then, for every v € V,

m(f*xg)(v) = fW)gly™ w)m(x)(v)dedy

Son(fxg)=mn(f)o Also,

ZC,



2).
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so that, if w € V,

(w0 = |

G

(f@)m(2)*(v), w)de = /G<v, fle)m(z)(w)) = (v, 7(f)(w)).
This means that 77(f*) = 7(f)*. So we have proved that 7 is a *-homomorphism.

Let f € L'(G) and z € G. Then, forevery v € V,

and

Finally, we show that the representation 7 : L'(G) — End(V) is nondegenerate.
Let v € V — {0}, and choose a compact neighborhood K of 1 in G such that
| (x)(v) — v < $]|v]| forevery z € K. Let f = vol(K) ‘1. Then

I (f)(v) =

and in particular 7(f)(v) # 0.

—v)dz| < —||v||

Let 7 be a nondegenerate representation of the Banach *-algebra L'(G) on a Hilbert space
V. Choose an approximate identity (1)y)yes of G. The idea of the proof is that 7(z)
should be the limit of the (L, ) as U tends to {1}.

We now make the idea of proof above more rigorous. Note that, by corollary we
have |7, < 1. Let W be the span of the 7(f)(v), for f € L'(G) and v. I claim
thet W is dense in V. Indeed, let v € W+. Then, for every f € L' (@), we have
(r(f)(v),v) = (v,n(f*)(v")) = 0 for all v’ € V, hence 7(f)(v) = 0. As 7 is non-
degenerate, this is only possible if v = 0. Hence W+ = 0, which means that 1V is dense
inV.

Let x € G. We want to define an element 7(z) € End(V) such that, for every
f € LY(G), we have 7(x)m(f) = w(L,f). This forces us to define 7(z) on an element
w= Z?’:l 7(fj)(v;) of W (f; € LY(G),v; € V) as

n

A(a)(w) = w(Laf)(v)).

j=1
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This is well-defined because, for every > 1, and for all fi,...,f, € L'(G) and

v1,...,U, €V, we have
> w(Lofi)(v;) = g > w(La (Y * £5))(v;)
j=1 e e

n

= lim T((Letou) * f7))(vs)

U—{1} et
- Uligll}?T(Lx@DU) (; W(fjﬂ”ﬂ)

50 325y m(Laf)(v) = 0if 320y w(f3)(v;) = 0.

Moreover, as ||[T(L.Yu)|lop < |7lloplltu]s < 1 for every U € %, we have
|7 (z)(w)]| < ||w] for every w € W, so 7(z) is a bounded linear operator of norm < 1
on W, hence extends by continuity to a bounded linear operator 7(z) € End(V') of norm
<1

Next, using the fact that L,, = L, o L,, we see that, for all z,y € G, 7(xy) = 7(2)7(y)
on IV, hence on all of V. Similarly, the fact that L; = id1(¢) implies that 77(1) = idy.
Also, for every x € GG, we have, if v € V,

Il = 7@ F@) @) < 17 @) opllF @) ()] < 7 @) @) < Jlvll,

so ||7(z)(v)|| = ||v]|, i.e., T(z) is a unitary operator.

Let v € V. We want to show that the map G — V, x —— 7(x)(v) is continuous. By
proposition this will imply that 7 : G — End(V) is a unitary representation
of G on V. We first suppose that v = 7(f)(v'), with f € L'(G) and v € V. Then
7(z)(v) = 7(Lyf)(v'), so the result follows from the continuity of the map G — L'(G),
x — L, f (see proposition [[.3.1.13), of 7 and of the evaluation map End(V) — V,
T —— T(v'). As finite sums of continuous functions G — V' are continuous, we get the
result for every v € W. Now we treat the general case. Let x € G and € > 0. We must find
aneighborhood U of z in G such that, for every y € U, we have ||7(y)(v) —7(z)(v)]| < e.
Choose w € W such that ||v — w|| < €/3, and a neighborhood U of x in G such that, for
every y € U, we have ||7(y)(w) — 7(z)(w)|| < €/3 (this is possible by the first part of this
paragraph). Then, for every y € U, we have

17 () (v) = () ()| < [|7(y)(v) = 7 (y) ()] + [|7(y) (w) = 7(z)(w)]| + [7(z)(w) — 7(z)(v)]
< |lv—wl|| +¢/3 4+ |[v — w|| (because 7(x) and 7(y) are unitary)
<e,

as desired.
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We show that the representation 7 of L'(G) induced by 7 is the representation 7 that we
started from. Let f, g € L'(G). Then, for every v € V,

_ /G (@) (2)m(g) (v)da
:/Gf(x)W(ng)(U)dx

So, if f € L'(G), then 7(f) and 7(f) are equal on W. As TV is dense in V/, this implies
that 7(f) = 7(f).

Finally, we show the last statement. Let (¢)y)yecs be an approximate identity as above.
Let z € G. We have already seen that, for every v € I, we have

7(x)(v) = lim 7r( V) (V).

U—{1}

As both sides are continuous functions of v € V' (for the right hand side, we use the fact
that || 7(L,Yv)|lop = 1, this identity extends to all v € V.

3). Suppose that W is G invariant. ~ Let f € LY(G) and w € W. As
= [ f (w)dx is a limit of linear combinations of elements of the form
’/T(l’)( ) z €@, 1t is stlll in W.

Conversely, suppose that w(f)(1W) C W for every f € L'(G). Let x € G, and let
(¥v)vea be an approximate identity. Then, by the last statement of (2), for every w € W,
we have

m(x)(w) = lim w(L.vy)(w) € W.

U—{1}
So W is G-invariant.
(4). LetT : Vi, — V5 be a bounded linear map, and let W C V; x V5 be the graph of T; this is
a closed linear subspace of V; x V5. Then T is GG-equivariant if and only W is G-invariant,

and T is L'(G)-equivariant if and only W is stable by all the 7 (f) x ma(f), f € LY (G).
So the conclusion follows from point (3).

[]

Example I.4.2.7. Let 7 be the representation of G given by 7w(z)(f) = L.f (see exam-
ple I3 1 11 Then for every f,g € L'Y(G), we have 7(f)(g) = f * g. Indeed, we have
f o L, gdz by definition of 7( f), so the statement follows from exercise [[.5.6.4
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1.4.3 Convolution on other L? spaces
We will only see a few results that we’ll need later to prove the Peter-Weyl theorem for compact
groups. The most important case is that of L?(G).

Most of the results are based on Minkowski’s inequality, which is proved in exercise [[.5.6.7
Here, we only state it for functions on G.

Proposition 1.4.3.1 (Minkowski’s inequality). Let p € [1,+00), and let ¢ be a function from

G x G toC. Then
pdu(:c))l/p < /G (/G |so(x,y)|pdu(x))1/p du(y),

(/

in the sense that if the right hand side is finite, then |, o(x,y)du(y) converges absolutely for
almost all x € G, the left hand side is finite and the inequality holds.

/G o(z, v)duly)

Corollary 1.4.3.2. Letp € [1,+00), and let f € L'(G) and g € LP(G).

(1). The integral defining f * g(x) converges absolutely for almost every x € G, and we have
fxgeLP(G)and||f *gll, < [[fll1llgllp-

(2). If G is unimodular, then the same conclusions hold with f x g replaced by g * f.

Proof. (1). we apply Minkowski’s inequality to the function ¢ (z,y) = f(y)g(y~'z). For every
y € G, we have

/ (. y) Pdu(z) = | F )P / 9()Pdua) = | ) Pllgll
G G

by left invariance of i, so

1/p
/ ( / Iw(%y)lpdu(fﬁ)) (o) = ol [ 17)Idn(s) = 1111l

Minkowski’s inequality first says that [, (z,y)du(y) = f * g(z) converges absolutely
for almost all z € G, which is the first statement. The rest of Minkowski’s inequality is
exactly the fact that || f * g, < || f]l1]|9]l,-

(2). Suppose that GG is unimodular. Then

g% f(z) = /G o) f(y™ " 2)dpu(z) = /G 9(ey ™) F)dp(y).

So the proof is the same as in (1), by applying Minkowski’s ineqality to the function
p(r,y) = glzy™) f(y)-
[]
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Now we generalize proposition to other LP spaces.

Corollary 1.4.3.3. Let % be a basis of neighborhoods of 1 in G, and let (Vy)ycay be an ap-
proximate identity with supports in % . Then, for every 1 < p < +oo, if f € LP(G), we have
Vv = f = fll, = Land || f =y = fll, = Las U — {1}.

Proof. LetU € % and f € L”(G). Then we have, for every x € G,

Y * f( / Yuly — F(@))dp(y)

(because fG Ypdp = 1). Applying Minkowski’s inequality to the function
p(2,y) = Yuy)(Lyf(z) = f(x)), we get

i+ £ =l < [ 1] = Dlo()dut) < sup |2, S = f1,

Similarly, we have
frdule /fxwa /wU Jdpu(y
_ / (Ryf(2) — () (1) du(y).

So applying Minkowski’s inequality to the function ¢(x,y) = (R, f(x) — f(z))Yu(y) gives

If*u — fll, < /G Ry — fllpvu(y)du(y) < SuIU) Ry f — fllp-
ye

Hence both statements follow from proposition
[

Finally, we prove that the convolution product makes functions more regular in some cases.
The most important case (for us) in the following proposition is when G is compact and

p=q=2.

Proposition 1.4.3.4. Suppose that G is unimodular. Let p, q € (1,+00) such thatp™' +q¢ ' =1
andlet f € LP(G), g € LY(G).

Then f x g exists, f * g € 6o(G) and || f * glloc < || fllpll9l4-

Proof. Let x € GG. We have

fxglx /f Rog(y™ )du(y).
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As G is unimodular, the function y —— R,g(y™') is still in L?(G) and has the same L9
norm as g. So, by Holder’s inequality the integral above converges absolutely and we have
|f = g(x)] < |fllyllgll,- This proves the existence of f * g and the result about its norm. It also
shows that the bilinear map L”(G) x LY(G) — L>®(G), (f,g) — [ * g is continuous. As
%o(G) is closed in L*(G) and 6.(G) is dense in both LP(G) and L?(G), it suffices to prove that
fxg€ G (Q)if f,g € C.(G).

Solet f,g € 6.(G). Let x € G, lete > 0, and choose a neighborhood U of z such that, for
every y € G and 2’ € U, we have |g(yz) — g(yz')| < e. Then, if 2’ € U,

1 x () — f ()] < /G Flgl ") — gl duly) < ¢ /G ) ldp(y).

This shows that f * g is continuous. Let K = (supp g)(supp f); this is a compact subset of G.
We want to show that supp( f * g) C K, which will finish the proof. Let z € G, and suppose that
f x g(x) # 0. Then there exists y € G such that f(y)g(y~'x) # 0. We must have y € supp f
and y~'z € supp g, soz € y(suppg) C K.

]

I.5 Exercises

1.5.1 Examples of topological groups

Exercise 1.5.1.1. Let VV be a Banach space over C. (That is, V' is a normed C-vector space which
is complete for the metric given by its norm.) We denote by End (V') the space of bounded linear
operators from V' to itself, equipped with the operator norm. Remember that, if |.|| is the norm
on V/, then the operator norm ||.|,, is defined by : for every f € End(V),

[fllop = nf{c € Rxo[Vo € V, [[f(0)] < clvll} = sup  [If(v)]]

veV, [lv]|=1

Let GL(V) be the group of invertible elements in End (1), with the topology induced by that
of End(V).

(a). Show that GL(V) is an open subset of End (V).
(b). Show that GL(V/) is a topological group.

(c). Show that GL(V) is locally compact if and only if V' is finite-dimensional.

Solution.

2Which reduces to the Cauchy-Schwarz inequality when p = ¢ = 2.
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(a).

(b).

(c).

L5 Exercises

Note that, by definition of the operator norm, we have |[zy|lo, < |[|z]lopl|Yyllop for all
x,y € End(V). (This property is called “submultiplicativity”.) So, if x € End(V') is such
that |||, < 1, then the series ) ., 2" converges (we take 2° = idy by convention), and
we have (idy — 2)(3, 50 2") = (52,50 7")(idy — x) = idy. Hence, if ||z||,, < 1, then
idy —z € GL(V). -

Now let z € GL(V). We want to show that GL(V') contains a neighborhood of x in
End(V). Lety € End(V) be such that [|y|l,, < |7 |op- Then |lz7'y|l,, < 1, so
idy — z~ 'y is invertible, hence so is * — y = wx(idy — 2 'y). So every element x’ of
End (V) such that ||z — 2’|, < ||z is in GL(V'), which proves the result.

If V is finite-dimensional, we can also use tha fact that the determinant is a continuous
map det : End(V') — C, and that GL(V/) is the inverse image of the open subset C* of C.

Let’s show that multiplication is a continuous map from End(V') x End(V) to End(V).
(This implies immediately that multiplication is continuous on GL(V').) This fol-
lows immediately from the submultiplicativity of the operator norm. Indeed, if
z,2',y,y" € End(V), then we have

lzy — &'y llop = lz(y — ¢) + (2 = 2V llop < llloplly = ¥'llop + 12 = 2 llop 13/ l|op-
Using the fact that

19 lop = 1y + (&' = Y)llop < 1Yllop + 1y = ¥/'llop:

we see that, if we fix x and y, then ||zy — 2'y/||op tends to 0 as (|2 — 2'||op; [l — ¥']lop)
tends to (0, 0).

Let’s show that inversion is continuous on GL(V). Let z € GL(V). Lety € End(V),
and write h = = —y and ¢ = ||A|lgpllz 7 |opr Then y = & — h = z(idy — x~'h).
We have seen in the answer of (a) that, if ¢ < 1, then y is invertible and
yt= 0 o )Mzt =27+ 37 o (@7 th) 2! in particular, we also have

ly™ =2 M lop < D@ B e o = e lop Y " = 752l lop:

n>1 n>1

This shows that, if z is fixed, then ||z~! — y~!||,, tends to 0 as ||z — y||,, tends to 0, which
implies the result.

There is another way to prove the second point if V' is finite-dimensional. Indeed, in that
case, we may assume that V' = C" for some n € N, so GL(V') = GL,(C). Then we
use the fact that, if x € GL,(C), the inverse of z is equal to (det ) ~'y”, where y is the
matrix of cofactors of z. As the coefficients of y are continuous functions of = (because
they are &1 times determinants of submatrices of x), this shows that the coefficients of z~*
are continuous functions of x.

By (1)(a), a topological group is locally compact if and only its unit has a compact neigh-
borhood. As GL(V') is open in End(V') by question (a), this implies that GL(V') is locally
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compact if and only if e has an open neighborhood in End (V). As the topology of End (V')
is defined by a norm, this is equivalent to the fact that closed balls in End (V") are compact.
By Riesz’s lemma, this is equivalent to the fact that End (V') is finite-dimensional. If V'
is finite-dimensional, then End (V') is also finite-dimensional. If V' is infinite-dimensional,
then it follows from the Hahn-Banach theorem that End(V") is also infinite-dimensional.

O

Exercise 1.5.1.2. Let (G;);c; be a family of topological groups.

(a).
(b).

Show that ], _; G is a topological group (for the product topology).

If all the (; are locally compact, is [[,.; G; always locally compact ? (Give a proof or a
counterexample.)

Solution.

(a).

(b).
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Let’s show that multiplication is continuous. Let (z;),(y;) € [[;c;Gi. Let U be a
neighborhood of (z;;) in [[,.; Gi. By the definition of the product topology, there ex-
ists a finite subset J of I and open neighborhoods U; of z;y; in G, for ¢ € J, such that
U D (Il;e;Ui) x (ILic;—; Gi)- By continuity of multiplication on the G; for i € J, we
can find, for every i € J, open neighborhoods V; and W; of x; and y; such that V;WW, C U,.
Let V = (I[;c, Vi) x (ILic;—y Gi) and W = (J[;,c;, Wi) x (ILic;—, Gi)- Then V and W
are open neighborhoods of (z;) and (y;) in [ [,., G;, and we have VIV C U.

Let’s show that inversion is continuous. (The proof is similar.) Let (2;) € [[,.; G;. Let
U be a neighborhood of (z; ') in [],.; G;. By the definition of the product topology, there
exists a finite subset J of I and open neighborhoods U; of z;y; in G, for i € J, such
that U O ([L;c; Us) x (Il;e;_, Gi). By continuity of inversion on the G; for i € J,
we can find, for every i € .J, an open neighborhood V; of w; such that V;™! C Uj. Let
V = (ILic; Vi) x (I;c;—; Gi)- Then V is an open neighborhood of (z;) in [[,.; Gs, and
we have V! C U.

The answer is “no”, as soon as infinitely many of G; are not compact. Indeed, let us de-
note by p; : [[,c; Gi — G; the projection maps. These are continuous maps, so they
send compact sets to compact sets. Now suppose that the set of ¢ € [ such that GG; is not
compact is infinite. If [, ; G is locally compact, then its unit has a a compact neighbor-
hood K. By the definition of the product topology, A must contain a set U of the form
(ILics Ui) x (Ilie;—, Gi), where J is a finite subset of I and, for every i € J, U; is a
neighborhood of e in GG;. By hypothesis, there exists ¢ € I —.J such that GG; is not compact.
But we have G; D p;(K) D p;(U) = G;, so G; = p;(J) is compact, which is absurd.

Conversely, suppose that there exists a finite subset J of I such that G; is com-
pact for every i« € I — J. Then [[,.;G; is locally compact. Indeed, we have
[Lic; Gi = (ILic; Gi) x (I1;e;—y Gi) and [],.,_; G is compact by Tychonoff’s theorem,
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so it suffices to prove that [ [, ; G; is locally compact. In other words, we may assume that
I is finite. But then, if (z;) € HiE ; Gi and K is a compact neighborhood of z; for every
i € I, the product [ [, [; is a compact neighborhood of (x;).

0

Exercise 1.5.1.3. Let (7, <) be an ordered set. Consider a family (X;);c; of sets and a family
(uwij + Xi = X,);>; of maps such that :

- Forevery i € I, we have u;; = idx;;

- Foralli > j > k, we have w;;, = u;; 0 ujy.

This is called a projective system of sets indexed by the ordered set I. The projective limit of this

projective system is the subset 1'£1ie ; X;of []

(a).

(b).
(c).
(d).

(e).

ser Xi defined by :

I&H_XVz = {(xi)iel € HXAVZ,] € I such that ¢ Z j, U,W(IL‘Z) = Ij}.

el iel
If all the X; are Hausdorff topological spaces and all the u;; are continuous maps, show
that @ie ; Xi1s a closed subset of [L;c; Xi. From now on, we will always put the induced
topology on @ie .
If all the X; are compact Hausdorff topological spaces and all the u;; are continuous maps,
show that I'Lnie s X is also compact Hausdorff. (Hint : Tychonoff’s theorem.)

If all the X; are groups (resp. rings) and all the u;; are morphisms of groups (resp. of
rings), show that 1&12,e ; Xi 1s a subgroup (resp. a subgroup) of [Lc, X

If all the X; are topological groups and all the u;; are continuous group morphisms, show
that @ie ; X is a topological group.

Let p be a prime number. Take I = N, with the usual order, X,, = Z/p"Z and
Upm, © L/p"Z — Z/p™Z be the reduction modulo p” map. Show that Z, := l'mie ; X;isa
ring, and a compact topological group for the addition.

Solution.

(a).

We write X = [],.; X; and X' = Y&niein' For every i € I, letp; : X — X, be the
projection; this is a continuous map. Hence, if 7,7 € [ are such that ¢ > 7, the subset
{z € X|u;jopi(x) = p;(x)} of X is closed (because it is the inverse image of the diagonal
by the continuous map (u;; op;, pj) : X — X; x Xj, and the diagonal of X; x X is closed
as X is Hausdorff). But, by definition of the projective limit, we have

X' = ﬂ {7 € Xlug; opi(w) = p;(x)}.

h,JjEel, i2]

So X" is also closed.
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(b). If all the X; are compact Hausdorff topological spaces, then X is compact Hausdorff by
Tychonoff’s theorem. By (a), the projective limit is a closed subspace of X, so it is also
compact Hausdorff.

(c). We keep the notation of (a). Then all the projections p; are morphisms of groups (resp.
rings), so, for all 4, j € I such thati > j, the subset {x € X|u;; o p;(z) = p;(z)} of X is
a subgroup (resp. subring). By definition of the projective limit, we have

X' = ﬂ {z € X|uij opi(x) = p;(2)}.

ijel, i>j
So X' is also a subgroup (resp. subring).

(d). By[[.5.1.2(a), the direct product is a topological group. By question (c), the projective limit
X’ is a subgroup of X. Hence X" is a topological group.

(e). The set Z,, is a ring by question (c¢) and a topological group by question (d). It is compact
by question (b) (note that finite sets with the discrete topology are compact Hausdorff).

O
Exercise 1.5.1.4. Let p be a prime number. We define the p-adic norm |.|, on Q in the following
way :
- [0, = 05

- if x is a nonzero rational number, we write x = p"y with y a rational number whose
numerator and denominator are prime to p, and we set |z|, = p~".

(a). Show that we have, for every z,y € Q :
- |z + y|, < max(|x|p, |ylp), with equality if |z|, # |y|,;
- lzyly = |lplylp-

In particular, the p-adic distance function d(x,y) = |z — y|, is a metric on Q. We denote by
Q, the completion of Q for this metric.

(a). Show that the p-adic norm |.|,, the addition and the multiplication of Q extend to Q, by
continuity, that Q,, is a field (called the field of p-adic numbers), and that the statements of
(a) extend to Q,,.

(b). Show that the additive group of Q, is a topological group.
(c). Calculate the subset |Q,], of R.

(d). Show that every open ball in Q, is also a closed ball, and that every closed ball of positive
radius in Q,, is also an open ball.

(e). Show that Q, is totally disconnected (i.e. its only nonempty connected subsets are the
singletons) but not discrete.
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(f). Show that a series ) ., %, is convergent if and only if lim,,_, o |2, |, = 0.

(2). If m € Z and (¢;,)n>m is a family of integers, show that the series Z@m c,p" converges
in Q,, and that its p-adic absolute value is < p~™, with equality if c,, is prime to p.

(h). Let x € Q, — {0}. Show that there exists a unique m € Z and a unique family (¢, ),,>, of
elements of {0,1,...,p— 1} such thatz,, # Oandx = > . ¢,p", and that |z|, = p~™.

n>m
(). Let B = {x € Qpl||z|l, < 1}. Show that this is a subring of Q,, and the closure of Z in
Qp.

(j)- We define a map u from B to [[,.,Z/p"Z in the following way : If € B, then, by
question (e), we can find a Cauchy sequence (,),>o of elements of Z converging to z.
After replacing it by a subsequence, we may assume that |z — x,,|, < p~" for every n. We
setu(x) = (z, mod p"Z),>o.

Show that u is well-defined, a homeomorphism from B to Z,, and that it is also a morphism
of rings. We will use this to identify B and Z,,.

(k). We identify M,,(Q,) with Qf, we put the product topology on it, and we use the induced
topology on GL,,(Q,). Show that GL,,(Q,) is a locally compact topological group.

(1). Show that GL,(Z,) is an open compact subgroup of GL,(Q,). (Hint : Show that Z is
closed in Z,.)

Solution.

(a). We first note that, if z € Z — {0}, then we can write x = p”2’ withm > 0 and 2’ € Z
prime to p, so |z|, = p” < 1. Of course, if x = 0, we also have |z|, < 1.

We also note that it follows immediately from the definition of |.|, that, if + € Q*, we
have [z7'], = ||,

Letz,y € Q,. If z =0, then x + y = y and xy = 0, so both points are obvious; the case
y = 0 is similar. So we assume that both = and y are nonzero, and we write © = p"x’ and
y = p™y/, with 2’ and ¢’ rational numbers whose numerator and denominator are prime to

p. Then the numerator and denominator of z'y’ are also prime to p, and zy = p" ™'y, so

—n

lzyl, =p " " =p " = 2lplYlp

To prove the first identity, note that, as the identity is symmetric in « and y, we may assume
that n < m. (Note that then we have p™" = |z, = max(|z|p, |y|,).) We write 2’ = ¢ and
y' = 5, witha,b,c,d € Z prime to p. Then

vty =p(a +pT"y) = p BB,
hence, by what we already proved,

|z +ylp = [p"[plad + p™ "bel,[bd], .
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(b).
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As bd is prime to p, we have |bd|, = 1 (by definition of |.|,). As ad + p™ "bc € Z, we
have |ad + p™~"cb|, < 1 by the remark at the beginning. Finally, we get

|z + y|p < |pn|p =p "= max(|a?|p, |y|p)'

Finally, if |z|, # |y|,, we have n < m, hence ad + p™ " cb is prime to p, and the definition

n

of |.|, gives |z + y[, = p™".

By definition, Q, is the set of Cauchy sequences (x,),>o of elements of Q (for the
metric given by the p-adic distance), modulo the equivalence relation ~ defined by :
(Zn)n>0 ~ (Yn)n>o if and only if |z,, — y,|, — 0 as n — +o0.

Note that the second identity of (a) imply the triangle inequality : for all x,y € Q, we have
[z +ylp < |zlp + [ylp

Let z € Q,, and let (z,,),>0 be a Cauchy sequence representing . By the triangle inequal-
ity, we have, for all n,m € N, ||z,|, — |Zmlp| < |20 — Timlp- SO (|2n]p)n>0 is @ Cauchy
sequence in R, and, as R is complete, it has a limit. Let (y,),>0 be another Cauchy se-
quence representing . By the triangle inequality, we have ||z, — |Ynlp| < |20 — Y|, for
every n > 0, so the limits of (|z,,|,)n>0 and (|y,|,)n>0 are equal. Hence we can define |z|,

by |z], = im0 [0

Now let z,y € Q,, and choose Cauchy sequences (z,),>0 and (y,),>0 representing x
and y. First note that the sequences (|, |,)n>0 and (|y,|,)n>0 are bounded (for example
because they converge, as we have seen above). Now, using (a), we get for all n,m € N :

|(xn + yn) - (mm + ym)|p < maX(|xn - xm|p’ |yn + ym|p)

and

|20 = EmYmlp = [0 (Yo =Ym) + (@0 = 2m)Ym|p < maX([Z0|p[Yn=Ymlps [Ym ol 20 —Lmlp)-

Hence the sequences (x,, + Y )n>0 and (z,y,)n>0 are Cauchy sequences (for the second
one, we use the fact that (|x,|,),>0 and (|y,|,)n>0 are bounded), so they represent elements
of Q,. We want to call these elements = + y and zy, but first we have to check that they are
independent of the choice of the Cauchy sequences representing = and y. So let (z/,),>0
and (y/,)n>0 be two other Cauchy sequences representing x and y respectively. Then we
have, for every n > 0,

[(Zn 4 yn) — (23, + 4)|p < max(|zn, — 27, [p, [Yn, Y1)
and
|xnyn - x%y;‘p = |xn(yn - yqla) + (xn - x%)yﬂp < max<|xn|p|yn - yq/1|pa |y;’p|xn - x,n|]7)‘

So both sequences ((z,, + y,) — (2], + ¥},) )n>0 and (x,yn — ), y!, ) n>0 converge to 0, which
means that the sequences (z,, + ¥ )n>0 and (2!, + y}, )n>o (tesp. (T, Yn)n>0 and (z,y!)n>0)
have the same limit, and so the definition of = + y and xy makes sense.
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The ring axioms for QQ, follow immediately from the definition of the operations. Let’s
check that Q, is a field. Let x € Q, — {0}, and choose a Cauchy sequence (x,),>0
representing z. As x # 0, the sequence (|z,|,),>0 cannot converge to 0, so its limit (which
is |z|,) is nonzero. So we have |z, — z,,|, < |z|,/2 for n,m big enough, and, up to
replacing (x,,),>0 by an equivalent Cauchy sequence, we can assume that it is true for all
n,m > 0. Let n,m > 0. By (a), we have |z,,|, < max(|z,|p, |Tn — Tm|p). Going to the
limit as m — +oo, we get |x,|, < |z|,. Similarly, going to the limit as n — oo and
using the fact that |x|, > |z],/2 > lim, oo [Ty, — |, gives |z|, < |Ty|p- This implies
that |z|, = |x,|, for every n > 0. Now, if we can show that the sequence (z,,'),>0 is a
Cauchy sequence, then the element of Q, that it represents will clearly be an inverse of .
But we have, for all n,m > 0,

-1

|z, — x;f’p = |x;1x;11|p|xm — Tylp = ‘x|;2|xm — Tnlp,

so |zt — x|, does converge to 0 as n, m — +o0.

We finally prove that the identities of (a) stay true in Q,. If z,y € Q, — {0}, then we just
saw that we can find Cauchy sequences (x,,),>0 and (y,)n>o0 converging to = and y such
that, for every n > 0, |z|, = |z,|, and |y| = |yn|,. Of course, this is also true if x or y is 0.
Then the identities follow immediately from (a) and from the definition of the operations

on Q,.

The addition on Q, is continuous by definition (it is defined as the extension by continuity
of a map). The inversion map x — —x is continuous because |z|, = | — z|,.

We have seen that, if x € Q,, then there is a Cauchy sequence of QQ converging to = and
such that |z|, = |z,|, for every n > 0. So |Q,|, = |Q|, = {0} U p~.

If 2 € Q, and r € R, we write B(x,r) and B(z,r) for the open and closed balls of center
x and radius r.

Letz € Q,. Letr € R. If r < 0, then B(x,r) = @ = B(x,—1). Suppose that r > 0,
and let n be the unique integer such that p* < r < p"™!. By the previous question, if
a € Q, is such that |a|, < r, then |a|, < p", and obviously the converse is true. So
B(x,r) = B(x,p"). Now let m be the unique integer such that p™ < r < p™*!. Then we
see similarly that B(x,r) = B(x, p™*!).

Let z,y € Q, such that z # y. Then |z — y|, > 0, so we can choose r > 0 such that
r < |z — yl|,. Then B(x,r) is an open and closed subset of QQ, containing = and not y,
so z and y cannot be in the same connected subset of (Q,. This shows that Q, is totally
disconnected.

To show that @, is not discrete, it suffices to show that its subset {0} is not open. This
follows from the fact that the sequence (p"),>o converges to 0 in Q,, and that p" # 0 for
every n € Z.

Define a sequence (.5,,),,>o of rational numbers by S,, = > """  x,,. Then the series Y -,
converges if and only if the sequence (S,,),>0. In particular, if the series converges, then
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|Znlp = |Sn+1 — Snlp tends to 0 as n — +o0.

Conversely, suppose that lim,,_, o |z,|, = 0. Forall n,n’ € N, if n < 7/, then (using (b))

n
(S = Suly = | Zr < max foly < sup foil.
=n

This tends to 0 as n — 400, so (5, ),>0 is a Cauchy sequence, hence it converges in Q,),
and so does the series ) ., Z,.

The convergence follows from the previous question and from the fact, noted in the proof
of (b), that |c|, < 1 forevery c € Z. Let x = Zan cmp™. By definition, we have

n

r= lim E Gp'.
n—+00 4

=m

For every n > m, we have

n
2 el < max feilylp'l, = p7",
=m
so |z[, < p~™. Suppose that ¢, is prime to p; then |c¢,|, = 1. Hence
lcmp™|, = p™™ > |cip'|, for every i > m, so, using (b) again, for every n > m,

n
| Z cip'ly =
i=m

This gives |z|, = p~ ™.

Let’s show existence. We may assume = # 0 (otherwise the result is trivial). We know
that |z|, = p~™ for some m € Z. Choose a Cauchy sequence (x,),>o converging to z.
After replacing (z,),>0 by a subsequence, we may assume that |z — x|, < p~" for every
n > 0.

Let n > 0. We write x,, in base p as x, = Zf;an cinp', with a,,b, € 7Z and

¢in € {0,1,...,p — 1}. We may assume that ¢,, , # 0. Then ¢,, , is prime to p, so
|Cap D™ |p = ™ > |cinp'| for every i > a,, and so (b) gives

Qn

p" = T, =p",
hence finally m = a,,.
Also, we can replace b,, by 400 in the expression for z,,, by setting ¢; , = 0 for i > b,,.

Let n,n € N, and suppose that n > n'. Then
]mn - xn ]p < max(|z, — 2|, |z — zw|,) < p~™. On the other hand, we have
Tn, = > ism(Cin — i )p'. Note that the ¢;,, — ¢; v are in {1 —p,...,p — 1}, so
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they are either O or prime to p. By (h), this implies that |z,, — z,/|, = p~", where 7 is the
smallest integer such that ¢,,, — ¢,,,» # 0. This implies in turn that n’ < r, that is, that
Cim = Cim form <i <n'.

We now define integers ¢;, © > m, by ¢; = ¢p; if ¢« < 0 and ¢; = ¢;; if i > 0. By the
previous paragraph, ¢; = ¢; ,, if 0 <7 < n. For every n > 0, let y,, = Z" c;p'. Then

Tpn — Yn = Z(Ci,n - CZ)pZ = Z (Ci,n - Ci)pia

>m i>n+1

80 |2, — ynlp < p7"! by (h). Hence the sequence (y,,),>0 also converges to x, and this
shows that z = 3. cip’.

Let’s show uniqueness. Suppose that we have two sequences of integers (¢, )n>m» (dn)n>m
suchthatz = ) _ c,p" = > -, d,p"and c,,d, € {0,...,p — 1} for every n. Then
0=>" -, (co —d,)p". Also, for every n, ¢, —d, isin {1 —p,...,p — 1}, soitis 0 or
prime to p. If we had a n such that ¢,, — d,, # 0, then this would imply |0|, # 0 by (h), and
this is impossible. So ¢,, = d,, for every n.

The fact that B is a subring follows from (b) (and the fact that | — x|, = |z|,, which is
obvious on the definition), and we have seen in the proof of (b) that Z C B. Also, B is a
closed ball, so it is closed in @QQ,,, and so it contains the closure of Z.

Let z € B. By (i), we can write x = ) ., c,p", with ¢;, € {0,...,p — 1}. This means
that « is the limit of the sequence of integers (D, ¢;p’)n>0, hence that z is in the closure
of Zin Q,,.

We show that u is well-defined. Let x € B, and let (z,,),>0, (2),)n>0 be two sequences as
in the statement. Let n > 0. Then |z,, — 2} |, < max(|z, — z|,, |z — 2/,|,) < p~", which
means that p™ divides z,, — «/,, and so z,, and z/, have the same image in Z/p"Z. This
proves that u(z) is well-defined.

The fact that u is a morphism of rings follows immediately from the definition of the ring
operations on (Q, and the fact that reduction modulo p" is a morphism of rings from Z to
Z./p"Z for every n.

We show that v is injective. Let z,y € B such that u(z) = u(y), and choose sequences
(n)n>0, (Yn)n>0 converging to z, y and satisfying the conditions of the statement. Then,
for every n > 0, we have z,, = y,, mod p”, so p™ divides z,, — yn, .., |2y — Ynl|p < p~".
Going to the limit as n — 400, we get |« — y|, = 0. But we have seen in (b) that the only
element of @, with p-adic norm 0 is 0, so z = .

We show that u is surjective. Let (x,, + an)nZO be an element of Z,. For every n > 0,
we choose a representative in {0, ...,p" — 1} for z,, + p"Z, and we denote it by x,,. We
also write x,, in base p as x,, = Z;:Ol ci,npi, with 0 < ¢; ,, <p — 1. Let m > n. We know
that z,,, = z,, mod p", S0 ¢;,m = ¢, for 0 < ¢ < n. We define a sequence (c¢;);>o by
Ci=Cio=Cp=...=c¢yandwesetz =Y . ¢;p' € Q, Thenz € B by (c), and it is
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easy to check that (x,),>0 is a Cauchy sequence of integers converging to = and satisfying
the conditions of the statement. Hence u(x) = (z,, + p"Z)n>0-

We show that u is continuous. Every open set in Z,, is a union of open sets of the form
Zp O ((Isms1 Z/P"Z) X {(Zm, - .., 20)}), withm > 0 and z; € Z/p'Z for 0 < i < m.
So it suffices to show that the inverse image of a set of that form is open in B. Write
A = ([Lisms1 Z/p"Z) x {(Tm,...,70)}. Choose v € Z such that = z,, mod p™.
Then we have z = x,, mod p" for 0 < n < m (because x,, = x,, mod p"). We will
show that y € Bisin u'(A) if and only if |z — y|, < p~™"', which shows that u ' (A) is
open. First note that, as the values of |.|, are always 0 or integer powers of p, the condition
that [z — y|, < p~™+! is equivalent to [z — y[, < p~™. [F| Let y € B, and let (y,),>0 a
Cauchy sequence converging to y as in the definition of u. Suppose that |z — y|, < p~™.
Then, for n € {0,...,m}, we have |y, — x|, < max(|y, — ylp, [y — x|,) < p~", hence
Yo = ¢ = x, mod p". So u(y) € A. Conversely, suppose that u(y) € A. Then
Ym = Ty = = mod p", SO |ym — x|, < ™. AS |y — Yml|p < p~™, this implies that
lz —yl, <p™™.

Finally, we show that u is open. As wu is bijctive, it suffices to show that the image of
an open ball is open. We have more or less already done this : let x € B, let r € R,
and let A’ be the open ball of center x and radius r. If m is the smallest integer such that
p~™ < r, then A’ is also the closed ball of center = and radius p~™ (because |.|,, has values
in {0} Up%). Let y be an integer such that |x — y|, < p~™. Then the second identity of (a)
implies that, for z € Q,, we have |z — z|, < p~™ if and only if |y — 2|, < p~™, which
means that we can replace x by y in the definition of A’. Then we have already seen above
that u(A’) = ([,5i1 Z/P"Z) X {(%m, ..., 7o)}, where z,, = y + p"Z for 0 < n < m.

The proof that GL,(Q,) is a topological group is the same as in [[.5.1.2b) (the finite-
dimensional case). It is also open in M, (Q,), because it is the inverse image by the con-
tinuous function det of the open subset Q) of @Q,. So to show that GL,(Q,) is locally
compact, it suffices to show that M,,(Q,) is locally compact, which will follow if we know
that Q, is locally compact. But for every z € Q,, the closed ball of radius 1 centered at
x, which is x + Z,, is a compact neighborhood of x : it is compact because Z,, is compact
and translation by x is continuous (by definition of the metric), and it is open because it is
equal to the open ball of center = and radius p.

Remember that GL,,(Z,) is the group of invertible elements of M, (Z,), so we have
GL,(Z,) = {A € GL,(Q,) | Aand A~ € M,(Z,)}.

In other words, GL,(Z,) is the inverse image by the continuous map
GL,(Q,) — M,(Q,) x M,(Q,), A — (A, A~') of the open subset M, (Z,) x M,(Z,)
of M,,(Q,) x M,(Q,), soitis open in GL,,(Q,). As M,(Z,) is compact (because Z, is),
to show that GL,,(Z,) is compact, it suffices to show that it is closed in M,,(Z,). As itis
the inverse image of Z by the continuous map det : M, (Z,) — Zj, it suffices to show

13S0, in Q,, every open ball is a closed ball and vice versa.
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that Z is closed in Z,. But Z) = {x € Z,||x|, = 1} (which implies that it is closed).
Indeed, let z € Z,. If x has an inverse in Z,, then |z7!|, = \x|;1 < 1,s0 |z|, > 1, hence
|z|, = 1. Conversely, if |z|, = 1, then [z 7|, = 1,s0 2~ € Z,,.

O

1.5.2 Van Dantzig’s theorem

[

Exercise 1.5.2.1. In this problem, X is a compact Hausdorff totally disconnected topological
space. (Remember that “totally disconnected” means that the only nonempty connected subsets
of X are the singletons.)

Let x € X, and let A be the intersection of all the open and closed subsets of X containing z.
Show that A = {z}. (Hint : This is equivalent to showing that A is connected. And remember
also that disjoint closed sets can be separated by open sets in any compact Hausdorff space.)

Solution. Note that A is closed in X. Suppose that we have A = A; U A,, with A; and A,
closed in X and disjoint and z € A;. As any compact Hausdorff space is normal, we can find
open subsets U; D A; and U D Ay of X such that U; N Us = @. Let’s find a closed and open
neighborhood V' of = such that V NoU,; = @. Forevery y € 0U,, asy ¢ A, we can find a closed
and open neighborhood V), of = such that y ¢ V,,. Note that the X — V,,, y € 9U,, form a family
of open subsets of X covering 0U,; as OU, is compact, this family has a finite subfamily that
still covers OUs, say (X — V,,,..., X =V, ). Let V. =V, Nn...NV,, ; then V is still open and
closed, x € V and V N 90U, = &. The last property implies that B := V' — U, is also equal to
V — U,, so it still open and closed. Also, we have = € B (because x ¢ U,), and A, N B = &.
But A must be contained in B by definition, so A, = &. This proves that A is connected, hence
a singleton, hence equal to {x}.

O

Exercise 1.5.2.2. In this problem, G is a locally compact totally disconnected topological group.

(a). Show that the unit of GG has a compact open neighborhood K.

(b). Show that there exists an open subgroup G’ of G contained in K. (Hint : Any open subset
of G will generate an open subgroup. Choose your open subset wisely.)

(c). Show that the compact open subgroups of GG form a basis of neighborhoods of 1 in G.

(d). Let G be the group GL,(Q,) of exercise|.5.1.4, Find a basis of neighborhoods of 1 in G
that is composed of compact open subgroups.

“From Terry Tao’s blog.
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Solution.

(a).

(b).

(c).

(d).
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Let V' be a compact neighborhood of 1. Then 9V is also compact and doesn’t contain 1.
By problem for every y € OV, there exists an open and closed neighborhood B,
of 1 such that B, N9V = @. As OV C U, oy (X — B,) and the X — B, are open, there
exist y1,...,y, € OV such that 9V N B = @, with B = (\;_, B,,. Note that B is still
open and closed, and that 1 € B. Also,as 0V N B = @, wehave BNV = BN f/, and so
K := BNV is open and compact (because it is closed in V') and contains 1.

Let U be an open symmetric neighborhood of 1 such that UK C K, and let G’ be the
subgroup of GG generated by U. Let’s show that G’ is an open compact subgroup of G
and that G’ C K. First we show that G’ is open. Let g € G’; then gU C G’ and gU is
open in GG, so GG’ contains a neighborhood of GG. As every open subgroup of a topological
group is also closed, we also get that G’ is closed. So, to show that is compact, it suffices
to show that it is contained in K. Note that, as U is symmetric and contains 1, we have
G'=U,>, U". AsU C K (because 1 € K)and UK C K, an easy induction shows that
U C K foreveryn >1.So G’ C K.

The argument in the solution of question (a) actually shows that every compact neighbor-
hood of 1 contains an open compact neighborhood of 1, and then question (b) implies that
it also contains a compact open subgroup of GG. Hence, as G is locally compact, every
neighborhood of 1 in GG contains a compact open subgroup of G.

Let’s choose a norm on M, (Q,) that induces the product topology. For example, the norm
||.|| defined by
[(ais)1<ij<n — (bij)i<ij<all = sup |ai; — bylp
1<i,5<n

works. For every integer m > 1, let K,,, = I,, + p" M,,(Z,). With our choice of norm, this
is just the open ball of center I,, and radius p~™*! in M,,(Q,) (and also the closed ball of
center /,, and radius p~""). In particular, the sets /,,, for m > 1, form a family of open
neighborhoods of /,, in M,,(Q,), and hence the sets /{,,, for m >> 0 form a family of open
neighborhoods of /,, in GL,(Q,) (because GL,,(Q,) is open in M,,(Q,), as the preimage
by the continuous map det of the open subset Q; of Q).

Note also that K, is homeomorphic to M,,(Z,) ~ ZQQ (by the map [,, + p"' X —— X), so
it is also compact.

At this point, we have our basis of neighborhoods consisting of compact open subgroups.
We can actually be more precise and show that K,, C GL,(Q,) for every m > 1 (and
not just for m big enough), which just means that K; C GL,(Q,). In fact, we even have
K, C GL,(Z,). Indeed, it is clear that K1 C M, (Z,). Moreover, if X € K, then it is
easy to see that det(X) € 1+ pZ, C Q,, which implies that | det(X)|, = 1 (by question
a)), hence that det(X) " is also in Zy, i.e., that det(X) € Z.

0



L5 Exercises

1.5.3 Examples of Haar measures

Exercise 1.5.3.1. Let GG be a topological group. Suppose that we have a homeomorphism of G
with an open subset of some RV (not necessarily compatible with any groups structures), such
that left translations on G are given by affine maps. That is, if we identify G with its image in RY
(as a topological space only !), then, for every x € G, there is a N x N matrix A(z) € My(R)
and an element b(z) € RY such that, for every y € G, we have zy = A(z)y + b(z).

Show that | det A(x)| 'dx is a left Haar measure on G, where dx denotes the Lebesgue mea-
sure on RY. (Hint : The change-of-variable formula. Also, start by proving that = uniquely
determines A(x) and b(x), and that z — A(x) is a morphism of groups from G to GLy(R).)

Solution. Let x € G. Suppose that we have A, A’ € My(R) and b,b' € RY such that, for every
ye G ay=Ay+b= Ay+ V. Then (A — A" )y =V — b for every y € G. But the set of
solutions the equation (A — A’)y = V' — b s an affine subspace of RY (i.e. a translate of a linear
subspace), so it has empty interior unless it is equal to RY. As G is open in R”, this means
that we must have (A — A’)y = o/ — b for every y € RY™. The only way this is possible is if
Ker(A — A’) = RY, hence A = A/, and then we also have b = ¥'. So x determines A(x) and
b(x).

We prove that A(z) is invertible for every x € G. Indeed, if A(z) is not invertible, then the
image of the map G — G, y — zy is contained in b(z) + Im(A(z)), which is the translate
by b(z) of a proper linear subspace of R, and hence it has empty interior. But this image must
be equal to G, hence be an open subset of R, so we get a contradiction, and so A(z) must be
invertible.

We prove that z — A(x) is a morphism of groups. Let z1, 22 € G. For every y € G, we
have

A(z129)y + b(x129) = 120y = A(21)A(22)y + A(21)b(22) + (7).

By the first paragraph, this implies that A(xjxs) = A(z1)A(z2) and
b(x122) = A(x1)b(x2) + b(x1).

Now remember that the change of variable formula implies that, if U is a measurable subset of
RY,if A € GLy(R) and b € RY, and if V is the image of U by the transformation y — Ay -+,
then we have, for every f € L'(V),

/Vf(v)dv = |det A| /Uf(Ay + b)dy.

Applying thisto U =V = G, A = A(y) and b = b(y) for some y € G, we get, for every
fe LYG),

| 1@yte = jae Al [ pomya
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Let f € 4.(G). Then the function z — |det A(z)|~!f(x) is also in €.(G), so we can apply
the previous paragraph to it. We get, for every y € G,

/f(ya:)\detA(ya:)\_ld:c:|detA(y)\_1/f(x)|detA(:E)|_1dx.
G G

Using the fact that det(A(zy)) = det(A(z))det(A(y)), we can divide both sides by
| det(A(y))| ™", and we get

[ ldec Az = [ fla)] det A)|
G G

which is the desired result.

Exercise 1.5.3.2. In this problem, dx will always be the Lebesgue measure on R.

(a).
(b).

(c).

(d).

Show that % is a Haar measure on the multiplicative group R*.

||
Show that aféfng is a Haar measure on the multiplicative group C*, with coordinates
z=x+1y.

Let dT' be the Lebesgue measure on M, (R). Show that |det T'|~"dT is a left and right
Haar measure on GL,,(R).

z?|2|

LetG = {(SS Z) |z, z € R,y € R}. Show that 29 i 3 left Haar measure on G. Is it

a right Haar measure ?

Solution. Of course, we will use the previous exercise to solve every question.

(a).

(b).

(c).
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The obvious inclusion R* C R makes R* an open subset of R. Let z € Rx. Then, for
every y € R*, we have zy = A(x)y + b(x) with A(x) = z € GL{(R) and b(z) = 0. So
the result follows from the fact that det(A(x)) = x.

We embed C* into R? by the map z — (Re(z),Im(z)). This makes C* into an open
subset of R2. Let z = z + iy € C*, with 2,y € R. Then left translation by z on C* is

given by left multiplication by the 2 x 2 matrix A(z) = (g _33y> (this is just the formula

(x + iy)(a + ib) = (za — yb) + i(ya + xb)). So the result follows from the fact that
det(A(2)) = 22 + %

The group GL,(R) is an open subset of M, (R) ~ R" (because it is given by the equation
det(z) # 0). Let x € GL,(R). Then left translation by = on M,,(R) is a linear transforma-
tion, and we need to calculate its determinant. Note that M,,(R) = R* & ... & R", where
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we have n summands, correponding to the n columns of a n X n matrix. Left multiplica-
tion by x preserves this decomposition, and the determinant of its action on each summand
is the determinant of the usual action of x on R",i.e., det(x). So the determinant of left
translation by x on M,,(R) is det(z)".

To see that | det(7")|~™dT is also a right Haar measure, we use the obvious analogue of
the previous problem with left translations replaced by right translations, and we see as
above that the determinant of the action of x € GL,(R) by right translation on M, (R) is
det(x)".

(d). We embed G as a open subset of R? by sending (g z> to (x,y, z). Letg = (g ‘g) € G.

z y\ (a b\ [(za xb+yc
0 z/J\0 ¢/ \O zc ’

we see that we are in the situation of the previous problem, with

Using the fact that

Ag) =

S O K
o8 O
N O

and b(g) = 0. So det(A(g)) = 22z, and we get the result.

As in (c), using the analogue previous problem for right translations, we see that the action
of g on GG by right translation is linear and given by the matrix

z 0 0
y 2z 0],
0 0 z
whose determinant is z2%. So dfj'g;” is a right Haar measure on G. It is not of the form

dxdydz
z?|z]

dxdydz

with ¢ a constant, hence 2]

C

cannot be a right Haar measure.

O

Exercise 1.5.3.3. Consider the group G = (Z/27Z)".

(a). Show that there exists a Haar measure 4 on G such that u(G) = 1.

(b). Show that every open subset of G is a countable union of set of the form
U =V x (Z)2Z)N>r+1, with n € N and V C (Z/2Z)%"}, and that we have
M(U) = glv}/+|1-

(c). Consider the map u : G — [0, 1] sending (z,,)nen € G to ano 2,271 (We identify
7,/27 with {0, 1} in the defintion of w.) Show that u is measurable and maps p to Lebesgue
measure \ on [0, 1]. That is, show that, if B C [0, 1] is a Borel set, then u~'(B) is a
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Borel set and A(B) = pu(u~'(B)). (Hint : Show that the half-open intervals of the form
(727, (j +1)27*] generate the Borel o-algebra on [0, 1], and calculate their inverse images
by u.)

Solution.

(a).

(b).

(©).
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Let 1« be a left Haar measure on G. As G is commutative, 4 is also a right Haar measure.
Also, by [L.5.1.3|b), the group G is compact, so j(G) < 400, and, after multiplying ;. by
w(G)~1, we may assume that u(G) = 1.

By definition of the product topology, every open subset of G is a union of sets U of the
form V' x (Z/27Z)"1, with I C N finite and V' C (Z/27)'. As every finite subset of
N is included in a set of the form {0, 1,...,n}, we may assume that / = {0,1,...,n}
for some n € N. We still need to show that we can the union to be countable. Suppose
that we have an open set € of G of the form |J._, U;, with U; = V; x (Z/27)Nzni+1 and

el
U Ui = Vi x (z/22)"=m+,
1€l

with

Hence Q2 =

neN

.....

hence y({v}) = z+. On the other hand, we have U = []
— v

M(U) on+1 -

Write I; 5, = [j27%, (j + 1)27]. We first show that the I, for k > 0and 0 < j < 2% — 1,

generate the Borel o-algebra on [0, 1]. Every open subset of [0, 1] is a countable union of

open intervals (a,b) with 0 < a < b < 1, and optionally of one or both of the half-open

intervals [0,0), 0 < b < 1, and (a,1], 0 < a < 1. So we just need to check that any of
these can be written as a countable union of /;;’s.

{v} x W, so we get

veV

Suppose that 0 < a < b < 1.Ifb—a > 27% andif i = 1 + [2%a] and i’ = —1 + [2*D]
(where |.| and [.] are the floor and ceiling functions), then 0 < 2% —a < 27% and
0 < b—#'27% <27, This implies that

—2+[2%b)

(a,b) = U U L

k>—log,(b—a)  j=1+4|2Fa]
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(where log, is the base 2 logarithm). Similarly, if 0 < b < 1and 0 < a < 1, then

—2+[2kb]
o= U
k>—logy(b)
and
2k_1

(a,1] = U U L.

k>—logy(1—a)  j=1+|2Fa|

This proves the statement about the Borel o-algebra of [0, 1]. To finish the problem, we just
need to prove that, forall k < O and all j € {0,...,2" — 1}, the inverse image u~'(1; ) is
a Borel setin G and p(u='(I;;)) = 27%. So we calculate these inverse images.

First note that, if z € [0, 1], then u~!(x) is a singleton unless z is of the form j27* for
0 < j < 2%; in that last case, = as second expression in base 2, where all the coefficients
are 1 after a certain rank.

Now let k¥ > 0 and j € {0,1,...,2" —1}. If k = 0, then j = 0 and [;; = [0, 1], so
u(1;;) = G and u(G) = X([0,1]) = 1 by the choice of u. Suppose that & > 1. As
0 < j < 2F—1, we can write j in base 2 as j = Zf;ol aj_1-;2', with the a; in {0,1}. If
0 < j, we also write j — 1 = Zf;ol br_1-;2¢, with the b; in {0, 1}. If j + 1 < 2F, we also
write j + 1 = Zi':ol cr—1-:2", with the ¢; in {0, 1}. Then we have

k—1
j27F =3 "a 27,
=0
k—1 +o00
=N "2 LY "o >0
=0 i=k
and
k—1
(j+1)27 202(”1) if j 41 < 2",
1=0

sou'(I;;) = X UY, where

Y = ({(ao, -, ax-1)} x (2/22)"=+)

and
{(bo, .. .,bk_l, 1,1,.. .), (CQ,. .. ,Ck_l)} if 0 < j < 2k —1
X: {(bo,...,bk,bl,l,...)} lfj:2k—1
{(Co,...7ck,1)} lf]:()

As X is closed and Y is open, this is a Borel subset of G. We also know by question (b)
that u(Y') = 27% = \(I; ), so it remains to show that 4(X) = 0. That is, we want to show
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that singletons in have volume 0 in GG. As all singletons are translates of each others, it
suffices to treat the case of {0}. This follows from the fact that

{0} € ({0}t x (z/22)N=0r

for every n > 0, because the right-hand side has volume 2~ (") by question (b).

O
Exercise 1.5.3.4. For x € Q, and r € R, write B(z,7) = {y € Q,||z — y|, < r} (the closed
ball of center x and radius 7). Let A be the Haar measure on Q, such that \(Z,,) = 1.

(a). If z € Q, and m € Z, show that \(B(x,p™)) = p™.

(b). For every Borel set X C Q,,, show that

AX) = inf{zpmi 3z, 21, ... € Q, with X C UB(xi,pm")}.

120 120

Solution.

(a). First we note that, if z,y € Q,, we have B(z,p™) = B(y,p™) + x — y, so
A(B(z,p™)) = A(B(y,p™)). Note also that

B(0,p") = {x € Qyllz], <p™} ={z € Qlp"z[, <1} =p™"Z,
for every m € Z. So, for every x € QQ, and evey m € Z, we have

B(z,p") =ax+p "L,

Also, by question (i) of problem we have

|
—

p

Zy = | |(i + pZy,).

I
o

Multiplying by p~™ gives
p—1
BO,p™) =[] B ™i,p™ ),

=0

hence A\(B(0,p™)) = pA(B(0,p™1)). As A(B(0,1)) = A(Z,) = 1 by hypothesis, the
result follows by an induction on |m|.
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First, by question (f) of problem the balls B(z,r) form a base of (open !) sets for
the topology of Q,, so every open subset of Q, is a union of balls B(x,r). As Q is dense
in Q, and countable, every open subset of Q, is a countable union of balls B(z, ) (and
we can take the x in (Q, but it doesn’t matter). Also, note that, by question (b) of problem
if y € B(z,r), then B(y,r) = B(z,r). Hence, if two closed balls of Q, intersect,
then one of them must contain the other. This implies that every open subset of @, is a
countable disjoint union of balls B(x,r). The result now follows immediately from (a)
and from outer regularity of \.

0

Exercise 1.5.3.5. Let GG be a locally compact group, and let [ be a closed subgroup of G. We
write 7 for the quotient map from G to G/ H. We denote by A (resp. Ay) the modular function
of G (resp. H), and we assume that Agyz = Ay. We fix left Haar measures p¢ and piy on G
and H.

(a).

(b).

(c).
(d).

(e).

(®).

(2)-

(h).

Show that, for every compact subset K’ of G/H, there exists a compact subset K of G
such 7(K) = K.

Let f € L'(G). Show that the function G — C, x — [}, f(xh)duy(h) is invariant by
right translations by elements of H. Hence it defines a function G/H — C, that we will
denote by f1.

If f € 6.(G), show that f € €,(G/H).

Show that the map €,.(G) — €.(G/H), f — f! is surjective. (Hint : You may use the
fact that, for every compact subset K of G, there exists a function ¢ € .7 (G) such that
o(x) > 0 forevery z € K.)

If f € €.(G) is such that f7 = 0, show that [ f(x)duc(x) = 0. (Hint : use a function in
%¢.(G/H) that is equal to 1 on w(supp(f)), and proposition [[.2.12])

Show that there exists a unique regular Borel measure i/ on G/H that is invariant
by left translations by elements of G and such that, for every f € %.(G), we have

Jo f(@)dpe(x fG/H A (y)dpeu(y).

If P is a closed subgroup of G such that 7 induces a homeomorphism P = G/H, show
that the inverse image of ji/y by this homeomorphism is a left Haar measure on P.

If P is a closed subgroup of G such that the map P x H — G, (p,h) — phis a
homeomorphism, and if dyup is a left Haar measure on P, show that the linear functional
6.(G) = C, f+— [ [» [(ph)dpp(p)dup (k) defines a left Haar measure on G.

Solution.

(a).

Let V be a compact neighborhood of 1 in G/H. Then 7(V) is a compact neighborhood of
7(1)in G/H. We have K’ C J,¢,—1 (g (V). As K is compact, we can find z1, ..., z,
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(b).

(c).

(d).

64

such that K/ C |, m(z;V). Let K = 7~ *(K') N (U, 2;V). Then K is a closed subset
of the compact set | J;_, x;V/, hence it is compact, and we have 7(K) = K’.

Let x € H. Then, for every g € GG, we have

/H Flgah)dpus () = /H £(gh)dpus (1)

by the left invariance of .
We need to show that £ is continuous and that it has compact support.

Fix a symmetric compact neighborhood V; of 1, and note that A := supp f U Vy(supp f)
is compact. Let ¢ > 0. As f is left uniformly continuous, there exists a neighborhood
V' C Vj of 1 such that, for every x € G and every y € V, we have |f(yx) — f(z)] < e.
Then, for every x € G and every y € V, we have

[ (m(yx)) = [ ()] = I/H(f(yxh) — f(@h)dun(h)| < epp(a™ AN H),

because f(yzh) = f(zh) = Ounless y € (x ! supp f) U (z7 'y tsupp f) C 271A. As
x~ AN H is compact, it has finite measure, and the calculation above implies that f# is
continuous at the point 7(z).

Now we show that f# has compact support. By definition of f, we have f%(m(x)) = 0
if v ¢ KH. So the support of f is contained in 7(K H) = 7(K), hence it is compact.

Let g € ¢.(G/H), and let K’ be its support. By question (a), there exists a compact subset
K of G such that m(K) = K'. Let ¢ € €."(G) be such that p(x) > 0 for every = € K.
We show that ¢ (y) > 0 forevery y € K'. Lety € K’, write y = m(z) with z € K.
As p(z) > 0 and ¢ is continuous, we can find an open neighborhood V' of 1 in GG and a
¢ € R- such that p(2’) > c for every 2’ € V. In particular,

) = [ elamdun(n) = [ plah)d(h) = e U 0 ) >0

HNV

(as U N H is a nonempty open subset of H, we have gy (U N H) > 0).

We define a function F': G — C in the following way :

Plz) = { e if ¥ ((x)) > 0
0 otherwise.
Note that F' is continuous on the open subsets U; = {r € G|pf(n(x)) > 0} and
Uy = G — supp(g o m) (on the second subset, it is identically zero). As U; D «'(K’)
and 77 '(K’) = supp(g o 7), we have U; U Uy = G, the function F' is continuous on G.
Finally, we take f = F'¢. Then f € %.(G), and we just need to show that f# = g.
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(®).
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Letz € G. If o (n(z)) = 0, then f(xh) = 0 for every h € H, so f(mw(x)) = 0. We
have seen that ¢ takes positive values on K’ = supp(g), so we also have z & supp(g),
ie., g(xr) = 0= f#(x). Now assume that o (7(x)) > 0. Note that the function H — C,
h —— F(zh) is constant. So

77 (x(2)) = F(a) /H o (wh)dpp (h) = HEED-OH (x(2)) = g(m(a).

Finally, note that f € €.7(G) if g € €.'(G/H), and that we also proved along the way
that f7 € €1 (G/H) if f € €. (G) (we proved this for ().

Let ¢ € 6.(G/H) be such that ¢)(y) = 1 for every y € 7(supp f). By question (d), there
exists ¢ € €.(G) such that o = 1. We have

/f )dpc(z /f ))dpc ()

~Jo Hf(x)so(xmdua(@dw(h)

([ r@retemyduc(@)dun(n)
/ W7 [ e eta)dte)dun ()
= [ @[ Autn) s () dc(z)
a H
= / go(x)(/ f(zh)dpg(h))dug(z) (by proposition[[.2.12)
a H
=0 (because f =0).
By question (e), the positive linear function €,.(G) — C, f — |, o fdupg factors through
the linear map 6.(G) — 6.(G/H), f — f. By question (d) (and the remark at the end
of its solution), it defines a positive linear functional ¢.(G/H) — C. By the Riesz repre-

sentation theorem, this comes from a regular Borel measure i/ on G/H. Unravelling
the definition, we get, for every f € 6.(G),

/ fdpe = fdpcyu.
G G/H
By the left invariance of y and question (d), we have, if f € ¢.(G/H) and z € G,

flzy)dpc u(y) = f@W)duc)n-
G/H G/H

Using the uniqueness part of the Riesz representation theorem (as we did in class), we see
that pu (¢ E) = pe/u(E) for every Borel subset E of G/ H.
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(). Let v be the inverse image of y,p by the homeomorphism « : P = G/H. It is a regular
Borel measure because « is a homeomorphism. Also, note that a(zy) = xa(y) for every
x € P (this is obvious on the definition of ). As g,z 18 invariant by left translations by
elements of P, so is v.

(h). The hypothesis implies that 7 induces a homeomorphism P = G'/H, hence we get a left
Haar measure v on P as in question (g). By the uniqueness of left Haar measures, we have
pup = cv for some ¢ € R.y. Hence, for every f € €.(G),

/ / £ (oh)dpp (p)dus (h) / / F(ph)dps (h))dw (p) =

e[ duenty) = c / F(@)dpc(x).

G/H
So the functional f — [, [, f(ph)dup(p)dup(h) is positive and corresponds to the left
Haar measure cug on G.

O

Exercise 1.5.3.6. Let G be a locally compact group. Let A and N be two closed subgroups of
G such that A x N — G, (a,n) — an is a homeomorphism and that A normalizes N (i.e. for
everya € Aandn € N, we have ana™! € N).

(a). If pa and py are left Haar measures on A and N, show that the linear functional
6.(G) = C, f— [, [y [lan)dpa(a)duy(n) defines a left Haar measure on G.

(b). Let a € A. Show that there exists a(a) € R~ such that, for every f € €.(N), we have

/fana Ydpun(n /f )dpn(n

(c). If Ag, A4 and Ay are the modular functions of GG, A and N respectively, show that
Ag(an) = a(a)As(a)Ay(n)ifa € Aandn € N.

Solution.

(a). The setup is very similar to that of problem (with for example N playing the role
of H), with the difference that we don’t make any assumption on the modular functions.
Still, the results questions (a)-(d) of problem stay true, since their proof doesn’t
use the assumption on the modular functions. In particular, we get a surjective linear
transformation f — [~ from %.(G) to ¢.(G/N) ~ €. (A) and it sends .7 (G) onto
%."(A). The linear functions of the statement sends f € €.(G) to [, fN(a)dpa(a), so it
is positive, and the Riesz representation theorem says that there is a unique regular Borel
measure y on G such that, for every f € %.(G), we have

/G fdu = /A /N F(an)dpa(a)dpn ().
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As j14 is a left Haar measure on A, the formula above implies that | o Lafdpg = J. o fduc
for every f € %.(G) and every a € A. We show that s is left invariant by N. Letx € N
and f € 6.(G). Then we have

/ L, fdpg = / / F(zan)dyua(a)dpu () / / f(a(a™ za)n)dun (n))dpa(a)

= /(/ flan)duyn(n))dua(a) because a='za € N and puy is left invariant
A JN

- /G fdpe.

As G = AN, this implies that [, L,gduc = [, fdue for every z € G and every
[ € €.(G). By proposition |[.2.6| 1 is a left Haar measure on G.

Note that the map N — N, n — a 'na is a homeomorphism. Hence the formula
E +— uy(a~'FEa) defines a regular Borel measure on N, which we denote by v. If E is
a Borel subset and n € N, then

v(nE) = pla 'nEa) = p((a 'na)a  Ea) = p(a ' Ea) = v(E).

Hence v is a left Haar measure on N, and so there exists a(a) € Ry, such that
v = ala)uy. Now, if E is Borel subset of N and f = 1, the function n — f(ana™?) is
the characteristic function of a ! Ea, so

| #ana™dunto) = e Ba) = aan(B) = afa) | faux

This extends in the usual way to all the functions f € L!(N), and in particular to
f € 6.(N).
Leta € Aandn € N, and fix f € €."(G). Then we have

Bctan)™ [ fdpo = | Ran(dic = [ [ s(eman)dpa@dun(m)
= [ (] ftata maydus(m)dpa(t
A JN
=ala)” /A(/N f(bamn)duy(m))dua(b) by question (b)
= a(a)lAN(n)lf(/ f(bam)dun(m))dua(b) by definition of Ay
= a() "8 [ (f fbam)diua(®)dienom)
= ala) ' Ax(n) " Au(a)” / /f (bm)dpa(b))dpn(m) by definition of A 4

a(a)'An(n) " Aa(a /fdMG
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As [, fdug > 0, this implies that Ag(an) = a(a)As(a)Ax(n).
U

Exercise 1.5.3.7. Let G = SL,(R), H = SO(n), and let P C G be the subgroup of upper
triangular matrices with positive entries on the diagonal (and determinant 1).

(a).

Show that the map P x H — G, (p,h) — ph is a homeomorphism. (Hint : Gram-
Schmidt.)

(b). Give a formula for a left Haar measure on P similar to the formula in question[[.5.3.2(d).

(c). Calculate the modular function of P.

(d). Show that GG is unimodular. (There are several ways to do this.)

(e). If n = 2, show that SO(n) ~ S (the circle group), and give a left Haar measure on G.
Solution.

(a). In this problem, we denote the usual Euclidian inner product on R™ by (., .), and the asso-
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ciated norm by ||.]|.

We denote the map P x H — G of the statement by «. This map is continuous because
SL,(R) is a topological group. We first show that it is injective. Suppose that we have
p,p' € Pand h, ' € H such that ph = p'h/. Then p~'p' = h(h')~! € P N H is a special
orthogonal matrix that is upper triangular with positive entries on the diagonal. Such a
matrix has to be the identity. Indeed, let (v, ..., v,) be its columns, and let (ey, ..., e,)
be the canonical basis of R™. We want to show that (vy,...,v,) = (e1,...,€e,). As vy
is a norm 1 vector and a positive multiple of e;, we must have v; = e;. As the vectors
Vg, ..., U, are orthogonal to vy, their first entries are all 0. So v, 1s a positive multiple of
€9; as vy 1s norm 1, we must have v, = e;. Now the vectors v, . . ., v, are orthogonal to
V9, S0 their second entries are zero, so vs is a positive multiple of ej etc.

Now remember the Gram-Schmidt orthonormalization process. If (v1,...,v,) is a basis
of R™, it produces an orthogonal basis (wy, . . . , w,) and an orthonormal basis (u1, . .., u,)
in the following way :

_1

e w; = v and u; = T Wi
k (3
e Forl<k<n-—1upq = mwkﬂ, where wy11 = Vg1 — Dy %wz
In particular, if A (resp. B, resp. () is the matrix with columns (vy,...,v,) (resp.

(wi, ..., wy), resp. (ui,...,u,)), then we have B = AN and C = AND, where N
is an upper triangular matrix with ones on the diagonal and D is the diagonal matrix with
diagonal entries (||wy| ™', ..., ||w,| ). Note also that the entries of N and of D are
continuous functions of vy, ..., v,, hence also the entries of B and C, and that C' is an



(b).

(c).
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orthogonal matrix. If x € SL,,(R), applying this process to the columns of z, we get an
orthogonal matrix i and a matrix p € P, both depending continuously on z, such that

= ap, i.e. x = hp~'. Also, det(h) = det(zp) = det(p) > 0, so h is actually in SO(n).
As g — g1 is a continuous function on GL, (R) (hence on its subgroup P), we have
constructed a continuous map 5 : G — P x H such that « o § = idg. In particular, the
map « is surjective, so it si bijective. Then its inverse must be 3, and we know that 3 is
continuous. So « is a homeomorphism.

Note that P is an open subset of the R-vector space V' of upper triangular matrices in
M, (R). Moreover, for every p € P, left translation by p on P is the restriction of the
linear endomorphism 7}, : V' — V/, x —— px. So we can apply problem[[.5.3.1]to define a
Haar measure on P as | det(7},)|"*dy (p), where dy is Lebesgue measure on V.

We still need to calculate det(7,) for p € P. Letp € P, and let a,...,a, be

its diagonal entries. Let (ey,...,e,) be the canonical basis of R™ as before, and let
V; = Span(ey, ..., e;) C R for 1 <i < n. Note that the action of p € GL,(R) preserves
the subspace V1, ..., V,, and that ther determinant of the endormophism of V; induced by

pisay...a;. By decomposing V' using the columns of the matrices (as in the solution of
[[.5.3.2(c)), we get an isomorphism V' ~ V; & Vo @ ... @ V,, such that the endomorphism
T,, corresponds to the action of p on each V;. So we get

n 1 n
_ . .n, n—2 2 _ n+l—1
det(7},) = | | | |ar—a1a2 ey Gy = | |ai :
=1

i=1r=1

We will use problem with G = P, N the group of unipotent upper triangular
matrices (i.e. of upper triangular matrices with ones on the diagonal) and A the group
of diagonal matrices with positive diagonal entries. Let « : A x N — P be the map
defined by a(a, n) = an. Let’s show that « is a homeomorphism. The map « is obviously
continuous, and it is injective because N N A = {1}. Let z € P, and let a € A be the
matrix with the same diagonal entries as #. Then n := a 'z is in N, and a(a,n) = .
Hence « is bijective. Moreover, the matrix a depends continuously on z, hence so does n,
so the inverse of « is continuous, and finally « is a homeomorphism.

We want to apply question[[.5.3.6(c). For this, we need to calculate the modular functions
of A and N and the function o : A — R.,.

First, as A is commutative, we have A4 = 1.

For N, there are several ways to proceed. For example, you may notice that N is obviously
homeomorphic (as a topological space only) to the R-vector space W of upper triangular
matrices in M, (R) with zeroes on the diagonal. (Just forget the diagonal terms of the
matrices.) Moreover, for n € N, left translation by n on /N corresponds to the linear
endomorphism U,, of W given by U,,(X) = nX, for X € W. Note that W is a subspace
of the space V' of the previous question, and that U, is the restriction of 7,,. So we can use
the same method as in the previous question to calculate det(U,, ), and we get det(U,,) = 1.
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Hence Lebesgue measure on W is a left Haar measure on /N. We can redo everything using
right translations instead of left translations, and we get that Lebesgue measure on W is
also a right Haar measure on /N. This means that /N is unimodular, so Ay = 1.

Finally, we need to calculate the function . Remember that it is defined by

/N Flana™Ndn = a(a) /N F(n)dn

for every f € %.(N), where dn is Lebesgue measure on W (which we have just seen is
a Haar measure on N). Note that ¢, : X — aXa ! is a linear endomorphism of W,
so we can calculate [, f(ana™")dn using the change of variables formula once we know
det(c,). We get det(c,) [y f(ana™")dn = [, f(n)dn, hence a(a) = det(c,)~". Butis is
easy to see that, if the diagonal entries of @ are (a4, ..., a,), then

n
det(c,) =a"ta) .. .al" = H a2,
i=1
Hence finally, for p € P,
Ap(p) =ai "ay ™. .. a' " = H aZ "

where a4, . . ., a, are the diagonal entries of p.

If you know (or know how to prove) that SL, (R) is equal to its commutator subgroup,
then this isn easy. Here is another way : Let GL,(R)" be the group of n X n ma-
trices with positive determinant. This is an open subgroup of GL,(R) (it’s the inverse
image of R.( by the continuous group morphism det : GL,(R) — R*), so, if u is a
Haar measure on GL,(R) (remember that GL,(RR) is unimodular by question [.5.3.2c)),
its restriction to GL,(R)" is a nonzero regular Borel measure, and it is obviously a left
and right Haar measure on GL,(R)*. Now note that we have an isomorphism of topo-
logical groups R-o x SL,(R) — GL,(R)", (\,z) — Az (whose inverse is given by
r — (det(x)"/™ det(x)~"/"x)), so we can apply problem with G = GL,(R)™,
A =R.ol, and N = SL,(R). As A and N commute, we have « = 1. We know that A is
unimodular because it is commutative, and we have just seen that GL,,(R)" is unimodular,
hence[[.5.3.6(c) implies that SL, (R) is also unimodular.

It is well-known that the group of rotations in R? (i.e. SO(2)) is isomorphic to the circle
cosf sinéd
) . Also, we
—sinf cosf
have seen in class that we can define a Haar measure on S by the linear functional sending
feec.(SH)to fol f(e*™)dg, where df is Lebesgue measure on R.

group S*. The isomorphism sends e?7™ ¢ S! to the matrix

The point of this, of course, is that exercise[[.5.3.5now allows you to define a Haar measure
on SLy(R). To treat the case of SL, (R), we need a Haar measure on SO(n). An example
of such a measure is given in problem[[.5.3.9
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Exercise 1.5.3.8. (Remember problems [I.5.1.4] [1.5.3.1] [1.5.3.2] and [I.5.3.4). We denote by dz a
Haar measure on the additive group QQ,. We also denote by dz (resp. dA) the product measure on
Qy (resp. M, (Q,) =~ QSQ); note that it is a Haar measure for the corresponding additive group.

(a). Show that, for every f € L'(Q,) and every a € Qb € Qp, we have

fz)dx = \a]p/ flaz + b)dzx.
Qp Qv

(b). Letn > 1. Show that, if f € L*(Q}), A € GL,(Q,) and b € Q7, we have

f(z)dx = |det(A)|, | [f(Az+b)dx.
Qp Q

(c). Show that [ det(A)| "dA is aleft and right Haar measure on GL,,(Q,).

(d). Let B be the group of upper triangular matrices in GL,,(Q,). Find a left Haar measure on
B and calculate the modular function of B.

Solution.
(a). First, using the invariance by translation of dz, we see that
flax + b)dx = f(az)dz
Qp Qp

for every f € L'(Q,) and a,b € Q,.

Let a € Q. We use the notation of problem|[[.5.3.4 If x € Q, and m € Z, then
aB(z,p™) = {ay with [z —y|, <p"} = {y € Qpllax —yl, < |al,p™} = Blaz, [al,p™),
and so, by [1.5.3.4(a), vol(aB(z,p™)) = l|a|, vol(B(z,p™)). Using question (b) of the

same problem, we get vol(aE) = |a|, vol(E) for every Borel subset E of QQ,. Suppose
that f = 15, with I/ a Borel subset of Q,. Then

f(az)dz = vol(a™'E) = \a]plf f(z)dz,
Qv

Qp

so we get the desired result for this function f. The result now follows for every
f € L*(Q,) by linearity and continuity of the integral.
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Using the translation invariance of dx as in question (a), we see that it suffices to prove the
result in the case b = 0. Let A € GL,(Qp). First note that A = A; A and if we know the
result for A; and A, then we know it for A; indeed, for every f € Ll(Qg), we’ll have

f(@)de = det(A), [ f(Aa)de =
Qrp Qe

det(Aplpldet(Anly [ 7(s(Ase))de = | det(A)l | f(Az)dr
P P
The Gauss algorithm (for solving systems of linear equations) says that we can make A
upper triangular by elementary row operations (with correspond to multiplying on the left
by a lower triangular matrix) and permutations of rows (with correspond to multiplying
on the left by a permutation matrix). So, by the observation above, it suffices to prove the
result for upper and lower triangular matrices and for permutation matrices.

Suppose first that A is a permutation matrix. So there exists a permutation ¢ € &,, such
that, for every v = (v1...,7,) € Q), Az = (Zo01),---,To(n)). As dz is the prod-
uct of identical measures on the n factors QQ, of Qg, we have, for every f € Ll(Qp),
f@; f(Az)dx = ng f(z)dz. The result now follows from the fact that det(A) = + + 1.

Suppose that A is upper triangular, and write A = (a;;)1,<; j<n- Let f € L}(Q,). Then

flA(z1, ..., 20)) =
Q3

/ . flanzi+. ..+ a10%n, .o Gyt 1 Tn1 + Q1 0Ty Qg ) AT, dT,_q . . . d2y.
p Qp

Using question (a), we see that this last integral is equal to

\a11|;1 . ]an,lyn,l\;l\amgl f(z)dx = ]det(A)|;l f(z)dz.
Q3 Q3

The case of lower triangular matrices is similar (just put the dx; reverse order).

Once we have the change of variables formula of question (b), we can replace R by Q,
in problems [[.5.3.1] and [[.5.3.2] and all the results will stay true, with exactly the same
proofs. (Except [[.5.3.2(b), which doesn’t make sense for Q,.) In particular, we get that
| det(A)[,"dA is aleft and right Haar measure on GL,(Q,).

Again, we can just apply the proofs of questions (b) and (c) of problem (and the
analogue for QQ, of problem|[[.5.3.1) to get the result. Assuming that there is no sign mistake

in problem|[.5.3.7, a left Haar measure on B is [}, |a;[,, "~ 'dA, where dA is the product

measure on the Q,-vector space V' ~ QZ(”H)/ ? of upper triangular matrices and the a;;

are the entries of the matrix. And the modular function of B is given by

A(A) = [T a2
=1




L5 Exercises

O

Exercise 1.5.3.9. ﬁ] The goal of this problem is to give a formula for a Haar measure on SO(n).
(We could do something similar for the unitary group U(n).)

(a).

(b).

(c).

(d).

(e).

For X € M,(R), we set ®(X) = (I, — X)(I,, + X)~'. Show that this is well-defined if
—1is not an eigenvalue of X, and that we have ®(® (X)) = X whenever this makes sense.

We denote by A,, the R-vector space of n x n antisymmetric matrices (i.e. of X € M, (R)
such that X7 = —X) and by U the set of elements of SO(n) that don’t have —1 as
an eigenvalue. Show that U is an open dense subset of SO(n), and that ¢ induces a
homeomorphism A,, = U.

Let X € A,. Show that there exist open dense subsets V' and W of A,, such that the
formula ®(LxY) = ®(X)®(Y') defines a diffeomorphism Ly : V — W, and that 0 € V.

Let dX be Lebesgue measure on A,. For every X € A, and every Y € A,, on which Lx
is defined, we denote by L’y (V) the differential at Y of L. It is a linear transformation
from A,, to A, such that, for every H € A,,,

Lx(Y+tH)=Lx(Y)+tL(Y)(H) + o(t).

Fix X € A,. We want to compute det(L’y(0)). Remember that L’y (0) is a linear endo-
morphism of A,,, and note that A,, ®g C is the space of antisymmetric matrices in M, (C).

(i) Show that det(L'(0)) is well-defined and nonzero.

(i1)) Show that we have
L (0)(H) = (I, = X)H(I, + X),

forevery H € A,.

(iii) Show that X has a basis of (complex) eigenvectors (v, ..., v,) such that the corre-
sponding eigenvalues are of the form ¢\, ..., 2\, with Ay, ... A, € R.

(iv) For j,k € {1,...,n}, weset Yj; = vjuf — v, . Show that V), € A, ®g C, and that
it is an eigenvector for L'y (0), with corresponding eigenvalue (1 — iA;)(1 — i\;).

(v) Show that (Yji)1<j<k<n is a basis of A,, @ C.
(vi) Show that det(L’(0)) = det(l,, —iX) .

Show that the linear functional sending f € %.(SO(n)) to

1
/An T e o ™

defines a left Haar measure on SO(n). (Hint : Note that (Lx o Ly)(0) = Lx(Y’), and use
the chain rule.)

15Somewhat incomplete proof here.
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Solution.

(a).

(b).
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If X € M,(R), then —1 is not an eigenvalue of X if and only if I,, + X is invertible, i.e.
if and only if the formula defining ®(X') makes sense. So the set of definition of ® is the
open set defined by the equation det([,, + X) # 0. Note also that I/, — X and [,, + X
commute, so I, — X and (I,, + X)~! commute (if the second is defined), so we also have
O(X) = (I, + X)) (I, — X).

Let X € M, (R) such that ®(X) is defined. Then we have
Li+®(X)=(L+X)+ (L, — X)), + X) ' =2(I, + X))

and
L —d(X)= (I, +X) = (I, = X)L, + X)' =2X(I, + X))

In particular, [, + ®(X) is invertible, so (P (X)) makes sense, and we have

(P(X)) = (In — (X)) (Lo + (X)) =2X (L, + X) 2L + X)) = X.

Let g € SO(n). Then we can find P € GL,(R) such that

1 0 .. 0
0 r 0 0
PgP~! = C ,
: 0 .0
0O ... 0 r,
where :
- if n is even, then m = n/2 and ry,...,r, are 2 X 2 matrices of the form

( cosf; sinb;

b, cos 9i> , with 6; € [0, 27);

- if nis odd, then m = (n + 1)/2, the matrix r,, is the 1 x 1 matrix 1 and r1, ..., 7,1

cost sin 9"), with 6, € [0, 27).

are 2 x 2 matrices of the form .
—sin#; cosH;

In both cases, —1 is an eigenvalue of g if and only if one at least one of the 6; is equal to
7. So, by varying the 6;, we can find a sequence of elements of SO(n) that converge to g
and don’t have —1 as an eigenvalue. This proves that U is dense in SO(n).

Next, as antisymmetric matrices have only imaginary eigenvalues, the function @ is defined
on A,. Note also that it is clear on the definition of ® that ® is continuous on its open set
of definition. By the second part of question (a), ® is injective and, to show that ® is
a homeomorphism from A, to U, it suffices to show that is a bijection from A, to U
(because then its inverse will be ®). So we just need to show that ®(A,) = U. Using
again the fact that ®(P(X)) = X whenever this makes sense, we see that it suffices to
prove that ®(A,,) C U and ®(U) C A,.
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Let X € A,. Then XT = —X, 50 &(X)" = (I, + X7) " (I, XT) = (I,— X) " (I, +X),
and hence ®(X)T®(X) = I,,, which means that (X) € O(n). As ® is continuous and
A,, is connected, ®(A,,) is connected. But I,, = ¢(0) € ®(A,), so P(A,,) is contained in
SO(n).

Let X € SO(n) such that —1 is not an eigenvalue of X. Then X* = X%, s0
O(X)" = (L,— X)L+ X)) = (L,—X N L4AX)" = (X-1L)(X+I,) " = —®(X).
So we have ®(U) C A,,.

(c). Fix X € A,. Note that the formula ®(LxY) = ®(X)P(Y) can also be written
LxY = &(®(X)®(Y)), by (a).

ForY € A, ®(X)®(Y) has animage by ¢ (which will automatically be in A,, by (b)) if
and only if (V) € ®(X)'U. So we can take V = ®(U N (®(X)~'V)); this is dense in
A, because U N (®(X)~'U) is dense in SO(n) by (b). Then the image of V by the map
Ly : Y v ®(O(X)®(Y)) is W := &((®(X)U) N V).

The map Lx : V' — W is continuous and surjective. In fact, as ® is infinitely differentiable
(it is given by rational functions in the entries of its arguments, by the formula saying that
A~1is det(A)~! times the transpose of its cofactor matrix, for every A € GL,(R)), the
map Ly is also infinitely differentiable.

Let X' = ®(®(X)™') € A,. Then we get as above a continuous and surjective map
Ly : W — V, defined by the formula Ly/(Y) = ®(®(X)~'®(Y")). The maps Lx and
Lx are inverses of each other, and in particular they are both diffeomorphisms.

Finally, if Y = 0, then ®(Y) = I,,. So ®(Y) € U, and we also have ®(Y) € (X )"'U,
because ¢(X)P(Y) = ¢(X) € U. This shows that 0 € V.

(d). (i) Let X € A,. As L is defined at the point 0, the differential L'y (0) makes sense;
also, as L is a diffeomorphism, det(L’(0)) # 0.

(i) Note that, forY € A,
(LA X+Y) ! = (LL+X) Y LA+ (L+X)Y) = (L+X) N (L—Y(L,+X) "4o(Y)),
hence

PX+Y)=(L, - X-Y)[,+X+Y)!
= (I, = X) =Y, + X) ™YL, - Y (I, + X)"' + o(Y))
= O(X) - (X)L, + X)) = Y(I,+ X)) +o(Y).

In particular (taking X = 0), we have
OY)=1,—2Y +o(Y).

So
O(X)P(Y) = D(X) —20(X)Y +o(Y),
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and
Lx(Y) = ®(2(X)2(Y)) = ®(2(X) — 20(X)Y + oY) =
B(0(X))—D(2(X))(—22(X)Y)(Ln+®(X)) ' —(=22(X)Y) (L, +0(X)) " +o(Y).
Using ®(®(X)) = X and I,, + ®(X) = 2(I, + X) ! (see (), we can simplify this
last expression to
X+XO0X)Y(L,+X) '+ o(X)Y(I,+X)+ oY) =X+ (I, + X\)®(X)Y ([, +Y) + oY
=X+, - X)Y(,+X)+oY).
But then the conclusion that L' (0)(Y') = (I, — X)Y (I, + X)) follows immediately
from the definition of the differential.

(iii)) As X is antisymmetric and has real entries, it is normal, so the spectral theorem says
that X is diagonalizable in an orthonormal basis of C"; in other words, there exists
a unita matrix P such that PX P~ is diagonal. We have already used the fact that
the eigenvalues of X are imaginary, but it is easy to recheck it quickly : we have
X* = —X and P* = P}, and (PXP Y = (P)1X*P* = —PXP ' As
PX P~!is diagonal, this means that its diagonal entries (which are the eigenvalues
of X)) are all imaginary.

(iv) It follows directly from the definition of Yj; that Yf,; = —Yjp,s0Yj, € A, ®r C.
Furthermore, by (ii), we have
L (0)(Yij) = (1 — X)Yi;(In + X)

)
= (I — X)(U )( XT) (I, — X)(Ukvf)(jn - XT)
= (1 —1i)\j)(vjv V1 =) — (1 — i)\k)(vkv;fp)(l — i\

= (1 —dX)(1 —i\)Yy5

(v) As (v1,...,v,) is a basis of C", the matrices vjv,f, for 1 < j,k < n, form a basis
of M, (C). So the matrices Yj, = (vjv]) — (vjol)T, for 1 < j,k < n, generate
A, ®gr C. Note that Y;; = 0 and Y;; = —Yj;, so A, ®g C is actually spanned by
the matrices Yj, for 1 < j < k < n. As there are n(n — 1)/2 such matrices and
dim¢ (A, ®g C) = dimg(A4,) = n(n — 1)/2, they form a basis of A,, @ C.

(vi) By (iv) and (v), we have
det(Ly (0) = ] (@—dix)(1—ixg) = JJ(x—ir)""
1<j<k<n r=1
(because each 1 — i\, appears n — 1 times in the first big product : (n — ) times as
the first factor (1 —i);), and (r — 1) times as the second factor (1 —i\;)). To get the
result, we just need to note that the eigenvalues of /,, — X are 1 — i\, ..., 1 — i\,
so that

n

det(I,, — X) = [ J(1 —ix,).

r=1
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(e). Let us denote this functional by A. First, by question (e), the function X — m
X

is defined everywhere on A,, and continuous, so the integral defining A makes sense.
We need to check that A is positive and invariant by left translations. We first check the
positivity. Let f € €.7(SO(n)). Then we can find ¢ > 0 and a nonempty open subset 2 of

SO(n) such that fio > €. As U is open dense in SO(n), its intersection with {2 is open and
nonempty, so &(U N Q) is open and nonempty in A,,, and we have

1
A 22 [ T

(because the function X —— 0l is continuous and positive on ¢(U N 2)).

1
[det(Ly (0

Now we check the left invariance. Fix f € %.(SO(n)). Let ¢ € U. Then

fA (g7to(Y )WdY Choose X, X’ € A, such that (X) = ¢!
and CID(X) =g. Then
1
el = /f POtz
/ f(® |d t(g/ (0))|dY (because vol(A,, — V) = 0)
1
il /Vf @W”Wmndy

Now note that, if Y € V/, then so does Ly (0) = Y, s0 Lx(Y) = Lx o Ly(0) = L1y (0)
makes sense, and we have by the chain rule

Loy (0) = L (Y) o Ly (0),

hence in particular
1 | det(L(Y))
[ det(Ly(0)] — [det(L),y(0)

|
I

B | det (L (Y))]
M) = | FOE) G o)

Using the substitution Z = LxY, we see that this is equal to

——dZ.
J 7O
As vol(Ay — W) = 0, the last integral is equal to [, f @(Z))WdZ i.e. to A(f).

This implies that

dy.

So we have shown that the function SO(n) — C, g — A(L,f) is constant on the
open dense subset UU. As this function is continuous (it is the composition of the con-
tinuous function SO(n) — %.(SO(n)), ¢ — L,f and of the continuous linear func-
tion A : €.(SO(n)) — C), it is constant on the whole SO(n), which means that
A(Lyf) = A(f) for every g € SO(n).
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Exercise 1.5.3.10. Let G = SU(2).

(a).

Show that every element of G is of the form (Z _ab) ,witha,b € Cand |a|* + [b]* = 1.

If we identify C and R? in the usual way, the previous question gives a homeomorphism «
between SU(2) and S? (the unit sphere in R?).

(a). If g € SU(2), show that left translation by g on SU(2) corresponds by « to the restriction
to S? of the action of an element of SO(4) on R? (i.e. there exists A € SO(4) such that,
for every h € SU(2), we have gh = Aa(h)).

(b). Let p be the usual spherical measure on S?; that is, if )\ is Lebesgue measure on R?, we
have by definition, for every Borel subset E of S,

W(E) = 2A({ta,t € 0,1],2 € E})
(note that the volume of the unit ball in R* is %2).
Show that the inverse image by « of i is a left and right Haar measure on SU(2).

(c). We use the following (hyperspherical) coordinates on S® : if (z1, 79,23, 74) € S°, we
write

r1 = cosf
Ty = sinf cos )
3 = sin # sin v cos ¢
x4 = sinfsin sin ¢
with0 < 0 < 7,0 < < 7mand 0 < ¢ < 27. Show that, for every f € .(S?), we have
f g3 Jdu =
1 s ™ 27
93 / / / f(cos 8, sin @ cos v, sin § sin 1) cos ¢, sin § sin 1 sin ¢) sin? @ sin YdOdapdep.
™ Jo Jo Jo
(Feel free to use a computer to calculate any big determinants.)
Solution.
(a). It is clear that every matrix as in the statement is in SU(2). Let’s show the converse. Let
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A= (Z 2) € M5(C). Then A € U(2) if and only if A*A = I, which means that the

two column vectors of A are orthogonal and norm 1 for the usual Hermitian inner product
on C2. As the orthogonal of a line in C? is one-dimensional, it implies that there exists

A € C* such that (ccl) = A (_b). The condition on the norm of the columns gives
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a@ + bb = A\ (a@ + bb) = 1, and the condition that det(A) = 1 gives \(a@ + bb) = 1. So
we get A = 1, as desired.

b
a C-linear isom_orphism from V to C2, hence to a R-linear isomorphism from V' to R4,

sending ( ¢ __b to (Re(a),Im(a), Re(b),Im(b)). If A € SU(2), then the action by left
gly 3 y

(b). Let V be the space of matrices of the form (a _ab), with a,b € C. Then « extends to

multiplication of A on V is the usual action of A on C2?, so it corresponds to a linear
automorphism of R* which preserves the usual Euclidian norm, i.e. is in O(4). Also, the
determinant of this action is just det(A) = 1, so the corresponding automorphism of R* is

in SO(4).

(c). First, note that j is a regular Borel measure on S (a subset £ of S3 is a Borel subset
if and only {tz,t € [0,1],2 € E} is a Borel subset of R%, it is compact if and only if
{tx,t € [0,1],x € E} is compact and openif and only if {tx,t € (0,1],2 € E} (which
has the same measure as {tz,t € [0, 1],z € E'}) is open).

By the change of variables formula in R?, the measure y is invariant by the action of SO(4)
on S3. By question (b), its inverse image by « is invariant by left translations on SU(2),
hence a left Haar measure. But the group SU(2) is compact, so every left Haar measure is
also a right Haar measure.

(d). Let B* be the closed unit ball in R%. Let f € 6.(S%). We define a function g € L'(B*) by
g(rcosf,rsinfcos, rsinfsiny cos ¢, rsinfsin i sin @) =

f(cos,sin 6 cosp, sin 0 sin 1) cos ¢, sin 0 sin ¢ sin @)

for 0 < r < 1. (Note : g might not be well-defined at 0, but it doesn’t matter because {0}
has volume 0.) Then, by definition of 4, we have [, fdu = 5 [5. gdX. We can calculate
this last integral using the change of variables formula (and avoiding the set where this
change of variables is not bijective, which is of volume 0 anyway). If 3 is the map sending
(r,0,,9) to (rcosf,rsinf cos, rsin @ sinip cos ¢, rsin 6 sin ¢ sin ¢), then we have

DB(r,0,¢,1) = r’(sin 0)? sin,

50 [1 gdX is equal to

1 ™ s 21
/ / / / f(cos 8, sin @ cos 1, sin 0 sin 1) cos ¢, sin § sin 1 sin ¢)r® sin? @ sin Ydrdfdidg =
o Jo Jo Jo

1 0 ™ 2
2 / / / f(cos 8, sin @ cos ), sin 0 sin 1) cos ¢, sin § sin 1 sin ¢) sin® @ sin YdOdipdep.
o Jo Jo
We get the result by multiplying by %
U
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1.5.4 The dual of a locally compact abelian group

Exercise 1.5.4.1. Let GG be an abelian topological group. We write G for the set of continuous
group morphisms G — S*.

As the product of two continuous morphisms from G is S ! is also a continuous morphism
from G to S* (because S* is commutative), the set G has a natural group structure. We put the
topology of compact convergence on G that is, if x € G, then a basis of neighborhoods of x is
given by {¢) € G|sup,cx |x(x) — ¢ ()| < c}, for all compact subsets K of G and all ¢ > 0.

(a). Show that Gisa topological group. This is called the dual group of G.
(b). Suppose that G = R.

(i) Let p : G — GL,(C) be a continuous group morphism. Show that there exists a
unique A € M, (C) such that, for every t € R, p(t) = exp(tA). (There are several
ways to do this. One way is to notice that, if the conclusion is true, then ¢/(0) must
exist and be equal to A, and to work backwards from there.)

(ii) Show that the image of p is contained in U(n) if and only if A* = —A.

(iii) Show that the map R — G sending = € R to the group morphism G — S, ¢ —s e
is an isomorphism of topological groups (i.e. a group isomorphism that is also a
homeomorphism).

(c). Show that there is an isomorphism of topological groups ST ~ 7, that sends id st tol.
(d). What is the topological group 77

(e). Suppose that G = Q, (cf. exercise [.5.1.4). We define a map y; : Q, — S' in the
following way : If x € Q,, we can write x = oo c,p”, with 0 < ¢, < p—1and

n=—oo

¢, = 0 for n small enough, and this uniquely determines the ¢, (see question i)).
We set

~1
X1(x) = exp <2m' Z cnp"> :

(i) Show that x; : Q, — S" is a continuous group morphism and that Ker(x;) = Z,,.

(ii) Forevery y € Q,, we define x, : Q, — S* by x,(z) = x(zy). Show that this is also
a continuous group morphism, and find its kernel.

(iii) Let x € @). Show that there exists k € Z such that x = 1 on {z € Q,||z|, < p~"}.

(iv) Let y € @, such that x(1) = 1 and x(p~!') # 1. Show that there exists a sequence of
integers (¢, ),>o such that 1 < ¢y <p—1land0 < ¢, <p—1forr > 1 and that, for
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every ke Zzl’

k
X(p™*) = exp <2m' > ckrp’"> -

r=1
(v) Let x € @, such that x(1) = 1 and x(p~') # 1. Show that there exists y € Q, such
that |y|, = 1 and x = x,.
(vi) Show that the map Q, — @9, Yy — Xy 18 an isomorphism of topological groups.

(vii) Show that xyz, = Xz, if and only y — ¢ € Z,, and that the map y — Y, induces

an isomorphism of topological groups Q,/Z, — Z;,, where Q,/Z, has the discrete
topology.

Solution.

(a). We need to check the group operations of G are continuous. Let’s start with mul-
tiplication. Let x1,x2 € G, and choose a neighborhood U of xix of the form
{¢ € Glsup,ep |x(x) — ¥(x)] < ¢}, with K C G compact and ¢ > 0. We need to
find neighborhoods U; of x; and U, of x9 such that UyU; C U. Take

Ui = {4 € Gl sup () - ()| < ¢/2}
xre
for: = 1,2. Let ¢y € Uy and ¢y € Us. Then, if x € K, we have

|(Y102) () = (xaxa) (@)] = [1(2) ($2(2) = xa(2)) + x2(2) (W1 (2) — xa())]
< [¥u(0)[[$2(2) — x2(2)] + [xa(@)[[¢1(2) = X2 (2)]

= |tho(x) — x2(x)| + |1 (x) — x1(x)| (because 1)1 and x5 are unitary)

<c.

So wld)g eU.

The proof for inversion is;\ similar. Let xy € @, and choose a neighborhood U of
x~! of the form {¢p € G|sup,ck |x ' (z) — ¥(x)] < ¢}, with K C G compact
and ¢ > 0. We need to find a neighborhood V' of x such that V-t C U. Take
V = {¢ € G|sup,eg [x(x) — ¥(x)| < ¢}. Letyp € V. Then, for every z € K, we
have

[ @) = x @) = [T @)X Ix(@) = d(@)] = [x(z) - v(z)] < e

Soy~leU.

(b). (i) Choose a norm |.|| on M,(C). As GL,(C) is open in M, (C), we can choose a
nonempty open ball B center of [,, such that B C GL,,(C). We only care about the
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fact that B is a convex subset of M, (C). As p is continuous and p(0) = I,,, we can
find ¢ > 0 such that p([0,c]) C B. Then

/01 plex)dx = c/oc p(z)dx € B,

s0 X := [ p(z)dz € GL,(C). For every t € R, we have

c t+c
Xp(t) = / plx+t)dx = / p(x)dz.
0 t
In particular, p is continuously differentiable, and

P(t) = X (plt +¢) — p(t) = X~ (p(c) — L)p().

The only solution of this differential equation satisfying the initial condition
p(0) = I, is p(t) = exp(tA), with A = X'(p(c) — I,,). Finally, the matrix is
uniquely determined by p, because we must have A = p/(0).

(i) If A* = —A, then, forevery ¢t € R,
p(t)p(t)" = exp(tA) exp(tA*) = exp(t(A+ A")) = exp(0) = I,

(we wuse the fact that tA and tA* commute to get the equality
exp(tA) exp(tA*) = exp(tA + tA*)), so p(t) € U(n).

Conversely, suppose that p(R) C U(n). Note that A = lim;_o 1(p(t) — I,,), so
A* = limy_,o %(p(t)* —1,). As
p(t)" = Lo = p(t) ™ = Ly = —p(t) " (p(t) — 1)
and p(t)~! — I, as t — 0, this implies that A* = — A.
(iii) Let’s denote by o the map R — G of the statement.

We have seen in (i) and (ii) that every continuous group morphism p : R — S! is of
the form p(t) = e**, for a unique z € C such that Z = —z; that last condition means
that z = ¢z for some x € R. This means that « is bijective. It is also easy to see that
« is a morphism of groups, so we just need to show that « is a homeomorphism.

We first show that « is Acontinuous. Let x € R, and consider a neighborhood U of
a(x) of the form {p € G|Vt € K, |a(x)(t) — p(t)| < ¢}, where K C R is a compact
subset and ¢ > 0. Then, for every y,t € R, we have

() () —a(y) (O = [ =" = [1-e"V| = (1—cos(t(z—y)))*+(sin(t(z—y)))*.

Choose ¢ > 0 such that, for every ¢t € K and z € (—¢,¢), we have
(1 — cos(tz))? + (sin(tz))? < c%. Then, if |z — y| < &, we have a(y) € U.
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Now we show that « is open. Let x € R, and choose a neighborhood V' of z of the
form (x — ¢,z + €), with € (these form a basis of neighborhoods). We want to show
that (V') contains a neighborhood of «(z). Choose 6 > 0 such that the functions
t — sin(t) and t — 1 — cos(¢) are both increasing on [0, 20¢], and let

U={peGNteK, |a)t) - pt)] <c},

where K = [—6,6] and ¢ = (sup,cpg .59 (1 — cos(t))? + (sin(t))2)1/2 (note that this
is also the sup on [—&d/2, £6/2], because the function we are bounding is even). Let
y € R such that |z — y| > . We want to show that a(y) ¢ U. We can find t € K
such that £§ < t(x — y) < 2e6. Then we have

la(@)(t) — aly)(B)] = ((1 = cos(t(x — ))* + (sin(t(x — »)))*)"* > ¢,
by the choice of § and ¢. So a(y) & U.

Note that we have an isomorphism of topological groups R /277 = S! given by t — et
So we get an isomorphism of groups

ST~ {pe @|p(2ﬂZ) ={1}} ~{zr eRVt € 21Z, "' =1} = 7Z

(where the second isomorphism comes from qufﬁtion (b)). It remains to show that this is
an isomorphism of topological groups, i.e. that S! is discrete. If you have read ahead, you
know that this is a particular case of question[[.5.4.2(e) (and I don’t know a simpler proof
in the case of S1).

As Z is discrete, a continuous group morphism from Z to S* is just a group morphism
from Z to S*. As Z is the free abelian group generated by 1 € Z, the map p — p(1) is
an isomorphism between the set of group morphisms Z — S* and §1. So, as a group, Z
is isomorphic to S*. Let’s denote this isomorphism by 3 : S' — Z (so 3 sends z € S*
to the morphism Z — S!, n —— 2"). If we show that 3 is continuous, then it will
automatically be a homeomorphism because S* is compact. But the compact subsets of Z
are its finite subsets, so the continuity of /3 follows immediately from the continuity of the
maps S — S1, 2 — 2"

(i) Let 7,2 € Q,, and write = > .7 _¢,p" o' = .7 ¢/ p" (with the same
conditions on the ¢, and ¢, as in the statement). Then, by [[.5.1.4(h), we have, for
every N € Z, |v — 2’|, < pVife, =, forevery n < N — 1. In particular,
xi(z) = xa(2') if |x — 2’|, < 1, so x; is continuous and sends every z € Z, to
1 = x1(0).

We still need to show that x; is a morphism of groups. Let G’ be the subgroup of Q,
whose elements are the x € Q, that can be writte © = ;rio_oo anp”, with a,, € Z
and a,, = 0 for |n| big enough. This is a dense subgroup (because 7> _¢,p" is
the limit as N — +oo of Zngoo c,p™), and it is contained in Q. As we know that
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(i)

(111)

(iv)

X1 is continuous, it suffices to prove that xi(x + y) = x1(z)x1(y) =,y € G'. But
note that, if € G, then x;(z) = exp(2miz), where we see = as an element of Q.
This implies the result.

Finally, we have to show that Ker(x;) = Z,. We have already seen that
Z, C Ker(x1). Conversely, let z € Q,, and write © = ::Loo c,p™ as above.

Suppose that x ¢ Z,, then there exists m < 0 such that ¢,, # 0. Choose such a m.
We have

-1
p T <cnp "< Z cnp” < (p— 1)Zp"“ =1

n=—oo r>1
(the second inequality is strict because the ¢, are 0 for n small enough). So
Do o™ € (0, 1), and xa (2) = exp(2mi 3,1 eup”) # L.

The map x, is a continuous group morphism because it is the composition of the
continuous group morphisms x; and m, : Q, = Q,, v — zy. Anelementz € Q,
is in the kernel of y, if and only zy € Ker(x1) = Z,. So, if y = 0, we have
Ker(x,) = Q,, and if y # 0, we have

Ker(x,) = y_IZp = |ylpZy = {z € Qpl|z], < M;l}-

Choose a neighborhood U of 1 in C* such that the only subgroup of C* contained
in U is the trivial group. (See 3(b).) Then x~'(U N S') is a neighborhood of 1 in
Q,, so there exists k € Z such that x (U N S') D {z € Q,l|z|, < p*}. Butas
{x € Q,||z|, < p"} is a subgroup of Q,, its image by Y is a subgroup of S* contained
in U, hence is equal to {1}.

Write, for every integer r > 0, z, = x(p~"). Then z,. € S Land, for every r > 0, we
have

Za=x@ =x(07") = 2.
We will construct the integers ¢, by induction on » > 0. Note first that z; # 1 = 2z,
by hypothesis, so we can find ¢y € {1,...,p — 1} such that z; = exp(2wicop™').
Suppose that we have found ¢y, ..., c.—1 (with » > 1) such that, for 1 < s < r, we
have

X(p7%) = zs = exp(2mi Z co ik F).

k=1
We have to find ¢, € {0,...,p — 1} such that
r+1 r
Zr11 = exp(2mi Z Cra1kp ") = exp(2mip~ Y Z csp’).
k=1 s=0

p _
As z,.,, = z;, we have

r—1 p
<z7»+1 exp(2mip™" ! chps)) =1,

s=0



v)

(vi)
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so there exists ¢, € {0,...,p — 1} such that

r—1

1 exp(2mip Y eop®) = exp(2mip~'e,),
s=0

i.e.
Zrs1 = exp(2mip " Z csp’).
s=0
Let (c,),>0 be as in (iv), and set y = > ¢,p". As ¢y € {1,...,p — 1}, we have
ly|, = 1. Also, for every r > 1, we have

—1
X(p") = exp(2rip " > cp®) = xa(py) = xu (1),

k=—r
because
400
PTY=) el T =D "
s>0 n=-—r
On the other hand, if » > 0, then
X(@") = x(1)" =1=x,(p").

As y and Y, are continuous morphisms of groups, and as the family (p"), <z generates
a dense subgroup of Q,, this implies that xy = x,.

Let us denote the map Q, — @,, y — Xy by a. Itis easy to see that v is a morphism
of groups (this follows immediately from the fact that x; is a morphism of groups and
the distributivity of multiplication on Q,,.)

We first show that Ker(a) = {0}. Lety € Q, — {0}. Then we have y = > ¢,p"
withm € Z,0<c¢,<p—1landc, > 1. So

Py = ) g

n>0
and x,(p~™ 1) = exp(27wip~'e,,) # 1. This shows that y & Ker(a).

Now we show that « is surjective. Let x € @). If x = 1, then x = o, SO we assume
that x # 1. By (iii), there exists k& € Z such that x = 1 on {x € Q,||z|, < p~*}.
Choose k£ minimal for this property (this is possible because otherwise y would be 1
on all of QQ,,, which contradicts our hypothesis that y # 1). Then there exists a € Q,

such that |al, = p~*+! and y(a) # 1. Define ¢y € Q, by ¥(z) = x(paz). Then

Y(p™') = x(a) # 1 and ¥(1) = x(pa) = 1 (because |pal, = p~*). By (v), there
exists y € Z, such that ¢ = x,,. In other words, for every x € Q,,

x(@) = az) = xa(p~'a" ya),
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(vii)

ie. x = alp~taly).
We show that « is continuous. Let y € Q,, and choose a neighborhood U of a(y) of
the form -

U={xeQlvre K, [x(z) - xy(2)] <c},
where K is a compact subset of (Q, and ¢ > 0. We are looking for a neighborhood V'
of y in Q, such that o(V') C U.

As Q, = U,z P"Z,, we may assume that K = p"Z, for some N € Z. We know
that ; is constant on the cosets of Z,, in Q,, so, if x € pv Z,, then X, is constant on
the cosets of p~¥Z, in Q,. Hence, if y € y+pZ,, then, forevery x € K = p"Z,,

Xy (2) = xy(@)] = X2 (V) — x=(¥)| = 0 < c.
In other words, a(y + p~7Z,) C U.

Finally, we show that o is open. Let y € QQ,, and let V' be a neighborhood of y. We
may assume that V' is of the form y + pVZ, = {y € Q,||y’ — y|, < p~} for some
N € Z. We want to show that «(V') contains a neighborhood of «(y). As « is a
morphism of groups, we may assume that y = 0. Let

U={xecQlvzep ™z, [x(=) - xy(z)| <c},

where ¢ = minj<,<, 1|1 — €27 |, and let’s show that a(p"7Z,) D U. Let
y & pN7Z,, we want to show that x,, ¢ U. We write y/ = 3.7 ¢,p" with

¢, € {0,...,p — 1} for every n > m and ¢,, > 1. Then the hypothesis on '
says thatm < N. Letz = p ™ '. Thenz € p~Z,, and

Xy (2) = x1(2y') = exp(2mip~'cm),
s0 |xy (z) — 1| > cand x,y ¢ U.
As the map y —— X, is a morphism of groups, the first statement is equiv-
alent to the fact that x,z, = 1 if and only if y € Z, We know that
Ker(x1) = Z,, so Ker(x,) D Z, for every y € Z,. Conversely, let y € Q, — Z,,.

Then |y, > 1, so |yl, > p, so |pyl, > 1, and ply™' € Z, As
Xy(P7y ™) = xa(p7) = exp(2mip™t) # 1, Ker(xy) 2 Zy.
So the map y — X, induces an injective morphism of groups from Q,/Z, to Z,.

We know (or will soon know) that Z; is discrete by [[.5.4.2(e), so it just remains to
show that every element of Z,, is of the form x,,z, for some y € Q,.

Let x € Z,. As in (iii), we can find k € N such that Ker(y) D p*Z,. Let z = x(1).
Then 2*" = y(p*) = 1, so we can find ¢ € {0,...,p" — 1} such that z = 2™ "
Write ¢ = Zf;é e, p”, with e, € {0,...,p— 1}. Then

k—1 -1
X(1) = exp(2mi Zcrpr_k) = exp(2mi Z ChnD").
r=0 n=—=k
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Let y = Z;ifk CronP". Then x(1) = x,(1). As xyz, and x are continuous
group morphisms on Z,, and as 1 generates a dense subgroup of Z,, this implies
that x = xyz,-

0

Exercise 1.5.4.2. We use the notation of the previous exercise, and we suppose that G is an
abelian locally compact group and fix a Haar measure x4 on G.

Remember that we have an isomorphism L>*(G) — L'(G)Y := Hom(L'(G),C) sending
f € L*(G) to the bounded operator g — fG fgdp on LY(G). (This does not use the fact
that GG is an abelian group.) So we can consider the weak* topology (or topology of pointwise
convergence) on L>*(G) : for f € L*(G), a basis of neighborhoods of f is given by the sets
Ugprongne = LI € L¥(G)|| Jo(f — [gidp| < ¢, 1 <i<n},forn € Zs1, g1,...,9, € L'(G)
and ¢ > 0.

(a). Show that GC L*>*(@G), and that the topology of G is induced by the weak* topology of
L*(G).

(b). Show that the subset G U {0} of L**(G) is closed for the weak* topology. (Hint : Identify
it to the set of representations of the Banach -algebra L'(G) on C.)

(c). Show that Gisa locally compact topological group. (Hint : Alaoglu’s theorem.)
(d). If G is discrete, show that G is compact.

(e). If G is compact, show that G is discrete.

Solution.

(a). An element of G is a continuous function from G to S, hence a continuous bounded
function on G, hence an element of L>°(G). Now we have to show that the two topologies
on (G coincide.

Let Y € G. First, let f1,..., [ € L' (@), and let ¢ > 0. This defines a weak* open
neighborhood

U={¢e¥ie{l,. n) \/foidu—/waidm«}

of x. We want to find an open neighborhood V' of y for the topology of compact con-
vergence such that V. C U. Let ¢ > 0. Choose a compact subset K of G such that
fG_K |filduw < e forevery i € {1,...,n} (this is possible by inner regularity of 1). Let

V= {veGvreK, |x(z) - ()] <}

6Hard question.
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Then, if» € V and i € {1,...,n}, we have
[ xtdn= [ otanl < [ 1@l = v@ln@) + [ 5@ - v
<c [ 1@ldn@ +2 [ 1h@ldnt)

<e(|lfill. +2)
So, if we take € small enough, we’ll get V' C U.

Now we prove the converse. Let y € @, let K be a compact subset of GG and let ¢ > 0. We
consider the neighborhood

V={veGVreK, |x(z)— ()| <e}

of x in the topology of compact convergence. We have to find a weak* neighborhood
included in it. Let > 0 (to be fiddled with later), and choose a compact neighborhood A
of 1 such that, for every y € A, we have |x(y) — 1| < 7. Let f = 14; this is in L'(G)
because A is compact. Note that, for every = € G,

W(A)x(x) - f *x(x |—]/ X (y™'))dy
/!1— y)|dy
< nu(A

Now we try to find a weak™ neighborhood of x in @ whose elements 1) will satisfy a similar
inequality, but for x € K. Note that, if 1) € G and = € G, then

fri(a) = /A ' e)dy
zx(x)A@dy

:/wyl
/w Lo f(y

(we use that G is commutative and that ¢ is a morphism of groups from G to S'). Now re-
member that the map G — L'(G), x — L,-1f is continuous (proposition [[.3.1.13).
As K is compact, we can find x1,...,z, such that, for every x € K, there exists
ie{l,....,n}with |L,—1f — L1 f|ly < nu(A). Consider the following weak* neigh-
borhood of y : '

U={y e @Wz c{l,z7", ... 2},

’n

[ x@tes - [ Mwwy\ < (A},
G G
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Let ¢) € U. First, we have, for every = € G,

A6 - 1+ (@) = | [ o) - w<y1x>dy\

IA
T~
—
|
=
&
=
=
+

[ G- T
< 2nu(A).

Second, we want to bound | fxx(x)— f*xi(z)| forx € K. Sofixx € K. Leti € {1,...,n}
be such that ||L,-1f — L -1 f]|1 < nu(A). Then:

|f e x(@) = f ()] =

[ (@=L ) \
[ (@=L ) ]
[ 60 = TN @ 1) - gc—lf(y))dy‘

< np(A) +2 /G L, £(5) — Lo f(0)ldy
< 3nu(A).

Putting everything together, we get, for x € K,

[(A)x(z) — p(A)p(x)| < 6nu(A),

i.e. |x(x) — ¥(x)| < 6. Choosing 7 at the beginning such that 617 < ¢, we get U C V/, as
desired.

(b). We have seen in class that G C L>®(G) ~ L'(G)" is the set of nondegenerate repre-
sentations of the Banach x-algebra L'(G). Let 7 : L'(G) — C be a representation of
L'(G) on C, and assume that it is not nondegenerate. Then there exists v € C — {0}
such that w(f)v = 0 for every f € L'(G). But this implies that 7 = 0. So we see that
G U {0} C L*=(G) is indeed the set of representation of L!(G) on C. But the conditions
saying that a bounded linear functional A : L'(G) — C is a representation are all closed
conditions in the weak* topology (because they all assert that the values of A at some

points of L' (G) are equal), so the set of representations of L'(G) is a weak* closed subset
of L>(G).

(c). Alaoglu’s theorem"|says that the closed unit ball of L>(G) (for the operator norm coming
from ||.||1, which is just ||.|| ) is compact Hausdorff for the weak* topology. But GU{0} is

Tref 2
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clearly included in this closed unit ball (this is easy even if we don’t know that the operator
norm is ||.||o0), so is compact Hausdorff for the weak™* topology. Hence its open subset &
is locally compact for the weak™ topology, and we have seen in (i) that the weak™ topology
on ( is equal to the topology of compact convergence, so we are done.

(d). Consider the map o : G — (S')¢ sending y to the family (x(z))zcc. This is obviously
injective. As G is discrete, its compact subsets are exactly its finite subsets, so the topology
of compact convergence is exactly the topology induced by the product topology on (S*)¢.
Also, by Tychonoff’s theorem, (S*)“ is compact Hausdorff. So, to get the result, we only
need to show that the image of « is closed in (S!)¢. But the image of « is the intersection
of the subsets

{(CLI>I€G € (Sl)G’amogyo = &ioyo}

for all xg, yo € G, and each of these subsets is closed, so Im(«) is closed.

(e). Suppose that GG is compact. Then the topology of G is the topology of uniform conver-
gence (induced by the norm ||.||«). To show that G is discrete, it suffices to show that its
subset {1} is open (because Gisa topological group). Let ¢ > 0 be such that the only
subgroup of C* included in {z € C*||1 — z| < ¢} is the trivial group (see 3(b)). Let
U={x¢€ @| X — 1]|oo < c}. This is an open neighborhood of 1 in G. On the other hand,
if x € U, wehave x(G) C {z € C*||1—z| < ¢}; as x(G) is a subgroup of C*, this means
that x(G) = {1},i.e. x =1,and so U = {1}.

O

1.5.5 Representations

If G is a group, we say that a representation (7, V') of G is faithful if 7 : G — GL(V) is injective.

Exercise 1.5.5.1. Let G = SU(2). The group G acts on C? via the inclusion G C GL,(C), and
we just denote this action by (g, (21, 22)) — g(21, 22). (This is called the standard representa-
tion of GG.)

For every integer n > 0, let V,, be the space of polynomials P € C|ty, t5] that are homogeneous
of degree n (i.e. P(t1,t2) =Y o, artity ", with ag, ..., a, € C).

(a). If P € V,, and g € G, show that the function C* — C, (21, 29) — P (g7 (z1, 22)) is still
given by a polynomial in V,,, and that this defines a continuous representation of G on V/,.

(b). Show that the representation V, of G is irreducible for every n > 0.

(c). For which values of n is the representation V,, faithful ?

Remark. We will see later (see problem [[V.9.1)) that every irreducible unitary representation of
SU(2) is isomorphic to one of the V,.
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Solution.

(a).

(b).

b

First take P = t{ty" ", with 0 < r < n. Letx = d

have z~! = ( d _b). So

) € SU(2). As det(z) = 1, we

—c a
P(a:_l(zl, 29)) = (dz1 — bze)"(—cz1 + azy)" ",

This is still a homogeneous polynomial of degree n in z; and 2y, let’s call it P oz~ 1. Also,
it is clear on the formula above that the map G — V,,, x — P oz~ ! is continuous (which
means that the coefficients of P o 2~ are continuous functions of the entries of the matrix
).

As the monomials tjt5~", 0 < r < n, generate V,,, the previous paragraph implies that, for
every P € V, and every x € SU(2), the function C* — C, (21, 29) — P(x7!(z1, 29)) i8
still given by an element of V,,, that we will denote by P o z™!; it also implies that the map
G =V, x — P oz !is continuous.

For every z € G, the map V,, — V,,, P — P o a2 ! is clearly C-linear in P. (In fact,

we have already used that fact.) We also have P o (zy)™' = (Poy™!)oz™! for every
P eV,andall z,y € G. So it follows from proposition that the map G x V,, — V,,,
(x, P) — P o x~!is continuous, i.e. defines a continuous representation of G on V.

Let W be a G-invariant subspace of V. Let P = 3 "_ ¢, t1t5~" € W. We show that, for
every r € {0,...,n} suchthatc, # 0, we have t1t; " € W. We prove this by induction on
the number of nonzero coefficents of P. If P has 0 or 1 nonzero coefficients, we are done.
Suppose that P has at least 2 nonzero coefficients. Fix » € {0,...,n} such that ¢, # 0.
It suffices to find another element () of W such that the coefficient of ¢t~ is nonzero,

and such that () has fewer nonzero coefficients than P; then we can apply the induction
hypothesis to ). Pick s € {0,...,n} — {r} such that ¢, # 0. Consider z, = (8 g),
with a € S'. Then z, € SU(2), and

n n

Pox,' =) @a" ety =) a" Feitity
i=0 1=0
Choose a,a’ € S! such that a" *c, — (a')"*c, = 0 and a" ?"c, — (a’)""*'¢, # 0. Then
Q:=Pox;! — Pox,' € W — {0} has the desired properties.
Now suppose that W # 0. By the previous paragraph, we can find € {0, ..., n} such that

P .=ty e W. Letx = (_ag 2), with a,b € C and |a]? 4 |b|?> = 1. Then x € SU(2)

and Pox™! = (@t; — bty)"(bty +aty)"™" € W. If we write Pox™t = Y1"  ¢;tith ™", then
min(¢,r) o
¢ = Z (=1)rJ (;) (n T) @a IR
j=max(0,i—n+r)

1=
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(c).

If we take a = —=— and b = —=L with ¢ € [~1,1], then each ¢; is the quotient of
a nonzero polynomial in ¢ by (1 + #2)™/2, so there are only finitely many values of ¢ for
which ¢; = 0. Hence we can choose z € SU(2) such that P o x~! has all its coefficients
nonzero. By the first paragraph, this implies that every monomial tit5~%, 0 < i < n, is in

W.SoW =1V,.

Let’s write m, for the map SU(2) — GL(V,). If n = 0, then V, is the triv-
ial representation of SU(2), so Ker(w,) = SU(2). Suppose that n > 1, and let
b . :
T = (_al_) 6) € Ker(m,). In particular, if P = ¢}, we must have P o x™' = P. As
Pog™! = 30" (=)™ (")@'b""ti¢5 ", this implies that @ = 1 and @'b"~' = 0 for
0 <i < n — 1. In particular, a # 0, so we must have b = 0. Then a € S*, and, for every
re{0,....,n}, (t7ty ") ox™t = a2ty ", hence a" 2" = 1. If n is odd, this implies
that « = 1, so z = I, is the only element of Ker(7,). If n is even, this only implies that

a = %1, so x = +1. In fact, if n is even and nonzero, it is easy to check that —/5 acts
trivially on V,,, so Ker(m,,) = {£12}.

So to answer the question, the representation V/, is faithful if and only if n is odd.

O

Exercise 1.5.5.2. Let (7, V) be a finite-dimensional unitary representation of G := SLy(R). We
want to show that V' is trivial (i.e. 7(z) = idy for every z € G).

(a). Consider the morphism of groups v : R — G sending ¢ € R to the matrix ((1) i)
Show that there exist a basis & of V and yq,...,y, € R, where n = dimV, such
that, for every ¢ € R, the endormophism 7(«(t)) is diagonal in % with diagonal entries
ety . eityn,

(b). Show that w(«(t)) = idy forevery ¢t € R. (Hint : If u € R* and z = (g uol), consider
the action of za/(t)z=  on V)

(c). Show that w(x) = idy for every z € G.

(d). If n > 3, show that every finite-dimensional unitary representation of SL,,(R) is trivial.

Solution.
(a). The subgroup 7m(«(R)) of GL(V) is commutative, and all its elements are diagonaliz-

92

able (because they are all unitary), so we can find a basis Z = (vy,...,v,) of V in
which all the elements of 7(«(R)) are diagonal, and even an orthonormal basis if we
want. (If you don’t like simultaneously diagonalizing an infinite subset of GL(V'), just
choose Aj,..., A, € m(a(R)) that generate Span(m(«(R))) and simultanesouly diago-
nalize them.)



(b).

(c).

(d).

L5 Exercises

For every j € {1,...,n}, the subspace Cuv; is stable by the action of a(R) C G (by the
choice of the basis), so we get a 1-dimensional representation of R on Cv;, and we know
by [1.5.4.1(b) that such a representation is of the form ¢ — e"¥iv;, foray; € C.

We have za(t)z™! = a(u’t), so w(va(t)z™') is diagonal in the basis
% with diagonal entries ™t . eiv’tun, On the other hand, we have
Tr(m(za(t)z™)) = Tr(r(x)m(a(t))r(x)™t) = Tr(r(a(t)), hence, for every t € R and
every u € R*,

n n

. .o
eztyj — E e tyj'

J=1 Jj=1

Suppose that we know that the subset R of L>*(R) is linearly independent. Then the
equality tells us that, for every u € R*, the sets {y1,...,y,} and {v?yy, ..., u%y,} are
equal. This is only possible if y; = ... = y, = 0, which in turn implies that «(t) acts
trivially on V for every ¢t € R.

Now let’s show the statement about R. Let Y1, ---,Yn € R be pairwise distinct and
¢, .- ¢m € Cbe such that 37", ¢;e™ = 0 for every ¢ € R. We want to show that
¢ =...=¢yn=0.Letr € R. Taking¢t = 0,r,...,7(m — 1), and using the calculation
of the Vandermonde determinant, we see that we must have %! = ... = ¢"¥m_ As this is
true for every r € R, it implies that y; = ... = y,, (for example by taking the derivative
with respect to r of the previous equalities and then evaluating at r = 0). So m = 1, and
then the fact that ¢,e¥' = (0 for every ¢ € R implies that ¢; = 0.

If x € SLy(R) is a transvection (aka shear) matrix, then we have z = ya(t)y~! for some
t € R and some y € SLy(R), so w(z) = 7(y)w(a(t))r(y) = n(y)nx(y)~" = idy by (b).
As SLy(R) is generated by transvection matrices, this implies that w(z) = idy for every
x e SL2 (R)

Let 7 : SL,(R) — GL(V) be a finite-dimensional unitary representation. Let x € SL,,(R)
be a transvection matrix. We could imitate (a) and (b) to prove that 7(z) = idy, but we

can also do the following thing : Choose a basis (v1, . .., v,) of R” in which the matrix of
1 1 0 0
0 1 0 0
the linear endomorphism of R™ corresponding to zis [0 0 1 0. Consider
0 0 0
0 - 1
the subset G of SL,,(R) composed of the elements whose matrix in (vy, ..., v,) is of the
a b 0 ... 0
c d 0 0
foorm |0 0 1 ... 0] witha,b,c,d €Rand ad — be = 1. Then G is a subgroup,
0 ... 0 .0
0 . 1

and it is isomorphic to SLy(R). As | is a unitary representation of G on V, we have
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G C Ker(7) by (c). In particular, 7(z) = idy.

Now we use the fact that SL,, (R) is generated by transvections matrices to conclude that
7(x) = idy for every z € SL,,(R).

O

Exercise 1.5.5.3. (a). Let G be a compact subgroup of GL,(C). Show that there exists

(b).

(c).

(d).

(e).

z € GL,(C) such that zGz~! C U(n).

Put your favorite norm on M, (C) (they are all equivalent anyway). Show that
there exists ¢ > 0 such that the only subgroup of GL,(C) included in the ball
{z € GL,(C)||||]x — I,,|| < ¢} is the trivial group.

Show that, for every continuous representation of GL,,(Q,) on a finite-dimensional C-
vector space, there exists an integer m > 0 such that the subgroup I,, + p™ M, (Z,) of
GL,,(Qy,) acts trivially.

Show that, if (7, V) is an irreducible unitary representation of GL,,(Z,,), then there exists
m > 1 such that 7(I,, + p™M,(Z,)) = {1}.

More generally, show that, if G is a profinite group (i.e. a projective limit of finite discrete
groups, see problem [[.5.1.3)), then G has a faithful irreducible unitary representation only
if GG is finite.

Solution.

(a).

(b).
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Consider the representation p of G on C" given by the inclusion G C GL,(C). We know
by theorem that there exists a Hermitian inner product on C™ for which this repre-
sentation is unitary. Let A be the matrix of this Hermitian inner product in the canonical
basis of C". Then A is a Hermitian positive matrix, so we can write it A = B*B with
B € GL,(C). (This is an easy consequence of the spectral theorem. As A is Hermitian,
we have a unitary matrix P and a diagonal matrix D such that A = P*DP. As A is pos-
itive, the diagonal entries of D are positive real numbers, so we can write D = C? with
C another diagonal matrix with positive diagonal entries. Take B = P*C'P, then B is
Hermitian positive and A = B2 = B*B.)

The fact that p is unitary for A means that X*AX = A forevery X € G. As A = B*B,
this is equivalent to (BXB~1)*(BXB™!) = I,,. So BGB™! C U(n).

Let G be a subgroup of GL,(C) contained in a ball of the form
{r € GL,(C)||||lx — I.]]| < c}. Then the closed subgroup G is contained in the
closed ball {z € GL,(C)||||z — .|| < ¢}, so it is compact, so it is contained in a subgroup
of the form PU (n)P~! by question (a). In particular, every element of G is diagonalizable
and has all its eigenvalues of modulus 1.

Fix any norm on C", and consider the corresponding operator norm ||.|| on M, (C). We



(c).

(d).

(e).
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will use this norm. Note that, if X € M,,(C) and if X is an eigenvalue of X, then we have
anorm 1 vector v € C" such that Xv = Av, hence || X || > |A|. Now let’s show that every
subgroup of GL,(C) included in the open ball B := {z € GL,(C)||||z — L.|| < v2}
is trivial. Let G be such a subgroup, and let X € G. Let Ay, ..., \, be the eigenvalues
of X. We just saw that |A\;| = ... = |\,| = 1. Suppose that we have ar € {1,...,n}
such that )\, is not equal to 1, then we can write \, = e with —7/2 < 0 < 7/2,
because |\, — 1| < || X — L,|| < v/2; but then, if we choose an integer m > 1 such that
7/2 < m|f| < m, we'll have | X™ — I,,|| > |\™ — 1| > /2, which contradicts the fact that
X™ e (. So we must have \; = ... =\, = 1, which means that X = [,,.

We have seen in the solution of [1.5.2.2(d) that K, := I,, +p™M,,(Z,) is indeed a subgroup
of GL,,(Q,). We have also put a norm on M, (Q,) such that &, is the open ball with center
I,, and radius p~™*!.

Let p : GL,(Q,) — GL(V) be a continuous representation of GL,(Q,) on a finite-
dimensional vector space V. By proposition [[.3.5.1] the morphism p is continuous. Let U
be an open neighborhood of idy in GL(V') such that the only subgroup of GL (V') contained
in U is {1} (this exists by question (b)). Then p~!(U) is an open neighborhood of I,, in
GL,,(Q,), so it contains K, for m >> 0. But K, is a subgroup of GL,,(Q,), so p(/K,,)
is a subgroup of GL(V'), so p(K,,) = {1} as soon as p(K,,) C U.

By [L.5.1.4(m), the group GL,,(Z,) is compact. Hence, by problem [[.5.5.9] the space V' is
finite-dimensional. Now the proof of the statement is exactly as in[[.5.5.3(c).

We know that GG is compact Hausdorff by problem (note that finite discrete groups
are comact Hausdorff). So, by problem [[.5.5.9} every irreducible unitary representation of
G is finite-dimensional.

Suppose that we know that G is totally disconnected. Let (7, V") be a continuous finite-
dimensional representation of G. By [[.5.2.2]c), the compact open subgroups of G form
a basis of neighborhoods of 1. By [[.5.5.3|b), we can find a neighborhood U of id, in
GL(V) such that the only subgroup of GL(V') contained in U is {idy }. So, if we choose
a compact open subgroup K of G such that 7(K) C U, we must have K C Ker(7).
Hence Ker () = |, cxer(r) TK is an open subgroup of G, and so the group G/ Ker(r) is
discrete. As it is also compact, it is a finite group. This shows that GG cannot have a faithful
irreducible unitary representation unless it is finite.

So it remains to show that ( is totally disconnected, i.e. that the only nonempty connected
subsets of GG are the singletons. Take a projective system ((G})ier, (uij : G; — Gj)i>;) of
finite groups such that G = @ie ; Gi. Let €' C G be a nonempty connected subset. Then
the image of G in each G; is connected nonempty, hence a singleton {g;}. This implies
that the only element of C is the family (¢;):e; € [],.; Gi (this family is automatically in
the projective limit).

i€l

O
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Remark. It is not true that a finite group always has a faithful irreducible unitary representation.
For example, if (G is a finite abelian group, then every irreducible unitary representation of G is 1-
dimensional by Schur’s lemma. Take G = Z /27 x Z/2Z, and let 7 : G — C be a 1-dimensional
representation. As (1.0) and (0, 1) are of order 2 in G, we must have 7(1,0),7(0,1) € {£1}. If
we want 7 to be faithful, we need to have 7(1,0) = 7(0,1) = —1, but then 7(1,1) = (-1)* =1,
so 7 cannot be faithful. (More generally, a finite abelian group has a faithful 1-dimensional
representation if and only if it is cyclic.)

Exercise 1.5.5.4. The goal of this exercise is to define the Lie algebra of a closed subgroup G
of GL,,(C), and to show that the matrix exponential induces a homeomorphism between the Lie
algebra and the group in a neighborhood of their identities.

Consider the function exp : M, (C) — M,(C) defined by exp(X) = >, ., 5 X"; we also
write e for exp(X). You may assume the basic properties of this function, i.e. that the series
defining it converges absolutely, that it is infinitely derivable, and that we can calculate its deriva-
tives term by term in the sum. You may also assume that exp(A + B) = exp(A) exp(B) for any
A, B € M,(C) such that AB = BA; in particular, exp(X) € GL,(C) for every X € M, (C),
and exp(X) ™! = exp(—X).

We also fix a closed subgroup G of GL,,(C).
(a). Calculate the differential of exp at the point 0 € M, (C). (Remember that this is a linear
operator from M, (C) to itself.)

(b). Show that exp induces a diffeomorphism from a neighborhood of 0 in M,,(C) to a neigh-
borhood of 1 in GL,,(C).

(©. Let L = {X € My(C)Ivt € R, exp(tX) € G}. Show that L is a
R-linear subspace of M,(C). (Hint : For all XY € M,(C), show that

exp(X +Y) = limy_, o (exp(: X) exp(£Y))*.)
(d). If G = U(n), show that L = {X € M, (C)|X* = —X}.
(e). If G = SO(n), show that L = {X € M,(C)|X* = —X}.

(f). Assume again that G is any closed subgroup of GL,(C). The goal of this question is
to show the following statement : (*) There exists a neighborhood U of 0 in L such that
exp(U) is a neighborhood of 1 in G and that exp induces a homeomorphism U = exp(U).

(i) Let L' be a R-linear subspace of M,,(C) such that M, (C) = L @ L', and consider the
function ¢ : M, (C) — GL,(C) defined by ¢(A + B) = e, for every A € L and
every B € L'. Show that there exist neighborhoods Uy of 0in L, V of 0 in L’ and W
of 1 in GL,(C) such that ¢ induces a diffeomorphism Uy x V = W.

(i) Suppose that (*) is not true. Show that there exists a decreasing sequence

8This L is called the Lie algebra of G. It is also easy to prove that it stable by the commutator bracket
[X,Y]=XY -YX.
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Up D U; D ... of neighborhoods of 0 in L, a sequence (Ag)x>o of elements of L
and a sequence (B )x>o of elements of L such that :

for every k > 0, we have Ay, € Uy;

for every k > 0, we have By # 0;
for every k > 0, we have ¢(Ay + By) € G,

the limit of the sequence (By)x>o is 0;

for every neighborhood U of 0 in L, we have U, C U for k big enough.

(ii1) Show that the sequence (”B—:HBk)kzo has a convergent subsequence, and that the limit

B of this subsequence is not 0.

(iv) Forevery t € R, show that Lmj | Bx|| — t as k — +o00. (Where, for every ¢ € R,
we write |c| for the biggest integer that is < c¢.)

(v) Show that B € L.

(2). Let (p, V) be a continuous finite-dimensional representation of G. For every X € L, show
that there exists a unique element u(X) € End(V) such that p(e!*) = e™*X) for every
t € R. Show also that the function u : L — End(V') is R-linear. []

Solution.
(a). Let dexp, be the differential of exp at the point 0. By definition of the differential, for
every H € M,(C), we have
dexpy(H) = liml(etH —e) = liml(etH —1I,) = ietH
0 t=0 ¢ t=0 ¢ " dt t=0
But we have p 1 d
tH __ - n __ _
pri HZ;O oy dt(tH) = Hexp(tH) = exp(tH)H,
so dexpy(H) = H. Finally, we get d exp, = iday, ().

(b). As GL,(C) isopenin M,,(C), neighborhoods of 1 in GL,,(C) are the same as small enough
neighborhoods of 1 in M,,(C). So the result follows from the fact that d exp,, is invertible
and from the inversion function theorem.

(c). Let’s first prove the hint. Let U be a neighborhood of 0 in M,,(C) and V' be a neighborhood

of 1 in GL,(C) such that exp is a diffeomorphism from U to V. We write log : V' — U
for its inverse. As exp(H) =1+ H +o(H) as H — 0, we have log(1 + H) = H + o(H)
as H — 0.

The function u : L — End(V) is called the differential of p at 0. With a little more effort, you can show that it
preserves commutator brackets.
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Let X,Y € M,(C). Th eneXp( X) =14+1+X+0(%) andexp(3: X) = 1+ 2 X +O0(5).
s0 exp(f )exp(%Y) (X +Y) + O(). If kis big enough we have
exp(%X) exp(1Y) €V and log(exp( +X)exp(1Y)) = 2(X +Y) + o(1). So finally

(exp(%X) exp(%Y))k = exp(klog(exp(%X) exp(%Y))) = exp(X+Y+o(1)) — exp(X+Y)

as k — +oo.

The set L is stable by scalar multiplication by definition. Let X,Y € L. Then
c(t) == eXeY € G forevery t € R. As G is closed in GL,(C), this implies that, for
every t € R,

exp(t(X +Y)) = lim (exp(£X)exp(£Y))" € G.

k—+o00

So X +Y €L

(d). Let X € M, (C) such that X = —X*. Then, for every ¢t € R, we have tX = —(tX)* (in
particular, X and ¢ X* commute), hence

* *
etX<etX)* — 6tXetX — etX—l—tX — 0 Im

ie,e™ €U(n). So X € L.

Conversely, let X € L. Then, for every t € R, we have e/XeX” = I,. Deriving this
expression (and using the expression for the derivative from the proof of (a)) gives

0= XetXetX* +etXetX*X* _ X—|—X*

(e). This is exactly the same proof as in (d), replacing “x”” by “T"™".

(f). (i) By the inverse function theorem, it suffices to prove that the differential of ¢ at
0 € M,(C) is invertible. If A € L and B € L', we have, by definition of the
differential

. 1 . 1 tA _tB _
dpo(A+ B) —15%2(@(1514—1-753)—@(0))—11_{%;(6 e?—-1)=A+1B

(by the calculation in (a)), so dpg = idyy, (¢), and this is certainly invertible.

(i1) Choose a sequence of neighborhoods Uy D U; D ... (resp. V. =V5 D V3 D ...)
of 0 in L (resp. L’) such that every neighborhood U (resp. V') of 0 in L contains
Uy (resp. Vi) for k big enough. (For example, we could take balls with radii tending
to 0 in L and in L'.) For every k > 0, the function ¢ is a diffeomorphism from
Uk X Vj, to o(Uy x Vi), and in particular (U, x Vi) NG is a neighborhood of 1 in G,
containing exp(Uy). If (¥) is not true, them (U, x V') N G strictly contains exp(Uy)
for every k, so we can find A, € Uy and By € Vj such that (A, + By) € G and
©(Ay + By) & exp(Uy), i.e. By # 0. Also, we have By, — 0 as k — +o00 because of
the condition on the neighborhoods V.
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(ii1) The sequence (”B—:HBk) k>0 is a sequence of elements of the unit ball of L', and this
unit ball is compact, so it has a convergent subsequence, whose limit is still in the

unit ball (and in particular nonzero).

(iv) For every k > 0, we have

t t
0< -1 ]
| Br|| | Bre|l

<1,

hence "
0<t— 55 llIBrll < Bkl
|| By ||

As By, — 0, we have || By || — 0, which implies that

t
L Bkl = 2.
|| Br|

(v) After passing to a subsequence, we may assume that B = limy_, ”B%”Bk. We

must show that ¢/® € G for every t € R. Lett € R. By question (iv) and the
definition of B, we have

tB __ . t 1 _ t
e’ = lm exp <L||BkuJ 1Bl \\BkwlB’f) = exp (LWJB’“) :

But, for every k > 0, we have (A, + B;) = e**ePr € G and e* € G be-
cause A, € L, so ePr € G; as N := Lug—kllj is an integer, this implies that
eVB = (eP)N € G. Finally, as G is closed in GL,,(C), we deduce that ' € G.

(g). Let X € L. Consider the map R — GL(V), t — p(e'X). This a continuous mor-
phism of groups, hence, by [[.5.4.1(b)(i), there exists a unique u(X) € End(V') such that
p(e!™) = exp(tu(X)) for every t € R.

Let X,Y € Land a € R. Forevery t € R, we have

tu(aX) taX) etau(X) ]

e = p(e

Taking derivatives at t = 0, we get u(aX) = au(X). Now consider ¢ : R — GL(V),
t — p(e®)p(e™)p(e MX+Y)). We have c(t) = etX)tuV)e=tuX+Y) "o ¢ is C* and
d(0) = u(X) +u(Y) —u(X +Y). On the other hand, using the fact that c is C*°, we can
prove as in (c) that, for every ¢t € R, we have

. ’
lim c(%)]’C = @0,
k—-+o0

So we just need to prove that this limit is equal to idy for every ¢ € R. An easy calculation
with infinitesimals shows that (if ¢ is fixed)

ty ty ot
e XerYe kX HY) 1 o O(75),
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SO

and

0

We will now see how to find discrete groups that have no faithful finite-dimensional represen-
tations at all, over any field.

Let " be a (discrete) group. We say that I is residually finite if, for every x € I' — {1}, there
exists a normal subgroup A of I" such that I'/A is finite (we say that A is of finite index in I)
and that the image of z in I'/A is not trivial.

The goal of the following two exercises is to prove that, if k is a field and I' C GL, (k) is a
finitely generated subgroup, then I is residually finite. m@

Exercise 1.5.5.5. Let R be a finitely generated Z-algebra that is also a domain. We fix an integer
n > 1. For every ideal [ of R, we set

I'(I) = Ker(GL,(R) — GL,(R/I)).

(a). Show that R is a field if and only if R is finite.

(b). If m is a maximal ideal of R, show that ['(m) is a normal subgroup of finite index in
GL,(R).

(c). Show that the intersection of all the maximal ideals of R is 0. (Hint : We may assume that
R is not a field. If a € R — {0}, show that the localization R[1/a] is not a field, take a
maximal ideal in R[1/a|, and intersect it with R.)

(d). Show that GL, (R) is residually finite.

Solution.

(a). It’s a classical fact that a finite integral domain has to be a field. Here is the proof. Suppose
that R is finite, and let « € R — {0}. Then multiplication by « is an additive map from R
to itself, and its kernel is {0} (because R is an integral domain), so it is injective; as R is
finite, it is also surjective, which means that there exists b € R such that ab = 1, i.e. that
a € R”.

20Tp fact, we can use similar ideas to show that, if char(k) = 0, such a T has to be virtually residually p-finite (i.e.
it has a finite index subgroup I" such that, for every x € TV — {1}, there exists a finite index normal subgroup
A # x of T’ such that TV /A is a p-group) for almost every prime number p, but the only proof I know uses the
Noether normalization theorem.

2 Add a reference !
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The converse follows from two classical results of commutative algebra (see for example
exercises 4.30 and 4.32 of Eisenbud’s [9]) :

- If K C L is afield extension such that L is finitely generated as a K -algebra, then L
is a finite-dimensional K -vector space (Zariski’s lemma).

- If R is a Noetherian ring, S is a finitely generated R-algebra and 7' C S is a R-
subalgebra such that S is a finite 7T-algebra (i.e. finitely generated as a 7-module),
then 7' is a finitely generated R-algebra (Artin-Tate).

Indeed, if R is a field, consider its prime field k. Then R is a finitely generated k-algebra,
hence a finite dimension k-vector space by Zariski’s lemma, which implies that % is a
finitely generated Z-algebra by the second result. Note that & is either Q or one of the
finite fields F,,. But Q is not a finitely generated Z-algebra (if xy,...,x, € Q — {0}, and
if & is the (finite) set of prime numbers that divide the denominator of one of the z;, then
the prime numbers dividing the denominator of a nonzero element of the Z-subalgebra
generated by x4, ..., z, has to also be in &, so this Z-subalgebra cannot be equal to Q).
So k is a finite field; as R is a finite-dimensional k-vector space, it is also a finite field.

For completeness, let’s give a proof of the part of the commutative algebra results that we
actually need. Suppose that we know the following :
(*) Let L/ K be a field extension such that :

- there exists u € L such that L = K (u) (i.e. L is generated by u as a field);
- L is a finitely generated Z-algebra,
the extension is finite and K is also a finitely generated Z-algebra.

Then we can prove in the same way that, if R is a field, it has to be finite. (Just choose
elements zy, ..., x, € R generating R over its prime field £ and apply (*) to the extensions
k(xy,...,2;_1) C k(z1,...,x;) to show that k is a finitely generated Z-algebra. The end
of the proof is as before.)

We now prove (*). Let z1,...,2z, € L™ generating L as a Z-algebra. Assume that u is
transcendental over K'; then L is isomorphic to the field of rational fractions of /K. Write
x; = %, with P, Q; € Klu]. As (1 +u][l, Qi)' = L =Zay,...,ay], we can write

- R
1 iil:—a
( +UHQ> chlngn

with R € K[u] coprime to all the @; and dy,...,d, € Zso. We get

Q% = R(1+uT], Q:), which contradicts the fact that R is coprime to all the ;.
So u is algebraic over K. Let X¢+a; X% 1+ ...+ a, € K[X] be the minimal polynomial
of u over K. Forevery i € {1,...,n}, write z; = Z;l;é biju?, with b;; € K. Let A be
the Z-algebra of K generated by a4, . .., aq and by the b;;, and let’s show that A = K. Let
y € K. Then y can be written as a polynomial in x4, . .., x4 with coefficients in Z, so it is
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(b).

(c).

(d).

also a polynomial in v with coefficients in A, which can be taken of degree < d—1 (we can

use the relation u? = —a,u?"' — ... — a, to replace any terms of degree > d with terms of
lower degree). In other words, we can write y = Z?:_()l c;ut, with e, ..., cq_1 € A. As the

family (1,u,...,u??)

andy = ¢y € A.

is linearly independent over /', we musthave c; = ... =¢c41 =0

First, the group I'(7) is a normal subgroup of GL,,(R) for any ideal, because it is the kernel
of a morphism of groups. Suppose that m is a maximal ideal. Then R/m is a finite field
by (a). As GL,(R)/T'(m) injects into GL,,(R/m), this implies that I'(m) has finite index
in GL,(R).

If R is a field, then (0) is a maximal ideal of R and we are done. Suppose that R is
not a field; in particular, by (a), it is not finite. Let a € R — {0}. The localization
R[1/a] := R[X]/(aX — 1) is a finitely generated Z-algebra because R is, so it can only
be a field if it is finite, by (a). But the obvious map R — R|[1/a] is injective because a is
not a divisor of 0 (remember that R is an integral domain), and R is infinite, so R[1/a] is
also infinite, hence it is not a field. Let m’ be a maximal ideal of R[1/a], and let m be its
inverse image in R. Then the map R/m — R[1/a]/w’ is injective (because R — R|[1/a]
is), and R[1/a]/mw'’ is finite because it is a field (by (a)), so R/m is finite and an integral
domain, so it is a field (by (a) again !), and m is a maximal ideal of R. Note also that, as
a is invertible in R[1/al, it cannot be in m’, and so it cannot be in m. So we have found a
maximal ideal of R that doesn’t contain a.

Let © = (xij)1<ij<n € GL,(R) such that x # I,. Choose i,j € {1,...,n} such that
zi; # 0and 7 # j, or such that z;; # 1 and ¢ = j. By (c), we can find a maximal ideal
m of R such that x;; € mif ¢ # j, and such that z;; — 1 € mif i = j. In other words,
the image of « in GL,,(R)/I"(m) is not the unit element. As I'(m) is a normal subgroup of
GL,(R) of finite index by (b), we are done.

O

Exercise 1.5.5.6. Let k be a field, and let I" be a finitely generated subgroup of GL,, (k).

(a).
(b).

Show that there exists a finitely generated Z-subalgebra R of k such that I' C GL,(R).

Show that I" is residually finite.

Solution.

(a).

(b).
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Let 74,...,7, be generators of I', and let R be the Z-subalgebra of k generated by the
entries of the v; and of their inverses; this is a finitely generated Z-algebra by definition.
As each element of I is a product of the elements ~v;*!, we have I' C GL,(R).

This follows immediately from [[.5.5.5(d) : If v € T" — {1}, choose a normal subgroup of
finite index A of GL,,(R) such that the image of v in GL,,(R)/A is not trivial. Then 'N A
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is a normal subgroup of I', and I'/(I" N A) injects into GL,,(R)/A, so I' N A is of finite
index in I" and the image of v in I'/(I' N A) is not trivial.

U

Of course, the result of the previous exercise would not be very interesting if we could not
give any example of a finitely generated non residually finite group. We do that in the next two
exercises.

Exercise 1.5.5.7. Let I be the quotient of the free group on the generators a and b by the relation
a'b?a = b3. In this problem, we will assume that b; := a~'ba and b do not commute in I", and
deduce that I' is not residually finite.

Letu : I' — I be a morphism of groups, with I/ finite.

(a). Let n be the order of u(a) in I''. Show that the order of u(b) divides 3" — 2.

(b). Show that there exists an integer N > 0 such that u(b;) = u(b?)". (Note that the order of
u(b) is prime to both 2 and 3.)

(c). Show that u(b;) and u(b) commute.

(d). Show that I' is not residually finite.

Solution.

(a). We first prove that, for every r € Zs, we have b = a”b* a™". The case r = 0 is obvious,
and the case r = 1 is the relation defining I". Let » > 1, suppose the result know for r, and
let’s prove it for r + 1. We have

B = (1) = (b)Y = (@b )t = (@ o) = e,

Applying to 7 = n gives b*" = a™b3"a™™, hence u(b)*"~?" = 1, so the order of u(b)
divides 3" — 2".

(b). Note that the order of u(b) is odd, because it divides the odd number 3" — 2". So there
exists N > 1 such that u(b)*" = u(b). As by = a~'ba, we have b} = a~'b"a for every
r >0, s0u(by)? = u(by), as desired.

(c). We have b? = b? by the relation defining, so u(b;) = u(b)*" by (b). This implies that u(b)
and u(b;) commute.

(d). Letc = bflb_lblb € I'. Then we have assumed that ¢ # 1, but question (c) shows that, for
every normal subgroup of finite index A of I', the image of ¢ in I'/A is trivial. So I is not
residually finite.

O
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Exercise 1.5.5.8. Let [ be the quotient of the free group on the generators a and b by the relation

a~'b%a = b®. The goal of this problem is to show that b; := a~'ba and b do not commute in I,
i.e. that bbby 'b! is not trivial in T

Let F' be the free group on the generators a and b. Remember that elements of F' are re-
duced words in the letters a,a™!,b,b~!. (A reduced words is a word that contains no redun-
dant pair aa~!, a~la, bb=! or b='b.) We write an element of I as a™b™ ... a™b™, with
N1, M,y .oy Ny My € Zoand my,ng, Mo, ..., Np_q, My_1, N, 7 0.

Let Q) be the set of reduced words of the form ™ a*! ... b"™a*"b", with :
(1) m € Zspand ry, 85,7 € Z;
(ii) s; #0foreveryi e {1,...,m};
(iii) r; # 0 foreveryi € {2,...,m};
(iv) foreveryi € {1,...,m},ifs; > 0,then 0 <r; < 1;
(v) foreveryi € {1,...,m},if s; < 0,then 0 < r; < 2.
By definition of I', we have a surjective group morphism F' — I, that we will denote by .
(a). Show that ¢(2) =T

(b). For every w € € and every s € {a,a"',b,b7'}, find a word w’ €  such that
p(w') = p(ws). We will denote this w’ by w - s in what follows.

(c). Forevery w € Q and every s € {a,a™',b,b"'}, show that (w - s) - s = w.

(d). Show that (w, s) — w - s extends to a right action of I" on (2.
(e). Show that ¢ induces a bijection = T
(f). Show that b;bb; 6! # 1in T.

Solution.

(a). By definition of the free group, we can write every element w of F' as a reduced word
b"a® ... .b"ma®mb" satisfying conditions (i), (ii) and (iii). We define N (w) to be the max
of all s; > 0 such that r; ¢ {0, 1}; so if w satisfies condition (iv), we have N(w) = 0. We
define M (w) to be the max of all |s;|, for s; < 0 such that r; ¢ {0, 1,2}; so if w satisfies
condition (v), we have M (w) = 0. We prove by induction on N(w) + M (w) that there
exists wy € €2 such that p(w) = p(wy). If N(w) + M(w) = 0, then w satisfies conditions
(iv) and (v), so it is in §2 and the conclusion is obvious.

Suppose that N (w) + M (w) > 0. If N(w) > 0, choose i € {1,...,m} such that s; > 0
and 7; ¢ {0,1}. Note that the relation defining T’ says that ¢(b%a) = p(ab?), hence also

22The easiest way to show this would to find a finite-dimensional representation of I" on which b; bbflb acts non-
trivially, but we can’t. Still, some variant of this idea will work.
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(b).

(c).

(d).
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that p(b=2a) = ¢(ab—?), which implies that p(b*a) = @(ab®*) for every k € Z. Write
r; =2k + [l withk € Zand [ € {0, 1}, and let

w = b"a . b e b ab R et T S L e

Then ¢(w) = ¢(w') by the observation above, and N(w') < N(w), M(w') = M(w).
Similarly, if M (w) > 0, choose ¢ € {1,...,m} such that s; < 0 and r; & {0,1,2}. For
k € Z, the equality p(b**a) = p(ab®*) can also be written p(a~16%*) = o(b3*a~1). Write
r; =3k + 1l withk € Zand! € {0, 1,2}, and let

w =b"a . b et b a T RS T gt bt

Then p(w) = p(w’) by the observation above, and N(w') = N(w), M(w'") < M(w). As
one of N(w) or M (w) has to be > 0, we can always find w’ € F such that p(w') = ¢(w)
and N(w') + M (w') < N(w) + M(w). Applying the induction hypothesis to w’ gives the
result.

Let w = b™a® ... 0"a*b" € (); we assume that conditions (i)-(v) are satisfied. If s = b
(resp. s = b71), then w' = b"a® ... b'ma*mb" ! (resp. w' = b"at ... bmatmbrY)
works. If s = a, write 7 = 2k + [ with &k € Z and | € {0,1} and take
w' = bat . bmatmblab®t, If s = a7, write r = 3k + [ with k € Z and [ € {0,1,2}
and take w' = b"a® ... b"ma*mbla"b?F,

The conclusion is obvious if s € {b,b~'}. Suppose that s = a and write r = 2k + [ with
k€ Zandl € {0,1}. Thenw - a = b"a** ...b"ma* b ab®*, so

(w-a) -a ' =b"a .. . ba*baa b = w.

If s = a', wiite r = 3k + [ with ¥ € Z and | € {0,1,2}. Then
w-a="b"a" ... bma*bla %, so

(w-a™')-a=0b"a".. . bma*bla ab® = w.
By (¢), (w,s) — w - s extends to a right action of F" on 2. To prove that this fac-
tors through a right action of I' on €, it suffices to show that b=3a~1b%a acts trivially.

Let w = b™a®t...0"a*"b" € (); we assume that conditions (i)-(v) are satisfied. Write
r=3k+1,withk € Zand!l € {0,1,2}. Then

w-b =" Yt T = bt L et R

SO

w- (b3a™ ) =b"a ... brmgtmbla pAkY),
hence

w- (b7%a'0%) = ba™ . b e b a0,
and finally

w- (b73a7 %) = ba® .. b et ba T ab®t = batt L et TR = .
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(e). We already know that ¢(§2) = I' by (a), so we just need to show that y|q is injective.
By the explicit formulas for the action given in the proof of (b), if w € (2, then we have
1-w =w. As 1 - w only depends on ¢(w) by (d), this shows that p(w) determines w.

(f). By (e), we just need to show that the unique preimage of o(b,bb; ') in Q is not trivial.
We have seen in the proof of (a) an algorithm to transform a reduced word into an element
of  having the same image by . Applying it to b1bb; 'b~! = a~'baba~'b~tab™!, we get
a~'baba~tbab~* # 1 (modulo easy-to-make mistakes), so we are done.

U

Exercise 1.5.5.9. The goal of this problem it to prove|[.3.2.13] i.e. the fact that every irreducible
unitary representation of a compact group is finite-dimensional.

Let G be a compact group, let dz be the normalized Haar measure on G, and let (7, V') be a
nonzero unitary representation of G. Fix u € V — {0}, and define T : V' — V by

T(v) = /G (0, m(a) (W) () (u)de

(a). Show that T is well-defined and that 7" € End(V').
(b). Show that 7" is GG-equivariant.

(c). Show that (T'(v),v) > 0 forevery v € V.

(d). Show that T" # 0.

(e). Show that T is in the closure (for ||.||,,) of {7” € End(V)|dimc(Im(7")) < +o0}; in
other words, 7' is in the closure of the space of endomorphisms of finite rank. (Hint :
G — V, z — 7(x)(u) is uniformly continuous.)

(f). Let B be the closed unit ball in V. Show that 7'(B) is compact. (In other words, the
operator 7" is a compact operator. Problem can help shorten the proof.)

(g). If V is an irreducible representation of V', show that V' is finite-dimensional.

Solution.

(a). We must show that the integral defining 7'(v) converges for every v € V. Letv € V.
Then the function G — V, (v, m(x)(u))7(x)(u) is continuous (because z — 7(z)(u) is
continuous); as (G is compact, the integral exists by problem|[[.5.6.3| and moreover we have

1T (v)ll < /G (v, m(@) ()] [7(z) ()| dz < [Jv]l]ull*.

The function 7' : V' — V is C-linear (because addition and multiplication by a scalar
are continuous on V/, so they commute with the integral by [[.5.6.1(b)), and the inequality
above shows that 7" is bounded and that || T[], < ||u|]?.
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(b). Letv e Vand z € G.

- /G<v, (@ y) () (y) (u)dy
_ /G (v, 7(y) ()7 () () () dy

(by left invariance of the Haar measure for the last equality). As 7(z) : V. — V' is
continuous and linear, [[.5.6.1((b) implies that the last line is equal to

() (/G@ﬂr(y)(wﬁr(y)(wdy) = 7(2)(T(v)),

which is what we wanted.

(c). Letv e V. As ( .) is continuous and linear on V', we have

(T(0).0) = [ (r(a@)(w),0) (v, 7()(w)da

/|U7T )| dx

(d). Take v = u. As {(u,7(z)(u)) = ||ul|* > 0 and z — (u,7(z)(u)) is a continuous
function from G to C, there exists ¢ > 0 and an open neighborhood U of 1 in GG such that
|(u, m(x)(u))|* > € for x € U. Then, by the calculation in the proof of (c), we have

/\uﬂ WPdx > eu(U) > 0.

So T # 0.

(e). Lete > 0. As G is compact, the continuous function G — C, x —— 7(x)(u) is uniformly
continuous, so there exists a neighborhood U of 1 such that, for x € G and y € zU, we
have ||7(z)(u) — 7(y)(u)|| < e. As G is compact and the family (zU),cc covers G, we
can zy,...,r, € Gsuchthat G = |J_, 2;U. Choose Borel subsets Ei, ..., E, of X such
that x; € B; C ;U foreveryi € {1,...,n}and X = E; ... U E, (as sets). If x € E;
and v € V, then we have

{0, () (w))m (@) (uw) = (o, m(w:) (w)m () (u)]
< [lv, (w(2) = m(2:)) (w))m (@) ()| + ||, 7 (2:) (W) (7 (z) =7 (z;))) ()]

< [lvllellull + lollllulle = 2e]jol[{lull
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Define U € End(V') by

This operator U has finite rank, because its 1image 1s contained
Span(m(z1)(u),...,m(x,)(u)). Also, by the calculation above (and exercise [[.5.6.2), for
every v € V, we have

IT(v) = U()]| < Z

[ @@ s - [ (or@)m)

<> u(E)2efollul
1=1
= 2¢||vf[ffe]l-

So |7 — Ullop < 2¢l|ul|. As e > 0 was arbitrary, this shows that 7" is a limit of operators
of finite rank.

(f). By|L.5.6.5/e), it suffices to show that 7'( B) is totally bounded. Let U be a neighborhoof of

0, which we may assume to be an open ball of radius € > 0. We must find =4, ..., 2, € B
such that every point of T'(B) is at distance < ¢ from one of the 7'(z;).

By (e), we know that 7" is a limit of operators of finite rank, so we can find U € End (V')
of finite rank such that ||7"— Ul|,, < ¢/4. As U has finite rank, U(B) is a closed bounded
subset of the finite-dimensional space Im(U), so it is compact. In particular, we can
find z1,...,x, € B such that, for every y € B, there exists i € {1,...,n} such that
1U(y) = Ul < e/2.

Now lety € B, and choose i € {1,...,n} suchthat |U(y) — U(x;)|| < £/2. Then

1T (y) = T(@y)|| < T(y) = U@l + 1U(y) = Ul@:)[| + |U(z:) — T'(:)]]
<lylle/4+e/2 4 ||zille/4
<e.

(Remember that y, z; are in the closed unit ball of 1.)

(g). Now we put everything together. Suppose that V' is an irreducible unitary representation
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of GG. Then the operator 7" € End(V) that we constructed is G-equivariant, so, by Schur’s
lemma, there exists A € C such that 7" = Aidy. As T' # 0, A # 0. So T'(AB) is the closed
unit ball in V. Part (f) says that this is compact, which, by Riesz’s lemma, implies that 1/
is finite-dimensional.

O
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1.5.6 Vector-valued integrals and Minkowski’s inequality

Note
[ ]

: You are allowed to use without proof the following results :

The Hahn-Banach theorem.

The fact that every continuous linear functional on a Hilbert space V' is of the form (., v),
withv € V.

Holder’s inequality.

The fact that, if (X, i) is a measure space, and if 1 < p < 400 and 1 < ¢ < +00 are such
that p~'4¢~' = 1, then the map L?(X, 1) — Hom(LY(X, 1), C), f — (g — [ fgdpu)
is an isomorphism that preserves the norm (L? norm on the left, operator norm on the right).

Exercise 1.5.6.1. Let (X, ;1) be a measure space and V' be a Banach space. We write /" for
Hom(V, C). We say that a function f : X — V is weakly integrable if, for every T € V'V, the
function T o f : X — Cisin L'(X, u). If f is weakly integrable and if there exists an element
v of V such that T'(v) = [, T o f(x)du(z) for every T € V', we say that v is the integral of f

on X and write v = [, f(z)du(z) = [, fdp.

(a).
(b).

(c).

Show that the integral of f is unique if it exists.

Let IV be another Banach space and u € Hom(V, W). If f : X — V is weakly integrable
and has an integral v, show that u o f : X — W is weakly integrable and has an integral,
which is equal to u(v).

Give an example of a weakly intergrable function that doesn’t have an integral.

Solution.

(a).

(b).

By the Hahn-Banach theorem, for every v € V/, there exists 7' € Hom(V, C) such that
T(v) = |lv|| and ||T|lo, < 1. In particular, an element v of V is zero if and only if
T'(v) = 0 for every ' € Hom(V, C), or, in other words, two elements v, w € V are equal
if and only if 7'(v) = T'(w) for every T' € Hom(V, C). This implies that the integral of f
is unique if it exists.

We first show that w o f is weakly integrable. Let 7' € Hom(W,C). Then
T ou € Hom(V,C), so the function T ou o f : X — C is integrable.

Now suppose that f has an integral v. Then, for every 7' € Hom(W,C), we have
T o Hom(V,C), so [T ouo fdu = T o u(v). This means that u(v) is the integral
ofuo f.

Z3Technical note : This is not true in general for p = 1, ¢ = +oo if y is not o-finite, but it can be salvaged for a
regular Borel measure on a locally compact Hausdorff space by slightly modifying the definition of L*°. You
can ignore this.
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(c). Let X = N with the counting measure x, and
V = co(N) := {(2n)n>0 € CV| lim z, = 0}.
- n—-+00

We will use the fact that ¢!(N) is the continuous dual of c¢y(N), via the map
(H(N) x ¢o(N) = C, ((zn), (Yn)) —> >_,,50 TnYn, and that the continuous dual of ¢*(N)
is /°(N) (by a similar map). The map from co(N) into its bidual is the usual embedding
co(N) C =(N).

We define f : X — V by f(n) = 1g,. Then, for every (z,)n,>0 € '(N), if
T : ¢g(N) — C is the corresponding linear functional, we have

/X T(f@)dux) = Y,

which converges because (z,,),,>0 is in £ (N). Hence f is weakly integrable. But f does not
have an integral (at least in ¢(N)), because the continuous linear functional it defines on
(*(N) is representable by an element of />°(N) which is not in co(N) (the constant sequence
1). As evaluating on points of ¢! (N) separates the elements of /*°(N), there cannot be any
element of co(N) giving the same linear functional on ¢ (N).

O
Exercise 1.5.6.2. In this problem, X is a locally compact Hausdorff space and p is a regular

Borel measure on X. Let V be a Banach space, and let f : X — V be a continuous function
with compact support.

(a). Show that f is weakly integrable.

(b). If p(supp f) = 0, show that [, fdyu exists and is equal 0.
The goal of this problem is to show that:
(i) f has an integral v;

(i) [loll < [ IS (@)lldp(x);

(iii) if p(supp f) # 0, then p(supp f)~'v is in the closure of the convex hull of f(X).
By question (b), we may (and will) assume that p(supp f) # 0.

(a). Show that we may assume that X = supp f (in particular, X is compact) and that
n(X) =1.

From now on, we assume that X is compact and that ;(X) = 1.

(a). LetTy,...,T, : V — R be bounded R-linear functionals (we see V" as a R-vector space in
the obvious way), and define a4, ...,a, € Rby a; = [, T; o fdu. Show that (ay,...,a,)
is in the convex hull of the compact subset ((7},...,7,) o f)(X) of R™. (Hint : What
happens if it is not ?)
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Let K be the closure of the convex hull of f(X). This is a compact subset of V' by prob-
lem|[.5.6.7| For every finite subset {2 of Homg(V,R) (the space of bounded R-linear function-
als from V to R), we denote by I the set of v € K such that, for every 7' € (), we have

T(v)= [, To fdpu.

(a). Show that I, is compact for every 2 C Homg(V, R).

(b). Show that I, is nonempty if €2 is finite.

(c). Show that the integral of f exists and is in K.

(d). Show that :

1] saul < [ 1@ duco)
X X
(Hint : Hahn-Banach.)
Solution.

(a). Let T € Hom(V,C). Then T'o f : X — C is a continuous, and its support is contained in
supp( f), hence compact. Hence 7" o f is integrable.

(b). Suppose that p(supp f) = 0. If T" € Hom(V,C), then T’ o f : X — C is continuous and
p(supp(T o f)) = 0,s0 [, T o f(f)dp = 0. This shows that 0 is the integral of f.

(c). Suppose that we know the conclusion if X = supp f and u(X) = 1. Let f : X — V
be continuous with compact support. We have already seen that we may assume
wu(supp f) # 0, so let’s do that. Let X’ = supp f, and consider the measure i/ on X’
that is p(supp f)~" times the restriction of x. By our assumption, [ o flxrdp’ exists, let’s
call it v, we have ||v|| < [, ||f(2)|/di/(x) and v is in the closure of the convex hull of
fXT).

Let’s show that w := p(supp f)v is the integral of f. Note that u(supp f) 'w is in the
convex hull of f(X’) = f(X) and that

Jull < ntsupp ) [ 17 du ) = [ 15 dno)

X’ X
so this proves the conclusion for f.
Let T € Hom(V, C). Then supp(7 o f) C X, so
[ 7o s@dnte) = wtsupp ) [ 7o fa)an' (@) = w.

X X/

Sow = [y fdpu.
(d). Let L = ((T1,...,T) o f)(X). Suppose that (ai,...,a,) is not in the convex hull of L.

Then, by the hyperplane separation theorem, there exists a linear functional A : R” — R
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(e).

(®).

().

(h).

and ¢ > 0 such that \(ay,...,a,) > c+ A(v), forevery v € L. Let \y,..., A, € Rbe the
images by A of the vectors of the canonical basis of R”. Then we have, for every z € X,

Z/\iai:)\(al,...,an) >c+ Mo (Th,...,T,) o f(x) :c—i—Z)\iTi(f(a:))

Taking the integral over X (and using p(X) = 1) gives

ZAal>c+ZA/Tof —c—i—Z/\aZ,

a contradiction.

For every 7' € Homg(V,R), the set of v € K such that T'(v fx T o fdu is a closed
subset of K. As the set I is an intersection of sets of this form it is also a closed subset
of K, hence compact because K is compact.

If Q is finite, write Q@ = {T1,...,7,} and To = (T4,...,T,,) : V — R". We have
seen in question (d) that a := [, To(f(x))du(z) is in the convex hull of To(f(X)),
so there exists v € V such that v is in the convex hull of f(X) (hence in K) and
To(v) = a= [, To(f(x))du(x). The second condition says exactly that v € I.

The subsets (/{7})7rcHoms(v,r) Of K have the finite intersection property by question (f).
As K is compact, this implies that Npepomg (v;r){{7} 18 nonempty. Choose a vector v in it.
Let T € Hom(V,C). As Re(T") and Im(7") are in Homg (V, R), we have

T(v) = Re(T(v)) 4+ i Im(T (v))
= /X Re(T(f(x)))du(z) + i /X Im(T'(f(x)))dp(x)

- /X T(f (2)) (),

sov = [y fdu. Also, v € K because all the Iy are contained in K by definition.

By the Hahn-Banach theorem, there exists 7' € Hom(V,C) such that 7'(v) = ||v| and
|T|lop < 1. Then

Joll = 1@ = | [ T(a)duta)| < [ 17 @lduta) < [ 17 lduta

O

Exercise 1.5.6.3. In this problem, X is a locally compact Hausdorff space and u is a regular
Borel measure on X. Let V' be a Banach space, let f : X — C be a function in L' (X, 11), and
let G : X — V be a bounded continuous function.

The goal of this problem is to show that :
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(i) the function fG : X — V has an integral v;
(i) [Jo]] < (supsex [G(@)) (fx [f(@)ldula));
(iii) v € Span(G(X)).

(a).
(b).

(c).

Show that fG is weakly integrable.

Let (f,)n>0 be a sequence of functions of 6.(X) that converges to f in L'(X, u). Show
that f fnGdu exists for each n > 0, and that ( f ¥ fnGdp)n>o is a Cauchy sequence.

Prove assertions (1), (ii) and (iii) above.

Solution.

(a).

(b).

(c).

Let T € Hom(V, C). Then, for every z € X,
T(f(z)G(@)| < [f()||[T(G())] < | f@)T]opl| Gl2)]| < |f(17)|||T||ong)I? 1G(y)]]-

As sup,cy |G(y)|| < +ooand f € L'(X, mu), the function T o (fG) is integrable. So
fG is weakly integrable.

For every h € %.(X), the function hG : X — V is continuous and has support contained
in supp(h), hence compact. By problem|[.5.6.2} this function is integrable, and we have

||/(hG)($)du(:v)|l S/ h(@)||G(@)[|dp(z) < sup [|G(y)]l[|7]:-
X X yeX
Applying this to f,, shows that f,,G is integrable, and applying it to f,, — f,, shows that

I [ (1Gyiuta) = [ (Gl < sup |G = fulh o ©

because (f,)n>0 converges in L' (X, p).

As V is complete, the Cauchy sequence ( [ (f,G)dpu) has a limit in V, that we’ll call v.
For every T' € Hom(V, C), we have

70 = i 7( [ (GuG)i) = i [ TG0

n—-+4o0o n—-+00

As in (a), we have
II/XT(fn(:v)G(x))du(x)—/XT<f($)G(95))du(w)I| SEIEJEHG(?J)HIITIIopIIfn—f||1,

so this converges to 0 as n — 400, and we get
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This shows that x is the integral of fG.

Moreover, by problem [1.5.6.2, [, (f.G)du is in the closure of the span G(X) for every
n > 0. As v is the limit of these vectors, it is also in the close of Span(G(X)).

Finally, to show the bound on ||v||, we could use the Hahn-Banach theorem and the prop-
erty characterising v as in question [[.5.6.2]h), or use the fact that

I (Gl < [ @G dnte) < sup G

for every n > 0 and that this sequence of integrals converges to v.

U

Exercise 1.5.6.4. Let G be a locally compact group, ;. be a left Haar measure on G, and
LYG) = LYG, pn). Let f,g € L'(G).

(a). Show that the function G — L'(G), y — f(y)L,qg is weakly integrable and has an
integral.

(b). Show that
frg= /Gf(y)Lygdu(y)-

Solution.

(a). Note that the function G — L'(G), y +~— L,g is continuous and that
sup,cq || Lyglli = [lgll1 < +o00. So the conclusion follows from problem [L.5.6.3

(b). Let F = [, f(y)Lygdu(y) € L'(G). By definition of the intergral, for every h € L>(G),
we have

| @i = [ b et dutdn) = [ 1e)(f 5 o)(e)dnto)

G

As L*>(G) is the continuous dual of L'(G), we have f * g = F by question [1.5.6.1(a).
0

Exercise 1.5.6.5. Let IV be a normed vector space. A subset A is V' is called fotally bounded if,
for every neighborhood U of 0 in V, there is a finite set /' such that A C F' + U.

(a). Show that the convex hull of a finite subset of V' is compact.
(b). Show that every compact subset of V' is totally bounded.
(c). If A C V is totally bounded, show that A is totally bounded.
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If A is a totally bounded subset of V', show that its convex hull is totally bounded. (Hint :
Open balls are convex.)

If V is complete and A is totally bounded, show that A is compact.

If V is complete and K C V' is compact, show that the closure of the convex hull of K is
compact.

Solution.

(a).

(b).

(c).

(d).

(e).

Let ' be a finite subset subset of V. Then its convex hull is contained in Span(£’), which
is finite-dimensional. In a finite-dimensional vector space, the convex hull of any compact
set is compact, so the convex hull of the finite set F' is compact.

Let K be compact subset of V', and let U be a neighborhood of 0 in V. We may assume
that U is open. Then K C |J, (v + U). As K is compact, there exists a finite subset [
of Ksuchthat K C |J,cp(z+U) =F +U.

Let A C V be a totally bounded subset, and let U be a neighborhood of 0 in V. We may
assume that U is an open ball centered at 0 and of positive radius, say c. Let U’ be the open
ball centered at 0 of radius ¢/2. As A is totally bounded, there exists a finite set F' such
that A C F + U’. As F is finite, the set F' + U’ is closed, so it contains A. But U D U’, so
ACF+U.

Let U be a neighborhood of 0 in V. Choose a convex open neighborhood U’ of 0 (a ball
for example) such that U’ + U’ C U, and let F’ be a finite set such that A C F' + U’. Let
K be the convex hull of F', then A C K + U’. As K and U’ are convex, so is K + U’, so
the convex hull of A is contained in K + U’. On the other hand, the set K is compact by
question (a), hence totally bounded by question (b), so there exists a finite set F” such that
KcF +U',hence K+U' Cc F'+U"+U" C I’ +U. So we have found a finite set F’
such that the convex hull of A is contained in /" + U.

Write K = A. Forevery z € V and ¢ > 0, let B(z, c) be the closed ball of radius c center
at x.

Let (U;);er be a family of open subsets of K such that K C UZ-E ; Ui, and assume that no
finite subfamily of (U;);c; covers K. We know that K is totally bounded by question (c).
We will construct by induction on n a decreasing sequence (K, ),>1 of nonempty closed
subsets of K such that K, is contained in a ball of radius 1/n and K, cannot be covered
by a finite subfamily of (U;)e;.

First, as K is totally bounded, there exists a finite set F such that
K c F+ B(0,1) = U,cp B(x,1). We choose € F such that K N B(x,1) is
nonempty and cannot be covered by a finite number of the U;, and take K1 = KN B(x, 1).

Now suppose that we have constructed K1, ..., K,, with n > 1. Then, as K, is totally
bounded (as a subset of K), there exists a finite set F' such that K,, C F'+ B(0, (n+1)7").
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(®).

Again, as K, cannot be covered by a finite number of the U;, there must exist x € F' such
that K, N B(z, (n + 1)7') is nonempty and can also not be covered by a finite number of
the U;, and we take K, 11 = K, N B(z,(n+1)71).

Choose z,, € K, for every n > 1. By the condition that K, is contained in a ball of radius
1/n, the sequence (x,),>¢ is a Cauchy sequence. As V' is complete, (z,),>1 has a limit,
say . As x € K, there exists ¢ € I such that U;. But then B(x,c) C U; for ¢ > 0 small
enough, so K, C U, for n big enough, which contradicts the properties of /.

By question (d), the convex hull of K is totally bounded, so its closure is compact by
question (e).

O

Exercise 1.5.6.6. Let GG be a locally compact group, let dx be a left Haar measure on G, and
let UCB(G) be the subspace of L>(G) composed of the left uniformly continuous bounded
functions on G.

Let f € LY(G) and p € L>(G).

(a).
(b).

Show that f * ¢ exists and is left uniformly continuous and bounded.

If o € UCB(G), show that the integral [, f(y)L,edy exists and is equal to f * .

Solution.

(a).

116

Let = € G. Then the integral defining f * ¢(x) is

/ F)oly ) duly),
G

which converges because | f(y)o(y ™

that

x)| < ||¢lloolf(y)| for every y € G. This also shows

|f ()| < [lelloll 1
for every x € G, so f * ¢ is bounded and

1 * ¢lloe < fl@lloollf 1,

Now we show that f * ¢ is left uniformly continuous. Let x € GG. By proposition [[.4.1.3]
we have L, (f * ¢) = (L. f) * ¢, s0

1L (f 5 ) = [+ @lloo = [(Laf = f) * @lloc < [ Laf = fllll@]lo.

By proposition|[.3.1.13] this tends to 0 as x tends to 1 in G, which exactly means that f * ¢
is left uniformly continuous.
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(b). Suppose that ¢ € UCB(G). Then the map G — UCB(G), y — Ly is continuous (see

remark [I.1.13), so the integral [, f(y)Lypdu(y) exists in UCB(G) by problem |1.5.6.3
I
€

Let h = y) Lypdu(y).

For every g € L'(G), the map ¢ —— [, gtpdp is a continuous linear functional on
UCB(G). So, by definition of the integral, we have

/Gghduz/G Gh(l’)f(y)cp(y’lr)du(x)dﬂ(y) Z/Gg(f*so)du-

As the linear functionals defined by the elements of L!(G) separate points on L>(G), this
implies that h = f * ¢.
U

Exercise 1.5.6.7 (Minkowski’s inequality). Let (X, i) and (Y, ) be measure spaces, which we
will take o-finite to simplify. @ Let p € (1,+00). E] Let o : X x Y — C be a measurable

function. We assume that
1/p
/(/M%M%MO du(y) < oo.
y \Jx

(a). Show that the function ¢(.,y) is in LP(X, u) for almost every y € Y.

(b). Let Y’ be a measurable subset of Y such that »(Y — Y’) = 0 and ¢(.,y) € LP(X, u) for
every y € Y. Show that the function Y' — LP(X, u), y — ¢(., y) is weakly integrable.

(c). Show that the integral h € LP(X, 1) of the function of (b) exists, and that we have

Mmzlymwww

for almost all x € X.

(d). Show Minkowski’s inequality :

(/. ") < [ ([ o) o

/Y e(x,y)dv(y)

Solution.

(a). The function y — ([ |¢(z, y)|pd,u(x))1/ " is integrable by hypothesis, so it must take
finite values for almost all y € Y, which means that [ |¢(z, y)[Pdu(z) < +oco for almost
everyy € Y.

24There is a way to extend the results to not necessarily o-compact locally compact groups with their Haar measures.
2>Minkowski’s inequality is still true for p = 1, but it follows immediately from the Fubini-Torelli theorem in that
case.
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(b).

(c).

(d).

118

Let ¢ € (1,+00) be such that  + -. We want to check that, for every f € LU(X, ),

the integral [, [, f(z)o(z,y)du(x)du(y) converges. Let f €9 (X, ). By Holder’s
inequality, for every y € Y7, [, f(x)¢(z,y)du(x) converges absolutely, and

[ 1s@ptalua) < 170l

As [, Hgo )H »dv(y) converges by hypothesis, this gives the convergence of
Jy+ Jx f(@)e(x, y)du(x)du(y), and even its absolute convergence.

We have seen in question (b) that [, [, |f(z)p(z,y)|du(x)dv(y) < +oo for every
f € LYX,u). By Fubini’s theorem, this implies that, for every f € LI(X,p),
Jy 1 f(@)e(z,y)ldv(y) = |f(@)] [y le(z,y)]|dv(y) < 4oo for almost all z € X. As f
is arbitrary (and y is o-finite), we get that [, [o(z, y)|dv(y) < +oo for almost all z € X,
say for z € X' with u(X — X') = 0.

We define a function h : X’ — C by h(z) = [, ¢(x,y)dv(y). We want to show that this
is the integral of y — (., y). If f € Lq(X ), we have

Aﬂ@%ﬁ /f o, 9)dp()da(y),

so, using Holder’s inequality as in question (b),

dp(x)

géywmmwwm§wm,

C = /(/\goxy) dv(y).

This shows that f — [, f(x)h(x)dpu(x) is a bounded linear functional on L4(X, 1), and
that its operator norm is bounded by C. As the continuous dual of LY(X, u) is LP(X, u),
we must have h € LP(X, ) and ||h||, < C. The first property, together with the formula
for [, f(x)h(x)du(x), says that h is indeed the integral of y — o (., y).

where

The second property of h proved above is exactly Minkowski’s inequality.
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Il.1 Banach algebras

In this section, A will be a Banach algebra. (See definition|[[.4.1.4]) Note that the submultiplica-
tivity of the norm implies that the multiplication is a continuous map from A x A to A.

We suppose for now that A has a unit e and denote by A* the group of invertible elements of
A.

II.1.1 Spectrum of an element

Definition I1.1.1.1. Let x € A.

(i) The spectrum of x in A is

o(x) =ca(x) ={AeClhe —x & A*}.

(i1) The spectral radius of x is
p(a) = inf [la" V",

We will see below how that p(z) is equal to sup{|A|, A € o(x)} (which justifies the name
“spectral radius”).

We start by proving some basic properties of invertible elements and the spectral radius. (Note
that point (i) does not use the completeness of A, so it stays true in any normed algebra.)

Proposition IL1.1.2. (i) Ifz,y € A* are such that ||x — y|| < 3||a~!||™", then we have
lo™" =y~ < 2027 (ly — =l.

In particular, the map x — x~! is a homeomorphism from A* onto itself.

(ii) Forevery x € A, we have
p(z) = Tim [la"|"/"
n——+oo

(Gelfand’s formula).

119



II Some Gelfand theory

(iii) Let x € A. If p(x) < 1 (for example if ||z|| < 1), then e — x € A* and
(e — )™ = 3,50 2", with the convention that 1° = e. (In particular, the series con-
verges.)

(iv) The group A* is open in A.
Proof. (i) We have

byl = a0 < ™ = = ™ = )l <y~ e — il < 5y~
In particular, ||y ~!|| < 2|[z~!||. Combining this with the inequality above gives
ly™ =27 < ly~ il =yl < 2027 P fle = yll,
which is the first statement. This also show that the map z — 2! is continuous. As this

map is equal to its own inverse, it is a homeomorphism.

(ii) Lete > 0. We want to find N € Z; such that ||2"||*/™ < p(x)+¢ forn > N. (We already
know that ||2"||'/" > p(z) by definition of p(z), so this is enough to establish the result.)
By definition of p(x), we can find m > 1 such that [|z™||'/™ < p(x)+1e. For every integer
n > 1, we can write n = mq(n) +r(n), with ¢(n),r(n) € Nand 0 < r(n) < m — 1. Note

that @:i<1_7’(”)) o

n m n n—too m’

hence
™| |||V ——— [

n—-+o0o

Choose N > 1 such that, for n > 1, we have

m n)/n rin)/n m m €
™ [ " < [ S < p(w)e.

Then, if n > N, we have

" |7 = flam |V < Yl 1O T < pla) + e

)

as desired.

(iii) Fix r € R such that p(x) < r < 1. Then, by (ii), we have ||z"| < r" for n big enough.
For every n € N, we write .S, = ZZZO xF. Then, if m > n are big enough, we have

= 1
HSm N Sn“ _ Z 2F < prtl Zrk — pntl - _
k=n+1 k>0 -

I'The reasoning used in this proof is sometimes called Fekete’s lemma. See https://en.wikipedia.org/
wiki/Subadditivity.
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So the sequence (5,,),>0 is a Cauchy sequence, and it converges because A is complete.
This means that the series Zn>0 x™ converges. Moreover, for every n > 0, we have

n n+1
(e —x)S, =S,(e —x) = Zxk —ka =e— "t
k=0 k=1

This tends to e as n — +00,50 > ., 2" is the inverse of e — .

(iv) Let x € A*. If y € A is such that ||y — z|| < |z7!||7', then we have
lle — 2z Yy|| < ||l=7Y|||z — y|| < 1. So, by (iii), 7'y € A*, hence y € A*.

O

Theorem II.1.1.3. For every © € A, the spectrum o 4(x) is a nonempty compact subset of C,
and we have

p(x) = max{|\|, A € oa(x)}.

This explains the name “spectral radius” for p(z). Note in particular that, although the spec-
trum of = depends on A (for example, if we consider a Banach subalgebra B of A containing z,
then we have () D 04(x), but this may not be an equality), the spectral radius of = does not.

Proof. Consider the map F': C — A sending A\ € C to Ae —x. Then F is continuous, and o 4(x)
is the inverse of the closed subset A — A* of A, so 04(z) is closed in C.

Next, let A € C such that |\| > p(x). Then p(A~'z) < 1, so, by (iii) of proposition|[1.1.1.2]

we have e — A\'z = A7!(\e — z) € A*, which immediately implies that A & o4(z). So we
have shown that

p(x) = sup{|A, A € oa(z)}.
In particular, 0 4(x) is a closed and bounded subset of C, so it is compact.

Let’s show that o 4 () is not empty. Let 7' : A — C be a bounded linear functional, and define
f:C—oalx) > Cby f(A) =T((Ne —z) ™). If \,u € C — 04(x), then

(Ae—z) " =(pe—x)"" = (Ae—z) " ((pe—2)—(Ne—2))(pe—2)"" = —=(A—p)(Ae—z) "} (pe—z) ",

so, if A\ # p, we get
fN) = fu)

S = (e~ a) e )™

Using the continuity of the function y — y~! (see (i) of proposition|[[.1.1.2), we get, for every
Ae C— O'A(:L'),
2\) —
lim J) = ) = -T((Ne —2)7?).
n—A A — 12

121



II Some Gelfand theory

In particular, the function f is holomorphic on C — o 4(x). Let’s prove that f vanishes at oo,
i.e. that f(\) tends to 0 when |A\| — +o00. Let A € C such that |A\| > p(z). Then, by (iii) of

proposition I[I.1.1.2}

L L 11,
()\e—x)lz)\l(e—)\lx)lzxzﬁx,

SO
. 1|zt 1 1
IO — )™ < 57 =
N2 W~ T

This tends to 0 as |A\| — 4o00; as T is continuous, so does f(\).

Now suppose that 04(z) = &. Then f is an entire function, and f(\) — 0 as |\| = +00. By
Liouville’s theorem, this implies that f = 0, i.e. that T((Ae — z)~!) = 0 for every A € C. But
this is true for every 7" € Hom(A, C) and bounded linear functionals on A separate points by
the Hahn-Banach theorem, so we get that (Ae — x)~! = 0 for every A € C. This is impossible,
because (\e — )7t € AX. So oa(x) # @.

Finally, we prove that
p(r) < max{|A|, A € oa(z)}.

Let r = max{|\|, A € oa(z)}. We already know that < p(z). Assume that r < p(x), and
pick 7" such that r < v’ < p(z). Let T' € Hom(A, C) and define f : C — 04(z) — C as before.
Then we have seen that f is holomorphic on C — g4(z) D {X € C||\| > r}. We have also seen

that, if |A| > p(z), then
1
-1 __ n
Ne—x) = E prEsta
n>0

hence

ORI

By uniqueness of the power series expansion, this is still valid for |A| > r. In particular, the

T(xn)

series ano 7)mFT converges, so the sequence ((::/()Ln?l)nzo converges to 0, and in particular
it is bounded. Consider the sequence (a,),>o of bounded linear functionals on Hom(A, C)
defined by «,(T) = (F‘:,()Ln?l We just saw that, for every 77 € Hom(A, C), the sequence
(0 (T'))n>o is bounded. By the uniform boundedness principle (theorem [[.3.2.11)), this implies
that the sequence (||a, ||op)n>0 is bounded. But note that, by the Hahn-Banch theorem, we have
[[="]]

‘ . So the sequence ((T‘/)—n+1>n20 is bounded. Choose a real number C' bounding

HanHop = (T,Q)S—ZH
it. Then we get
p(z) = lim ||z < lLim CY*(")mH0/m =4

n—-4o0o n—-4o0o

a contradiction. So r > p(x).
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II.1 Banach algebras

11.1.2 The Gelfand-Mazur theorem

It is a well-known fact that every finite-dimensional C-algebra that is a field is isomorphic to C.
This is the Banach algebra analogue.

Corollary I1.1.2.1 (Gelfand-Mazur theorem). Let A be a Banach algebra in which every nonzero
element is invertible. Then A is isomorphic to C (i.e. A = Ce).

Proof. Letx € A. By theorem[l.1.1.3] 04(x) # @. Let A € o4(x), then Ae —z is not invertible,
so x = Ae by hypothesis.

[]

Definition II.1.2.2. We say that a subset / of A is an ideal if it is an ideal in the usual algebraic
sense, i.e. if I is a C-subspace of A that is stable by left and right multiplication by every element
of A. We say that [ is a proper ideal of A if I is an ideal of A and [ # A.

If [ is an ideal of A, then it is easy to see that T is also an ideal.

Remember also the definition of the quotient norm.

Definition ILI.1.2.3. Let V' be a normed vector space and W C V be a closed subspace. Then the
quotient norm on V /W is defined by

|z + W] = inf |jv+ w]|.
weW

If V' is a Banach space, then so is V//W (for the quotient norm).

Proposition I1.1.2.4. (i) If I is a closed ideal of A, then A/I is a Banach algebra for the
quotient norm.

(ii) If I is a proper ideal of A, then so is its closure 1.

Proof. (i) We already know that A/I is a Banach space and an algebra, so we just need to
check that its norm is submultiplicative. Let x,y € A. Then

lz+ Il[lly + 1]l = inf Jlz + alllly + ]
> inf
> inf |+ a)(y+ 1))
= inf ||zy + (ay + xb+ ab)||
a,bel

> in? |zy + c|| (because ay + xb +ab € I'ifa,b € I)
ce

[y + 1]
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II Some Gelfand theory

(ii) Consider the open ball B = {z € Al|e — z|| < 1}. Then B C A* by proposition[Ll.1.1.2}
so BN I = @. As B is open, this implies that BN [ = &, so [ # A.

]

Corollary I1.1.2.5. Let A be a commutative unital Banach algebra. If m is a maximal ideal of
A, then m is closed, and A/m = C.

This is the Banach algebra analogue of the Nullstellensatz.

Proof. By proposition|lI.1.2.4] the ideal m is also proper; as m is maximal, we must have m = m,
i.e. mis closed. By the same proposition, A/m is a Banach algebra. Also, every nonzero element
of A/m is invertible because m is maximal, so A/m = C by the Gelfand-Mazur theorem.

]

I.2 Spectrum of a Banach algebra

In this section, A is still a Banach algebra, but we don’t assume that it has a unit.

Definition I1.2.1. A multiplicative functional on A is a nonzero linear functional ¢ : A — C
such that p(zy) = p(z)p(y) forall z,y € A

The set of all multiplicative functionals on A is called the spectrum of A and denoted by
o(A). We put the weak™* topology on o(A). In other words, if ¢ € o(A), then a basis of open
neighborhoods of ¢ is given by the sets {1 € o(A)|Vi € {1,...,n}, |p(x;) — ¥(x;)| < ¢}, for
ne€ L, x1,...,0, € Aand ¢y, ..., c, € Ry

Note that we do not assume that ¢ is continuous; in fact, this is automatically the case, as we
will see below.

Lemma I1.2.2. If A is unital, then, for every ¢ € o(A), we have p(e) = 1 and p(A*) C C*.

Proof. Let x € A be such that p(x) # 0. Then p(x) = @(xe) = p(x)p(e), so p(e) = 1. Also,
ify € A%, then 1 = p(e) = p(y)p(y~), so p(y) € C*.

]

Definition II.2.3. Let A be a Banach algebra. Then we define a unital Banach al-
gebra A. by taking the C-vector space A @ Ce, defining the multiplication on A, by
(x + Xe)(y + pe) = (zy + Ay + px) + Aue (for z,y € A and A\, u € C) and the norm by
|z 4+ Xe|| = ||z|| + |\ (for x € A and A € C). If A is a Banach x-algebra, we make A, into a
Banach x-algebra by setting (z + Ae)* = 2* + e (forz € A and \ € C).

This construction is called adjoining an identity to A.
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II.2 Spectrum of a Banach algebra

Remark 11.2.4. If A already has a unit, then A, is not equal to A. In fact, if we denote by e4
the unit of A, then the map A, — A x C sending = + Ae to (x 4+ Aey, A) is an isomorphism of
C-algebras (and a homeomorphism).

Proposition I1.2.5. For every ¢ € o(A), we get an element ¢ € o(A.) by setting
o(x + Xe) = @(x) + N\ This defines an injective map o(A) — o(A.), whose image is
0(Ae) — {poo}, With o defined by poo(x + Ae) = \.

Later, we will identify ¢ and ¢ and simply write o(A.) = 0(A4) U {ps}

Proof. The fact that ¢ is a multiplicative functional follows directly from the definition of the
multiplication on A., and ¢ obviously determines . So we just need to check the statement
about the image of o(A) — o(A,).

Let ¢ € o(A.) such that ¢ # ¢, and let ¢ = 1);4. Then we have ¢ (z + Ae) = p(z) + A
forall x € Aand )\ € C; as ¢ # ¢, the linear functional ¢ : A — C cannot be zero, so ¢ is a
multiplicative functional on A, and we clearly have ) = ©.

[]

Corollary I1.2.6. Let ¢ € o(A). Then ¢ is a bounded linear function on A, and we have
llop < 1, with equality if A is unital.

Proof. By proposition the multiplicative functional extends to a multiplicative functional
pon A.. Letz € A. Forevery A € C such that |A\| > ||z||, the element x — Ae of A, is invertible

by proposition[IL.1.1.2} so p(z) — A = @(x — Xe) # 0. This implies that |p(x)| < [|z|], i.e. that
¢ is bounded and ||¢||,-

If A is unital, then ||e|| = 1 and p(e) = 1, s0 |||, = 1.

Theorem IL1.2.7. Let A be a Banach algebra.
(i) If A is unital, then the space o(A) is compact Hausdorff.

(ii) In general, the space o(A) is locally compact Hausdorff, and o(A.) is its Alexandroff
compactification (a.k.a. one-point compactification).

Remember that, if X is a Hausdorff locally compact topological space, then its Alexandroff
compactification is the space X U {oo} (i.e. X with one point added), and that its open subsets
are the open subsets of X and the complements in X U {oo} of compact subsets of X.

Proof. By corollary [I1.2.6| the spectrum o(A) is a subset of the closed unit ball of Hom(A, C).

We know that this closed unit ball is compact Hausdorff for the weak* topology on Hom(A, C)
(this is Alaoglu’s theorem), and o(A) U {0} is closed in this topology, because it is defined by
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II Some Gelfand theory

the closed conditions p(zy) = ¢(z)p(y), for all z,y € A. So o(A) U {0} is compact (for the
weak* topology), and its open subset o (A) is locally compact. If A is unital, then o(A) is closed
in 0(A) U {0} because it is cut out by the condition ¢(e) = 1, so o(A) is compact.

Now we show the last statement of (ii). If ¢ € o(A) (resp. 0(A.)), z € A and ¢ > 0, we set
Ulp,x,¢) = { € a(A)|lp(r) —¥(z)| < c}

(resp. U(ip, ,¢) = {¢ € a(Ao)l|p(x) — ¢(x)| < c}).
These form a basis for the topology of o(A) (resp. o(A.)).

If p € 0(A), z € Aand ¢ > 0, we have

~ ~J Up,z,0) U{pst  if|p(z)| < c
Ug,z,c) = { U(p,z,c) otherwise.

For the neighborhoods of ¢, we get that, if z € A and ¢ > 0, then

U (00,7, ¢) = {0} U {0 € 0(A)||ip()] < ¢}
= o0(Ae) = {¥ € o(A)||W(x)| = ¢}
So the topology of o(A) is induced by the topology of o(A.). Also, as {1 € o(Ae)||(x)] > ¢}
is closed in o(A.), hence compact, for all z € A and ¢ > 0, the open neighborhoods of ¢, in

o(A.) are exactly the complements of the compact subsets of o(A). This means that o(A,) is
the Alexandroff compactification of o(A).

]

Definition I1.2.8. Let A be a Banach algebra. For every x € A, the map 7 : 0(A) — C defined
by Z(¢) = () is called the Gelfand transform of .

Note that each 7 is continuous on o(A) by definition of the topology of o(A). The resulting
map ' : A — € (c(A)), v — 7 is called the Gelfand representation of A (or sometimes also
the Gelfand transform).

Note that I is a morphism of C-algebras by definition of the algebra operations on € (c(A)).

Theorem I1.2.9. (i) The map I maps A into 6y(0(A)), and we have ||T||» < ||z|| for every
x e A

(ii) The image of ' separates the points of o(A).
(iii) If A is unital, then € is the constant function 1 on o(A).
Proof. (i) If A is unital, then o(A) is compact, so 6y(c(A)) = € (c(A)). In general, as

o(A.) is the Alexandroff compactification of o(A), we just need to check that Z(p.,) = 0
for every x € A; but this follows immediately from the definitions.
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II.2 Spectrum of a Banach algebra

Let x € A. Then

[Zlloe = sup [Z(p)| = sup [p(z)| < =]
pEa(A) €T (A)

by corollary

(ii) Let ¢, ¢’ € o(A) such that ¢ # ¢'. Then there exists x € A such that p(z) # ¢'(z), i.e.
z(p) # Z(¥).
(iii) This follows immediately from lemma(l1.2.2]
]

For a general Banach algebra (even a unital one), the spectrum can be empty (see exercise
11.5.1)). But this cannot occur for commutative Banach algebras.

Theorem I1.2.10. Let A be a commutative unital Banach algebra. Then the map ¢ — Ker(p)
induces a bijection from o(A) to the set of maximal ideals of A.

If you have seen another definition of the spectrum (for example in algebraic geometry), this
theorem shows how it is related to our definition.

Proof. If ¢ € o(A), then A/ Ker(p) ~ C (note that  is surjective because it is nonzero), so
Ker(p) is a maximal ideal of A. This shows that the map is well-defined.

If m is a maximal ideal, then it follows from the Gelfand-Mazur theorem that A/m ~ C (see
corollary [I1.1.2.5)), so the map ¢ : A — A/m ~ C is an element of o(A) such that Ker(¢) = m.
This shows that the map is surjective.

Now we need to check injectivity. Let ¢, 1 € o(A) such that m := Ker(yp) = Ker(y). Let
x € A As A/m ~ C, we can write © = Ae + y, with A € C and y € m. Then we have

p(z) =X =1(y).

So ¢ = 1.

Corollary I1.2.11. Let A be a commutative unital Banach algebra. Then, for every x € A :
(i) x € A* if and only if T never vanishes;
(ii) (o (A)) = oa(z);
(iii) ||Z]|oc = p(x).

Proof. (i) If x € A*, then T cannot vanish, because we have zx—! = e = 1. Conversely,
suppose that = is not invertible. Then there exists a maximal ideal containing z, so, by

theorem I1.2.10} there exists ¢ € o(A) such that 0 = ¢(x) = Z(p).
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II Some Gelfand theory

(i) By (i), we have
ga(x) ={X € Clz—Xe & A} = {\ € C|z—\ vanishes at at least one point} = Z(c(A)).

(ii1) This follows from (ii) and from theorem |I1.1.1.3

1.3 C*-algebras and the Gelfand-Naimark theorem

Definition I1.3.1. A Banach x-algebra A is called a C*-algebra if we have |z*z|| = ||z||* for
every x € A.

Remark 11.3.2. Everybody calls this a C*-algebra, except Bourbaki who says “stellar algebra”
(“algebre stellaire™).

Lemma I1.3.3. If A is a C*-algebra, then ||z|| = ||z*|| for every x € A.

Proof. Letx € A— {0}. Then
l2]* = ll="2]| < [l="[ll|]l,

so ||z]| < ||=*||. Applying this to x* and using that (z*)* = x gives ||z*|| < [|z]|.

Example I1.3.4. Most of the examples of example|l.4.2.2| are actually C*-algebras.
(a) Cisa C*-algebra because, for every A € C, we have [A\| = |\|2.

(b) Let G be a locally compact group. Then L'(G) is not a C*-algebra in general, though it
does satisfy the conclusion of lemma|ll.3.3 E]

(c) Let X be a locally compact Haudorff space. Then %,(X) is a C*-algebra, because, for
every f € %p(X), we have

1F* Flloe = sup [f(2) f(2)] = sup | f(2)[* = || fI|2.
zeX reX

(d) Let V' be a Hilbert space. Then End(V') is a C*-algebra. Indeed, let " € End(V). We
want to prove that ||7*T|,, = ||T'||2,. First note that

[P sup (T (v), w)| = sup {0, T(w))| = 1Tllop,

v,weV, [lv||=[lw||=1 v,weV, [Jv|l=[lw||=1

There is a way to modify the norm on L'(G) to make the completion for the new norm a C*-algebra, but we
won’t need this here.
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SO || T*T ||op < |T*||opl|T'|lop = IT|3,- On the other hand,

IT*Tllop = sup  [T"T()| = sup KI"T(v),v)|= sup [T(v),T(v))| =TI,
veV, |lv||=1 veV, [jv||=1 veV, |lv]|=1

Proposition I1.3.5. Let A be a C*-algebra. Then the Gelfand representation I : A — 6(0(A))
is a x-homomorphism.

Remark 11.3.6. The proposition says that everybody multiplicative functional on A is a *-
homomorphism. A Banach x-algebra satisfying this condition is called symmetric. Every C*-
algebra is symmetric, but the converse is not true. (For example, if G is a locally compact
commutative group, then L!(G) is symmetric, see exercise )

Proof. By adjoining an identity to A, we may reduce to the case where A is unital. (See exercise
for the correct choice of norm on A.. Note that changing the norm on A, does not affect
o(A.), because the definition of the spectrum does not involve the norm.)

Letz € Aand ¢ € o(A). We want to prove that p(z*) = z*(p) = Z(p) = ¢(z). Write
o(x) = a+iband p(x*) = ¢+ id, with a, b, ¢, d € R.

Suppose that b 4+ d # 0. Let

Note that y = y*, and that

1 . ) .
(p(y): b+d(a+@b+c+ld—(a+c>)—l7

so, for every t € R, we have ¢(y + ite) = (1 + t)i, hence
11+t = |p(y +ite)| < ||y + ite]|

(by corollary [[1.2.6). Using the defining property of C*-algebras and the fact that y = y* gives,
forevery t € R,

(1+6)* < |ly+ite|” = ||(y +ite) (y + ite)*|| = ||(y +ite)(y — ite) || = ||ly* + e| < ||y*|| + ¢,

i.e. 1+ 2t < ||y||*. But this implies that ||y|| is infinite, which is not possible. So b+ d = 0, i.e.
d = —b.

Applying the same reasoning to iz and (ix)* = —iz* (and nothing that ¢(iz) = —b + ia and

o((iz*)) = d —ic) gives a — ¢ = 0, i.e. a = c. This finishes the proof that p(z*) = p(z).
O

Proposition 1L.3.7. Let A be a commutative unital C*-algebra. Then, for every v € A, we have
z]] = p(2).
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Proof. If z € Ais such that x = z*, then ||z[|? = [|z*z|| = ||2?]], so ||x*"
n € N.

2" for every

= |

Now let = be any element of A. Then (zz*)* = xz*, so the first part applies to xz*. Also, for
every n € N, (zx*)" = 2™ (2*)™ (because A is commutative). So, if n > 0,

2" = ez |*" = l(z2*)*" || = a*" (@*)*"]| = 2> >

This implies that

on ||27’n

ple) = lm [P = Jo]|

]

Definition IL.3.8. If A is a Banach x-algebra, an element x of A is called normal if xz* = x*x.

Corollary I1.3.9. Let A be a unital C*-algebra, and let v € A be a normal element of A. Then
plx) = |z

In particular, if V' is a Hilbert space and 7" € End (V') is normal, then ||T||,, = p(T').

Proof. Indeed, as x commutes with x*, the closure of the smallest unital C-algebra A’ of A
containing = and z* is a commutative C*-algebra, and p(z) and ||z|| don’t change when we see
z as an element of A’.

]

Theorem I1.3.10 (Gelfand-Naimark theorem). Let A be a commutative unital C*-algebra. Then
the Gelfand representation I : A — € (c(A)) is an isometric x-isomorphism.

Proof. We know that I' is a x-homomorphism by proposition [II.3.5] and that it is an isometry by
corollary [[.2.T1{iii) and proposition[[.3.7] In particular, I" is injective. So it just remains to show
that it is surjective. As I is an isometry and A is complete, the image I'(A) is closed in €’ (o (A));
but it separates points by theorem ii) and contains the constant functions because I'(e) = 1,
so it is equal to € (0 (A)) by the Stone-Weierstrass theorem.

]

It is easy to see that the Gelfand-Naimark theorem implies the following result (but we won’t
need it).

Corollary I1.3.11. Let A be a commutative C*-algebra. Then the Gelfand representation
I': A— %(0(A)) is an isometric x-isomorphism.
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II.4 The spectral theorem

1.4 The spectral theorem

Theorem I1.4.1. Let V' a Hilbert space, and let T € End (V') be normal. We denote by Ar the
closure of the unital subalgebra of End(V') generated by T and T*; it is commutative because T
and T™* commute.

Then there exists an isometric x-isomorphism ® : € (o(T)) — Ar such that, if . is the injection
of o(T) into C, we have (1) = T.

Note that we just write o (T) for ogna(r)(71") (this is the usual spectrum of 7).

This theorem doesn’t look a lot like the spectral theorem of finite-dimensional linear algebra.
See exercise for a way to pass between the two.

Proof. Let A = Ar. First we will prove the result with o 4(7) instead of o(7"), then we’ll show
that o(T") = 04(T). Note that we automatically have o(T) C o4(T) (because, if Aidy, — T is
not invertible in End(7"), then it certainly won’t be invertible in a subalgebra).

Consider the Gelfand transform of 7" (seen as an element of A), this is a continuous map
T o(A) — C. Let’s show that T is injective. Consider 1, ¢y € o(A), i.e. two multiplicative
functionals on A, such that f(gpl) = f(g@), i.e. v1(T) = p2(T). We have seen that the Gelfand
representation is a x-homomorphism, so we have

~

T (1) = T(g1) = T(ga) = T*(i20),

ie. p1(T*) = po(T™). The multiplicative functionals ¢, and ¢, are equal on e, 7" and 7™, and
they are continuous, so they are equal on all of A, which is what we wanted.

Now remember that o(A) is compact Hausdorff, because A is unital. So T induces a homeo-
morphism from o (A) to its image in C, which is o 4(7") by corollary [I1.2.11} Hence composing
with T gives an isometric *-isomorphism W : €' (o 4(T)) = € (c(A)).

Remember that we also have the Gelfand representation of A, which is an isometric *-
isomorphism ' : A = € (c(A)). So we get an isometric *-isomorphism @ : € (c4(T)) = A by
setting® ="' o U,

Let’s show that &(1) = T. AsT': A — ¥ (0(A)) is an isomorphism, it suffices to check that
T =®(1),ie. thatT = U(s). Let p € o(A). We have ¥(¢)(p) = (T (p)) = T(p), as desired.

Finally, we show that the inclusion o (7") C 04(T") is an equality. Let A € 04(7"), and suppose
that A & o(T"). Let e > 0, and choose f € € (04(T)) such that || f|l = 1, f(A\) = 1 and
f(p) =0if [N —p| > e > 0. Let U = O(f) € A, then ||U|l,p = [|f]|c = 1. Note that
®(1) = idy (where 1 is the constant function with value 1), because ® is an isomorphism of
algebras. So 7' — Aidy = ®(¢ — A), and (7" — Aidy) o U = ®((¢ — A\)f). As @ is an isometry,
this implies that

(T = Aidy) 0 Ullop = [[(t = M) flloc < €
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(because f is bounded by 1, and f(u) = 0if |[A — p| > €). On the other hand, as A ¢ o(T), the
operator 7' — Aidy is invertible in End(V), so we get

L=fllo = 1Ullop = (T = Xidy) (T = Xidv)U [lop < €l[(T" = Aicky) ™[0

This is true for every € > 0, so it implies that 1 = 0, which is a contradiction.

]

Corollary I1.4.2. Let V be a Hilbert space and T' € End(V') be normal. Then the following
conditions are equivalent :

(i) o(T) is a singleton;
(i) T € Cidy;
(iii) Ap = Cidy.

Proof.

(1)=(ii) If o(T) = {\}, then ¢ is A times the unit of € (o (7)), so T = ®(¢) = Aidy.

(i))=(iii) If T € Cidy, then Cidy is a closed unital subalgebra of A containing 7" and 7™, so it is
equal to Ar.

(ii)=-(iii) Suppose that Ay = Cidy. Let A\, u € o(T). If X # p, then we can find fi, fo € € (0(T))
such that fi(A\) = 1, fo(u) = 1 and fife = 0. But then ®(f;)P(f2) = 0 and
O (f1), ©(f2) # 0, which contradicts the fact that C is a domain.

]

Definition I1.43. If A is a C-algebra and EF C A is a subset, we set
ZA(E) ={x € A|Vy € E, xy = ya}. This is called the centralizer of E in A.

It is easy to see that the centralizer is always a subalgebra of A.

Corollary I1.4.4. Let V be a Hilbert space, and let E be a subset of End (V') such that E* = F.
Suppose that the only closed subspaces of V stable by all the elements of E are {0} and V. Then
Zgnav)(E) = Cidy.

Proof. Let A = Zgnav)(E). Itis a closed subalgebra of End (V). We show that A is stable by =
- If T € A, then, for every U € FE, we have U* € E, hence

T"oU=U"oT) =ToU" ) =UoT",

so T* € A. In particular, the subalgebra A is generated by its normal elements; indeed, for every
T € A,wehave T = (T + T*) + (I' — T*)), and both T' 4+ T* and T — T* are normal.
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Remember that we want to show that each element of A is in Cidy; by what we just showed, it
suffices to prove it for the normal elements of A. So let " € A be normal. By corollary
it suffices to show that the spectrum o (7") of 1" is a singleton. By the spectral theorem (theorem
, we have an isometric *-isomorphism ® : ¢ (o(T)) = Ar, where Ar is the closure
of the unital subalgebra of End(V') generated by 7" and 7™, such that ¢ sends the embedding
t:0(T) — CtoT. Note that A7 C A. Now suppose that o(7") is not a singleton. Then we can
find two nonzero functions fi, fo € € (o(7T')) such that f, fo = 0, and ®(f1), ®(f>) are nonzero
elements of Endg(V) such that ®(f1)®(f2) = 0. Let W = Im(®P(fs)); then W # {0} because
®( f2) is nonzero. Also, as ®(f2) commutes with every element of F, the subspace W is stable
by all the elements of F, so W = V by hypothesis. But we also have ®(f;)(W) = 0 because
O(f1)®(f2) = 0, so ®(f1) = 0, which contradicts the choice of fi, fo. So o(7") is a singleton,

and we are done.

[]
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Exercise I1.5.1. (a). Let V' be a finite-dimensional C-vector space such that dim¢ (V) > 2.
Show that o(End(V)) = @.

(b). Let V be an infinite-dimensional Hilbert space. Show that o(End(V)) = @.

(Hint : Look at nilpotent endomorphisms.)

Solution.

(a). We may assume that V' = C", so that End(V) = M,,(C). Let ¢ : M,(C) — C be a
multiplicative linear functional. We want to prove that ¢ = 0. Let (E;;)1<; j<n be the
canonical basis of A,(C) (so E;; is the matrix with all entry 0, except for a 1 at the
(i, 7)-entry). Then E;;Ey is equal to 0 unless j = k, and E;;Ej; = Ej. In particular,
if i # j, then E7; = 0, hence 0 = p(E7;) = ¢(Ey;)?, and p(E;;) = 0. Also, for every
i € {1,...,n}, if we choose j such that j # i (this is possible because n > 2), then
E;i = Ei;E;;, 30 o(Ey;) = ¢(Eij)p)Ej) = 0. To sum up, we have shown that ¢ is 0 on a
basis of M,,(C), so ¢ = 0.

(b). Let ¢ : End(V) — C be a multiplicative linear functional. As in (a), as the key is to note
that, if 7 € End(V) is such that 7% = 0, then we have ¢(T)? = 0, hence p(T) = 0.
Now choose two closed subspaces V; and V5 such that V' = Vi & V5 and that V; and V5,
are isomorphic. (This is possible because V' is infinite-dimensional. For example, choose
a Hilbert basis (e;);c;r of V. As [ is infinite, we can find I, I, C [ such that [ = [; U I,

and that there exists a bijection between /; and /5. Take V, = @ie I Ce;, forr =1,2.)

Choose isomorphisms U; : V; = Vo and U : Vo = V4. Let Ty € End(V) be de-
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fined by T1(v + w) = Uy(v) if v € V] and w € V5, and T, € End(V') be defined by
To(v +w) = Uy(w) if v € Vi and w € Vy. Then T = T3 = 0, so o(T}) = ¢(T3) = 0,
and also (7T} + 1) = 0. But 7" := 17 + T5 is an automorphism of V/, so, for every
T' € End(V), we have T' = T(T~T"), hence p(T") = p(T)p(T~1T") = 0.

[l

Exercise I1.5.2. Let V' be a finite-dimensional Hilbert space. The goal of this problem is to
relate the spectral theorem of the notes (theorem[I.4.1]) with the usual finite-dimensional spectral
theorem (which says that a normal endomorphism of V' is diagonalizable in an orthonormal
basis).

Remember that, if R is a commutative ring, we say that z € R is nilpotent if there exists an
integer n > 1 such that 2" = 0, and we say that R is reduced if the only nilpotent element of R

1s 0.

(a).

(b).

(c).

().

(e).

Show that the usual finite-dimensional spectral theorem (as stated above) implies theorem

4Tl for V.

Let ' € End(V), and let A be the unital subalgebra of End (V') generated by 7" (i.e. the
space of polynomials in 7"). Show that 7" is diagonalizable if and only if A is reduced.

Let A be a commutative unital subalgebra of End(V"). If A is reduced, show that there exist
subspaces Vi, ..., V, of V, uniquely determined up to ordering, such that V = @;_, V;
and that

A={T € End(V)|Vi e {1,...,7}, T(V;) C V;and T}y, € C-idy,}.
Let A be as in question (c). Show that A is stable by the map 7" —— T if and only the V;
are pairwise orthogonal.

Show that theorem [II.4.1| implies the usual finite-dimensional spectral theorem (as stated
above).

Solution.

(a).

134

Let ' € End(V) be a normal endomorphism. By the finite-dimensional spectral the-
orem, we can find an orthonormal basis (eq,...,e,) of V and Ay,..., A\, € C such
that T'(e;) = Me; for every i € {1,...,n}. As the basis is orthonormal, we also have
T*(e;) = M\ie; forevery i € {1,...,n}. After rearranging the e;, we may also assume that
we have 1 < ng < ... <n, =n+ 1suchthat \; = ), if there exists s € {0,...,r =1}
with ng <1i,j < ngq — 1and \; # A; otherwise.

In particular, we may assume that V' = C" and that 7" is the diagonal matrix with diagonal
entries Ay, ..., \,, with the same conditions on the );. I claim that A is the subalgebra
of diagonal matrices in M, (C) with diagonal entries z1,. .., z, satisfying : x; = x; if



(b).

(©).

11.5 Exercises

there exists s € {0,...,r — 1} with ny < 7,5 < ngyy — 1. First, this does define a
subalgebra of M, (C). It is also clear that every matrix in Ay is of this form, because Ay
is generated (as an algebra) by [,,, 7" and 7™, and all three of these matrices satisfy the
condition defining A. Finally, let X € Ar, and let x4, ..., x, be its diagonal entries. By
Lagrange interpolation, there exists a polynomial P € C[t| such that P()\,,) = x,, for
s €{0,...,7 — 1}, and then P(T) is the diagonal matrix with entries x1, ..., z,, i.e. X.

Let P € C[t] be the minimal polynomial of 7. Then C[t] — M, (C), f(t) — f(T) is
a morphism of C-algebra with image A and kernel the ideal generated by P, by definition
of the minimal polynomial. So A ~ C[t]/(P). If we write P(t) = [[;_(t — a;)"™ with
ay,...,a, € C pairwise distinct and ny,...,n, > 1, then, by the Chinese remainder
theorem, A ~ [["_, C[t]/(t — a;)™. So A is reduced if and only if all the n; are equal
to 1, i.e., if and only if P has only simple roots, which is equivalent to the fact that 7" is
diagonalizable.

if T' € A, then the unital subalgebra of End(V') generated by 7" is contained in A, and
in particular it is reduced; by question (b), this implies that 7" is diagonalizable. As A
by a finite number of elements (because it is a finite-dimensional C-vector space), and
these are diagonalizable and commute with each other, we can find a basis (ej,...,e,)
in which every element of A is diagonal. For i € {1,...,n}, define p; : A — C by
T(e;) = ¢i(T)e;, for T € A. Then ¢y, ..., p, are multiplicative functionals on A. After
reordering the e;, we may assume that we have 1 < nyg < ... < n, = n + 1 such that
p; = p; if thereexists s € {0,...,r—1} withn, <4,j < n,;—1and ¢; # @, otherwise.

Note that all the ¢; are nonzero (because they send [, to 1), so they are surjective. I claim
that ©,,, ©n, - - -, ¢n,_, are linearly independent (as function A — C). This is a classical
result, but let’s prove it quickly. Suppose that it is not true, and choose a nontrivial relation
of linear dependence Z:;& a;pn, = 0, with a; € C, such that the number of nonzero a;
is minimal. There are at least two nonzero a;, so, up to reordering, we may assume that
ap, ay # 0. Choose zo € A such that o, (z¢) # ©n, (zo). Then, for every z € A,

0= i) Y on () = 3 g, (02) = 3 asipn0) = (20D, 0,

So 22;11 ai(gpno(x(J) — Pny (IO))SOM = 0, with al(@m (IO) — Pm (1:0)) # 0. So we have
another nontrivial relation of linear dependence among the ¢,,., and it has fewer nonzero
coefficients than the first one, which is a contradiction.

Now that we know that ¢,,, @, ...,¥n, , are linearly independent, we also know
that (Vng, @ny -+ Pn,_,) = A — C" is surjective. For i € {1,...,r}, let
Vi = Span(en, ,,...,e_14n,) C V. Then, if T"is in A, T acts as a multiple of id on
each V;, and the surjectivity of (¢, @n, - -5 ¥n,_,) : A — C” implies that the converse is
true. (If (ay,...,a,) € C", choose T € A such that ¢,,, = a;41 for0 <i <y —1. Then T
acts on each V; by multiplication by ¢, , (T) = a,).

Finally, let’s show that Vj,...,V, are uniquely determined. Let V = V/ @& ... & V] be
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(d).

(e

another decomposition satisfying the same property. Choose aq,...,a, € C pairwise
distinct, and let 7' € A such that T}y, = a;idy, for every 7. Then Vy,...,V, are the
eigenspaces of 7', and T" acts by a multiple of identity on each V/, so we must have a
partition Iy, ..., I, of {1,... 7} such that V] = @idj V; for every j € {1,...,s}. But
the roles of the V; and the V; are symmetric, so we have a similar property with V; and
V! exchanged. This implies that r = s and that V}, ..., V] are equal to Vi,...,V, up to
reordering.

Fori € {1,...,r}, we define a linear endomorphism 7; : V' — V by m;(v; ... 4 v,) = v; if
v; € Viforj € {1,...,r}. ThenIm(m;) = Vi, Ker(m;) = P, ; Vjand mi +. . .+, = idy.
Note that A is exactly the subalgebra {}_;_, \;m;, A1,..., A, € C} of End(7).

It Vi,...,V, are pairwise orthogonal, then 7y, ..., 7, are orthogonal projections, so they
are self-adjoint, and so A is stable by 7" —— T™.

Conversely, suppose that A is stable by T+ T*. If v € V and w € V1, then
0= <7T1(U)7 w> = <Uaﬁ(w)>'

This implies that V- C Ker(n). As rk(7}) = rk(m) = dim(V;), we actually have
Ker(r}) = Vit But 7} € A, so every eigenspace of 7} is a sum of V;’s, so there exists
I c{1,...,r} such that Ker(n}) = @,; Vi- As Vi-NV; = {0}, the set I cannot contain
1. But then the only way that ker(7]) can have dimension dim(V')—ny isif I = {2,...,r}.
Finally, we have shown that

Vi=Ker(n)=Vd...0V,.

Repeating this procedure with the other 7;’s, we see that, for every i € {a,...,r},
V=i
J#

Let T € End(V), and let ® : €(o(T)) = Ar be as in theorem In particular, Ay
is a commutative reduced subalgebra of End (V') (because €' (o(T")) is reduced), and it is
stable by * (by definition), so, by (c) and (d), we have a decomposition V =V, & ... DV,
of V into pairwise orthogonal subspaces such that every element of A, preserves this
decomposition and acts as a scalar on each V;. If we choose an orthonormal basis for each
V; and put these together, we’ll get an orthonormal basis on V' in which each element of
Ar is diagonal. Now just remember that 7' € Ar.

O

Exercise I1.5.3. This problem is meant to be solved without any of the results of sections and

L3l and 1.4l Pl

3Compare Nullstellensatz.
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Let X be a locally compact Hausdorff topological space. Let X be the Alexandroff compacti-
fication of X. This means that X = X U {co}, and that the open sets of X are the open subsets
and the sets of the form (X — K) U {oo}, where K is a compact subset of X.

(a).

(b).

(c).

(d).

Show that X is a compact Hausdorff topological space, that X is open in X, and that X is
dense in X if and only if X is not compact.

Show that %’(X) is isomorphic to the Banach *-algebra that you get by adjoining a unit to
%o(X). (Don’t forget to compare the topologies.)

If X is compact, show that every proper ideal of % (.X) is contained in one of the ideals
m, ={fe€€(X)|f(x) =0}, z € X.

In general, show that the map X — o(%y(X)), v — (¢, : f — f(z)) is a homeomor-
phism.

Let A be a commutative Banach algebra. If [ is an ideal of A, we set

~

V(I) = {z € o(A)Vf € A, f(z) = 0}

If N is a subset of o(A), we set

(a).

-~

I(N) = {f € AlVz € N, f(z) = 0}.

Suppose that X is compact. Show that, for every closed ideal I of ¥ (X) and every closed
subset NV of 0(%' (X)) ~ X, we have

[(V(I)) = I and V(I(N)) = N.

Remark. The result is still true without the assumption that X is compact (use %, (X) every-
where).

Solution.

(a). First we show that the definition does give a topology on X. Let (U;);c; be a family of

open subsets of X. Then we can write I = I' U I", with U; C X open and i € I’ and
U, = X — K; with K; compact if i € I”. We have

If I” is empty, this is an open subset of X, hence an open subset of X. Otherwise, this is
the complement on the compact subset (), K; — J,c; Us of X, so it is again an open
subset of X. On the other hand, we have

- () (- U ),

iel icl’ el
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(b).

(c).

138

Suppose that [ is finite. Then, if I” = @, the set (),.; U; is the open subset (.., U; of
X, hence it is an open subset of X . Otherwise, it is the complement of the compact subset
Uicrw Ki — ;e Ui of X, hence it is again an open subset of X.

Let’s show that X is Hausdorff. Let 2,y € X such that x # y. We want to find disjoint
open neighborhoods of x and y. If z,y € X, then there exists open subsets U and V' of
X suchthatz € U,y € Vand U NV = &. These sets are still open in X, so we are
done. If one of x or y is oo, we may assume that it is . As X is locally compact, we can
find a compact subset K of X and an open subset V' of X such thaty € V C K. Then
U := X — K is an open subset of X containing = oo, and we have U NV = @.

Let’s show that X is compact. Let (U;);c; be a family of open subsets of X such that
X = U, Ui Let iy € I be such that oo € Uj, and write K = X —Uj,. This is a compact
subset of X, and it is covered by the open subsets U; N X, i € I — {ip}. So there exists a
finite subset J of I — {io} such that K C |J,, U;, and then we have X = Uicsugio Us-

The set X is open in X by definition of the topology of X.

Suppose that X is not compact. Then, if U is an open neighborhood of oo in X, the
compact subset X — U of X cannot be equal to X, which means that U N X # @. So oo
is in the closure of X in X. Conversely, suppose that X is compact. Then {oo} = X — X
is an open subset of X, so 0o is an isolated point of X.

Let A be the Banach x-algebra that you get by adjoining a unit to %p(X). We have
A =%y(X) @ Ce, with || f + Xe|| = || f]loo + |A| and (f + Xe)* = f + Xe (for [ € Go(X)
and \ € C).

Note that we can extend every f € %,(X) to a continuous function f on X by setting
f(oc0) = 0. (The condition that f is 0 at infinity exactly says that the extended function
is continuous, by definition of the topology on X.) This gives an injective C-algebra map
%o(X) — €(X). Sowe getamap o : A — € (X) sending f + Ae to f + A, where the
second “)\” is the constant function on X. This « is a morphism of C-algebras by definition
of the multiplication on A, and it is a x-homomorphism by definition of * on A. Also, « is

bounded, because, if f € 6,(X) and A € C, we have
1f 4+ Moo < 1 flloo + A= [If + Ael|.

Finally, note that o is surjective, because it has an inverse sending f € %(X) to
(fix = A) + Ae. By the open mapping theorem (also known as the Banach-Schauder
theorem), the inverse of « is also bounded, so « is a homeomorphism.

Let [ be an ideal of ¥’ (X), and suppose that [ is not contained in any m,. Then, for
every © € X, we can find f, € I such that f,(x) # 0; as f, is continuous, we can also
find an open neighborhood U, of x such that f,(y) # 0 for every y € U,. We have
X = U,ex Us and X is compact, so there exist x4, ..., 2z, € X such that X = J;", U,,.
Let f = >0 |fu|?> = D20, foiferr Then f € I because I is an ideal, and f doesn’t
vanish on X; indeed, if z € X, we can find i € {1,...,2} such that z € U,,, and then




(d).

(e).
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f(x) > |fe,(x)]*> > 0. So the function g : x — f(x)~! exists and is continuous on X,
and we have ¢gf = 1, which implies that 1 € I, hence that I = €' (X).

Let’s call this map «. First we show that « is injective. If =,y € X are such that = # y,
then there exists f € 6, (X) such that f(x) # f(y) (by Urysohn’s lemma), so ¢, # ¢,.

Let’s show that « is surjective. Let ¢ : 6,(X) — C be a multiplicative functional. We can
extend it to a multiplicative functional ¢ on %(X)., and we have seen in (b) that %5(X).
is isomorphic to €' (X). Let I = Ker($). This is a maximal ideal of ¢’ (X), hence, by (c),
there exists x € X such that / C m,, and we must have I = m, because I is maximal.
Also, note that the isomorphism %,(X ). ~ % (X) constructed in (b) identities %, (X) to
m... Hence, as ¢ is not 0 on %,(X),w e cannot have x = oo, so x € X, and we have

Ker(p) = {f € (X)|f(z) = 0} = Ker(p,). As in the proof of theorem [[I.2.10} this
easily implies that p = ,.

The map « is continuous by definition of the topology on o(%(X)). If X is compact,
this implies that « is a homeomorphism. In general, the analogue of « for the Alexandroff
compactification X' of X is a homeomorphism because X is compact, and its restriction to

X is « (if we identify %,(X) to a subalgebra of € (X) as in (b)), so « is open, and we are
done.

Note that, if N is a closed subset of X, then I(N) = (), .y Mz, so I(N) is an ideal of
€ (X).

Let I be a closed ideal of €’ (X), and let N = N(I). For every x € N and every f € I,
we have f(x) = 0 by definition of N(I). So I C (\,.ym. = I(/N). Conversely, let
[ € (yen Mz We want to show that f € I. By assumption, f(z) = 0 for every z € N,
so supp(f) NN = @. For every y € supp(f), choose f, € I such that f,(y) # 0;
as f, is continuous, we can find an open subset U, > y of X such that f,(z) # 0 for
every 2z € Uy,. We have supp(f) C U, cqupp(s) Uy and supp(f) is compact, so we can find

Y1, .., Yn € supp(f) such that supp(f) C Ui, U,,. Letg = > | |fy,|% Theng € I,
and g(y) > 0 for every y € supp(f). Define a function h : X — C by

h(x) :{ fl@)g(x)=" if z € supp(f)

0 otherwise.

Let U = {z € X|g(x) # 0} and V = X — supp(f). Then U and V" are open subsets of
X and X = UU V. On U, the function h is equal to fg~!, hence continuous; on V, it is
equal to 0, hence also continuous. So h € ¥(X), and we have f = gh by definition of A.
As g € I, this shows that f € I, as desired.

Now let NV be a closed subset of X, and let I = I(N). For every x € N and every f € I,
we have f(z) = 0 by definition of I(N), so N C V(I). Conversely, if z ¢ N, then, by
Urysohn’s lemma, we can find f € ¢'(X) such that fjy = 0 and f(z) # 0. Then f € I by
definition of (), sox & V(I).

O
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Exercise I1.5.4. Consider the Banach x-algebra ¢! (Z) (i.e. L*(G) for the discrete group G = Z,
with the convolution product and the involution defined in class). We write elements of ¢/!(Z) as
sequences a = (ay)nez in CZ.

(a). Show that ¢/'(Z) is not a C*-algebra.

(b). Show that there is a homeomorphism o (¢!(Z)) = S* such that the Gelfand transform of
a = (ay)nez is the function S* — C, e — 37 g, e H

n=—oo

(c). More generally, if G is a commutative locally compact group, show that the map
G — o(L'(G)) sending x to the morphism L'(G) — C, f +— [, f(z)x(z)dz is a
homeomorphism. (Hint : What is the dual of L'(G) ?)

Solution.

(a) Let a = (ap)nez- Then a* = (@_p)nez (remember that Z is unimodular, because it is
commutative (or because it is discrete)). Let b = a* % a. We have, for every n € Z,

* —
b, = ay,Qp_m = E Q-

mEZ meZ

Take a defined by ag = 4,a; = 1, ay =i and a,, = 0 forn € Z — {0, 1,2}. Then af = —1,
a*, =1,a5 = —i,anda’ = 0ifn € Z—{—2,—1,0}. Sob, = 0ifn & {—2,—1,0,1,2},
and we have

*

b,Q = CL72CL0 = 1,
by =a"a0+ a0 =1—1=0,
by = a” yas + a* a1 + agag = 3,

by = ajay +a*jay =—i+1i=0,

and

bQ = GS&Q =1.

So [bl; =5 # |al? = 9.

(c) Let G be a commutative locally compact group. Let ¢ € o(L'(G)). We want to show that

¢ comes from an element y of G. As ¢ is a continuous linear functional on L!(G), there
exists x € L>®(G) such that o(f) = [, f(x)x(z)dz for every f € L'(G).

“This means that the Gelfand transform is a *-homomorphism, i.e. the Banach x-algebra L!(G) is symmetric,
even though it is not a C*-algebra.
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For every f,g € L'(G), we have

wﬁ[y@n@my=wﬁﬂm
=p(g*f)
=/‘g@ﬂy%nmw@
GxG

=/mww@n@.
G

As this is true for every g € L'(G), the functions ¢(f)y and y — (L, f) (both in
L>°(@) are equal almost everywhere. Hence, if we choose f € L'(G) such that ¢(f) # 0,
we can replace x by y — o(f)*o(L,f). As the functions ¢ : L'(G) — C and
G — L'(G),y — L,f are continuous (the second by proposition [[.3.1.13), this new
x is continuous. Also, we have ¢(g9)x(y) = ¢(Ly,g) for every g € L'(G) and every
y € G.

Letx,y € G. As L, f = L,(L,f), we have

s0 x(zy) = x(x)x(y). So x € G, and we have shown that the map G — o(L!(G)) of the
problem is surjective. Note that this map is also injective, because a continuous function
on G is determined by the linear functional it defines on L'(G). Also, the topology on
o(LY(G)) C L>=(G) is the weak* topology by definition, and we have seen in question
a) that this coincides with the topology on compact convergence on G, so the map
G — o(L'(@)) is a homeomorphism.

We know that Z ~ S' by [1.5.4.1(d), so we get a homeomorphism S = Z 5 o(¢}(Z))
by question (c). Unpacking the formulas, we see that it sends z € S! to the multiplicative
functional @ = (a,)pez — D_,cz anz" on £'(Z), which is exactly what we wanted.

O

Exercise I1.5.5. Let A be a unital C-algebra with an involutive anti-isomorphism *. Show that
there is at most one norm on A that makes A into a C*-algebra.

Solution. Let ||.|| be a norm on A that makes A into a C*-algebra. Let x € A. Note that
(x*x)* = x*x, so x*x is normal. By definition of a C*-algebra and corollary |I[1.3.9, we have

1/2 1/2

]l = [la"=[|/ = p(z"x)
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But, by theorem [[I.1.1.3]
p(z*x) = max{|\|, A€ C, z*x — Xe ¢ A"}

This last quantity only depends on the algebra structure of A and on %, and it determines ||z||.

0

Exercise I1.5.6. Let A be a C*-algebra. Then A, is a Banach x-algebra, but it is not always
a C*-algebra with the norm defined by ||z 4+ Ae|| = ||z|| + |\. (See question [IL.5.3| (b) for an
example of this phenomenon.)

We define a new norm ||.||" on A, by :

|z + Xel|" = sup{|lzy + My, vy € A, |ly|| < 1}.

We now suppose that A does not have a unit and that A # {0}.

(a). Show that ||.||’ is a submultiplicative norm on A..
(b). Show that ||.||" agrees with ||.|| on A, that A is closed in A, and that A, is complete for ||.|".

(c). Show that A, is a C*-algebra for the norm ||.||".

Solution.

(a). Let z1 = y1 + Aie, 9 = yo + Age be elements of A, (y1,y2 € A and A, Ay € C) and
c € C. Then

|z + 96’2”’ = sup{|lyiy + My + vy + Noyll, v € A, ||y =1}
<sup{ljyy + Myl y € A, lyll < 1} +sup{|lyey + Xyl y € A, [ly|| < 1}
= |21 + [J22]/',

leza || = sup{lleyay + chuyll, y € A, |lyll < 1}

= [elsup{llyay + Myll, y € A, lyll <1}
= |el[|l ],

and

[z122]]" = sup{||(v1y2 + Aay1 + M)y + Midayll, y € A, [Jyl| = 1}

= sup{ ||y (y2y + A2y) + M2y + Ay, y € A, [ly]| = 1}
< sup{|lys + Melyay + Aoyl v € A, [ly]| <1}
[EavMESY

N
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(b).

(c).

11.5 Exercises

To show that ||.||" is a norm on A, we still need to show that ||z + Xe||” # 0if 2 4+ Ae # 0.
Suppose that ||z + Ae|" = 0, then zy + Ay = 0 for every y € A such that ||y|| = 1, hence
forevery y € A. If z = 0, then A = 0. If x # 0, then, taking y = z* (and noting that
zz* # 0 because ||zz*|| = ||z*]|* # 0), we see that A\ # 0. Let, so A\ 'zy = y for every
y € A, ie. A 'z is a left unit for A. This implies that (A\~'y)* is a right unit for A, so A
has a unit, contradicting our assumption. So x = 0.

If x € A, then we have

lz]" = sup{llzyll, y € A, llyl =1} < [l].

If x = 0, then ||z||" = ||z|| = 0. Otherwise, we also have xz* # 0; taking y = m:p*, we
get
lall > ——lza*]| = fl2*]| = ||
— '
Hence A is complete for ||.||', so it is closed in A.. In particular, the quotient map

A, — A JA ~ C, x + Ae — X is continuous.

Now we show that A, is complete for ||.||". Let (x,, + A,e),>¢ be a Cauchy sequence in A,,
with z,, € A and \,, € C. By the previous paragraph, the sequence (\,),>¢ is Cauchy, so
the sequence (z,,),>0 in A is also Cauchy. As the two norms coincide on A, the sequence
(n)n>0 converges to some x € A, and of course (\,,),>o converges to some A\ € C. It is
now clear (using the obvious fact that ||z + pe|" < ||z|| + |¢| for z € A and 1 € C) that
the sequence (z,, + A,e),>0 converges to = + e in A,.

Finally, we show that A, is a C*-algebra. Let x € A and A € C. We want to show that
|(z + Xe)*(x + Xe)||" = (||x + Ae||’)?. We may assume that x + e # 0. Let e > 0. Then
we can find y € A such that ||y|| = 1 and

lzy + Ayll = [l + Ae]'(1 — ).
Note that zy + Ay = (z + Ae)y (in A.). So
(L =) (llz + Aell)? < flzy + Ayl®
= |[(zy + Ay)"(zy + Ay)|
= [ly"(x + Ae)"(z + Ae)yll’

<yl + Ae)*(z + Ae)||’
= |[(z + Xe)*(z + Xe)|".

As this is true for every ¢, we get
Iz +Xe)*(z + Ae)|l" = (|l + Aell')*.
Using the submultiplicativity of the norm, we deduce that

lz + Aell” < [[(z + Ae)"]l"
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II Some Gelfand theory

As x is bijective on A., the last inequality is actually an equality, and so we also get
(lz + Aell)* < Il + Ae)*(z + Ae)|" < ([l + Ael)?,

which finishes the proof.
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Il The Gelfand-Raikov theorem

The goal of this chapter is to prove the Gelfand-Raikov theorem, which says that irreducible
unitary representations of locally groups separate point (i.e., if G is alocally compact group and
x € G — {1}, then there exists an irreducible unitary representation of G such that 7(x) # 1).

In this chapter, G is a locally compact group and p (or just “dx”) is a left Haar measure on G.

1 L2(G)

You can safely ignore this section and assume that all groups are o-compact.

We will be using L°°((G) more seriously in this chapter, and we want it to be the continuous
dual of L*(@), which is not true if G is not o-compact. So we change the definition of L>(G)
to make it true. See section 2.3 of [[L1]].

More generally, let X be a locally compact Hausdorff topological space and let . be a regular
Borel measure. We say that &/ C X is locally Borel if, for every Borel subset F' of X such that
wu(F) < +oo, we have that E'N F' is a Borel subset of X. If E is locally Borel, we say that E is
locally null if, for every Borel subset F' of X such that u(F) < +oo, we have u(E N F) = 0.
We say that an assertion about points of X is true locally almost everywhere if it is true outside
of a locally null subset. We saw that a function f : X — C is locally measurable if, for every
Borel subset A of C, the set f~'(A) is locally Borel. Now we set L>°(X) to be the space of
locally measurable functions X — C that are bounded locally almost everywhere, modulo the
equivalence relation : f ~ g if f — g = 0 locally almost everywhere. The norm on L>(X) is
given by

| fllo = inf{c € R¢l||f(x)] locally almost everywhere}.

lll.2 Functions of positive type

Definition II1.2.1. A function of positive type on G is a function ¢ € L*°(G) such that, for every
f e LYQ), we

/G(f* v F)(2)p(@)dz > 0.
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III The Gelftand-Raikov theorem

Note that f* * f € LY(G) if f € L'(G), so the integral converges.
Remark II1.2.2. For every p € L>®(G) and every f, g € L'(G), we have

/G (g @e@dr= | @l a)e()dedy

/G GA(?J)_lmg(y_lx)ga(x)dxdy
/G Gﬂ g(yx)p(x)dzdy
:/G TWg@)elye)ddy.

Example I11.2.3. (1) 0 is a function of positive type.

(2) If ¢ : G — S' C Cis a 1-dimensional representation (i.e. p(zy) = @(z)p(y) for all
z,y € G), then it is a function of positive type. Indeed, for every f € L'(G), we have by

remark [I[.2.2]
/G(f * f)(x dl‘—/GXGf Yo(y o) dzdy
/ T/ (@) o)) dady
GxG
_ / o(2)f(2)dz| >0,
G

We will generalize the second example in point (ii) of the following proposition.

Proposition I11.2.4. (i) If ¢ : G — C is a function of positive type, then so is .

(ii) If (m, V') is a unitary representation of G andv € V, then p : G — C, x — (m(z)(v),v)
is a continuous function of positive type.

(iii) Let f € L*(G), and define ]?: G — Cby f(x) = f(z=1). Then f * fmakes sense, it is in
L*>®(@Q), and it is a function of positive type.

Proof. (i) Let f € L*(G). Then, by remark [[11.2.2}

/G o+ Ppdp= [ T ya)pl@)dedy

GxG

146



II1.2 Functions of positive type

(if) The function ¢ is continuous because G — V, x — m(x)(v) is continuous. Let’s show
that it is of positive type. Note that, for all x,y € G, we have

ply~'z) = (r(y~'2)(v),v) = (n(2)(v), 7 (y)(v))-
Let f € L*(G). Then, by remark [[I1.2.2]

/ P Pedu= | 1@ T@ely " x)dedy

GxG

— /G G(f(x)w(x)(v)y F)m(y)(v))dedy
= (r(f)(v), 7(f)(v)) > 0.

(iii) Let z € G. Then the integral defining f f(m) is

/ ) fz—Ty)d

This integral converges, because both f and L,f : y — f(z~'y) are in L?(G) (by left
invariance of 1). Also, by the Cauchy-Schwarz inequality, we have

| F(@)] < L Fll2lIZaFll2 = [L£13.
So f* f € L*®(G).

Let’s show that f % fis of positive type. Let 7, be the left regular representation of G, i.e.
the unitary representation of G on L?(G) given by 71 (z) = L,. Then, for every x € G,
we have

(mp(z / Fa ) fly)dy = | Fly=ta)fly)dy = f* f(x).
G

So the result follows from (i) and (ii).

The main result of this function is that the example in (ii) above is the only one.

Theorem IIL.2.5. Let ¢ : G — C be a function of positive type. Then there exists a cyclic
unitary representation (m,V') of G and a cyclic vector v for V such that p(x) = (m(z)(v),v)
locally almost everywhere.

Moreover, the representation m and the vector v are uniquely determined by , in the following
sense : if (7', V') is another cyclic unitary representation of G and if v' € V' is a cyclic vector
such that p(x) = (r'(z)(v"),v") locally almost everywhere, then there exists a G-equivariant
isometry T : V' — V' such that T'(v) =
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III The Gelftand-Raikov theorem

In fact, we will give a somewhat explicit construction of (7, V') during the proof.

Before proving the theorem, let’s see some easy corollaries.

Corollary IIL2.6. Let ¢ : G — C be a function of positive type. Then p agrees with a con-
tinuous function locally almost everywhere, ||¢llc = ¢(1) and, for every x € G, we have

p(x™h) = ().

Proof. The first statement follows from (ii) of proposition [lII.2.4] To prove the other statements,
choose a cyclic unitary representation (7,V") of G and v € V such that p(z) = (7(z)(v),v).
Then, for every = € G,

lo(@)] < llm(@)()lllv] = [[o]l* = (1)

and

]

Now we come back to the proof of the theorem. Let ¢ : G — C be a function of positive type.
Define a Hermitian form (., .),, on L'(G) by :

(f,0)p = / @+ No=[  F@aely z)drdy

GxG

(see remark [[11.2.2)). In particular, we clearly have, for all f,g € L'(G),

[(F: el < [ fIIllgllllelloo-

As o is of positive type, we have (f, f), > 0, that is, the Hermitian form we just defined is
positive semi-definite; in particular, the Cauchy-Schwarz inequality applies to it, and it gives, for
all f,g € L'(G),

|<f7 g><ﬂ|2 S <f7 f)w(ga g)#"

Let ./ be the kernel (or radical) of the form (., .),, that is, the orthogonal of L'(G), i.e. the
space of f € L*(G) such that (f, g), = 0 forevery g € L'(G). By the Cauchy-Schwarz inequal-
ity, we have f € .4 if and only if (f, f),, = 0. Hence the form (., .),, defines a positive definite
Hermitian form on L'(G) /.4, that we will still denote by (., .),; we denote the associated norm
by ||.||,. For every f € L*(G), we have

1+ A5 < Nl I

Let V,, be the completion of L'(G) /.4 for the norm ||.||,,; this is a Hilbert space.

We want to construct a unitary action of G on V,,. We already have a continuous representation
of G on L'(G), using the operators L,. This will magically give our unitary representation. Note
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II1.2 Functions of positive type

first that, for every L'(G), the map G — L'(G), x — L, f is continuous for the semi-norm
|.]|» because of the inequality ||.||,, < H<p\|1/2H |1 that we just proved.

Let’s prove that (., .),, is invariant by the action of G. Let z € G and f, g € L*(G). Then

(Lof, Lag)y = ; Gf(x‘ly)g(l“lz)w(z‘ly)dydz

= FWg(@)e((x2) " (xy))dydz

GxG

= FW)g(2)e(z"y)dydz = (f,g)e-

GxG

In particular, the radical .4 of the form (., .),, is a G-invariant subspace of L'(G), so we get
an action of G on L'(G) /.4, which preserves the Hermitian inner product and is a continuous
representation by proposition We extend this action to V,, by continuity. This gives a
unitary representation of G on V,,, which we will denote by 7.

Let f,g € L'(G). Then, by example [[.4.2.7, we have

To(f)g+A)=fxg+ N

The following lemma will imply the first statement of theorem [[II.2.

Lemma II1.2.7. There exists a cyclic vector v = v, for V,, such that :
(i) for f € LY(G), we have w,(f)(v) = [+ A;

(ii) we have ¢(x) = (7 (x)(v),v), locally almost everywhere on G.

Proof. By the calculation of 7,(f)(g + -#) for f,g € L'(G) (see above), we see that v would
be the image in L'(G) /.4 of a unit element for * (i.e. a Dirac measure at 1 € G), if such a unit
element existed. In general, it doesn’t, but we can approximate it, and hope that we will get a
Cauchy sequence in L(G)/.A .

So let (¢ )ues be an approximate identity (see definition [I.4.1.7). Note that (¢f;)yes is also
an approximate identity, so, by proposition [[.4.1.9] we have ¢, * f U—{1}> fin LY(Q) for every
ﬁ

f € LY(G). So, for every f € L'(G), we have

Foo)e = [Wix Do —— [ Fodu

U—{1}

Hence f — [, fedy is a bounded (for ||.||; and |.||,) linear functional on L'(G) whose kernel
contains ./". We can descend this bounded linear functional to L'(G)/.#" and extend it to V, by
continuity, and we get a bounded linear functional on V,,, which must be of the form (., v),, for
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III The Gelftand-Raikov theorem

some v € V,, (uniquely determined), because V, is a Hilbert space. By definition of v, we have,
for every f € LY(Q),

(f+A v)p= /Gfsodu,

and this determines v because the image of L'(G) is dense in V.

Now we prove properties (i) and (ii). Let f, g € L'(G). Then

(9, f)o = /G(f* * g)pdp
— [ @ty a)dady
GxG

- / o(y2) F@)p(x)ddy

GxG

= / (y) Ly 9(7)p(z)dzdy

GxG

<9+JV FW)me(y)(v))pd

= <g+</V77Tgo(f)(U)>s0‘

As this is true for every ¢ € L'(G) and as the image of L'(G) is dense in V,,, we get
7,(f)(v) = f 4 4. In particular, the span of {m,(f)(v), f € L'(G)} is dense in V,, so v
is a cyclic vector (by (iii) of theorem [[.4.2.6)).

Also, for f € L'(G), by what we have just seen :

/f (7o (1) (V), V) = ( /f )7 () (v)d, v),

To(f)(V), V)
f + N, 0)y

- [ s

As this is true for every f € L*(G), it implies that p(z) = (m,(x)(v), v}, locally almost every-
where.

]

To finish the proof of theorem [II1.2.5] we just need to establish the following lemma.

Lemma IIL.2.8. Let (7, V') and (w, V') be two cyclic unitary representations of G and v € V,
v' € V' be two cyclic vectors such that, for every x € G, we have

(m(2)(v), v) = (x'(2) (), V).
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II1.3 Functions of positive type and irreducible representations

/

Then there exists a G-equivariant isometry T : V' — V' such that T'(v) = v'.

Proof. Of course, we want to define 7' : V' — V' by the formula T'(w(x)(v)) = 7'(x)(v"), for
every z € G. We need to make sense of this. Let W = Span{rn(z)(v), € G}. By the
assumption that v is cyclic, the subspace W is dense in V. Let’s check that the formula above
defines an isometry 7' : W — V'. Let xy, ..., z, € Gamd \q,...,\, € C. Then

me) ZZ)\)\ m(z; z;) (v),0)

'Ll]l

:ZZ/\)\ (27 '2;)(v"), )

=1 j5=1

Z A (:) (V)

In particular, if >, A\;w(x;)(v) = 0, then we also have )" \;n'(z;)(v') = 0. So we can
define T : W — V' by T(> ", Mm(w;)(v)) = >, Mim'(x;)(v'), and then the calculation
above shows that 7" is an isometry. Hence 7' is continuous, and so we can extend to a continuous
linear operator 7" : V' — V", which is still an isometry, hence injective and with closed image.
Also, if z € G and w € W, then we have T'(7(x)(w)) = «'(z)(T(w)) by definition of 7. As
T 1s continuous and W is dense in V/, this stays true for every w € W; in other words, 7' is
G-equivariant. Finally, 7'(v) = v by definition of 7', so the image of 7" is dense in V’, hence
equal to V.

2

2

]

lll.3 Functions of positive type and irreducible
representations

We have seen that cyclic unitary representations of GG (together with a fixed cyclic vector) are
parametrized by functions of positive type. The next natural question is “which functions of
positive type correspond to the irreducible representations ?”’

Definition II1.3.1. We denote by Z(G) or & the set of continuous functions of positive type
on G. This is a convex cone in 6, (G). []

Let
P ={p € 2|[|vllec =1} ={p € Z|p(1) =1}
and

Py ={p € Z||¢lle <1} ={p € Z[p(1) < 1}.

1“Cone” means that it is stable by multiplication by elements of R>.
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III The Gelftand-Raikov theorem

(Remember that, by corollary [I[I1.2.6, we have ||¢||.. = ¢(1) for every p € £.)

Then &7, and &, are convex subsets of 4,(G). We denote by & () and & () their sets of
extremal points.

Theorem IIL.3.2. Let ¢ € . Then the unitary representation (V,,,m,) constructed in the
previous section is irreducible if and only if ¢ € &( ).

Remark 1I1.3.3. If ¢ € &7 and ¢ € Ry, then we have (., .), = ¢(.,.)p, 50 Vo, = Vi, e, =
and v., = v,. (But the identity of V,, is not an isometry, because we are using two different
inner products, i.e. (.,.), and (.,.).,). As each nonzero ¢ € & is a of the form ¢y’ for a unique
¢ e Py (we have ¢ = (1)), the theorem does answer the question at the beginning of the
section.

Remark 111.3.4. If G is commutative, the theorem says that G = & ().

Proof. In this proof, we will denote the inner form and norm of V' = V,, by (.,.) and ||.||, and we
will write m = 7. (Unless this introduces confusion.)

We first suppose that 7 is not irreducible. Let 0 # W C V be a closed G-invariant subspace.
As 7 is unitary, W+ is also G-invariant, and we have V = W @& W+, Let v € V be the cyclic
vector of lemma As v is cyclic, it cannot be contained in W or in W (otherwise we
would have W = V or Wt = V). So we can write v = vy + v, with v, € W, vy € W,
and vy, vy # 0. Define ¢1, 09 : G — C by p;(z) = (m(x)(v;),v;). Then 1, ps € & by (ii)
of proposition [[I1.2.4] and we have ¢ = ¢ + pa. Let ¢; = [[v1]|* and o = ||v2]|%; we have
¢1 + ¢ = [|v]]* = ¢(1) = 1 by the Pythagorean theorem, so ¢1,¢; € (0,1). Let ¢; = L;, for
i =1,2. Then ¢ = 191 + oo, and 1y, 10y € Py (because ¢y (1) = (1) = 1). To conclude
that ¢ is not an extremal point of &7, we still need to prove that ¢); # 1), i.e. that ¢, is not of
the form ¢y for ¢ € R

2 .
Let ¢ € R.g. Choose € > 0 such that ¢ < %, i.e. such that el|vs|| < c||v1]|? — ecllv1||.
As v is a cyclic vector for V, we can find x4, ...,z, € Gand ay,...,a, € C such that

n

Z a;m(x;)(v) — v

=1

<e&.

As v = vy + vy withv; € W and v, € W, and as both W and W are stable by the action of
G, we have, for z € G,

(m(@)(v), v1) = (w(x)(v1) + 7(2)(v2), 01) = (w(2)(v1), v1)-
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II1.3 Functions of positive type and irreducible representations

Hence

Z ai<7r<xi)(vl)7 ?)1) - <Ul, U1>

= Z ai<7T(iEi)(?}), 1}1> — <1}1’ Ul)

— <Z a;m(z;)(v) — Ulavl>>|

i=1
<éellvll;

which implies that

lvi]* = eflonll <

Zaxﬂ(%)(vl)ﬂh)

Z a; o1 (fL‘,) .
=1

On the other hand (using the fact that (7(x)(v),ve) = (7(x)(vs), vo) for every x € (), we have

n

Zai<7f(17z‘)(v2)702>

=1

n

= |3 aulm (@) (), v2) — (01, 02)

=1

- <Z a;m () (v) — 01, v2)

n

Z a;m(x;)(v) — vy

i=1
< elfvo|

< vl

< cllvi[* = ecflval]

Z aipr(w;)
i=1

<c

1.e.
n

Z ais02(9€i)

=1

n

Z aigpl (I‘Z> .

=1

<c

So we cannot have s = cp;. As ¢ was arbitrary, this finishes the proof that v); # 15, hence that
 is not an extremal point of &7;.

Conversely, we want to show that ¢ is extremal in &; if 7, is irreducible. Suppose that
© = 1 + @9, with 1, 3 € 2. Forevery f € L'(G), we have

<f7f>301:<f7f><p_<faf>sﬂ2§<f7f><p'

In particular, the kernel of (., ), is contained in the kernel of (.,.),,, so the identity of L!(G)
extends to a continuous surjective map 7" : V, — V,,, and that map is G-equivariant because the
action of G on both V,, and V,,, comes from its action on L' (G) by left translations. Also, as v,,
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III The Gelftand-Raikov theorem

(resp. v, ) is just the limit in V,, (resp. V) of the image of an approximate identity, the operator
T sends v, to v,,. As KerT is a G-invariant subspace of V,,, so is (KerT)*, so T defines a
G-equivariant isomorphism (Ker T')* = V,,, so V,, is isomorphic to a subrepresentation of V.

Now suppose that 7, is irreducible. Then 77" € End(V,,) is G-equivariant, so it is equal to
cidy,, for some ¢ € C by Schur’s lemma (theorem|[.3.4.1). As T'(v,,) = v,,,, forevery x € G, we
have

As ; and ¢ are of positive type, we must have ¢ € R>,. We see similarly that p, must be in
R>op. So ¢ is extremal.

]

1.4 The convex set &,

We have seen in the previous two sections that irreducible unitary representations of G are
parametrized by extremal points of &?;. Remember that we are trying to show that there enough
irreducible unitary representations to separate points on (G. So we want to show that &7, has a
lot of extremal points. A natural ideal is to use the Krein-Milman theorem (theorem that
says that a compact convex set is the closed convex hull of its extremal points), but &; is not
compact in general. However, the set & is convex and weak* compact and closely related to
1, this will be enough to extend the conclusion of the Krein-Milman theorem to #;.

Remember that & is a subset of L*°(G). We identify L>°(G) with the continu-
ous dual of L!'(G) and consider the weak* topology on it and on its subsets &, &,
and &,. For f € L*>®(G), a basis of neighborhoods of f is given by the sets
Ugprogne = LI € L¥(G)|| Jo(f = fgidp| < ¢, 1 <i<n},forn € Zs1, g1, .., 9, € L'(G)

and ¢ > 0. The second main result of this section is that the weak* topology coincides with the
topology of compact convergence on #.

Theorem I11.4.1. The convex hull of & () is dense in &, for the weak* topology.
Lemma I11.4.2. We have & (%) = &(Z71) U {0}.
Proof. First we show that every point of &(2%) U {0} is extremal in Z,. Let @1, ps € P

and ¢;,cy € (0,1) such that ¢; + co = 1. If 101 + capg = 0, then 0 = ¢1¢1(1) + capa(1),
50 p1(1) = @o(1) = 0, 50 [[¢1]lc = [[¢2]lc = 0,ie. @1 = @o = 0. This shows that 0 is
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extremal. Suppose that ¢ := c1p; + a2 € &(F1). Then 1 = (1) = c1(1) + ¢2(1), so
©1(1) = @a(1) =1, 50 1, o € Hq; as @ is extremal in Z?y, this implies that p; = ¢,. So @ is
also extremal in &,

Now we show that every extremal point of Z, is in &(Z;) U {0}. Let
p e Py—(E(P)U {0}) If p € &, it is not extremal If p € P, then 0 < ¢(1) < 1,
sop = (1—c¢)0+c ( Sy With ¢ = ¢(1) € (0,1) and Sm% € Z; this shows that ¢ is not
extremal.

O

Proof of the theorem. Note that the conditions defining &2 in L>°((G) are weak* closed condi-
tions, so & is a weak* closed subset of L>®°((G). As &, is the intersection of &2 with the closed
unit ball of L>(G), it is weak* closed in this closed unit ball, hence weak* compact by the
Banach-Alaoglu theorem (theorem . As P, is also convex, the Krein-Milman theorem
(theorem says that the convex hull of &(%) is weak* dense in &,. Also, the lemma
above says that &(Z) = &(#;) U {0}.

Let ¢ € &, and let U be a weak* neighborhood of ¢ of the form
{v e 2| [(0—)gidu| < ¢, 1 <i<n},withn € Zsy, g1,...,9, € L'(G) and ¢ > 0.
We want to find a point of U that is in the convex hull of &(Z?;). Choose ¢ > 0 (we will see
later how small it needs to be). By the first paragraph and the fact that closed balls in L>°(G) are
weak™ closed (a consequence of the Hahn-Banach theorem), we can find %) in the convex hull of
& (1) U{0} such that, forevery i € {1,...,n}, we have | [,(v —1)gidp| < ¢/2 and such that
|¥]|o =1 —e. Write ¢ = 011/11 + ...+, with ey, ..o e € 0,1, 0,0 0, € E(P) and
ci+...+c¢ <1 Leta= II¢|I Thenaw (aci)yr + ...+ (ac,)Y, and acy + ... + ac, =1,
so at) is in the convex hull of &( ;). Let’s show that ay) € U. Ifi € {1,...,n}, we have

‘/G(so—at/))gidu’ < ’/G(so—lb)gidu' ‘/Gw —aw)gidu‘
/Gll)gz‘dﬂ‘
<c/2+¢ (c/2 + ‘/Ggpgid#') ‘

So, if we choose & small enough so that € (¢/2 + | [, pgidu|) < ¢/2 forevery 1 € {1,...,n},
the function av) will be in U.

<c/2+ |1 —dq

[]

As & is a subspace of the space ¥ (), we can also consider the topology of compact conver-
gence on &, that is, of convergence on compact subsets of G. If ¢ € &, a basis of neighbor-
hoods of ¢ for this topology is given by {1 € Z|sup,cx |p(z) — ()| < c}, for all compact
subsets K of GG and all ¢ > 0.
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III The Gelftand-Raikov theorem

Theorem I11.4.3. (Raikov) On the subset &7, of &2, the topology of compact convergence and
the weak* topology coincide.

Remark 111.4.4. This theorem generalizes question (a) of exercise (See remark [I11.3.4})

Note that the theorem is not true for &%. For example, if G = R, then the topology of compact
convergence and the weak* topology do not coincide on G U {0}. For example, consider the
elements y, : © —> €Y of G. 1 claim that the family (x,)yer converges weakly to 0 when
ly| — +o0. (Obviously, it does not converge to 0 for the topology of compact convergence;

in fact, it has no limit in this topology.) Remember the this statement means that, for every
f € LY(R), we have

lim /f(x)emydx = 0.

lyl—=+oo Jr

Suppose first that f is the characteristic function of a compact interval [a, b]. Then

/f zxydy ( iby zay) 0.

ly|—+o00

So, if f is a (finite) linear combination of characteristic functions of compact intervals, the con-
clusion still holds. Now let f be any element of L'(R), and let ¢ > 0. We can find a linear
combination g of characteristic functions of compact intervals g such that ||f — g|[; < €. By
what we just saw, we can also find A € R such that | [, g(z)e"¥dy| < ¢ for |z| > A. Then, if
ly| > A, we have

x)eVdr| < g(x)emydx

T / (f(2) - g(a))é™da

<€+/|f x)|dx
< 2e

So [, f(x)e™dx converges to 0 as |y| — +oo.

Corollary II1.4.5. The convex hull of &) is dense in &, for the topology of compact con-
vergence.

Proof of the theorem. We first show that the topology of compact convergence on & is finer
than the weak* topology (this is the easier part). Let o € £,. Let f € LY(G) and ¢ > 0,
and let U = {¢ € || [, f(p —¥)du| < c}. We want to find a neighborhood of ¢ in the
topology of compact convergence that is contained in U. Let K C G be a compact subset such

that [ |fldp < ¢/3, andlet Vi = {¢ € Pi|sup,ex|p(x) — ¥(2)| < 57757} Then, if
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III.4 The convex set £,
1 € V, we have
]/ Flo— @/))du‘ < / flo— wm‘ T '/ flo— @b)du‘
G K QK

< Il suploe) — (o) +2 [ |1ldn
zeK G\K

<c

so 1) € U (on the second line, we use the fact that ||¢||. = ||]|c = 1)

Now let’s prove the hard direction, i.e. the fact that the weak* topology on
2, is finer than the topology of compact convergence. Let ¢ € 7, and let
V = {¢ € Pi|sup,ex l¢(z) — ¥(x)| < ¢}, with K C G compact and ¢ > 0. Let § > 0
be such that § 4+ 4v/8 < c. Let @ be a compact neighborhood of 1 in G such that

sup |¢o(x) — 1] < 0.
z€Q

(Such a @) exists because ¢ is continuous and ¢(1) = 1.) As () contains an open set, we have

w(@) # 0. Let f = 1 —i0y lo- By the first lemma below (applied to V' = L'(G) and B = &)
and the fact that G —> LI(G) x —> L, f is continuous (hence {L,-1f, * € K} C LY(G)
is compact), we can find a weak* neighborhood U; of ¢ in &7; such that, for every x € K and
every ¢ € U;, we have

/ = w>Lx-1f‘ <s
G

Then, for every x € K and every ¢» € U;, we have

|[f * @) = f (o) =

/Gf(xy)(so(yl) - w(yl))dy‘
LLmlf(y)(w(y) —(y))dy

<.

(see corollary [[I1.2.6))

Let Uy = {¢ € ] UG(w — w)fdu‘ < 0}. (This is a weak* neighborhood of ¢.) Let
¢ S U1 N UQ. Then

G(l —¢)fdu‘ < ‘/(1 —so)fdu‘ + ‘/(so—tb)fdu‘

a0

<sup|1— (x)|+ 0
zeQ

< 26.

x|+ 0
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III The Gelftand-Raikov theorem

On the other hand, for every = € GG, we have

f (o) — <>|—] [ 1ot x)dy——/w dy'

‘/ (y'z) - ))dy‘
<5 / [y ") — B(e)|dy

§ / v/2(1 — Re(¢(y)))dy (see the second lemma below)

< Tg) < /Q (1— Re(w(y)))dy> v ( /Q dy) " (Cauchy-Schwarz)

1/2

—rff@) ' /Q (1 b(y))dy
1/2

=2 (A=) fd

As {0 € Us, the previous calculation shows that this is < 2v/6. Note that this also applies
to 1 = ¢, because of course ¢ is in U; N U,. Putting all these bounds together, we get, is
’(/)G U NUyandx € K,

[h(x) — p(@)| < () — fx(@)] + |f () — f o)+ |f * o) —o(z)]
<5+ 4V5
< cC.

So Uy NU; C V, and we are done.
O

Lemma I11.4.6. Let V be a Banach space, and let B be a norm-bounded subset of Hom(V, C).
Then the topology of compact convergence (i.e. of uniform convergence on compact subsets of
V') and the weak™ topology coincide on B.

Proof. We want to compare the topology of pointwise convergence on V' (i.e. the weak* topol-
ogy) and the topology of compact convergence on V. The second one is finer than the first one
on all of Hom(V, C), so we just need to show that the first one is finer than the second on B.

Let Ty € B, let K C V be compact and let ¢ > 0. We want to find a weak* neighborhood
of Ty in B contained in {T" € B|sup,cx [T(x) — To(z)| < c}. Let M = suppcg ||T]]op (this
is finite because B is bounded). Let xy,...,x, € K such that K is contained in the union of
the open balls centered at the x; with radius 33;. Let 7" € B be such that [(T" — Tp) ()| < ¢/3
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I1.5 The Gelfand-Raikov theorem

for i« = 1,...,n (this defines a weak* neighborhood of T'). For every x € K, there exists
i € {1,...,n} such that ||z — z;|| < 55, and then we have

IT(2) = To(@)| < [T — )] + (T = To)(a)] + |To(w — )]
< T lloplle = i)l + ¢/3 + | Tolloplle — ]

<c/3+2M—

v ©

SoT eU.

Lemma IIL4.7. Let p € &?,. Then, for all x,y € G, we have
[o(x) — ¢y < 2= 2Re(p(yz™")).

Proof. By theorem [[I1.2.5 we can find a unitary representation (7, V') of G and v € V such that
o(x) = (m(z)(v),v) forevery x € G. Also, as (1) = 1, we have ||v|| = 1. So, forall z,y € G,
we have

< (2™ = (™)) ()|

= [l ) @)? + 7 (@) )[I* = 2Re((m(z7) (v), 7 (y™")(v)))
=2 —2Re((m(z7")(v), 7(y")(v)))

=2 - 2Re((r(yz"")(v),v))

=2 —2Re(p(yz ™).

1.5 The Gelfand-Raikov theorem

Theorem IIL.5.1. (Gelfand-Raikov) Let G be a locally compact group. Then, for all x,y € G
such that x # v, there exists an irreducible unitary representation 7 of G such that 7(x) # 7(y).

More precisely, there exists an irreducible unitary representation (m,V') of G and a vector
v € V such that (w(x)(v),v) # (7(y)(v),v).

Proof. Let x,y € G. Suppose that (w(x)(v),v) = (7(y)(v),v) for every irreducible unitary
representation (, V') of G and every v € V. By theorem [[I1.3.2] this implies that ¢(z) = ¢(y)
for every p € &(2,), hence for every ¢ € 22 by corollary (and the fat that {z,y} is a
compact subset of (), hence for every ¢ € & because & = R - Z;.
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III The Gelftand-Raikov theorem

Let 7, be the left regular representation of G, i.e. the representation of G on L*(G) defined
by 71(2)(f) = L.f for z € G and f € L?*(G). This is a unitary representation of G, so, by

the first paragraph and by proposition [[IL.2.4] we have (7., ()(f), f) = (m.(y)(f), f) for every
f e L*G). Let fi, fo € L*(G). Then
(mp(@)(fi+ f2), fr + f2) = (mo(@) (1), f1) + (mo(f2), fo) + (@) (1), fo) + (mo(@)(f2), f1)

and

(mo(x)(fitife), fitife) = (mo(x)(f1), fr) +(mL(fa), fo) —imr(z)(f1), fo) +i(mL(2)(fa), f1),

SO

2 (x)(f1), fo) = (mo(@)(fr + fo), fo + fo) +ilmp(x)(fL +if2), fr +ifa)
— (L + i) (me(z)(f1), fr) + (7L(2)(f2), f2))-

We have a similar identity for 77, (y), and this shows that

(mr(z)(f1), f2) = (mL(¥)(f1), f2)-

Now note that

(o) (f1), fo) = / Lofi(2) Fa(2)dz

G

— /G fi(z712) fo(2)dz
- [ FER

= fox filz)

(remember that f; € L2(G) is defined by f1(z) = fi(z=1)), so fo % fi(z) = fo * fi(y). This
calculation also shows that f, * f; makes sense and is continuous.

As f — f is an involution on L3(G), we deduce that f, * fo(z) = fi % fo(y) for all
f1, f» € L*(G), and in particular for all f, fo € %.(G). Let f € %.(G), and let (Vy)yen

be an approximate identity. We have ¢y € 6.(G) for every U € %, and ¢y * f U4{}> f for
—1{1

||l by proposition [[.4.1.9| (and the fact that f is uniformly continuous, which is proposition

[.1.12). As ¢y x f(x) = Yy * f(y) for every U € %, this implies that f(x) = f(y). But then
we must have z = y (by Urysohn’s lemma).

]

l1l.6 Exercises

Let GG be a topological group and (7, V') be a unitary representation of G. A matrix coefficient of
mis a function G — C of the form z — (7 (z)(v), w), with v, w € V. Note that these functions
are all continuous.
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Remember also that, if GG is locally compact (and p is a left Haar measure on (), then
the left regular representation 7y, is the representation of G on L?(G) := L*(G, ) given by
m(x)(f) = L.f, forz € G and f € L?(G). In this section, we’ll just call 7, the regular
representation of G.

lI.L6.1 The regular representation

Exercise I11.6.1.1. Let G be a discrete group, and let ¢ = 1.
(a). (1) Show that ¢ is a function of positive type on G.

(b). (2) Show that V,, is equivalent to the regular representation of G.

Solution.

(a). The counting measure p is a left Haar measure on (G, so we use this measure. For every
f € LYG), wehave [, fedp = f(1). So

[ o = ST € Roo

yeG
(b). Forall f,g € L'(G), we have

(f,9) = /G(g* * f)edu
= (g" * f)(1)
=> gy Nfy!

yeG

= <fa g)LQ(G’)

So the kernel of (., .),, is equal to {0}, and the Hilbert space V, is the completion of L'(G)
for the norm ||.||2, that is, L?(G). The action of G on V,, is the extension by continuity of

its action by left translations on L!(G), so we get the action of G by left translations on
L*(Q).

O

Exercise I11.6.1.2. Let GG be a locally compact group.
(a). If f,g € €.(G), show that f x g € €.(G).

(b). Show that every matrix coefficient of the regular representation of G vanishes at oo.
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III The Gelftand-Raikov theorem

(c). Suppose that G is not compact. If (7, V') is a finite-dimensional unitary representation of
G, show that it has a matrix coefficient that does not vanish at oco.

(d). If G is not compact, show that its regular representation has no finite-dimensional subrep-
resentation. Pl

Solution.

(a). First, we know that f * g exists, because f and g are in L}(G). If z,2” € G, then

Frg@)— frgle |—/f — gy e))dy

< ||f||1 Suppyesupp(f) |g(y_ll‘) - g<y IZL',)|

As g is right uniformly continuous (see proposition|I.1.12)), this tends to 0 as x’ tends to z,
so f * g is continuous.

Let z € GG such that f % g(z) # 0. We have
frgla /f g(y~"x)dy,

so there exists y € supp(f) such that y~'z € supp(g). In other words,
x € supp(f)supp(g). As both supp(f) and supp(g) are compact, their product
supp(f) supp(g) is also compact, so f * g has compact support.

(b). Remember that, if f € L*(G), we define f : G — Cby f(z) = f(z1).
Every matrix coefficient of the left regular representation of G is of the form
€T — <Lx—1 f, g>L2(G)

with f, g € L*(G). We have (see proposition |[I1.2.4(iii))

(Lt £ 9) 1) /fa: )

‘A )g(y)dy

Il
Ql

Moreover, if f', ¢’ € L*(G), then we have (using the Cauchy-Schwarz inequality)

K%aﬁmp@y—@rdﬁmmmﬂélﬂMMV@1y—f@1wwy

< llgllll Lo (f = F)l2
= llgll2llf = fll2

2Compare with Peter-Weyl.
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and
(Lot £ )26 — (Lt fr b ioien| < / 19(v) - W1 F @ yldy
< g —g'll2l| Lo fl|2
= lg — d'll2] f'[|2-

Suppose that f, g € €.(G). Then g, ?G %¢.(G), so, by question (a), g * ?6 %¢.(G), and in
particular this function vanishes at co.

In the general case, let ¢ > 0 and let f',¢' € %.(G) such that ||f — f'|| < ¢ and
llg — ¢'||2 < . Then, by the two inequality above, we have, for every x € G,

G%7(@) =7+ I (@)] < <(7]l2 + llglla)

—
But we have just seen that ¢’ * f has compact support, so there exists a compact subset K
of GG such that, for every x ¢ K| we have

9% F(@)] < (|l fll2 + llglla)-

This shows that the matrix coefficient g fvvanishes at oo.

(c). Let (ey,...,e,) be an orthonormal basis of V. For every i € {1,...,n}, let f; be the
matrix coefficient x — (m(z)(e;), e;). Then we have, for every x € G,

> 1) Z| J(er), e = re) (e =

=1
This shows that at least one of the f; does not vanish at co.

(d). This follows directly from (c) and (d).

111.6.2 Weak containment

Let G be a topological group and (7, V') be a unitary representation of G. We say that the
functions G — C, z —— (m(x)(v), w) (with v,w € V) is a diagonal matrix coefficient if v = w;
a diagonal matrix coefficient is a function of positive type by proposition l1I.2.4, and we call it a
function of positive type associated to . We say that a function of positive type is normalized if
it is of the form = — (7w (x)(v),v) with ||v|]| = 1. We denote by Z () the set of functions of
positive type associated to 7.
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III The Gelftand-Raikov theorem

We will see soon E] that, if G is compact, then the regular representation of G contains all the
irreducible representations of G (which are all finite-dimensional); in fact, it is the closure of the
direct sum of all its irreducible subrepresentations. On the other hand, if GG is abelian, then its
regular representation is the direct integral of all the irreducible representations of G (which are
all 1-dimensional), even though it does not contain any of them if GG is not compact. We will not
rigorously define direct integrals here, but we will introduce a weaker definition of containment,
for which irreducible representations of an abelian locally compact group are contained in the
regular representation, and start studying it.

Let (m,V) and (7', V') be unitary representations of GG. We say that 7 is weakly contained in
7', and write m < 7', if Z(m) is contained in the closure of the set of finite sums of elements of
P (n') for the topology of convergence on compact subsets of GG. In other words, 7 < 7’ if, for
every v € V, for every K C G compact and every ¢ > 0, there exist v}, ..., v, € V' such that

n

sup |(m(2)(v), v) — Y _(r'(2)(vf), of)] <.

zeK i—1

Exercise I11.6.2.1. Let (7, V7), (w2, V2) be unitary representations of G.

(a). Show that the algebraic tensor product V; ®¢ V5, has a Hermitian inner product, uniquely
determined by (v; ® vg, w1 ® wy) = (v1, w1 ) (v, Wa).

(b). We denote the completion of Vi ®¢ Vs for this inner form by V;&®cVs. Show that the
formula (z,v; ® vy) — mi(x)(v1) @ ma(x)(vs) defines a unitary representation of G on
V1@ Va. (This is called the tensor product representation and usually denoted by 7 @ 75.)

(c). If V; and V4 are finite-dimensional, show that, for every x € G, we have

Tr(m @ ma(x)) = Tr(m () Tr(m(x)).

Solution.

(a). As pure tensors span V; ®c V5, there is at most one sesquilinear form B on V; ®¢ V5 such
that B(v; ® v, w1 ® we) = (v1,w;){ve, ws). Let’s show that such a form exists. Let
wy; € Vi and wy € V,. Then the map on Vi x Vo — C, (vq,v2) — (v1, wq)(vg, ws)
is a bilinear form, hence it corresponds to a unique linear form on V; ®c Vs, say B, ..
Next, the map on V; x V5 sending (w;, ws) to the antilinear form v —— By, 4, (v) is
bilinear, so it corresponds to a unique linear functional 7" on V; ®¢ V5. Finally, the map
B: (Vi ®&c Va) x (V4 ®c Va) — C sending (v, w) to T'(w)(v) is linear in v and antilinear
in w, so it is a sesquilinear form, and it sends pure tensors where we want by definition.

Now we show that B is Hermitian, i.e. that B(w,v) = B(v,w) for all v,w € V} ®¢ Va.
As B is sesquilinear, it suffices to check this property for v and w pure tensors, but then it
follows immediately from the analogous property of the inner products of V; and V5.

3 Add ref.
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Finally, we show that B is definite positive. Letv € Vi®¢ V5, and write v = Z?:l V1,;QV24,
v1; € Vi and vy; € V. Then v is in V/ ®c¢ V4, where V] = Span(vyq,...,v1,) and
V) = Span(ves,...,v2,). So we may replace V; and V5 by V/ and V, and so may
assume that V; and V; are finite-dimensional. If this is the case, let (e1,...,e,) (resp.
(€1, --,€,)) be an orthonormal basis of V; (resp. V3). Then (e; ® €})1<i<r1<j<s 18 a basis
of Vi ®c Vs, and it is clear from the definition of the Hermitian form B on V] ®¢ V5 that
it is an orthonormal basis for B . But the existence of an orthonomal basis forces the form

to be positive definite (if v = 7| > ase; @ €}, then B(v,v) = 37, - |ay[*).
(b). First note that, if v; € V} and vy € V5, then we have ||v; ® va|| = ||v1||]]v2]|-

Let x € G. Then the map V; x Vo — Vi ®¢ Vs sending (v, v3) to m1(x)(v1) @ ma(x)(v2)
is bilinear, so it induces a C-linear map m; ® my(x) from V; ®¢ V; to itself. We show that
this map is an isometry (hence continuous). Let (e;);c; (resp. (f;);es) be a Hilbert basis
of V; (resp. V). If v; € Vi and v, € V5, we can write v; = ) ., a;e; and vy = Zjej bifi,
and then, by the remark above, the series ZZ ; a;bie; ® f; converges to v; ® vg in V; Q¢ Va.
As every element of V) ®¢ V5 is a finite sum of elements of the form v; ® v, this
proves that every element v of V; ®¢ V5 can be written as the limit of a convergent series
> icrjes ibjei® fj, witha;, by € C. Then m®@ma(z)(v) = 37, 5 aibjmi(x)(e;) @m2(2)(f)-
As the families (e; ® f;) and (m1(x)(e;) ® ma(x)(f;)) are both orthogonal in V; ®¢ Vs, we
get[[o]2 = X2, ; [ai?[B; 2 = || @ mo(a)(0)] 2

As the map m; ® () is continuous, it extends to a continuous endormophism of Vlé\QCVQ,
which is also an isometry and will still be denoted by 7 ® mo(x).

If y is another element of GG, the endomorphisms 7 @2 (xy) and (7 @7 (z))o (T @ma(y))
of Vi®cV; are equal on pure tensors, hence they are equal because pure tensors generate a
dense subspace of Vi ®c V5.

To check that this defines a unitary representation of G on %@CVQ, we still need to check
that, for every v € Vi®cVa, the map G — Vi®cVa, © — m ® ma(x)(v) is continuous.
This is true for v a pure tensor : if v = v; ® vy, then, for z,y € G, we have

[(m @ my(x) = m @ ma(y)) (V)| < [lm(z)(0r) @ (m2(2) = ma(y)) (v:)]
+ () = m1(y)) (01) @ ma(y) (va) |
= [lor [l (ma(z) = ma(y)) (w2) | + [|(m1 () = w1 () (wi)[[[[va]l;

which implies the result. So it is still true for a finite sum of pure tensors, and then a

standard shows that it is true for every element of Vi®cVa.

(c). Let (eq,...,e,) (resp. (fi1,...,[f;)) be an orthonormal basis of V; (resp. V). Then

el l ) >

n

Tr(mi(z) = > (m(x)(e;), e)

i=1
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and

SO

TI‘<7T1®7T2 :ZZ 771®772 )(€Z®fj) ez®f]>

(z ez>> (me(fj),f»)

j=1

= Tr(m (z))Tr(me(x)).
U

Exercise I11.6.2.2. Let V' be a locally convex topological C-vector space, K be a compact convex
subset of V', and ' C K be such that K is the closure of the convex hull of £'. Show that every
extremal point of K is in the closure of F'. (This is known as Milman’s theorem.)

Solution. If 0 € X is an open convex subset of V/, then we have X C 2X. Indeed, ifp : V — Rxg
be the gauge of X (see lemma|B.3.8), then X = {v € V|p(v) < 1}, so

X c{veVpl) <1} c{veVph) <2} =2X.

Let v be an extremal of K, and suppose that v g F. Then we can find a convex neighborhood
X of 0in V such that X = —X and (v + X) N F' = &. Replacing X by 1 X, we may assume
that we have (v + X)N F = @.

As F is compact (as a closed subset of K), we can find zy,...,2, € F' such that
F c U, (% + X). Foreveryi € {1,...,n}, let K; be the closure of the convex hull of
Fn (x; + X); this is a compact convex subset of V' (it is compact because it is closed in K). As
K is the closure of the convex hull of ', we have K D K; U...UK,, so K contains the convex
hull L of K; U...U K,,. Let’s show that KX = L. As L. D F' and L is convex, it suffices to show
that L is compact. Let

S ={(x1,...,2,) €[0,1]" |21+ ... + 2, = 1},

and consider the function
f:SxKyx...xK,—L

sending ((z1, ..., %), V1, ...,0,) t0 > v x;v;. This map is continuous, so its image is compact.
If we show that this image is convex, then it will equal to L by definition of L, and we will be
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done. Soleta = ((z1,...,2,),v1,...,0,) and @’ = ((2},...,2)),v],...,v)) be elements of

SX Ky X...... K, and t € [0, 1]. Then

tf(a)+ (1—t)f(a) =Y (tzv; + (1 — t)zj))
i=1
Let ¢ € {l,...,n}. If to; + (1 — t)x; # 0, we set y;, = tx; + (1 — t)x; and
w; = i(txivi + (1 — t)xjv}). Otherwise, we set w; = v; and y; = 0. Then we have w; € K for
every ¢ because K is convex, y; > 0 for every ¢, and

=1 i=1 =1

So
tf(a)+ (1 =t)f(d) = f((y1- yn)swr,...,wy)

is in the image of f, and we are done.

Now we derive a contradiction. As K = L, we can write v = » ., t;v;, with (¢1,...,¢,) € S
and v; € K; for every i. As v is extremal in K, there exists ¢ € {1,...,n} such that v = v;. But
thenv € K; C (x; —i—Y) (because K is contained in the closure of the convex hull of x; + X, and
this is z; + X because X is convex). As z; € F and X = — X, this implies that x; € (v —I—V) NFE,
contradicting the choice of X.

O

Exercise I11.6.2.3. Let (7, V') and (7', V') be unitary representations of G. Let C' C V such that
Span(m(z)(v), € G, v € C) is dense in V [ Suppose that every function x — (7 (z)(v), v),
for v € C, is in the closure of the set of finite sums of elements of &?(7’) (still for the topology
of convergence on compact subsets of G). The goal of this problem is to show that this implies
T =<7

Let X be the set of v € V such that x — (m(z)(v),v) is in the closure of the set of finite
sums of elements of (') (for the same topology as above).

(a). Show that X is stable by all the 7(z), x € G, and under scalar multiplication.
(b). If v € X and 1, 25 € G, show that (z1)(v) + 7(x2)(v) € X.
(c). Show that X is closed in V.

(d). If v € X, show that the smallest closed G-invariant subspace of V' containing v is con-
tained in X.

(e). Let vy,vy € X, and let Wy (resp. W) be the smallest closed GG-invariant subspace of V'
containing v, (resp. vo). Let W = W, + W, and denote by 7" : W — W the orthogonal
projection, where we take the orthogonal complement of W, in .

“4For example, if V' is cyclic, C could just contain a cyclic vector for V.
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(i) Show that 7" is G-equivariant and that 7'(W5) is dense in Wit
(i) Show that Wi+ C X.
(iii) Show that v; + vy € X. (Hint : Use T'(vy + vo) and (vy + vo) — T'(vy + v2).)

(f). Show that w < 7',

Solution.

(a). Forevery v € V (resp. v € V’), we write ¢, for the matrix coefficient x — (7 (z)(v), v)

(b).
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(resp. x — (7' (x)(v),v)). We also write Y (') for the set of finite sums of elements
of 2(n').

Letv € X, lety € G and let A\ € C. We want to show that 7(y)(v) and v are in
X, that is, that ) and @y, are in > P (7’). If A = 0, the conclusion is obvious
for A\v (note that 0 is a matrix coefficient of every representation of (G), so we may as-
sume that A # 0. Let K be a compact subset of G ¢ > 0. Choose v},..., v, such that
SUD e iy~ Icy [€0(2) — D11 v (@) < min(e, [A|7%¢). Then, for every z € K, we have

n

|on@o(®) = Z P () ) (2)| = [T () (), 7(y) (v)) — Z<7T'(wy)(v§), () (v))]

=[xy y)(v),v) = > (7 (g™ ay) (v), V)|

i=1
= [pu(y"zy) Z% ylay)|
<e

and

n

oo (@ Z%U )= DPleu(@) =Y wyle) <e.

i=1
SO Qa(y)(v) and @y, are in the closure of & (7').

Letv € X and let 21, 29 € G. For every y € GG, we have

Pran)@) (e @) (4) = (T(Y)(T(21)(0) + 7 (22)(0)), 7(21) (V) + 7(22) (V)
= (m(zy yz1) (v),v) + (w23 yae) (v), 0) + (w(@y yan) (v),v)
+ (7 (23 'yw2) (v), ).

In other words,

Pr(z1)(v)+m(z2) (v Z La:l R:z:J Pu-

3,7=1



(©).

(d).

(e).

(®).
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Let K be a compact subset of GG and let € > 0. Choose v}, ..., v/, € V' such that

n

sup ‘Sov(x) - Z Sov{(x)‘ <e.

2 -1 ‘
z€lU; o v Ky i=1

Then, by the calculation above (and its analogue for the functions ¢,;), we have, for every
r e K,

|807r (z1)(v)+m(z2) Z Pr(z1)(vi)+m(z2) (Uz)( )‘ =

This shows that ©r(z)w)4n(e)wv) 18 1n the closure of P(n’), that is, that
m(x1)(v) + m(x2)(v) € X.

It suffices to show that the map V' — Z(7), v — ¢, is continuous if we use the topology
of compact convergence on & (7). Let v,v" € V. Then, for every = € G,

o () — o ()| = [(7(2)(v), v) — (m(x)(v'), )
< [m(z)(v =), v)| + [{7(z)(v'),v — )|
<|

o =V Hlvll + [[o'[l[lv = ']l

So the map v — ¢, is continuous even for the topology on & (x) given by ||.||oo-

Let v € X. By (a) and (b), forevery n > 1 and all \y,... A\, € Cand zy,...,x,, we
have Y | \;m(x;)(v) € X. So the smallest G-invariant subspace of V' containing v (i.e.
> vec (2)(Cv)) is contained in X. The conclusion now follows from (c).

(i) As W; is G-invariant, the operator 7' is G-equivariant by lemma [[.3.4.3] As
W = W, + W,, the image of W; + W, by T is dense in Im(T) = Wi. As
Ker(T') = Wy, we have T(W; + Wy) = T'(Wy), so T'(Wy) is dense in Wi,

(i) As W =W, ® Wi, we deduce that T(Wi- N W,) = Wit N W, is dense in Wi, As
W, C X, question (c) implies that Wi C X.

(iii)) We set v = T(v; + 1) and w = vy + v, —v. Thenv € Wi C X and
w € Ker(T) = Wy C X, sov,w € X. On other hand, for every z € G, we
have

oyt () = (7(2) (V1 + v2), 01 + v2)
=7(z)(v+w),v+ w)
= @u(z) + u(2).
As 2 (1) is stable by sums, this implies that v; + v, € X.

By (a), (c) and (e), the set X is closed G-invariant subspace of V/, so it is equal to V' by the
hypothesis on C'. This means that 7 < 7’

0
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Exercise I11.6.2.4. Let (7, V') and (7/, V') be two unitary representations of G such that 7 < 7'.
Let C' be the closure in the weak* topology on L>°((G) of the convex hull of the set of normalized
functions of positive type associated to 7’.

(a).
(b).

(c).

(d).

Show that every normalized function of positive type associated to 7 is in C'.

If 7 1s irreducible, show that every normalized function of positive type associated to 7 is
a limit in the topology of convergence on compact subsets of GG of normalized functions of
positive type associated to 7. (Hint : problem [[11.6.2.2])

If 7 is the trivial representation of (G, show that, for every compact subset K of G and
every ¢ > 0, there exists v’ € V'’ such that ||v/|| = 1 and that

sup || () (v') — || <c.
zeK

Conversely, suppose that, for every compact subset K of GG and every ¢ > 0, there exists
v € V' such that ||v'|| = 1 and that

sup [|7(z)(v") — V'] < c.
reK

Show that the trivial representation is weakly contained in 7’

Solution.

(a).

170

Let ¢ be a normalized function of positive type associated to 7. Let f € L'(G) and & > 0.
We want to find a convex combination %) of normalized functions of positive type associ-
ated to 7’ such that ‘ f o flo— w)du‘ < e. Pick 4 > 0; we will see later how small it needs
to be. Let K > 1 be a compact subset of G such that foK |fldu < 6. As m < 7', we can
find vy, ..., v, € V' such that sup,cx [p(x) — > 7", ¢y (2)] < 4. In particular, evaluating

atl,weget|1—> 7" [[v;]|?] < 0. Lete; = [[v]|Z, c=c1+...4+Cnpi = 200, = 01y,
' [[oal

and ¢ = 137" @, = 23" cip;. Then ¢y, ..., @, are normalized functions of pos-
itive type associated to 7, and 1 is a convex combination of ¢1,...,¢,. In particular,
[¥]loc £ 1= [|¢]lcc-

For every x € K, we have

|o(z) — (=) Zsom )+ 1= cl[¢(z)|
< 20.
/f o= ] < swplio(e) ~ v(o)| [ 1fldu+ s loto) = o) [ Ifldn
zeG— G-K
< 25Hf\|1 +20.

We can make this < ¢ by taking ¢ small enough.
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(b). Let F be the set of normalized functions of positive type associated to 7/, and let K be
the weak™* closure of its convex hull. Then F' is contained in the convex set & of all
normalized functions of positive type on GG, so K C £7;. Let ¢ be a normalized function
of positive type associated to m. By question (a), we have p € K. By theorem [[11.3.2]
the function ¢ is extremal in &7, hence also in /. By problem this implies that
 is in the closure of F' in the weak™* topology. But F' and ¢ are in &, and the weak*
topology on &, coincides with the topology of convergence on compact subsets of G (by
Raikov’s theorem, i.e. theorem [[I1.4.3)), so ¢ is also in the closure of F' in the topology of
convergence on compact subsets of G.

(c). As T is the trivial representation, the only normalized function of positive type associated
to 7 is the constant function 1. By question (c), there exists v’ € V'’ such that ||v|| = 1 and

sup 11— (' () (v"),0")| < /3.
Let z € GG. Then
17 () (V) ='||* = (|7’ (2) (") [P+ [P=2 Re((7 () (v), ")) < 2[1—(7"(x)(v"),0")] < 2¢7/3,
SO

sup || () (v') — || < e
zeK

(d). Let 7 be the trivial representation of G. Then &(7) is the set of nonnegative constant
functions, so, to show that w < 7, it suffices to show that the constant function 1 is a limit
of finite sums of functions of Z(7’) (in the topology of convergence on compact subsets
of G). Let K be a compact subset of G and ¢ > 0. Choose v € V"’ such that ||'|| = 1 and
sup,cx ||7'(2)(v") — v'|| < ¢, and define ¢’ by ¢'(x) = (7'(z)(v’),v’). Then, for every
x € K, we have

1=/ (@)] = [, 0') = (7'(2)(v), )] = [(v" = ' (2) (), o) < " =7 (2) (V)| < e.

O

Exercise I11.6.2.5. Let GG be a finitely generated discrete group, and let S be a finite set of
generators for G. Show that the trivial representation of GG is weakly contained in the regular
representation of G if and only, for every ¢ > 0, there exists f € L?*(G) such that

sup || L. f = flla < el[fl2-
z€eS

Solution. We use the criterion of [I11.6.2.4(c) and (d), that says that the trivial representation of
G is weakly contained in the regular representation if and only if, for every compact (i.e. finite)
subset K of G and every € > 0, there exists f € L?(G) such that || ||, = 1 and

sup [ Ly f — fll2 <e.
rzeK
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III The Gelftand-Raikov theorem

First, as S'is finite, we see immediately that, if the trivial representation is contained in the regular
representation, then the condition of the statement is satisfied.

Conversely, suppose that the condition of the statement is satisfied. Let K be a finite subset of
G,andlete > 0. LetT = SU S ' U{1}. We have G = |J,., T" because S generates G, and
this is an increasing union. As K is finite, there exists n > 1 such that 7™. By assumption, we
can find f € L*(G) such that || f||o = 1 and

sup [|Lo.f — fll2 < se.
€S

‘We want to show that
sup || Lo f — fll2 < e.
reK

It suffices to show it for sup,cn. Letz € T, and write x = x; ... x,, withxy, ..., z, € T. We
show by inductionon ¢ € {1,...,n} that || L,, ., f — fll2 < £e. If i = 1, we want to show that
N\Leif — fll2 < %e. This is true by the choice of f if z; € S, it is obvious if z; = 1, and, if
x1 € S, it follows from the fact that

[ Larf = fllz = I = Lo [l

Now suppose the result known fori € {1,...,n — 1}, and let’s prove it for i + 1. We have

||L961---5L‘i+1f - f”2 < ||Lx1$z(L9€z+1f - f)||2 + ||L37196Lf - f||2
= 1 Loirf = fll2 + 1 Loy aif = fl2

i 1. itl
<n5+n5* €.

U

Exercise I11.6.2.6. Let G = Z. Show that the trivial representation of G is weakly contained in
the regular representation of G.

Solution. We apply the result of problem with S = {1}. So, for every ¢ > 0, we
must find f € L?(Z) such that ||f|; = 1 and ||L1f — f|l2 < e. The first condition says
that -, |f(n)]*> = 1, and the second condition that ), . [f(n — 1) — f(n)|> < &% Let
N € Zso, and consider the function gy = 1jpn; € L*(Z). Then |gn|3 = N + 1, and

ez l9(n = 1) = g(n)? = 2. So,if fv = g, we have || fll> = Land || Lo f = fll» = 2.

Taking N big enough, we see that fx has the desired properties.

O

Exercise I111.6.2.7. Let G = R.

(a). Show that the trivial representation of GG is weakly contained in the regular representation
of G.
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Show that every irreducible unitary representation of G is weakly contained in the regular
representation of G. E]E]

Solution.

(a).

(b).

If a,b € R are such that a < b, let f = (b — a)™/?1(,y. Then f € L*(R) and we have
|| f|l2 = 1. Moreover, for every t € R, we have L, f = (b — a)™"/* 14444+, SO

2|t]

b—a
Let K be a compact subset of R, and let ¢ > 0. If we choose a,b € R such that
b—a > 2?2 sup,c |t], then the construction above gives a f € L*(R) such that || ]2 = 1

and sup,cx || Lt f — fll2 < €. By 6(d), the trivial representation of R is contained in its
regular representation.

IZef = fII5 <

As R is abelian, every irreducible unitary representation is 1-dimensional by Schur’s
lemma (theorem . Let y : R — S! be such a representation. Let K be a com-
pact subset of R and ¢ > 0. By (a), there exists f € L*(R) such that ||f||; = 1 and
supseg || Lef — fll2 < e. Let g =X f. Then, for every ¢ € R, we have

(Leg, ) 2m) = / 9(z — g(@)dx = x(t)(Lef, )2,

R

hence

Ix(t) = (Leg, @) 2wy = |1 = (Lo f, ey = [(f = Lef, eyl < | Lef — fll2-
So
fg}() Ix(t) = (Ltg, 9)r2m)| < €.

This implies the desired result by [I11.6.2.4(d).
O

Exercise II1.6.2.8. Let GG be the free (nonabelian) group on two generators, with the discrete
topology. Show that the trivial representation of G is not weakly contained in the regular repre-
sentation of G.

U

Solution. Let a,b € G be the two generators of G, and let S = {1,a,b,a”',b"'}. We have

G:

\U,,>1 5", and this is an increasing union. Suppose that the trivial representation of G is

SWe will see later that this is true for every abelian locally compact group.
®Where ?
Should be in the next section.
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weakly contained in the regular representation. Then, by [[IL.6.2.4]c), for every n > 1, there
exists f, € L?(G) such that || f,||2 = 1 and

sup ||szn - fn”? S %

IESn

Let g, = |f4|?>. Then g, € LY(G),
inequality gives

gnll1 = 1, and, for every = € S, the Cauchy-Schwarz

2
HLxgn _gnHl < Hwan - an2||men +an2 < ﬁ

For every n > 1, we define a continuous linear functional A, on L*(G) by
MN(@) = D e gn(@)o(z). Then ||Ayllop = |lgnlli = 1, so, by the Banach-Alaoglu the-
orem, there is a subsequence (A, )x>o of (A,),>1 that converges for the weak* topology on
Hom(L>*(G), C). Let A be its limit. Let ¢ € L>(G). We have

Alp) = lim A, (¢).

k—+o0

Let y € G. There exists n > 1 such that y~! € S,,. Then, if k is such that n; > n, we have

A (Ly#) = A ()] = 1D L1 (@)0(2) = D gu (@) ()]

zeG zeG
< ”Ly*lgnk - gnkHlH‘pHoo

IA

2
— ]l
N,

Taking the limit as & — +o0, we see that A(L,p) = A(p). As, note that A(1) = 1, and that
A(p) > 0 if ¢ takes nonnegative values.

Remember that every element of G can be written in a unique way as a reduced word in a, b,
a~!and b~L. Let A be the set of elements of G whose reduced expression begins with a nonzero
power of a. The, for every x € G, if x € A, we have a 'z € A and then z € aA. In other words,
G =AUaA,soly+ 1,4 — 14 takes nonnegative values, hence

A(LL) = S(A(LL) + A(Lua) > sA(TG) = 3.

On the other hand, the group G is the disjoint union of the subset b" A, n € Z, so we have in
particular
1= A(]lg) > A(]lA) + A(]le) + A(]lbzA) = 3A<]1A),

thatis, A(14) < 5. So we get a contradiction.

O

Exercise I11.6.2.9. If 7, my, 7}, 7 are unitary representations of G such that m; < 7} and
Ty < T, show that m; ® mg < 7] @ 7.
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Solution. We use the same notation ¢,, for functions of positive type as in the solution of problem
I11.6.2.3| For i = 1,2, we denote by V; (resp. V) the space of ; (resp. ).

If vy € V4 and v, € V5, then, by definition of the inner product on V; ®c¢ V5, we have
Oo10ve = PuyPu,- There is similar result for pure tensors in V] @c Vy. S0 vy, 0u, 18 iIn P (7] @ 7h).
As P(r) @ 7}) is stable by finite sums, and as every element of V; ®¢ V5 can be written as
a finite sum of an orthogonal family of pure tensors (see the proof of 1(a)), this implies that
vy € P(mh @ 7h) for every v € V] ®¢ Vs. Finally, we have proved in 5(c) that the map v — ¢,
is continuous, and V; ®¢ Vs is dense in Vi ®¢Va, s0 ¢, € P(mh @ 7h) for every v € ViR Vs.

O

Exercise I11.6.2.10. Suppose that G is discrete. For every z € G, we denote by §, € L*(G) the
characteristic function of {xz}.

Let (7, V') be a unitary representation of GG, and let (mg, V') be the trivial representation of G
onV (i.e. mo(z) = idy for every z € G).

(a). Show that the formula v @ f — > . f(z)(7(z) ' (v)) ® d, gives a well-defined and
continuous C-linear transformation from V&cL?(G) to itself.

(b). Show that the representations ™ ® 7y, and 7y ® 7, are equivalent (remember that 7, is the
left regular representation of ().

Solution.

(a). First, the map V' x L*(G) — V @c L*(G), (v, f) — Y ,cq f(@)(n(2) 1 (v)) & 0, is
bilinear, so it defines a linear map o : V ®@¢ L*(G) — V ®¢ L*(G). For every v,v' € V
and f, f’ € L*(G), we have (observing that the family (v, ®d,).c¢ is orthogonal for every
family (v,).cq of elements of V)

(v f,a@ @ ) =) fl@)f @) (@) (), ()" ()

= f@)f'(x)(v,v)
=@ f,v'®f).

Using the fact that every element of V ®¢ L?(G) can be written as a finite sum or pairwise
orthogonal pure tensors (see the proof of 1(a)), this implies that ||« (v)|| = [|v|| for every
v €V Qc LQ(G). In particular, « is continuous, so it extends to a continuous endomor-
phism of V&cL?(G), which is still an isometry.

(b). We still call o the endomorphism of V®¢L?(G) constructed in (a). We show that it is a
G-equivariant map from 7 ® 7y, to my ® 7. As pure tensors generates a dense subspace of
V®cL*(G), it suffices to check the G-equivariance on them. Soletv € V and f € L*(G),

175



III The Gelftand-Raikov theorem

and let z € G. We have

a(r @ ()(v® f)) = aln(2)(v) © Lo f) = Y [l y)nly " e)(v) @ 6,

yeG

On the other hand,

o @ mr () (v ® f)) = mo ® T () (Z fr(y) " (v) 5y>

yeG
=> fly ) ® L.,
yeG
=3 Fnly) ) @ by
yeG
= Z flz ' 2)m(z 7 2)(v) ® 6,
yeG

= a(r @1 (z)(v @ f)).

We still need to check that « is an isomorphism of vector spaces. This follows from the
fact that is has an inverse /3, given by the formula S(v ® f) = > . f(z)7(x)(v) ® &,.
(We can check as in (a) that § is well-defined and continuous, and then we can check on
pure tensors that it is the inverse of «, which is an easy verification.)

Note that the isomorphism betweem 7 ® 77, and 7y ® 7, is an isometry, so these represen-
tations have the same functions of positive type.

0

Exercise I11.6.2.11. Generalize the result of [[11.6.2.10(b) to non-discrete locally compact groups.

Solution. Let (m,V') be a unitary representation of G. We write V{ for V' with the trivial action
of G.

First we define a Hilbert space L?(G, V) with a unitary action of G. (This is also often denoted
by Ind{Gl}Vo.) Consider the space %.(G, V) of continuous functions with compact support from
G to Vj, with the norm ||. || defined by || f|lcc = sup,cq ||f(x)|. We make G act on this space
by (z,f) — L,f, forz € G and f € %.(G,Vp). Looking at proposition [L.1.12] we see that
its proof generalizes to functions from G to V; and show that every element of €,.(G, V}) is left
and right uniformly continuous. In particular, for every f € 6.(G, V), the map G — 6.(G, V),
x +—— L, f is continuous.

Now we define a Hermitian sesquilinear form on %.(G, V;) by

(f.g) = / (@), 9(@) vy
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It is easy to see that this is an inner form, and that the action of G on €.(G, ;) preserves this
inner form and is continuous in the first variable € G for the topology on %.(G,V;) defined
by the associated norm. We denote by L?(G, V;) the completion of 6.(G, V;) for {.,.). This is a
Hilbert space, and we show as in the case V{) = C that the action of G on %.(G, V) extends to a
unitary action of G on L*(G, V}).

We now construct a G-equivariant isometry V®cL*(G) — L?*(G,V,). Consider the map
V x 6.(G) — L*(G, V) sending (v, f) to the function  — f(x)m(z~")(v). This is a bilinear
map, so it induces a C-linear operator « : V ®¢ 6.(G) — L*(G,V,). We check that « is G-
equivariant. It suffices to check it on pure tensors, because they generate V ®¢ 6.(G). If y € G,
v € Vand f € €.(G), then, for every = € G,

a(m(y)(v) ® Ly f)(y) = fly 2)m(ay o)
= Ly(a(v® f))(z).

We also check that o preserves the inner forms. As before, by bilinearity, it suffices to check it
on pure tensors. Let v,w € V and f, g € €.(G). Then

{(av® f),alw®g) = /f( )7 (@)~ (v), g(2)m (@)~ (W) de

/ F(@)g (@), whde
= (f, 9) 2 (v, W)y,

This implies that « is an isometry, hence that it extends by continuity to an isometry
V@cL?*(G) — L*(G,Vy) (we use the fact that €,.(G) is dense in L?(G)), which is still G-
equivariant.

We define a G-equivariant isometry o : Vo®cL*(G) — L*(G,V,) in a way similar to o, but,
forv € Vpand f € 6.(G), we take o/ (v ® f) to be the function x — f(z)v. The proof that
this does define the deisred (G-equivariant isometry is the same as in the case of .

Finally, we show that o and ' are isomorphisms. We already know that they are injective
and have closed image because they are isometries, so we just need to show that they have dense
image.

Let (e;);cr be a Hilbert basis of Vj. Consider the subspace W of L*(G, V;) whose elements
are continuous functions with compact support f : G — V} such that there exists J C [ finite
with f(G) C Span(e;, j € J). Let’s show that W is dense in L*(G, Vj). It suffices to show that
W is dense in 6.(G, Vp). Let f € 6.(G, V). As f has compact support, the subset f(G) of Vj
is compact. Let € > 0. For every z € K, there exists a finite subset J of I such that the closed
ball centered at = and of radius ¢ intersects Span(e;, j € J). As K is compact, it can be covered
by a finite number of these balls, so we can find s finite subset J of I such that the distance
between = and Span(e;, j € J) is < ¢ for every x € K. In other words, if 7, is the orthogonal
projection on Span(e;, j € J), then ||7;(x) — z|| < e forevery x € K. Then7;o f € W, and
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If =750 flleo < &,80||f =m0 flla < vol(supp f)e. This shows that W is dense in €,.(G, Vp)
for both topologies on %.(G, V) (the one induced by ||.||~ and the one induced by |.||2; only the
second one is relevant here). To finish, it suffices to show that 11" is contained in the images of «
and /. Let f € . We can find a finite subset .J of I such that f(G) C Span(e;, j € J), and then
we have f(z) = >_._; fj(x)e;, with the f; in €.(G). (Just take coordinates in the orthonormal
basis (e;);es of Span(e;, j € J)). In particular, f = o/(3_,c;¢; ® f;), so f € Im(a’). This
shows that o is an isomorphism.

For «, we consider instead the subspace W' of f € %.(G,V;) such that there exists J C [
finite such that, for every x € G, the vector 7(z)(f(z)) is in Span(e;, j € J). We show as before
that W’ is dense in %.(G, Vp) (for both ||.||« and ||.||2) : Let f € 6.(G,Vp) and € > 0. As f
has compact support, the subset {7 (x)(f(z)), © € G} of Vj is compact, so we can find a finite
subset .J of I such that, for every z € G, the distance between 7(z)(f(x)) and Span(e;, j € J)
is at most ¢. Let m; be the orthogonal projection on Span(e;,j € J), and define g € W’ by
g(x) =m(x)tomyon(z)(f(x)). Forevery z € G,

lg(x) = f@)|| = [lm(2)(g(x) = F@)]| = (|7 (x(2)(f(x))) = w(2)(f ()] <e,

0 ||g — flloo < €and ||g — f|l2 < vol(supp f)e. Finally, we show that ¥’ is contained in the
image of . Let f € W', and define g € %.(G, Vi) by g(z) = m(x)(f(x)). Choose a finite subset
J of I such that g(G) C Span(e;, j € J), and write g = 3, ; gje;, with g; € €.(G). Then, for
every v € (G, we have
@) = 3 gs(@)n(@) ey
jeJ

In other words, we have f = a(>_;.;€; ® g;).

Exercise I11.6.2.12. Show that the following are equivalent :
(i) The trivial representation of GG is weakly contained in 7y,.

(ii) Every unitary representation of GG is weakly contained in 7.

Solution. The fact that (i) implies (i) is obvious. So let’s show that (i) implies (ii). Let (7, V)
be a unitary representation of G, let 7 be the trivial representation of G on V/, and let 1 be the
trivial representation of G on C. We know that 1 < 77, so, by exercises[[[1.6.2.9and [T11.6.2.10]
wehave r 7 Q1 <7 ® 7, ~ g Q 7f.

As in the solution of exercise for every unitary representation 7’ of GG, we denote
by > (') the set of finite sums of functions of positive type associated to m. Let’s show
that Y~ P (nr) = > P (mo ® m1), which will finish the proof, because we already know that
P(m) C Y. P (o @ 7L).

As 7, is a subrepresentation of my ® 77, (for every v € V — {0}, the subspace Cv ® L?(G)
of V&cL?(G) is G-invariant and equivalent to the representation 7, by the map v ® f — f),
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we have & (np) C P (mo @ ), s0 Yy P(nr) C > P (my ® 7). Conversely, let (e;);e; be an
orthonormal basis of V, and let v € V®&cL?(G). Then we can write v = Y_,_; ¢; ® f;, where the
sum converges in V¢ L%(G) (i.e. > icr | fill? converges). Then, for every = € G, we have

(mo @ () (v),v) = Z<foi7 fi)r2 @),

so the function © — (mg ® 7p(x)(v),v) isin > P (7y).

11.L6.3 Amenable groups

Let (X, 1) be a measure space. and let £/ be a closed linear subspace of L°°(X) containing
the constant functions and closed under the map ¢ —— . A mean on F is a linear functional
M : E — C such that :

(i) M(1x)=1;
(ii) if f > 0 (locally) almost everywhere, then M (f) > 0.

If X = (G is a locally compact group, we say that a mean M on E is G-invariant if for every
f € Eandevery z € G, wehave L, f € E'and M (L, f) = M(f).

The group G is called amenable is there exists a G-invariant mean on L>°(G).

Let V be a locally convex topological vector space (see definition [B.3.5)), let K be a convex
subset of V. We say that amap f : K — K is affine if, for all v,w € K and every t € [0, 1], we
have f(tv+ (1 —t)w) =tf(v)+ (1 —t)f(w). Let G x K — K, (z,v) — x-v be a continuous
left action of G on X. We say that this action is an affine action if, for every x € G, the map
K — K, v+~ x-vis affine.

We say that the group G has the fixed point property if every affine action of G on a nonempty
compact convex subset of a locally convex topological vector space has a fixed point.

Note : The Hahn-Banach theorem is your friend in this series of problems. Also the fact that,
if V is a topological vector space, then any weak* continuous linear functional on Hom(V, C) is
of the form A — A(v), for some v € V. (See theorem 3.10 of Rudin’s [20].)

Exercise I11.6.3.1. (a). If (X, 1) is a measure space and E is a subspace of L>°(X) containing
the constant functions, show that any mean M on £ is automatically continuous (for the
topology given by the norm ||.||~,) and that || M||,, = 1.

We now suppose that G is a locally compact group.

(a). If G is compact, show that left invariant means on %’(G) are in natural bijection with
normalized Haar measures on G.
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(b).

(c).

Let L'(G);, be the convex subset of f € L'(G) such that f > 0 almost everywhere
and || f|l; = 1. We identify L'(G) to a subspace of the continuous dual of L>°(G) in
the usual way (i.e. a function f € L'(G) corresponds to the continuous linear functional
¢ — [, fedp on L°(G)). Show that L , (G) is weak* dense in the set of means on
L>(G).

Let UCB(G) be the subspace of L>°(G) composed of the left uniformly continuous
bounded functions on . For every x € (G, we write d, for the linear functional
¢(G) — C, f — f(x). Show that the set of convex combinations of functionals J,
(that is, the set of sums > ", a;0,,, with z1, ..., 2, € G and a4, ..., a, € [0,1] such that
a; + ...+ a, = 1) is weak* dense in the set of means on UC' B(G).

Solution.

(a).

(b).
(c).

180

Let M be a mean on E. Let ¢ € E, and suppose that ¢(x) € R for almost every x. We
have ||¢||o1x € E, because it is a multiple of the constant function 1 x, and the functions
lollolx — ¢ and ||¢||ooLx + ¢ are > 0 almost everywhere, so their image by M is > 0,
that is, M () € R and

— ¢l £ M (@) < [|¢]loos
ie. [M(o)| < l¢llo-

Now let ¢ be any element of £. Choose ¢ € C such that |c| = 1 and M(cp) € R. Let
¢1 = 3(cp+cp) and s = 5-(cp —¢p). Then @1, @2 have real values and cp = 1 + ips.
We have

(@) = Vor(2)? + p2(2)? > max(|g1 (2)], [p2()])
for every = € X, 50 [|¢|le > max(||¢1]lcs [l¢2]lc). On the other hand,

M(cp) = M(p1) +iM(ps) and M (1), M(p2) € R, so M(p3) = 0, and

[M(p)| = |M(cp)| = [M ()] < [[er]loe < [@lloo:

This shows that A is continuous and that ||M]|,, < 1. As M(1y) =1 = || 1x]||«, We
have | M||,, = 1.

This is just the Riesz representation theorem (theorem [[.2.3) and proposition

Let . be the set of means on L>(G). It is clearly a convex subset of Hom(L>*(G), C).
By question (a), the set .# is contained in the closed unit ball of Hom(L>(G), C). Also,
as the conditions characterizing a mean are all closed for the weak* topology, the set .#
is weak* closed in Hom(L>(G), C). So .# is weak* compact.

By definition of L'(G); ., for every f € L'(G)i., the corresponding linear form on
L>(@) is an element of .#. Note also that L'(G);, is a convex subset of L'(G),
so its image in Hom(L*(G),C) is also convex. Let .#’ be the weak* closure of this
image. We have .#Z' C ., so .#' is convex and weak* compact. Suppose that
M' # M. Then, by the Hahn-Banach theorem (second geometric form), there exists



II1.6 Exercises

M € . and a weak* continuous R-linear operator A : Hom(L>(G),C) — R such that
A(M) > supype 4 A(M'). Note that the linear operator A’ : M' —— A(M) + A (M)
is weak* continuous and C-linear, so there exists ¢ € L*°(G) such that A'(M’) = M'(y)
for every M’ € Hom(L>(G), C), which gives A(M') = Re(M'(y)). Then we have

Re M(p) > s (Re / fwdu)

feLll(G

Write ¢ = 1 + iy, with o; = Re ¢ and ¢y = Im ¢. Then

M(p1) > sup / fordp
)1+

FELV(G
(because M (1), M(p2) € R by the solution of question (a)). Let
¢ = inf{d € R|p; < dl¢ locally almost everywhere}.

If p; < dlg locally almost everywhere, then M (1) < M(dlg) = d. So M (1) < c. Let
6 > 0 such that M (1) — 0 > SupPseri(q), Jo frdp. By definition of ¢, there exists a
measurable subset A of G such that ji(A) > 0and @4 > (¢ +0)14. Let f = p(A)"'14.
Then f € L'(G)14 and [, o1 fdpu > ¢+ 6 > M(g1) + 6, a contradiction.

(d). Let .# be the set of means on UCB(G). We see as in the solution of (c) that .Z is a
convex and weak* compact subset of Hom(UCB(G),C). Let .#" be the weak* closure
of the convex hull of the 6., x € G; then .#' C .4 because each 6, isin . If A" + A,
then, by the Hahn-Banach theorem (second geometric version), there exists an element M
of ./ and a continuous R-linear functional A : Hom(UCB(G), C) — R such that

A(M) > sup A(M').
M'en’

As in the solution of (c), we see that we can find a function ¢ € UCB(G) having real
values and such that A(M") = M'(y) for every M’ € .# . So we have

M(p) > sup M'(p) > supd,(p) = sup p(z).
M'eHn' xeG rzeG

Let 6 > 0 be such that M(p) — 0 > sup,cq ¢(z). Then ¢ < (M(p) — 6)1g, and so
M (p) < M(yp) — 6, a contradiction.

O

Exercise I11.6.3.2. Let GG be an amenable locally compact group. The goal of this problem is to
prove that G has the fixed point property.

So let V be a locally convex topological vector space, let K be a nonempty compact convex
subset of V, and let G x K — K, (x,v) — x - v be a continuous affine action.
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(a).
(b).

(c).
(d).

(e).

()

€]

Show that there exists a left invariant mean on UC B(G).

Fix a point vy € K and definet : G — K by t(x) = x - vy. If M is a mean on
UCB(G), show that there exists a unique regular Borel measure p); on K such that,
for every f € € (K), we have

[ fdu =21(s20)
K

Show that the integral by, = [ e vdp(v) exists and that by, € K.

Let .# be the set of all means on UC B(G), equipped with the weak™ topology (where the
topology on UC'B(G) is given by ||.||«). Show that, for every continuous linear functional
A:V — C, the map # — K, M — A(by,) is continuous.

If M =9, for some x € G, calculate b;,.

Show that, for every M € .# and every © € G, we have bMoLf1 = x - by. (Hint :
question [[I1.6.3.1)(d). Also, you may assume the fact that the formation of vector-valued
integrals commutes with continuous affine maps.)

Show that the action of G on K has a fixed point.

Solution.

(a).
(b).

Just take the restriction of a left invariant mean on L>(G).

We first show that f ot € UCB(G) for every f € ¢ (K), and that the linear operator
¢(K) — UCB(G), f — f otiscontinuous. So let f € ¢ (K). Note that the function
t : G — K is continuous by assumption, so f o t is continuous. Also, we clearly have
Ilf o tlloc < ||f]lco- It remains to show that f o ¢ is left uniformly continuous. We denote
by a : G x K — K the action map. Let ¢ > 0. For every v € K, there exists an
open neighborhood 2 of a~!(v) such that |f(z - w) — f(v)| < € for every (z,w) € Q; as
(1,v) € a~*(v), we may assume that ) = U, x V,, with U, an open neighborhood of 1 in
G and V,, an open neighborhood of v in K. As K is compact, we can find vy, ..., v, € K
such that K = (J;_, V,,,. Let U = ()_, U,,. Letz € U and v € K. Then there exists
i€{l,...,n}suchthatv € V,,, and we have

[f(@-v) = fo)l < |f(z-v) = flo)| + [f(v:) = f(1-0)] < 2.

So, for every x € U and every y € (&, we have

|fot(zy) — fot(y) = [f(x-ty)) — f(ty))] < 2e.

This shows that f o ¢ is uniformly continuous.

8Virer le hint ?
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Let M be a mean on UCB(G). Composing M with the continuous linear operator
¢ (K) - UCB(G), f — fot, we get a mean on ¢ (K ). By the Riesz representation
theorem, there is a unique regular Borel measure /5, on K such that M (fot) = [ S
for every f € € (K).

(c). Note that j(K) = [ ldux = M(1lg) = 1. The function idf is a continuous function

with compact on K, so, by problem|.5.6.2] its integral by, = || 5 Udpipr with respect to fipy
exists, and ,u(K)_le = by, 1s in closure of the convex hull of K, i.e. in K.

(d). By definition of the integral, for every A € Hom(V, C) and every mean M on UCB(G),
we have

A(by) = / A(v)dppyr = M(Aot).
a
This is continuous in M for the weak* topology by the very definition of the weak* topol-
ogy.
(e). Letz € G, and let M = 0. Then, for every f € C'f(K), we have

/deuM:M(fot) = f(z - vy).

Taking f = idg, we get
bM:/ vdpy = x - vg.
K

(f). Let .# be the set of means on UC'B(G). Fix M € 4. Letx € G,andlet A € Hom(V, C).
The map L,-: sends UCB(G) to itself, so M o L,-: makes sense. For every M € 4,
using the fact that the map K — K, x — x - v is continuous and affine, we get

Alx-by) =A </ x - vduM> = / Alx - v)dupy = M(A(z - t))
K K
= M(Ly+(Aot)
= A(bMoLI,1)~
As continuous linear functionals separate points (by the Hahn-Banach theorem), this im-
plies that x - by, = bMoszl.

(g). Let M be an invariant mean on UC B(G) (this exists by question (a)). Then, by question
(f), the point by, € K is a fixed point for the action of G.

O

Exercise 111.6.3.3. Let GG be a locally compact group, and suppose that G has the fixed point
property. The goal of this problem is to show that G is amenable. (You might find exercise

useful.)
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(a).

(b).
(c).
(d).
(e).

Let ./ be the set of all means on UC' B(G). Show that this is a nonempty weak* compact
convex subset of the continuous dual of UC'B(G), and that the action of G on .Z given by
x-M(f) = M(Ly-f)forz € G, M € 4 and f € UCB(G), is continuous and affine.
(For the weak* topology on .Z.)

Show that there exists a left invariant mean m on UCB(G). [][]
Show that, if f € L'(G); , and ¢ € UCB(G), then m(f * ¢) = m(yp).
Show that, if f, f' € L*(G); 4+ and ¢ € L>®(G), then m(f * @) = m(f" x ¢).

Let fo € L'(G)1 4. Show that the formula ¢ — m(fy * ) defines a mean m on L>=(G),
and that we have m(f * ¢) = m(yp) forevery f € L'(G); ; and every p € L™(G).

Let £ = [Tscria), . L'(G). We consider two topologies on E :

- The product of the weak* topology on L*(G) (that we get by seeing L' (G) as a subspace

of the continuous dual of L*°(G)). We will call this the weak topology on E.

The product of the topology on L'(G) defined by the norm ||.|[;. We will call this the
strong topology on E.

(a). Let
Y= {(f *g — g)fELl(G)l,Jr’ g€ LI(G)L-‘r} C E.
Show that the closure of X in the weak topology contains 0.
(b). Show that the closure of > in the strong topology contains 0. (Hint
Any strongly continuous linear functional A on F can be written as
A((gf)feLl(G)17+) = ZfELl(G)1,+ ngfgpfd,u, with the ng in LOO(G) and QDf =0
for all but a finite number of f.)
(c). Let @ > 1 be a compact subset of G, ¢ > 0 and f € L'(G);,. Show that there exists
g € L'(G)y 4 such that
sup [[(Laf) x g — glh <e.
z€Q
(d). Find a function h € L*(G); 4 such that
sup || Lzh — hl[; < 2e.
z€Q
(e). Show that there exists a left invariant mean on L*>°(G). (If you are uncomfortable with
nets, you may assume that G is o-compact, i.e. a countable union of compact subsets.)
Solution.

°If G is a general topological group, it is called amenable if such a mean exists. One of the things we prove in this
problem is that, for G locally compact, this is equivalent to the other definition.
0reference
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(a). We already saw that . is a weak* compact convex subset of Hom(UCB(G), C) in the
solution of 1(d), and .# is not empty because it contains all the linear functionals ¢,
r € G.

If z € GG, the morphism A — A o L,-1 from Hom(UC B(G), C) to itself is linear, and it
clearly preserves ., so its restriction to .# is affine.

It remains to show that the map G x A4 — 4, (v, M) — M o L,-1 is continuous. As
we are using the weak* topology on ., this means that, for every ¢ € UC' B(G), the map
Gx M — C, (x,M) — M(L,-1p) is continuous. Fix ¢ € UCB(G), and let ¢ > 0.
As ¢ is left uniformly continuous, there exists an open neighborhood U of 1 in G such
that, for every y € U, we have || L,-1¢ — ¢||» < ¢. Note that, for every y € U and every
r € (G, we have
[Le-1y-10 — Lo1lloc = | Ly-190 — ] < &

Let (x,M) € Gx M. LetV = {M' € M||M(L,-rp) — M'(L,-1p)| < e}. This is
weak* neighborhood of M, so Uz x V is a neighborhood of (z, M) in G x 4. Ify € U
and M’ € V, we have

M(La-19) = M'(Liyay-19)| < IM(La-19) = M'(Ly-10)| + | M'(Ly1p) = M'(Ly1,-19)
<e+ |M |lopll L1 — La-1y-1¢]l0o
< 2¢

(using [[I1.6.3.1)(a) to see that || M’||,, = 1). This shows the desired result.

(b). A left invariant mean on UC B(G) is exactly a fixed point of the action of G on .# defined
by z- M = M o L,-1. So the existence of such a mean follows from (a) and from the fact
that GG has the fixed point property.

(c). By problem [[.5.6.6, we have f x ¢ = fG f(y)Lypdy. By problem [[.5.6.6, the linear
functional m on UC B(G) is continuous. Applying the definition of the integral and the

left invariance of m, we get
m(J xp) = m dy = m(p)dy =m dp = m(p).
(f *¢) /G fy)m(Lyp)dy /G fy)m(e)dy = m(p) /G fdp=m(p)

(d). Let (r) e be an approximate identity on G. Note that oy € L' (G); , forevery U € % .

Letp € L®(G) and f, f' € L*(G)1 1. By question|1.5.6.6(a), we have ¢y x p € UCB(G)
for every U € %, so, by question (c), we get

m(f * vy x ) = m(y = 0) = m(f" x Py * ).

Also, by proposition we have limy_, 1y f * Yy = f and limy_q0y f'* vy = f.
Taking the limit as U — {1} in the equality above (forgetting the middle term) and us-
ing the fact that the convolution product from L'(G) x L*(G) to UCB(G) is continu-
ous in both variables (by the solution of [[.5.6.6(a)) and that m is continuous, we get that

m(f * @) =m(f *p).
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(e).

(®).

186

The map m is well-defined by [[.5.6.6(a), and it is clearly C-linear. If ¢ = 1, then, for
every x € G,

foxo(z) = /Gfo(y)du(y) =1,

so m(p) = m(lg) = 1. If ¢ > 0 locally almost everywhere, then fy x ¢ > 0 almost
everywhere, so m(y) > 0. This shows that m is a mean on L>(G).

Let f € LY(G); 1 and p € L>=(G). Then

m(fx@)=m(f* foxp) and m(p) = m(fo*p).

By (d), to show that these are equal, it suffices to show that f x fo € L'(G); ;. We already
know that f x fy € L'(G) by proposition [.4.1.2 and the fact that f * fo > 0 almost
everywhere is clear from the formula defining f * f,. Finally, we have

[ o ntwe= [ sntod - [ 1w ( / fo<y1x>dx) dy

- /G F(y)dy = 1.

A piece of useful notation : for every f € L'(G), we will denote by M the linear func-
tional ¢ — [, fedp on L®°(G).

We want to show the following statement : For every n > 1, forall fi, ..., f, € L'(G)1 4,
if Uy,...,U, are weak* neighborhoods of 0 in Hom(L>(G),C), then there exists
g € LY(G)1 4 such that My, — M, isin U; fori € {1,... ,n}.

If f € L'(G)14, themap ¢ : A — A(f * (.)) from Hom(L>*(G), C) to itself is weak*
continuous (because ¢ —— [ * ¢ is continuous on L*°(G) by [L.5.6.6(a)). Moreover, if
A = M, with g € L*(G), then, for every ¢ € L>(G), we have

(e h)(0) = / o) (f' * ) (y)dy
= /G } g()A(z) " fz™e(z y)dedy

=/ GA(Sﬁ)’lf(fl}g(xZ)w(Z)dde

— [+ )sdi(see proposition [T,
G

where f € L*(G) is defined by f'(z) = A(z)~ ' f(«~). In other words, ¢y My, = My.,.

Fix n, f1,..., fp and Uy, ..., U, as above. Then U := U; N ... N U, is a weak* neigh-
borhood of 0 in Hom(L>(G), C). Choose another weak* neighborhood V' of 0 such that
V=—VadV+VCU.
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Then m + V is a weak™* neighborhood of m, so, by 1(c) and the previous paragraph, there
exists g € L'(G); 4+ such that M, —m and all the M., — cpm, 1 <i < n,arein V. Note
that cfi/ﬁz = m by (e), so, for 1 < i < n, we have

Mfi*g—]\/[g:(Mfi*g—ﬁz)—i—(m—Mg) eV -Vcu.

Note that 3 is a convex subset of £. Let 3 be the closure of X for the strong topology.
If0 & >, then, by the Hahn-Banach theorem (second geometric version), there exists a
strongly continuous R-linear functional A’ : £ — R such that 0 = A’(0) > sup,y. A'(2).
As in the solution of [lIL.6.3.1c) and (d), we can write A’ = ReA, for A : £ — Ca
strongly continuous C-linear functional (defined by A(z) = A'(z) + 1A'(ix)).

Now an important remark is that, as we are using the product topology on £, the direct
sum @feLl(G)l . LY (@) is dense in E.

For every fy € L'(G); 4, consider the linear functional Ay, : L'(G) — C that is the com-
position of A and of the inclusion of the factor indexed by fo in [];c71q), , L'(G) = E.
This is a continuous linear functional on L'(G), so there exists a unique ¢, € L>(G)
such that Ay, is integration against ¢y, .

Now consider an increasing family (X,),>0 of subsets of L'(G); 4 such that

LNG) 4 = Unzo Xn. Forevery v = (g7)ser(e),,. € E, the sequence ((gy)ex, )n>0
converges to x in the strong topology, so

A= i Allasex) = lim 3 / wertn= 32 / aresd

n—+oo n—+0o00
feLY (G

As the sum converges for any (gy) € £, we must have ¢, = 0 for all but a finite number
of f € LY (G)i+

But then, if we consider any real number c such that 0 > ¢ > sup,y, Re(A(x)), the set
{z € E|Re(A(z)) < c} is weakly closed in F, hence contains the weak closure of ¥,
hence contains 0 by (f), contradiction.

For every x € (@, let U, be a neighborhood of x in G such that, for y € U,, we
have ||L,f — L, f|1 < /2. (See proposition [.3.1.13). As @ is compact, we can find
T1,...,2, € Q such that Q C [J;_, U,,. By question (f), there exists g € L'(G); ;. such
that, for every ¢ € {1,...,n}, we have ||(L.,f) xg — g|l1 < ¢e/2.

Let’s show that this g works. Let x € (). Then there exists ¢ € {1,...,n} such that
x € U,,, and we have
I(Laf) * g = gllv < (Laf) g = (Laif) * gll + [(La. /) + g = glh

< | Laf = Lo, flnllgll + 1(La, f) * g — gllx
<e.

(The second equality uses proposition |[.4.1.2).
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().

0)-

Let h = f*g. We have h € L'(G); ; (see the solution of question (e)), and, as 1 € Q, for
every x € @,

[Lah = hlly < [[Lah = glls + llg = hlly < [1(Laf) * g = glls + [(L1f) ¥ g — gl < 2e.

Suppose that G is o-compact, and write G' =C,,>(, where each (),, is a compact subset of
G containing 1. For every n € Zs, we can find by (h) a function h,, € L*(G); 4+ such that
SUP,eq, || Lehn —hnll1 < 27" The sequence (M}, ),>o of elements of the weak* compact
subset of means on L>(G) (we have seen in[[I1.6.3.1{c) that this set is weak* compact) has
a convergent subsequence, so we may assume that it is convergent. Let M = lim,,>¢ M, .
We show that M is left invariant. Let x € G. Then =1 € Q,, for n >> 0, so, for every
p € L2(G),

and

[M(Lap) = M(p)| = lim

n—-+0o

/(Lx—lhn — hp)pdu
e

< lim ||Ly-1hy, — holl]l¢]lco

n—-+00

=0,

that is, M (L,p) = M(p).

Assume that GG is not o-compact. Then we write G = UQe 2 @, where () is a family of
compact subsets of GG such that, if Q1,Qs € 2, then Q; U @y € 2. Thatis, £ is a
directed set for the order relation given by inclusion. For every Q) € 2, we can find by (i)
a function hg € L'(G)y,4 such that sup,q || Lahg — holli < (14 w(Q))~". If G is not
compact, then u(G) = +00, s0 limge o(1 + p(Q))™* = 0. Let M be a weak* limit point
of (M}, )qe2, which exists because the set of means on L>°(G) is weak* compact. Then
we see exactly as above that M is left invariant.

[l

Exercise I11.6.3.4. Let GG be a locally compact group. Remember problem

(a). If G is amenable, show that the trivial representation is weakly contained in the left regular
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(b). If the trivial representation is weakly contained in the left regular representation of GG, show
that GG is amenable. (Hint : For all a,b € C, prove that ||a|*> — [b]?| < |a + b||a — b].)
Solution.
(a). Let’s first prove the inequality in the hint. Let a,b € R>,. We may assume that a > b.
Then
la —b]* = (a —b)? =a® +b* — 2ab < a® + b* — 20* = a* — b* = |a® — V?|.
Suppose that G is amenable. Let K be a compact subset of G and let ¢ > 0. By [[T11.6.3.3]1),
there exists h € L'(G); 4 such that sup, . || L.h — h < ¢ Let f = v/h. Then, by the
inequality above, for every x € K, we have
ILd = 11 = [ 15a™'9) = Py
< [ na™1y) = hi)ldy
G
= [[Lah — Al
<,
s0[|Laf = fl2 < e
By [[I.6.2.4(d), this implies that the trivial representation of G is weakly contained in the
regular representation.
(b). We check that the result of [[I.6.3.3(i) holds, i.e. that, for every compact subset () of G

and every ¢ > 0, there exists h € L'(G)1 ;- such that sup,, || Lyh — ||y < e. Indeed, we
have seen in [[I1.6.3.3(j) that this implies the existence of a left invariant mean on L>°(G).

Let ) be a compact subset of G and € > 0. By [[11.6.2.4(c), there exists f € L?(G) such
that | f[l2 = 1 and sup,cq | Lf — fll2 < /2. Leth = |f[*. Then [[Afly = [I£]3 = 1, so
h € L'(G); .. Note that, for all a,b € C, we have |a* — b*| > ||a]* — |b|?| by the triangle
inequality, so

_ -2
ja+b%|a — b]* = (a® = b*)(@ — b) = |a* — 0*|* > [|a|* — [B*|*.

Now, if z € @), we get

|Loh — hlls = /G Lo F@)P — £ () Pldy

< / (Lot () + P ILaf @) — F(3)|dy
G

< |[Lof = fll2l|Lz + f|l2 (Cauchy-Schwarz)
<e

(because || Ly f + fll2 < [[Lafll2 + [ fll2 = 2/ fll2 = 2).
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O

Exercise 1I1.6.3.5. Let GG be an abelian locally compact group. The goal of this problem is to
show that GG has the fixed point property (hence is amenable).

Let V' be a locally convex topological vector space, K be a nonempty compact convex subset
of V.and G x K — K, (z,v) — x - v be an affine action of G on K.

For every n € Z>( and every = € G, we define a continuous affine map A,,(z) : K — K by

A, (z)(v) = ! lev

n+1

Let ¢ be the semigroup of continuous affine maps K — K generated by all the A,,(x), forn > 0
and x € G. (That is, the semigroup whose elements are finite compositions of morphisms A, (),
where the semigroup operation is the composition of maps K — K.)

(a). Letv € N ey ~v(K). Show that v is a fixed point of the action of G. (Hint : For every
continuous linear functional A on V" and every x € G, show that A(v) = A(z - v).)

(b). Forallyq,...,7, € ¢, show that ";_, vi(K) # @.
(c). Show that GG has a fixed point in K.

Solution.

(a). Let x € G. Let A be a continuous linear functional on V. As K is compact,
C = sup,ex [A(w)] < +o0. If n > 0, we have z € A, (x)(K), so there exists w € K
such that v = A, (x)(w). As the action of G is affine, this implies that

1 .
_ i+1
U—n+1 E T - w,

1=0

SOV — XV = %H(w — 2" w), so [A(v—x - v)|3—f1 As this is true for every n > 0, we

have |A(v) — A(z-v)|, i.e. A(v) = A(z-v). As continuous linear functional on V' separate
points, we finally get x - v = v.

(b). Note that, if x,y € G'and n, m € Z>, then, for every v € K,

m
Z y’ - (2" -v) (because G is commutative)
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This implies that the semigroup ¢ is commutative.

Now let vy, ..., v, € 4. Then, forevery i € {1,...,n},

Vi(K) Dvi(mo.covimio. o (K)) =m0 0m(K).
So

(V) o om(K) # 2.

(c). As K is compact and each v € ¢ is continuous, the subset y(K') of K is compact, hence
closed in K, for every v € ¢. By (b), the family (7(K)),cx has the finite intersection
property. By compactness of K, we have mwe% v(K) # @. By (a), any point of this
intersection is a fixed point of G' on K.

O

Exercise I11.6.3.6. (a). Let &?(Z) be the set of subsets of Z. Show that there exists a finitely
additive left-invariant probability measure on Z, that is, a function p : &(Z) — Rx( such

that :
i If Ay,...,A, € P(Z) are such that A;, N A; = & for ¢ # j, then
p(AyU. . UA,) = p(A) + ..o+ p(4y).
(i) u(Z) =1.

(iii) Forevery A € Z(Z) and n € Z, we have p(n + A) = u(A).

(b). Is the measure of question (a) unique ? (Hint : You need a somewhat explicit way to
construct invariant means on Z. You can for example try to exploit the sequence of (non-
invariant) means M,, : L>(Z) — C, (zx)kez — ﬁ > Tk

Solution.

(a). As Z is an abelian locally compact group, it is amenable by problems [[I1.6.3.3| and
This means that there exists a left-invariant mean M on L*(Z). We define p
by 1(A) = M(1,); this function does take its values in R by definition of a mean. Then
 satisfies (i) because M is linear, it satisfies (ii) because M (1) = 1 and it satisfies (iii)
because M is left-invariant.

Conversely, note that the existence of a p as in the statement implies the existence of an
invariant mean.

(b). No.
Let V = L*(Z), and consider the family of linear functionals M,, : L>°(Z) — C defined
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by

1
M ((x)kez) = M1 Z T,

k=—n
for n € N. We have |M,,(z)| < ||z|| for every x € V, so M, is continuous. Also, it is
clear on the definition that M, is a mean. If a € Z, then, for every x € V and every n € N,
we have
2]al

2n+1
So, if we could make the sequence (M,),>o converge in the weak* topology of
Hom(V, C), then its limit would be an invariant mean, and it would define an invariant
finitely additive probability measure as in question (a). We can always find a convergent
subsequence of (M,,),>o converge in the weak* using the Banach-Alaoglu theorem, but
we would also like to show that we can get two different limits.

| M (Law) — My(2)| < ]l co-

Consider the element z = (,),,cz of V defined by z,, = 0 for n < 0, and z,, = (—1)% if
we have 2% < n < 281 — 1 with k € Z>¢. Then, if n = 2F — 1 with & > 0, we have

Ny e Lo (2
Y a=> (—1)%2 =—

r=—n s=0
) (o)
1—(-2
My(z) = ==
() (261 — 1)
In particular, the sequence (Maaz_;(z));>0 converges to —=, and the sequence

(My2ir1_y (2))i>0 converges to ¢.

By the Banach-Alaoglu theorem[''] the sequences (Maa_y)i>0 (Mazie1_y)i>0 both have
weak* limit points, say M and M’. Both M and M are left invariant means on V', but we

have M (z) = —} and M'(z) = £ by the calculation above, so M # M'.

O

Exercise I11.6.3.7. (a). Let GG be a group acting on a set X. Suppose that we have subgroups
G1, G5 of G and subsets X7, X5 of X such that :

- The sets X; and X, are not empty, and X; # Xo;

For every = € G; — {1}, we have = - X; C Xo;

For every x € Gy — {1}, we have 2 - Xy, C Xj;

The cardinality of G, is at least 3.

Show that we cannot have an equality 1 = hy ... h, with h; in G; — {1} for i odd, h; in
Gy — {1} forievenand n > 1.

Hief ?
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(b). Letay, as € Csuch that |a;| > 2 and |ay| > 2. Define z,y € SLy(C) by
. 1 aq - 1 0
T = (O 1) and y= (az 1).
Show that the subgroup of SLy(C) generated by x and y is isomorphic to the free group
on two generators. (Hint : Let SLy(C) act on C? in the usual way. Look at the subsets
{(21,22) € C?||z1] > |22} and {(21, 22) € C?|[21] < |22[}.)
(c). Let G = SLy(IR) with the discrete topology. Show that G is not amenable.
Solution.
(a). If G; = {1}, the result if obvious. So we may assume G; # {1}.
Suppose that we have 1 = hy ... h, with h; in G; — {1} for i odd, h; in Gy — {1} for i
evenand n > 1.
We first assume that n is even. As |G| > 3, we can find h € Gy — {1} such that b # h,,.
Note that 1 = hh™t = hhy ... (h,h™t), with h,h™ € Gy — {1}. Letg € G; — {1}. We
also have 1 = gg~! = ghhy ... (h,h7')g~ L. So, for every x € X,, we have
r = hhl Ce hnfl(hnhil)(ﬂf) € X17
hence Xy, C Xj. On the other hand, for every y € X, we get
y=ghhy...(hah™Y)g ™} (y) € Xo,
so X; C Xs. This contradicts the fact that X; # Xs.
Now suppose that n is odd. Let h € Go — {1}. Then 1 = hh™' = hh; ... h,h~L. So, for
every r € X, we have
x=hh"' =hhy...h,h ! (2) € X4,
hence Xy, C Xj. On the other hand, for every y € X, we have
y:hlhn(y) GXQ,
so X; C X,. Again, this contradicts the fact that X; # Xs.
(b).

We want to apply question (a) with X = C?%, X; = {(z1,20) € C¥|z1| < |22},
Xy = {(21,22) € C?|z| > |2}, Gi = (x) and Gy = (y). We have to check that
these subsets and subgroups satisfy the conditions of (a).

Letg € Gi—{1} and (z1, 22) € X;. Wehave g = 2", withn € Z—{0},s0g = ((1) nih),
and g - (21, 22) = (21 + nai 29, z2). Hence

|21 +narz| > [nf|ay||ze] — 21| > 2[z2| — |21] > |22,
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(c).

194

thatis, g-(z1, 22) € Xs. (We have used the fact that [n| > 1.) The proof that g-(z1, 22) € X3
for g € Go — {1} and (21, 29) € X5 is similar.

Let GG be the subgroup of SLy(C) generated by x and y, and let F' be the free group
on two generators a and b. We have a surjective morphisms of groups ¢ : F' — G
sending an element a0 ...a"" 0™ of F' (with r > 0 and ny,my,...,n,.,m, € Z) to
x™y™ . x"y™ € G. We want to check that ¢ is injective. This means that its kernel is
trivial, i.e. that it sends reduced words in F' to nontrivial elements of GG. But this property
is exactly the conclusion of (a).

Suppose that G is amenable. Then, by problem [[I1.6.3.4] the trivial representation 1 of G
on C is contained in its regular representation 7. Let H be a subgroup of G. It follows
immediately from the definition of weak containment that the representation 1,5 of H
(which is just its trivial representation) is weakly contained in 7 ;. Let 7 be the regular
representation of H, and let’s show that 777 is weakly contained in 7. This will imply
that the trivial representation of H is contained in its regular representation.

Let (x;);er be a system of representatives of the quotient 4\ G; we have G = [],.; Hu;.
Let ¢ be a function of positive type associated to 7. This means that we have f € L*(G)
such that, for every z € H,

() = (Lo f, f)r2c)-

Forevery i € I,let f; = fiu., € L*(G). Then the series ) _,_; f; converges to f in L*(G),
and, if i # j, then (L, f;, fi) 12(c) = 0 for every x € H (because L, f; and f; have disjoint
supports). In particular, || f||3 = >",; || fi[|3- So, for every z € H,

p(r) = Z<foiafi>L2(G)a

il

and this sums converges uniformly on «© € H (because [(L,f;, )12l < | fill3)-
For every i € I, we define g5 € L*H) by ¢i(y) = fi(yz;). Then
(La9i, i) 2y = (Lo fi, fi)12(c) for every @ € H. So we have written ¢ as a limit of
finite sums of functions of positive type associated to the regular representation of H,
which is what we wanted.

In summary, we have shown that, if G is amenable, then, for every subgroup H of G,
the trivial representation of H is contained in its regular representation (i.e. H is also
amenable). Note that we only used the fact that G is discrete so far.

Now if G = SLy(R), question (b) says that G has a subgroup H isomorphic to the free
group on two generators (just take a;,a, € R in (b)). Then the result above contradicts

problem
O



IV The Peter-Weyl theorem

IV.1 Compact operators

Definition IV.1.1. Let VV and W be Banach spaces, and let B be the closed unit ball in V. A

continuous linear operator 7' : V' — W is called compact if T'(B) is compact.

Example IV.1.2. (1) If Im(7) is finite-dimensional (i.e. if 7" has finite rank), then 7" is com-
pact.

(2) If T" is a limit of operators of finite rank, then 7" is compact; more generally, any limit of
compact operators is compact (see exercise|[.5.5.9).

Conversely, if W is a Hilbert space, then every compact operator 7' : V' — W is a limit of
operators of finite rank. E]

(3) The identity of V' is compact if and only if V' is finite-dimensional. (This is a consequence
of Riesz’s lemma, see theorem )

In this class, we will only need to use self-adjoint compact endormophisms of Hilbert space.
A much simpler version of the spectral theorem holds for them.

Theorem IV.1.3. Let V' be a Hilbert space over C, and let T : V' — V be a continuous endo-
morphism of V. Assume that T is compact and self-adjoint, and write V\, = Ker(T — \idy) for
every A € C.

Then :
(i) IfVy 0, then \ € R.

(i) If \,u € Cand X\ # p, then'V,, C V.

(iii) If A € C — {0}, then dim¢ V), < +oc.

(iv) {\ € C|V)\ # 0} is finite or countable, and its only possible limit point is 0.
(v) @ ec Vais dense inV.

Proof. We prove (i). Let A € C such that V), # 0, and choose v € V), nonzero. Then
o[l = (A, v) = (T(v),v) = (v, T*(v)) = (v, T(v)) = Aljo|]*.

I'This is not true in general, see Enflo’s article [10] for a counterexample.
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As ||v]| # 0, this implies that A € R.

We prove (ii). Let A\, x € C such that A # 1, and let v € V), and w € V,,. We want to prove
that (v, w) = 0. By (i), it suffices to treat the case where A, u € R (otherwise v = w = 0). In
that case, we have

/\<U7w> = <T(U)7w> = <U7T<w)> = ﬁ<v7w> = M<U7w>7
so (v, w) = 0.

Letr > 0. Let W = ®\A|2r Vy. We want to show that dim W < +oo, which will im-
ply (iii) and (iv). Choose a Hilbert basis (¢;);c; of W made up of eigenvectors of 7', i.e. such
that, for every i € I, we have T'(e;) = \e; with |\;| > r. If [ is infinite, then the family
(T'(e;))ier cannot have a convergent (non-stationary) subsequence. Indeed, if we had an in-
jective map N — I, n —— i, such that (7'(e;,)),>0 converges to some vector v of V, then
Ai, €, — v, so v is in the closure of Span(e;,,n > 0). But on the other hand, for every n > 0,
(v,€;,) = limy,100(N;, €i,.,€:,) = 0, s0ov € Span(e;,,n > 0)*. This forces v = 0. But
|v|| = limy,— 400 || Ai, €5, || = 7 > 0, contradiction. As 7" is compact, this show that / cannot be
infinite, i.e. that dim (W) < 4oc.

Let’s prove (v). Let W' = @, Vi, and W = W', We want to show that W = 0.
So suppose that W # 0. As T is self-adjoint and W’ is clearly stable by 7, we have
T(W) c W. (If v € W, then for every w € W', (T'(v),w) = (v,T(w)) = 0.) By defini-
tion of W, we have Ker(Tjy) = {0}, hence ||Tjw|lop > 0. Let B = {x € W|||z| = 1}. As
|Tiw |lop = sup,ep |(T'(x), z)| by the lemma below, there exists a sequence (z,,),>0 of elements
of B such that (T'(z,,), z,,) — X as n — +o00, where A = £||Tjyy||,p. Then

0 < ([T (xn) = Azn]l* = [T (@) I* + A 2al* — 2MT (2n), ) < 2X° = 2T (), 20)

converges to 0 as n — oo, so T'(x,) — Az, itself converges to 0. As 7' is compact, we
may assume that the sequence (7'(z,)),>0 has a limit in W, say w. Then T'(w) — Aw = 0.
By definition of W, we must have w = 0. But then T'(z,,) — 0, so (T'(x,),x,) — 0, so
A = 0= [|[Tjw|op, a contradiction.

[
Lemma IV.1.4. Let V be a Hilbert space, and let T' € End(V') be self-adjoint. Then

ITllop = sup  [(T'(z),z)|.
zeV, Jlz]l=1

Proof. Let ¢ = Sup,ey, o121 |[(T'(z), x)|. We have ¢ < ||T|,, by definition of ||T'[|,p. As
ITllop = SUDP, yev,ja=fyii=1 |{T (%), y)|, to prove the other inequality, it suffices to show that
(T (z),y)| < cforall x,y € V such that ||z| = |ly|| = 1. Let x,y € V. After mutliplying y by
anorm 1 element of C (which doesn’t change ||y||), we may assume that (7'(z),y) € R. Then

(7)) = {(T (@ + ).+ ) —{T( )7~ ),
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SO
Cc C
(T(@), )| < 7z +yl” + lle = yl*) = Sl + l1y71])

(the last equality is the parallelogram identity). This shows the desired result.

Here are some results that are true for compact operators in greater generality (see [20] 4.16-
4.25).

Theorem IV.1.5. Let V be a Banach space, and let T' € End(V') be a compact endomorphism.
We write o (T) for the spectrum of T in End(V'), i.e.

o(T) = {\ € C|Aidy — T ¢ End(V)*}.

Then :
(i) For every \ # 0, the image of T — Aidy is closed.

(ii) For every X € o(T) — {0}, we have Im(T — Xdy) # V and
dim(Ker(T — Ndy)) = dim(V/ Im(T — Xidy)). f| In particular, Ker(T — Nidy) # {0}.

(iii) For every \ # 0, the increasing sequence (Ker((T' — A\idy)"))n>1 stabilizes, and its limit
is finite-dimensional.

(iv) If dim¢ V = +oo, then 0 € o(T).
(v) The subset o(T) — {0} of C — {0} is discrete. In particular, for every r > 0, there are only
finitely many \ € o(T') such that |\| > r.

In particular, if V' is a Hilbert space and T’ is self-adjoint, then (v) of theorem [V.1.3|become

V=P Ker(T - Ndy).

Ao (T)

IV.2 Semisimplicity of unitary representations of
compact groups

The goal of this section is to prove the following theorem. (Compare with proposition [[.3.3.3])

ZNote that this generalizes the rank-nullity theorem.
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Theorem IV.2.1. Let G be a compact group, and let V' be a unitary representation of G. Then
there exists a family (W;);c; of pairwise orthogonal subrepresentations of V' such that each W

is irreducible and that
V=w.

i€l

We already saw the crucial construction in problem[[.5.5.9] Let’s summarize it in a proposition.

Proposition IV.2.2. (See problem ) Let G be a compact group, let dx be the normalized
Haar measure on G, and let (7, V') be a unitary representation of G. If u € V, then the formula

T(v) = /G (v, 7)) (z) (u)de

defines a continuous G-equivariant self-adjoint compact endormophism of V, and we have
T = 0ifand only if u = 0.

In fact, we even know that 7" is positive, i.e. that (T'(v),v) > 0 for every v € V.

Corollary IV.2.3. Let V be a nonzero unitary representation of a compact group G. Then V'
contains an irreducible representation of G.

Proof. If V is finite-dimensional, then any nonzero G-invariant subspace of V' of minimal di-
mension has to be irreducible.

In the general case, choose u € V — {0}, and let ' € End(V) be the endomorphism of
V' constructed in the proposition. By the spectral theorem for self-adjoint compact operators

(theorem [TV.1.3)), we have

V = @ Ker(T — Aidy).
AeC
As T # 0, the closed subspace Ker(7T') of V' is not equal to V. By the equality above, there exists
A € C — {0} such that W := Ker(T — Aidy) # 0. Then W is a nonzero closed subspace of V,
and it is G-invariant because 7' is G-equivariant, and stable by 7" by definition. Also, the space
W is finite-dimensional by (iii) of theorem[IV.1.3] So W has an irreducible subrepresentation by
the beginning of the proof, and we are done.

[]

Proof of the theorem. By Zorn’s lemma, we can find a maximal collection (W;);c; of pairwise
orthogonal irreducible subrepresentations of /. Suppose that the direct sum of the W, is not
dense in V, then W := (@ZE I I/V,»)L is a nonzero closed invariant subspace of V' (see lemma
[.3.2.6). By the corollary above, the representation 1V has an irreducible subrepresentation,

which contradicts the maximality of the family (W;);c;. Hence V = €, Wi.
]
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We finish this section with a remark on two different notions of equivalence for unitary rep-
resentations. Remember that two continuous representations 1/ and V5 of a topological group
G are called equivalent (or isomorphic) if there exists a continuous G-equivariant isomorphism
V1 — V5 with a continuous inverse.

Definition IV.2.4. Two unitary representations 1/ and V5, of a topological group G are called
unitarily equivalent if there exists a G-equivariant isomorphism V; — V5 that is an isometry.

Two unitarily equivalent representations are clearly equivalent.

Example IV.2.5. Let G be a locally compact group, let 1 be a left Haar measure on G, and let v
be the right Haar measure defined by v(E) = pu(E™1).

Then the left and right regular representations of GG are unitarily equivalent, by sending
f € L*(G, u) to the element  — A(z) V2 f(z71) of L*(G,v). (See proposition|[[.2.12])

Proposition IV.2.6. Suppose that V| and V5 are irreducible unitary representations of G. Then
they are equivalent if and only if they are unitarily equivalent.

Proof. Suppose that V; and V5 are equivalent, and let U : V; — V5 be a G-equivariant isomor-
phism. We denote by (.,.); and (., .), the inner products of V; and V5. Let B : V; x V; — C,
(v,w) — (U(v),U(w)),. This is a Hermitian sesquilinear form on V;, and it is bounded be-
cause U is bounded. By the lemma below, there exists a self-adjoint endomorphism 7" € End(V})
such that, for all v, w € V, we have B(v,w) = (T'(v),w);. Let’s prove that T" is G-equivariant.
Letv € V and x € G. For every w € V, we have

(T'(m () (v), wpr = B(mi(z)(v), w)

= (U(m(2)(v), U(w))a
= (m2(2)(U(v)), U(w))s
= (U(v), ma(a™)U(w))2
= (U(v), U(mi ()" (w)))2
= B(v,m(z7")(w))

so T'(my(z)(v)) = mi(x)(T'(v)). As V; is irreducible, Schur’s lemma (theorem [1.3.4.1) implies
that 7' = Aidy, for some A € C. As (T'(v),v); = (U(v),U(v))2 > 0 for every nonzero v € V;,
we must have A € R-(. Then A~/2U is an isometry, so V; and V; are unitarily equivalent.

[]

Lemma IV.2.7. Let V be a Hilbert space, and let B : V xV — C be a bounded sesquilinear form
(i.e. B is C-linear in the first variable and C-antilinear in the second variable; the boundedness
conditions means that Sup,, ,cv. ||| =|w|=1 |B (v, w)| < +00).
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IV The Peter-Weyl theorem

Then there exists a unique T' € End (V') such that, for all v,w €V,

B(v,w) = (T'(v), w).

Moreover, T is self-adjoint if and only if B is Hermitian (which means that B(w,v) = B(v, w)
forallv,w e V).

Proof. The uniqueness of 7T is clear (it follows from the fact that V+ = {0}.)

If v € V, then the map V' — C, w —— B(v,w) is a continuous linear functional on V, so
there exists a unique 7'(v) € V such that B(v, w) = (T'(v),w) for every w € V. The linearity of
T follows from the fact that B is linear in the first variable. Moreover, for every v € V/, we have

|T()l=sup [(T'(v),w)]= sup |B(v,w)| <],
weV, [Jw|=1 weV, ||Jw|=1
where
C= sup |B(z,y)|-
z,yeV, |lz|=[lyll=1
So T is bounded.

Finally, 7' is self-adjoint if and only, for all v,w € V, we have

B(v,w) = (T(v), w) = (v, T(w)) = B(w, v).
This proves the last statement.

]

Definition IV.2.8. We denote by G the set of equivalence (or unitary equivalence) classes of
irreducible unitary representations of (5, and call it the unitary dual of G.

If (7,V) € G, we write dim(7) and End() for dim(V) and End(x).

Note that this notation agrees with the one used in exercise for a commutative group.

IV.3 Matrix coefficients

Definition IV.3.1. Let (7, V') be a unitary representation of a topological group G. A matrix
coefficient of (m, V) is a function G — C of the form = —— (7 (x)(u), v), where u,v € V.

Note that matrix coefficients are continuous functions. We denote by &) or &} the subspace
of € (G) spanned by the matrix coefficients of 7.

We start by proving some general results that are true for any group G.
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Proposition IV.3.2. Let (m, V') be a unitary representation of G.

(i) The subspace &, of € (G) only depends on the unitary equivalence class of m, and it is
invariant by the operators L, and R,, for every x € G.

(ii) If'V is finite-dimensional, then &, is finite-dimensional and dim(&,) < (dim V).
(iii) IfV = Vi®...®V, with the V; G-invariant and pairwise orthogonal, then &, = Z:.L:l &y,
(iv) We have &y = &,

In particular, we get an action of G x G on &, by making (z,y) € G x G act by
L,oR,=Ry0L,.

Proof. (1) The first statement is obvious. To prove the second statement, let v,w € V and
x € G. Then, for every y € G,

(m(2~y)(v), w) = (n(y)(v), 7(z)(w))
and

(m(yz)(v), w) = (x(y)(n(z)(v)), w),
50 the flfmctions y — (m(x7y)(v),w) and y — (7 (yx)(v),w) are also matrix coeffi-
cients of 7.

(ii) Let (eq,...,e,) be abasis of V. Fori,j € {1,...,n}, write y;; for the function G — C,
z — (m(z)(e:), e5). fv,w € V, we can write v = Y ., a;e; and w = 2721 bje;, and
then we have, for every = € G,

(m(2)(v),w) = ) aibjpy ().

ij=1
So the family (¢;;)1<; j<n Spans &;.
(iii) For every i € {1,...,n}, we clearly have &, C &,. So > ., &y, C &,. Conversely, let

v,w € V,and write v = Y ' v; and w = Y, w;, with v;, w; € V. Then, for every
z € G,

n n

(m(@)(v),w) = Y (w(@)(vs),wy) = Y _{m(@)(vi), wi).

ij=1 i=1
So the function z — (7(z)(v),w) isin )", &y,.
[]

Definition IV.3.3. Let (7, V') and (7', V') be continuous representation of /. We define an action
pof G x G on Hom(V, V') by

p(a,y)(T) ='(y) o Tom(x)™,
for T € Hom(V,V’) and z,y € G.
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IV The Peter-Weyl theorem

Proposition IV.3.4. We have

Homg(V, V') ={T € Hom(V,V")\Vz € G, p(z,z)(T) =T}.

Moreover, if the maps G — End(V), © — 7w(x) and G — End(V’'), © —— 7'(x) are
continuous (for example if V and V' are finite-dimensional, see proposition , then the
action defined above is a continuous representation of G x G on Hom(V, V").

Proof. The first statement is obvious. The second statement follows from the continuity of the
composition on Hom spaces, and of inversion on G.

]

In particular, we get actions of G x G on End(V') and V* := Hom(V,C) (using the trivial
action of GG on C); the second one gives an action of G on V* by restriction to the first factor (if
r € Gand A € V*, then (x, A) is sent to A o w(x)~!). This will be the default action on these
spaces.

Definition IV.3.5. Let (7,V) and (7', V’) be continuous representations of V. We define an
action p of G x G on the algebraic tensor product V' ®¢ V' by

p(z,y) (v @ w) = m(x)(v) @ '(y)(w),

forz,y e G,veVandw e V',

This action is well-defined because, for all z,y € G, the map V x V! — V ®¢ V/,
(v,w) — 7(z)(v) ® 7’'(y)(w) is bilinear, hence induces a map p(z,y) : V @c V' — V @¢c V.
If V and V' are finite-dimensional, the resulting action of G x G on V ®¢ V" is continuous by
proposition |[.3.5.1

Note that, if we restrict the action of G X G on V ®¢ W to the first (resp. the second) factor,
we get a representation equivalent to V& 4mW) (resp, 7@ dim(V)y,

Proposition I1V.3.6. Let V, W be continuous representations of G.

(i) The map V* @c W — Hom(V, W) sending A @ w (with A € V*, w € W) to the linear
operator V.— W, v — A(v)w is well-defined and G x G-equivariant. If V- and W are
finite-dimensional, it is an equivalence of continuous representations.

(ii) The map V* @c V — € (G) sending A @ v (with A € V*, v € V) to the function G — C,
x +—> A(m(x)(v)) is well-defined and G x G-equivariant, and its image is &y if V is
unitary.

In particular, if V' is finite-dimensional and unitary, we get a surjective G X (G-equivariant map
EHd(V) — 5‘/.
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1V.3 Matrix coefficients

Remark 1V.3.7. Point (ii) suggests a way to generalize the definition of a matrix coefficients to
the non-unitary case : just define a matrix coefficient as the image of a pure tensor by the map

V¥ecV — €(G).

Proof. In this proof, we will denote all the actions of G and G x G by a - (this should not cause
confusion, as each space has at most one action).

(1)

(ii)

The map is well-defined, because the map V* @c W — Hom(V, W) sending (A, w) to
(v — A(v)w) is bilinear. Let’s denote it by ¢. To check that it is G x G-equivariant,
it suffices to check it on pure tensors (because they generate V* @c W). Solet A € V*,
we W, x,y € G. Forevery v € V, we have

p((,y) - (A@w)(v) =y M) @ (z-w))(v) = Ay v)(z- w)

and

((z,9)  p(A@w))(v) =2 (p(A@w)(y " -v) =2 (Ay " Jw) = Ay -v)(@ w).

So
plz- (A@w) =z p(A@w).

Suppose that V' is finite-dimensional, let (ey, ..., e,) be a basis of V, and let (e], ..., e})

be the dual basis. Define ¢ : Hom(V, W) — V* @c W by sending T'to Y ", e @ T'(e;).
Let’s show that ¢ is the inverse of .

If j € {1,...,m} and w € W, then
Y(p(e; @ w)) Ze ® (ple; @w)(e;)) = €; @ w.

As the elements e} @ w, for j € {1,...,n} and w € W, generate V* ®@c W, this shows
that ) o ¢ = id.

Conversely, if 7" € Hom(V, W), then, for every v € V/,

n

P((D)) = 3 gle; @ T(ey)) Ze T(v),

i=1

because v = Y ., ef(v)v. So p((T)) =T.

This shows that, if V' is finite-dimensional, the map V* ®c W — Hom(V, W) is an iso-
morphism. The last statement follows immediately.

The map is well-defined because the map V* x V' — %(G) sending (A, v) to the function
x +— A(m(z)(v)) is bilinear. Let’s denote it by a. We show that « is G x G-equivariant.
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IV The Peter-Weyl theorem

As before, it suffices to check it on pure tensors. Solet A € V*, v € V and xz,y € G. For
every z € (G, we have

a((z,y) (A®v))(2) = A" (2 (y-v))) = A2 2y) -v) = ((Lao Ry)(a(A®W)))(2),

hence o((z,y) - (A®v)) = (Ly o Ry)(a(A ®)).

Finally, we show that the image of « is & if V' is unitary. Let A € V*. As V is a Hilbert
space, there exists a unique v € V such that A = (., v). So, for every w € V and every
x € GG, we have

a(A @ w)(v) = (r(z)(w),v).

This shows that o/(A ® w) is a matrix coefficient of 7, and also that we get all the matrix
coefficients of 7 in this way.

]

Now we prove stronger results that are only true for compact groups. If G is a compact group,
we fix a normalized Haar measure on GG, and we denote by LP(G) the LP space for this measure.
Note that we have ¢’ (G) C L?(G) for every p.

Theorem IV.3.8. Let G be a compact group, and let (7, V') be an irreducible unitary represen-
tation of G. Remember that V' is finite-dimensional (by exercise[[.5.5.9).

(i) (Schur orthogonality) If (7', V") is another irreducible unitary representation of G that is
not equivalent to (m, V'), then &, and &, are orthogonal as subspaces of L*(G).

(ii) We have dim(&;) = (dim V)2 More precisely, if (e1,...,eq) is an orthonormal ba-
sis of V and if we denote by ;; the function G — C, x —— (m(x)(e;),e;), then
{\/agpij, 1 <4,7 < d} is an orthonormal basis of &, for the L? inner product.

(iii) The G x G-equivariant map End(V') — &, defined above is an isomorphism.

Proof. Note that (iii) follows immediately from (ii), because End(V') — & is surjective and (ii)
says that dim(&;) = (dim V')? = dim(End(V)).

We prove (i) and (ii). Let (7/, V') be an irreducible unitary representation of G, that could be
equal to (m, V). If A € Hom(V, V"), we define A € Hom(V, V") by

A= /Gﬂ'(x)l o Aom(x)dx

(note that there is no problem with the integral, because the representations are finite-
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dimensional). Then, for every y € GG, we have

Aon(y) = / 7'(z) ' o Aonm(zy)dr
G
= / 7'(zy ')t o Aom(x)dr (right invariance of dz)
G
— (o i

In other words, A is G-equivariant.

Letv € V and v' € V’, and define A € Hom(V, V") by A(u) = (u,v)v'. Then, forallu € V
and v’ € V, we have

(A(u),u’) = /G<(7T'(x)_1 o Aor(x))(u),u)dx
:zgwmxwwm%m*w%MMx
:3quxwwwwmw»wwﬂ

Suppose that 7w and 7’ are not equivalent. Then, by Schur’s lemma, we have A =0 for every
A € Hom(V, V'), and so, by the calculation above, for all u,v € V and v/, v" € V',

(LW@M@WMJGWEE&mzo

This proves (1).

Suppose that 7 = 7', and use the notation of (ii). Take v = e; and v = e, with
i,i" € {1,...,d}, and define A as above. By Schur’s lemma again, there exists ¢ € C such

that A = cidy. So, taking u = e; and u = ejr, we get from the calculation above that

B e ifj=y
<902J790%'7J'>L2(G) - <ce], 63’> - { 0 otherwise.

On the other hand, we have

cd = Tr(A) = /GTr(ﬁ(a:)_l oAomn(z))dr = /GTr(A)dx = Tr(A).

As A is defined by A(w) = (w, e;)ey, we have Tr(A) = 0if ¢ # ¢/, and Tr(A) = 1if i = 7.
This finishes the proof that { \/Egoij, 1 <,7 < d} is an orthonormal basis of &;.

]
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IV.4 The Peter-Weyl theorem

Let G be a compact group. We see L?(() as a representation of G' x G by making (z,y) € Gx G
actby L, o R, = R, o L,. The restriction of this to the first (resp. second) factor is the left (resp.
rigth) regular representation of G.

Definition I'V.4.1. Let GG be a compact group. We denote by & the subspace of matrix coefficients
in €(G).

By theorem [IV.3.8, we have & = @WE@ &

Theorem IV.4.2. If G is compact, then & is a dense subalgebra of € (G). (For the usual point-
wise multiplication and the norm ||.|| «.-)

Proof. Let’s prove that & is stable by multiplication. Note that, by (iii) of proposition [[V.3.2]and
theorem [IV.2.1] for every finite-dimensional unitary representation 7 of G, we have &, C &. Let
(m, V) and (7', V") be irreducible unitary representations of GG, and let v, w € V and v',w’ € V.
Remember that we have defined an action 7 ® 7’ of G on V ®¢ Vﬁ and an inner product on

V ®c V' in exercise [[11.6.2.1 |Z_f] By definition of these, for every x € (G, we have
(re)(z)(vew),v @w) = (r(r)(v),w) (7' (z)(v),w).

This proves that the product of a matrix coefficient of = and a matrix coefficient of 7’ is a matrix
coefficient of 7 ® 7’. By the observation above, every matrix coefficient of 7 ® 7’ is in &, and
we are done.

Now we prove that & is dense in €' (G). We have shown that & is a subalgebra, it is stable
by complex conjugation by proposition [[V.3.2{iv), it contains the constants (they are the matrix
coefficients of the trivial representation of G on C) and it separates points on GG by the Gelfand-
Raikov theorem (theorem [[II.5.1). So it is dense in & by the Stone-Weierstrass theorem.

0
Corollary IV.4.3. For every p € [1,+00), the subspace & of LP(G) is dense for the LP norm.

In particular, we have a canonical G X G-equivariant isomorphism

The last statement is what is usually called the Peter-Weyl theorem. It implies that the left and
right regular representations of G are both isomorphic to the completion of @ __s 7@ dim(m),

Remark IV.4.4. The Peter-Weyl theorem actually predates the Gelfand-Raikov theorem, and the
original proof uses the fact that the operators f * . are compact on L*(G), for f € L*(G).

3This is just the restriction to the diagonal of G x G of the action defined above.
“We don’t need to complete the tensor product here, because V and V' are finite-dimensional.
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IV.5 Characters

Definition IV.5.1. Let (7, V') be a continuous finite-dimensional representation of a topological
group G. The character of 7 is the continuous map yv = x, : G = C, z — Tr(w(x)).

Remark IV.5.2. If (w,V) is a finite-dimensional representation of G and (ey, ..., e,) is an or-
thonormal basis of V/, then, for every z € GG, we have

So xx € &
Definition IV.5.3. We say that a function f : G — C is a central function or a class function if

fleyz™) = f(y) forallz,y € G.

These functions are called central because they are central for the convolution product, as we
will see in section

Proposition IV.5.4. Let G be a topological group, and let (w,V') and (n', V') be continuous
finite-dimensional representations of G. Then :

(i) X is a central function, and it only depends on the equivalence class of .
(ii) Xvev: = Xxv + Xv.
(iii) Foreveryx € G, xy-(z) = x(z7).
(iv) Forall z,y € G, we have

XVecV! (35, y) = XV(IK)XV’ (y) and XHom(v,v')(ﬂ% y) = Xv(l’fl)XV’ (y)

(v) If (z,V) is unitarizable (for example if G is compact), then xv(x™1) = xv(x) for every
x € QqG.

Proof. Point (i) just follows from the properties of the trace, i.e. the fact that Tr(AB) = Tr(BA)
forall A, B € M,(C).

Put arbitrary Hermitian inner products on V and V'. Let (ey,...,e,) (resp. (€},...,¢,)) be

an orthonormal basis of V' (resp. V’). Then (ey,...,e,,€},..., €. ) is an orthonormal basis of
VeV, so, forevery x € G,

n m

xvevi(z) =Y _(m(@)(e) ) + Y (a'(@)(€)). ¢)) = xv (@) + xvi ().

i=1 j=1

This proves (ii).
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Let (e7,...,e’) be the dual basis of (eq,...,e,). Let x € G. Then, if A is the matrix of
7(z~1) in the basis (eq, . . ., e,), the matrix of the endomorphism A — A o w(2~!) in the basis
(er,...,e")is AT, and we have

v+ (x) = Tr(AT) = Tr(A) = xv (7).

This proves (iii).

We prove the formula for xvg.17. We have seen in exercise how to put an inner

I B

= xv(@)xv/(y)-

Now the formula for X om(v,1+) follows from this, from (iii) and from proposition i).

Finally, we prove (v). If V is unitarizable, we can choose the Hermitian inner form on V' to be
invariant by G. Then, for every x € (G, we have

n n n

xv(e™) =) (m@) (e e) = Y fenm(@)(e)) = Y (n(w)(en), i) = xv(@).

i=1 =1 i=1

]

Notation IV.5.5. If (7, V) is a representation of a topological group G (continuous or not), we
write

Ve ={veVVred, n(z)(v) =v}

This is a closed G-invariant subspace of V.
Example IV.5.6. If VV and W are two representations of (5, then
Hom(V, W)% = Homg (V, W).

Theorem IV.5.7. Let G be a compact group and (m, V') be a finite-dimensional continuous rep-
resentation of G. Then

/G v (2)dz = dim(VO).
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Proof. As V is finite-dimensional, we can find a finite family (V});c; of irreducible subrepre-

sentations of V such that V' = @, , Vi. (Cf. corollary [[.3.2.9) We have xv = > .. xv; by
G G

proposition [IV.5.4, and V“ = @,_, V;“. So it suffices to prove the theorem for V" irreducible.

Suppose that V' is an irreducible representation of V. As V¢ is a G-invariant subspace of
V, we have V¢ = V or V¢ = {0}. If V¢ = V, then G acts trivially on V, so every linear
subspace of V' is invariant by G, so we must have dim V' = 1. On the other hand, we have
xv(z) = Tr(1) = 1 forevery x € G, so [, xv(x)dz = 1. Suppose that V is irreducible and
that V¢ = {0}. Let 7, be the trivial representation of G on C. Then, by theorem i), the
subspaces &, and &, of L?(G) are orthogonal. But &, is the subspace of constant functions,
and we saw above (remark that y € &;. So xy is orthogonal to the constant function 1,
which means exactly that [, xv (z)dz = 0.

[]

Corollary IV.5.8. Let G be a compact group, and let (w,V') and (o,W) be two continuous
finite-dimensional representations of G.

(i) We have (xw,xv)r2c) = dime¢(Home(V, W)).
(ii) If V and W are irreducible and not equivalent, then (Xv, Xw)r2(c) = 0.
(iii) The representation V' is irreducible if and only || x| r2(c) = 1.
Proof. (i) Make G act on Hom(V, W) by x-T = p(x)oT om(x)~!. We know (cf. proposition
1V.3.4) that Homg(V, W) = Hom(V, W)%. Applying the theorem to the representation

Hom(V, W) and using points (iv) and (v) of proposition [[V.5.4|to calculate the character
of this representation, we get :

dime(Homg(V, W)) = dime(Hom(V, W)%)
:/XHom(V,W)(l’)dﬂﬂ
G

/ v @ (2)da

= <XW7 XV>L2(G)-

(ii) This follows from (i) and from Schur’s lemma (theorem [.3.4.T)), or from the fact that
v € &, xw € &y and &y and &y are orthogonal in L?(G) (see theorem [[V.3.8)).

(iii) If V is irreducible, then Schur’s lemma implies that End (1) is 1-dimensional, so we have
Ixvlz2(¢) = 1 by (i). Conversely, suppose that ||xv| ;2 = 1. We write V' = P, Vi,
where [ is finite and the V are irreducible subrepresentations of V. By (ii), the characters
of non-isomorphic irreducible representations of G are orthogonal in L?(G), so we have

|XVHL2(G) Z ”WHXW”L? Z nw,

wed wea
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IV The Peter-Weyl theorem

where, for every W & @,
nw = card({i € I|V; ~ W}).

As |[xv | r2(e) = 1, there is a unique W € @ such that ny # 0, and we must have nyy = 1.
By the definition of the integers nyy, this means that V' ~ W, so V is irreducible.

]

Corollary IV.5.9. Let G be a compact group. Then the family (Xv )y .z of elements of L*(G) (or
€ (G)) is linearly independent.

Proof. This follows from (ii) of the previous corollary.

[]

Corollary IV.5.10. Let 7w and 7' be two continuous finite-dimensional representations of a com-
pact group G. Then 7 and 7' are equivalent if and only if Xrx = X'

Proof. If m and n’ are equivalent, we already know that y, = x,. Conversely, suppose that
Xr = Xa- We decompose 7 and 7’ as direct sums of irreducible representations :

=P
pe@

and

/ m
'~ o,

pe@

with n,,m, € Z>q and n, = m, = 0 for all but a finite number of p € G. By corollary |[V.5.8,
we have y, = Zpe@ npXp and X = Zpe@ m,X, (and these are finite sums). By the linear

independence of the x,, the equality x. = x implies that n, = m,, for every p € CAJ, which in
turn implies that 7 and 7’ are equivalent.

]

IV.6 The Fourier transform

We still assume that G is a compact group.

By propositions [[.4.3.4/and [l.4.1.3| the space L?(G) is actually a Banach algebra for the con-
volution product. This section answers the question “how can we see the algebra structure in the
decomposition given by the Peter-Weyl theorem 7.
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IV.6 The Fourier transform

Definition IV.6.1. Let f € L%(G). For every (r, V) € G, the Fourier transform of f at 7 is the
endomorphism

flr) = /Gf(x)ﬂ(l’l)dﬂc = /Gf(a:)ﬂ(x)*dm
of V.

This is clearly a C-linear endomorphism of V.

Example I1V.6.2. Suppose that G = S'. Then we have seen in exercise [[.5.4.1| that G~ 7,
where n € 7Z corresponds to the representation q — C*, 2™t — 2™ (with t € R). So, if
f € LY(@G), its Fourier transform is the function f : Z — C sending n to

~ 1 . .
f(n) — /O f(€217rt)€72z7rntdt'

Theorem IV.6.3. (i) For every w € G, the map L2(G) — End(n), f — f(ﬂ) isa G x G-
equivariant x-homomorphism from L*(G) to the opposite algebra of End (7). (Note that
L*(G) C LYG), because G is compact. The involution of L'(G) defined in example

restricts to an involution of L*(G).)

In other words, we have, for f,g € L*(G) and x € G :

— ~

fg(m) =g(m)o f(m),
Lof(m) = f(m) o ()" and R, f(m) = m(x) o f ().
(Compare with (i) of theorem )
(ii) Let f € L2(G). Then, for every 7 € G, the function dim(m)Tr(f(r) o 7(.)) € LA(G) is
the orthogonal projection of | on &, and the series
> dim(r) Te(f(w) o 7(.))
el

converges to f in L*(G) (Fourier inversion formula).

(iii) Forevery f € L*(G), we have

I£13 =" dim(m) Te(f(m)* o f(m))

weé
(Parseval formula).

Example 1V.6.4. Take G = S'. Then (ii) and (iii) say that, for every f € L*(S'), the series

~

> ez f(n)e* ™ converges to f in L'(S") and that

/0 @ Pdy = 3 [T 2

ne’
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IV The Peter-Weyl theorem
Proof. (i) We have
Featm) = [ (7 g @t )da

FWg(y " z)m(z")dedy

f(y)g(x)m(x 'y )drdy (change of variable 2’ = y~'x)

Finally,
L) = [ £ ety
= | fy)m(y~ 'z h)dy
AG
= f(r)om(z ™)
and

f)m(zy™)dy

=m(z) o f(m).

(ii) Itisenough to prove the first statement (the second will follow by the Peter-Weyl theorem).
Let (m,V) € G. As in theorem [IV.3.8] fix an orthonormal basis (ej,...,e,) of V and
denote by ¢;; the function G — C, x —— (m(z)(e;), e;). Then we have seen (in (ii) of

theorem [[V.3.8)) that {\/c_lgpij, 1 <i,j < d} is an orthonormal basis of &, for the L? inner
product. So the orthogonal projection of f on & is

d

d Z(ﬁ SOij>L2(G)80ij-

ij=1
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(iii)

1V.7 Characters and Fourier transforms
Foralli,j € {1,...,d}, we have

(frvizirze = | f(x){ei, m(z)(e;))dx

S~

= | f@)(m(x)(e:), ¢j)dx
= (f(m)(e:), e5)-

Lety € G, and let (7(f); ;) and (7(y); ;) be the matrices of f(m) and 7(y) in the basis
(é1,...,eq). Then

) Q

F(m)ig = (F(m)(e), e = {f 500126

and
m(W)ig = (w(y)(e;), e:) = @i;(y),
Te(f(m) om(w) = 3 Fm)amw)iy = D (F@), pis)rxeeis(v).

This gives the desired formula for the orthogonal projection of f on &.

Let 7 € G, and use the notation of the proof of (ii). Let g = dTr(f(w)* o f(w)) It

suffices to show that ||g||3 = dTr(f ( Y of ( )) (because the & for non-isomorphic 7 are
orthogonal, by theorem [[V:3.8)). We have

d d
Tre(f(m)" o f(m Z (m)isl* = Z [(fs i) 12(0)

j=1 ij=1

On the other hand, as g = d szzl (f, vij)L2(c)pij» We get

d
91172 = d? Z [(f, i) 2| = d - dTe(f(x)" o f(m)).

,j=1

IV.7 Characters and Fourier transforms

To finish this chapter, we relate characters and the Fourier transform, and give an explanation of
the name “central function”.

Proposition IV.7.1. Let f € L*(G). Then, for every x € G, we have

~

Tr(f(m) om(x)) = f* X ().
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IV The Peter-Weyl theorem

By theorem [I'V.6.3| this says that the orthogonal projection of f in & is dim(7) f * X, so we
have

f= Zdim(ﬁ)f * X

el

in L*(G).

Proof. We have

G

= | fW)x=(y 'x)
G

= f*Xx (Z‘)

L]
Corollary IV.7.2. Forall 7, 7' € @, we have
[ dim(m) e fm=w
Xm ¥ Xt = { 0 otherwise.

Proof. We know that y, € &, for every 7w € G, that & and &, are orthogonal for m % 7',
and the proposition says that dim(m)y, * x. is the orthogonal projection of x, on &,.. This
immediately implies the formula of the corollary.

]

Definition IV.7.3. For 1 < p < +00, we denote by Z L?(() the subspace of central functions in
LP(G). We also denote by Z% (G) the subspace of central functions in € (G).

Proposition IV.7.4. The space LP(G), 1 < p < +o0 (resp. € (G)) is a Banach algebra for the
convolution product, and Z LP(G) (resp. Z€ (G)) is its center.

Proof. Letp € [1,+00), and let ¢ € [1,+00) be such that p~! + ¢! = 1. As G is compact, the
constant function 1 is in L?((G) and has L? norm equal to 1, so, by Holder’s inequality, f = f -1
isin L' (@), and || f||1 < || f|l,- Now corollary 1.4.3.2 says that, for every g € L?(G), the function
[ * g exists and is in L?(G), and that we have || f * g, < || fll1llgll, < [|fllpllgll,- This shows
that LP(() is a Banach algebra for .

We show that €’(G) is also a Banach algebra for *. If f, g € € (G), then f x g clearly exists,
and, for every x € G,

|/ * g(2)] < /G!f(y)lg(yl)\dy < HfHongHoo/GMy = [I£llollglloo-
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1V.7 Characters and Fourier transforms

So [If * gllee < 1fllcllglloo-

Finally, we show the statement about the centers. Let f € L?((), and suppose that fxg = gx f
for every g € LP(G). Then, for every x € GG and every g € L”(G), we have

[ sty = [ o) tody= | fumaty s

G G G

This holds if and only if f(zy) = f(yz) almost everywhere on G x G. The proof for f € €(G)
is the same.

]
Corollary IV.7.5. The family (xr),.g is an orthonormal basis of ZL*(G).

Proof. We already know that the x, are in ZL?(G) and that they are pairwise orthogonal, so it
just remains to show that a central function orthogonal to all the y has to 0. Let f € ZL?(G).
By the lemma below, we have (dim7)f * x» = (f, Xx)2(c)Xx fOr every 7 € G, so, if f is
orthogonal to every Y, then its projection on all the spaces & is 0 by proposition hence
f = 0 by theorem [[V.4.2

]
Lemma IV.7.6. If f € ZL'(G) and 7w € G, then (dim 7) f % xr = (f, Xr) 22(G) X

)

() om(.)) by proposition|IV.7.1} For every = € (G, we have

fy)m(y z)dy

Proof. We know that f x x, = Tr(

~~

Fmyom(a) =

flay™ D (y)dy

I
ST—

fy~tz)m(y)dy (because f is central)

fy)m(zy™")dy
(x) o f(m).

~ -~

So f(m) € End(m) is G-equivariant. By Schur’s lemma, this implies that f(7) = cid, with
c € C. Taking the trace gives

Q

Il
)

e(dimm) = Te(F(m)) = / F)Te(w(y™))dy = (. xn) 2(60.

So

-~

(f, Xr) 2y X = (dim ) Tr(f(7) o m(.)) = (dim7) f * X7.
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IV The Peter-Weyl theorem

Remark 1V.7.7. In fact, we can even show that the family (xr). . spans a dense subspace in
ZLP(G) forevery p € [1,400) and in Z%(G). (See proposition 5.25 of [11].)

Remark IV.7.8. 1f G is finite, then L?(G) is the space of all functions from G to C, and ZL?*(G) is
the space of functions that are constant on the conjugacy classes of G. So the proposition above
says that |@\ is equal to the number of conjugacy classes in (&, and the Peter-Weyl theorem says
that |G| = Y, (dim )2

Remark TV.7.9. We have shown in particular that the Banach algebras (ZLP(G),x*) (for
1 < p < +o00) and (Z%(G), *) are commutative. We could ask what their spectrum is. In
fact, the answer is very simple (see theorem 5.26 of [11]]) : For every m € @, the formula
f— (dimm) [, fX,dp defines a multiplicative functional on ZL?(G) (resp. Z% (G)), and this

induces a homeomorphism from the discrete set G to the spectrum of ZLP(G) (resp. Z€(G)).

IV.8 The classical proof of the Peter-Weyl theorem

In section we gave a proof of the Peter-Weyl theorem that uses the Gelfand-Raikov and
Stone-Weierstrass theorems. We will now explain the original proof. We fix a compact group G.
Remember that this implies that L*(G) € L'(G).

By corollary|[1.4.3.2 if f € L'(G) and g € L*(G), then the integrals defining f % g and g * f
converge and define functions of L?(G) such that || fxg|o < || f]l1]lgll2 and ||g* fll2 < [If]1]lg]|2-

Definition IV.8.1. If f € L'(G), we define continuous linear endomorphisms L; and R; of
L*(G) by Ly(g) = f * g and Ry(g) = g * f.

In fact, by exercise (and its obvious analogue for right multiplication), these actions
of L'(G) on L?*(G) are just the extensions to the group algebra L'(G) of the left and right
regular representations of G on L?(G), as defined in theorem [1.4.2.6, In particular, we have

N Lfllop < ||f]]1 and ||R¢lop < || f]]1, which we also knew by corollary [[.4.3.2

In example [[.4.2.2(b), we defined an involution * on Ll(G); as the modular function of G is
1, this involution sends f € L'(G) to the function f* defined by f*(z) = f(z~'). By theorem
1.4.2.6, we have (L;)* = Ly« and (Ry)* = Ry-, forevery f € L'(G).

Theorem IV.8.2. For every f € L'(G), the endomorphisms Ry and L; of L*(G) are compact.

Remark 1V.8.3. We could also show that Ly and R; are trace class operators (with trace
J f(z)dz) for f € L'(G), and that they are Hilbert-Schmidt operators (with Hilbert-Schmidt
norm || f||2) for f € L?*(G), but we will not need this.

Lemma IV.8.4. For every F € L*(G x G), the formula

Tr(h)(x) = / Fz, y)h(y)dy
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IV.8 The classical proof of the Peter-Weyl theorem
defines a continuous linear operator Ty : L*(G) — L*(G), and we have | Tr|| < || F||2. ]

Proof. Leth € L?(G). By Minkowski’s inequality and the Cauchy- Schwarz inequality, we have

( / zdx)m< / ( / |F<x,y>|2rh<y>|2dm)l/2dy
< [ nw) ( / \F(x,y>12dx)1/2dy
< |l ( /| ( / F(x,y>|2dx)l/mdy>l/2 — Alal| Pl

This proves that Tr(h) is well-defined, in L?*(G), and that [|Tr(h)||2 < ||2|l2]| F)2-

/G Fz, y)h(y)dy

]

Lemma IV8.5. If fi,fo : G — C, define a function u(f; ® fo) : G x G — C
by (fi ® fa)(zi,m2) = fi(x) /o). This induces a C-linear isometry
u : L*(G) ®c L*(G) — L*(G x @), which is injective with dense image, hence gives
an isometric isomorphism L*(G)®cL*(G) = L*(G x G).

After we prove this lemma, we will just identify L?(G)®cL?(G) and L*(G x G) and write
f1 ® fo instead of u(f; @ fo).

Proof. The existence of the C-linear map u follows from the properties of the tensor product. If
f1, f2,91, g2 € L*(GQ), then we have

(u(f1 @ f2),u(g1 ® g2))r2(Gxq) = /G Gu(fl ® fa)(w1, x2)u(g1 ® g2) (w1, ¥2)dr1dTy

= . Gfl(ffl)f2($2)91($1)92($2)d$1d$2
= (f1,91)12(0)(f2, 92) 12(c)-

This implies that « is an isometry.

Take a Hilbert basis (e;);c; of L*(G). Then the family (u(e; ® €;)); jer of L*(G x G) is
orthonormal by the calculation, and its span is the image of u. So we just need to show that a
function in L?(G x @) that is orthogonal to every u(e; ® ¢;) is 0. Let F' € L*(G x G) be such a
function. Let i € I, and consider the function f; : G — C defined by fi(z) = [, F(z,y)e;(y)dy.
Then f; € L*(G) by lemma[lV.8.4] and f; is orthogonal to all the e; by the choice of F'. As (e;);e;
is a Hilbert basis of L?(G), we must have f; = 0. This is true for every ¢ € I, so, using again the

3In fact, we can prove that T is a Hilbert-Schmidt operator and that its Hilbert-Schmidt norm is equal to || F'||o.
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IV The Peter-Weyl theorem

fact that (e;);c; is a Hilbert basis of L?(G), we see that the function F'(x,.) is almost every zero
for almost every w, i.e., that F = 0 in L*(G x G).

]

Lemma IV.8.6. For every F' € L*(G x GQ), the operator Ty : L*(G) — L*(G) of lemma
is compact.

Proof. By lemmallV.8.5] there exist families of functions (g;);c; and (h;);c; in L?(G) such that
the sum ) ,_; g; ® h; converges to F' in L*(G x G).

For every finite subset J of I, let S; = ZWEJ gi®h; € L*(G x G) and Ty = Ts,. Then, for
every h € L*(G), forevery z € G,

2:!/ y)dy = 2:/‘ (y)dy)gi(x).

(i,5)€J? ieJ jeJ
In other words, for every h € L*(G), Tsh is in the finite-dimensional subspace of L?(G) spanned
by the g;, ¢« € J. Hence the operator T'; has finite rank.

To show that T is compact, it suffices by problem 6 of problem set 5 to show that it is the
limit of the operators 7’y as JJ becomes bigger. But this follows from lemma [[V.8.4|and from the
fact that K is the limit of the Sy in L*(G x G).

]

Proof of theorem We prove the result for L ¢; the proof for [2¢ is similar.

Suppose first that f € L?(G). Consider the function K : G x G — C, (z,y) — f(zy™?1).
Then K € L*(G x G), and L; = Tk. So the result follows from lemma|V.8.6

In general, the result follows from the fact that a limit of compact operators is compact (see
exercise [.5.5.9(f)), that L?(G) is dense in L'(G), and that f — L (resp. f — Ry)is a
continuous map from L'(G) to End(L?*(G)).

]

Remember that the subspace & of € (G) was defined in [[V.4.1} this is the space of matrix
coefficients of finite-dimensional representations of G.

Proposition IV.8.7. Let f € L*(G). Then the following conditions are equivalent :
(i) Span{L,f, v € G} is finite-dimensional;
(ii) Span{ R, f, x € G} is finite-dimensional;
(iii) f € &.
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IV.8 The classical proof of the Peter-Weyl theorem

Proof. We first prove that (i) implies (ii) and (iii). If f € &, then f is a finite sum ) | __z fr, with
f= € & So it suffices to show that every element of &, generates a finite-dimensional subspace
of the left (resp. right) regular representation for m € G but this follows immediately from the
fact that & is finite-dimensional and stable by the operators L, (resp. R,), z € G.

We now prove that (i) implies (i). (The proof that (iii) implies (i) is similar.) Solet f € L*(G),
and suppose that there exists a finite-dimensional subspace V' > f of L?(G) that is stable by all
the L,, x € G. We will show that f is a matrix coefficient of V*. Let (.,.)y be the restriction
to V of the inner product of L*(G), let p : G — GL(V) be the action of G on V, and let
IT: L*(G) — V be the orthogonal projection. Suppose that 1) € %’(G) has real values and is
such that ¢(z~1) = 1 (z) for every x € G. In particular, 1) € L*(G), so, by proposition [[.4.3.4]
f =1 is continuous. For every = € GG, we have

frp(x) = Lo (f+9)(1)
o) % (1) (by proposition [4.13)

= (L
= /G(Lx1 f)(y)mdy (because v has real values and ¢ (y 1) = ¥(y))
- {0

= (p

1 f,0) 12
(" HII(f),1(¢))y  (because L,—1 f € V)
)

= (p(@)IL(y), TL(f))v-

By proposition [[V.3.2iv), f * ¢ is a matrix coefficient of V*, i.e. f %1 € &+. Now we choose
an approximate identity (¢y/)yes (definition this exists by proposition [[.4.1.8). By the
calculation we just did, f x ¢y € &+ for every U € % . But, by corollary [[.4.3.3] f is the limit
in L?(G) of the family (f * ¥y)yesw . As &+ is finite-dimensional (by proposition ii)), it
is a closed subspace of L*(G), so f is also in &y -.

]

We now explain how to prove theorem[[V.4.2|(that is, the fact that & is dense in €’ (G)) without
using the Gelfand-Raikov theorem. It suffices to prove that & is dense in L?(G). Consider the left
regular representation of G on L?(G). By proposition & contains every finite-dimensional
representation of L?(G), and in fact it is the sum of all the finite-dimensional subrepresentations
of L*(G). As L*(G) is a Hilbert space, to show that & is dense in L?(G), it suffice to show that
&+ = {0}. Solet f € &*. Choose an approximate identity (1/)yes (definition[L4.1.7} this
exists by proposition[[.4.1.8). If U € %, then ¢;; = 1)y, so Ry, is self-adjoint, and it is a com-
pact operator by theorem So, by the spectral theorem for self-adjoint compact operators
(theorem [[V.1.3), Ker(Ry,, ) is the orthogonal of the closure of the sum @5, .. Ker(Ry,, — Aid),
and Ker(R,,, — Aid) is finite-dimensional for every A\ € C*. Also, Ry, commutes with the
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IV The Peter-Weyl theorem

left action of G by proposition so each space Ker(R,, — Aid) is a subrepresentation of
L?*(G). As f is orthogonal to every finite-dimensional subrepresentation of L?(G) by assump-
tion, this implies that f € Ker(Ry,, ), i.e. that f * ¢y = 0. But f is the limit of (f * ¢y )yes in
L?*(G) by corollary so we conclude that f = 0.

IV.9 Exercises

Exercise IV.9.1. Let d be a positive integer.

(a). Let T be the intersection of U(d) with the set of diagonal matrices. Show that

AR 0
T = ,Zl,...,ZdE»Sl
0 ... Zd

(b). Show that every element of U(d) is conjugated in U(d) to an element of 7.

(c). Show that every element of SU(d) is conjugated in SU(d) to an element of

(d). Show that a finite-dimensional representation V' of SU(d) is uniquely determined up to
equivalence by x|z, .

We now take d = 2. Remember the irreducible representations V;, (n > 0) of SU(2) defined

in problem

(a). Calculate the restriction of xy;, to 7p.

(b). Let (p, V') be a finite-dimensional representation of SU(2). Show that there exists m > 1
and nonnegative integers ao, . . . , a,, such that, for every z € S', we have

Xv ((S g)) =ag + éai(zi +277).

(c). Show that there exist integers ¢, € Z, n > 0, such that ¢, = 0 for n big enough and
Xv = ano Cn XV, -

(d). Show that the integers c,, of (f) are all nonnegative.

(e). If V is irreducible, show that there exists n > 0 such that V' ~ V.

Solution.
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(a).

(b).

(c).

(d).

(e).

(®).

IV.9 Exercises

z1 ... 0
Let x = € My(C), with z1,...,z4 € C. Then x is in T if and only if
0 24
Z1 0
xx* =14 Asz* = , this condition is equivalent to |z;| = ... = |z4] = L.
0 ... 7

Let x € U(d). Then z is normal, so, by the spectral theorem, it can be diagonalized in
an orthonormal basis of C". This means that there exists y € U(d) such that yzy ! is

diagonal, i.e., yzy ' €.

Let x € SU(d). By question (b), there exists y € U(d) such that yzy~! € T. We have
det(yzy!) = det(z) = 1, so yxy ! is actually in Tp. Let ¢ = det(y) € C*. We choose
¢ € C such that (¢)? = ¢; as |¢| = 1, we also have |¢/| = 1. Then ¢/ := (¢/)"'y has

determinant 1, hence is in SU(d), and y/z(y') ™! = yxy~'.

Let V, W be two finite-dimensional representations of SU(d), and suppose that xy = xw
on Ty. By question (c) and the fact that yy, and yyy are central functions, this implies that
xv = xw on all of SU(d). But then V and W are equivalent by corollary [[V.5.10

z1 O _ _ .
Letz = (01 . > € Tj. Note that 7129 = 1, s0 x5 = 7] 1 — %,. We calculate the action
2

of = on the basis (£t *)o<p<p of V,,. For 0 < k < n, we have
p ety = () g ) =
So
n
Xva () = ik,
k=0

z
0

this induces an isomorphism of topological groups S' = T;. Then pist is a finite-
dimensional representation of S', so it is a finite direct sum of irreducible representations.
We know (from problem |[.5.4.1) that every irreducible representation of S* is of the form
pm @ 2z — 2™ with m € Z, so there exist nonnegative integers a,,, m € Z, that are 0
for all but a finite number of m, and such that pjs1 ~ €, ., pi. In particular, for every

We embed S' in SU(1) by the continuous group morphism z — ( g) Note that

2z e S,
z 0 m
(e )5
meZ
Let y = (z) (Z) Then y € SU(2) and, for every z € S!, we have

-1
y (S 291> yl = <Z 2) As V is a representation of SU(2), the function yy is cen-
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IV The Peter-Weyl theorem

(2).

(h).

().

z 0 2710 D
tral on SU(2), and so xv 0 sl = Xv Ik This implies that a_,,, = a,,

for every m € Z, so we get the desired statement.

Let M be the Z-module of functions y : S!' — Z that can be written
X(2) = a0+ )51 am (2™ +27™), with ag, ay, . .. € Z and a,, = 0 for m big enough. By
question (f), the restriction to S* of xy is in M.

A basis of M over Z is formed by the function (xo = 1, x; = z+2"1 xo = 224+ 2,2, ..).
On the other hand, we have seen in question (e) that yy, = Z X&- So the (infinite)

0<k<n
k=n mod n

matrix representing (xv, )n>o0 in the basis (x»)n>0 is upper triangular with ones on the
diagonal, which means that it can be inverted, i.e., that (xy;, ),>0 is also a basis of M over
Z. (If you don’t like that, it is also very easy from the formula expressing v, in the basis
(Xm )m>0 to show by induction over n that (xv, - . ., v, ) is linearly independent and spans
the same Z-submodule as (xo, - - -, Xn).)

The conclusion of the question follows immediately from this.

We know that the functions yy;, are pairwise orthogonal in L?(SU(2)) (by corollary[IV.5.8).
So, for every n > 0,

Cn = XV XV, ) L2(SU(2))-
By the same corollary, the right-hand side is also equal to dim¢(Homgy(2)(V, V;,)), which
is a nonnegative integer.

If V is irreducible, then, by the last formula in the proof of (h) (and Schur’s lemma), we
have ¢,, = O unless V' ~ V,,. So, if there were no n > 0 such that V' ~ V,,, we would have
xv = 0, hence V' = 0, which is impossible.

O

Exercise IV.9.2. Let GG be a compact group, and let (7, V') be a faithful finite-dimensional con-
tinuous representation of G. (Remember that this means that 7 : G — GL(V) is injective.) The
goal of this problem is to show that, if GG is finite, then every irreducible representation of G is a
direct summand of a representation of the form V®" ® (V*)®™ (for some n, m > 1), where the
notation V" means V' ® ... ® V, and similarly for (V*)®™.

————

(a).

(b).

n times

Let 1 be the trivial representation of G on C. Show that it suffices to show that ev-
ery irreducible representation of G is a direct summand of a representation of the form
(Vo Ve 1)®Y, for some N > 1.

Let W be an irreducible representation of G. Show that W is a direct summand of
(V@ V* @ 1)®Vif and only if [,(1 4 2Re xv(2))Yxw(z)dz # 0.

From now on, we assume that G is finite, we fix a finite-dimensional representation W of G,
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and we write, for every N € Z>,

Sy =Y _(1+2Rexv(2)xw().

zeG

Letd = dim V.

(c). If # # 1, show that (1 + 2Re xv (z))Y xw (z) = o((1 + 2d)") as N — +oo.
(d). If W # 0, show that Sy # 0 for NV big enough.

Solution.

(a). Let’s show by induction on N that, for every N € Z>,, we have a G-equivariant isomor-

phism
N!
(]l eV @ V*)®N ~ @ (V®k ® (V*)®l) Eltm!
K

This clearly implies the result of (a).

For N = 1, it follows from the fact that 1 ® W ~ W for every representation W of G.
Suppose the result know for N, and let’s prove it for N 4 1. We have

1eVaeV )"~ 1oVeVv )Mo 1oV eV

N
~1eVeV)e @ (Ve (V)= km

k,l,m>0
k+l+m=N
N!
~ @ (V®k ® (V ®l klllml ® @ V®k+1 )®l) Tl
k,l,m>0 k,l,m>0
k+l+m=N k+l+m=N
N!
D @ V®k V*)®l+1) Y
k,l,m>0
k+l4+m=N
N! N! N
~ @ (V®k Q (V*)®Z) R (m—1)1 T (k= 1)lml T KI(I—1)Im]
k,1,m>0
k+l+m=N+1
(N+1)!
~ @ (V®k ® (V*)®l) kllm!
k,l,m>0
k+l+m=N+1

(b). By the semisimplicity of finite-dimensional representations of G (corollary [[.3.2.9)
and Schur’s lemma (theorem , the representation W is a direct summand of
(1®V @ V*)®N if and only if Homg((1 ® V @ V)N W) # 0. By corollary [[V.5.8]
this is the case if and only (X(1gvev+-ey, Xw)r2@) 7 0. So the conclusion follows from
the fact that x (1gvev-ey = (14 xv + Xv)¥ = (1 + 2Rexy)Y, which is an immediate

consequence of proposition
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IV The Peter-Weyl theorem

(c). As G is compact, the representation (7, V') is unitarizable, so we can choose an isomor-
phism V' ~ C? such that 7(G) C U(d). Let 2y, ..., 24 be the eigenvalues of 7(z). As 7
is faithful, we have 7(z) # 1, so at least one the z; is not equal to 1 (we are using the fact
that 7(z) is diagonalizable); so we may assume that z; # 1. As |z;| = 1, this implies that
—1<Rez < 1,501-2d < 1+25°%  Re(z) < 1+2d, and ‘1 +25°% Rez| < 1+2d.
Finally, we get

N

(1 +2Rexv (2))" xw(2)] < (dim W) = o((1+2d)Y).

d
=1

(d). As G is finite, question (c) implies that

> (14 2Rexy (@)Y xw(x) = o((1 +2d)V).

zeG—{1}
On the other hand, (1 + 2Rexy(1))xw(l) = (dmW)(1 + 24d)". So
S, = (dim W) (1 + 2d) + o((1 + 2d)"), which implies that S,, # 0 for N big enough.

O

Exercise 1V.9.3. The goal of this problem is to generalize exercise[[V.9.2|to an arbitrary compact
group (&, assuming something about the Haar measure. In the next problem, we give another
approach to the same result using matrix coefficients.

Let (p, V') be a faithful finite-dimensional continuous representation of G. We want to show
that any irreducible representation of G is a direct summand of some V=V @ (V*)®M We fix a
normalized Haar measure p on G.

(a). Show that there exists an isomorphism V' ~ C" such that p induces an isomorphism (of
topological groups) between G and a closed subgroup of U(n).

From now on, we assume that GG is a closed subgroup of U(n), that V' = C" and that
p : G — GL,(C) is the inclusion. Let (7, W) be a continuous nonzero finite-dimensional
representation of G. Define f : U(n) - Cand g : G — Cby f(z) = 1 + Tr(x) + Tr(z) and

9(@) = xw ().
As in exercise we define
Lo = {X € M,(C)|Vt € R, ¥ € U(n)}

and
L={X € M,(C)|vt € R, ¥ € G}.

Remember that we proved in problem that, if (2 is a small enough neighborhood of 0 in
L, then exp induces a homeomorphism between €2 and exp(2), and exp(€2) is a neighborhood
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of 1 in G. Choose an isomorphism Ly ~ R™, and let d.X be the Lebesgue measure on L given
by this isomorphism. We assume the following : (**) For {2 small enough, there exists ¢ € R
such that the inverse image by the homeomorphism exp : 2 = exp(€2) of the Haar measure 1 is
of the form h(X)dX, where h(X) = c+ O(]|X]|) as X — 0.

Remark. This is always true, but we don’t have the tools to prove it. Indeed, a closed subgroup
G of GL,(C) is a Lie group, so the Haar measure is given by a left-invariant differential form w
on G, that is, w, is the pullback of w; by left translation by g. This and some effort will give the
desired asymptotic formula.

It would actually be much simpler to use the Weyl integration formula (see for example theo-
rem 7.16 of [22]]) to prove all the estimates in this exercise, since the function that we integrate
are central functions. However, this requires some more theory (maximal tori in particular).

(a). Show that, for every z € U(n), we have f(z) = 14+2>"" | cosf;, where e ... " are
the eigenvalues of x.

(b). If Q2 is a neighborhood of 0 in L, show that there exists 6 > 0 such that, for every
x & exp(2) and every N > 1, we have

If()N] < (1 +2n—6)N.

(c). If © is a neighborhood of 0 in L and U = exp(f2), show that there exists § > 0 and
C € R such that, for every N > 1, we have

f(@)Vg(@)dp(z)| < C(1+2n —6)".
G-U

(d). Show that
as X — 0in Lo, where K (X) = || X||* = 5 Tr(X*X).

(e). Show that, if €) is a ball (of finite radius) centered at 0 in L, there exists D € R such that

/eNK(X)g(eX)dX N D'Nf%dimL
Q

as N — +oo. (Hint : Show that we have g(eX) = dim W + O(|| X]|) as X — 0in L.)
(f). Show that there exists a neighborhood U of 1 in G and E' € R.q such that
(2n + 1)V
N% dim L

/ f(@)N g(x)dpu(z) ~ E
U

as N — +oo.

(g). Show that [, f(z)"g(x)du(x) # 0if N is big enough.
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IV The Peter-Weyl theorem

Solution.

(a).

(b).

(c).

().

(e).

(®).
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As G is compact, the representation (p, V') is unitarizable. This means that there exists an
isomorphism V' ~ C" such that p(G) C U(n). As the representation (p, V') is faithful, the
morphism p is injective, so p : G — U(n) is an injective and continuous map. As G is
compact, this map is a homeomorphism onto its image.

Let D be the diagonal matrix with diagonal entries €', ..., €. As x commutes with
x* = 27!, the spectral theorem implies that there exists A € U(n) such that D = Az A~
As f is clearly a central function on U(n) (and even on GL,(C)), we have f(z) = f(D).
But f(e”) =1+ 3" Re(e) = 142377, cos(6;).

By question (b), we have, for every z € U(n), f(z) € Rand 1 —2n < f(x) < 1+ 2n.
Moreover, the equality f(z) = 1 4 2n is possible only if all te eigenvalues of x are equal
to 1, which in turn implies that z = 1, because z is diagonalizable.

By question [[.5.5.4(f), we know that exp(£2) contains an open neighborhood V of 1 in
U(n). As U(n), the continuous function f attains its supremum on U(n) — V/, and this
supremum is < 1 + 2n by the previous paragraph. So sup,cy(n)—exp) [/ (2)| < 1+ 2n,
and this implies the desired result.

For every z € G, we have |g(z)| < dim W. So we can take C' = vol(G — U)(dim W) and
apply question (c).

Let i6,,...,10, be the eigenvalues of X. As X commutes with X* = -—X,
there exists A € U(n) such that AXA™! = D, where D is the diagonal ma-
trix with diagonal entries i0;,...,i0,. Then AeX¥A~! = ¢ is the diagonal ma-
trix with diagonal entries ¢, ... e, so the eigenvalues of eX are ¢, ... e, and

fle*)=1+23" cos(f;) =1+2n—-3" 65+ 03", 0)).

Wehave X = A7'DA,so X* = —X = —A"'DA, hence X*X = —A"1D?A, and finally
Tr(X*X) = —Tr(D?) = >y 07. So f(eX) =1+ 2n — > 07 + O([| X||*). On the
other hand,

(2n+1)e KON = (2n41) (1= | XIP+O(I X)) = 2n+1=) 0;+O(IX ).

j=1

We first prove the hint. By question [[.5.5.4(g), there exists a R-linear map
u : L — End(W) such that, for every X € L, we have (e¥) = e™*). As u is R-
linear, it is C*°, and so the map U : L — C, X +— g(e¥) = Tr(e*X)) is also C®. We
also have U(0) = Tr(idy ) = dim W. So we get U(X) = dim W + O(]| X]|).

Now we evaluate the integral. Doing the change of variable Y = N'/2X (and observing

that NK(X) = K(Y)), we get

1 ..
/ e NEX(X)dX = N~ 24mE / e KU (N~V2y)ay.
Q

N1/2Q)



(2).

(h).
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It remains to show that [, »,, e U (N~Y/2Y)dY converges to a positive real number
as N — +oo. First note that, as [ L e KM@Y converges and as the function g is bounded
by dim W, we have

/ e‘K(Y)U(N‘l/QY)dY‘ <
N1/2Q—N1/4Q)

/ e KU (N~ VQY)dY‘ —0.
L—N1/4Q) N—+o0

On the other hand, using the fact that U(N~'/2Y) = dim W + O(N~V4) for Y € N/4Q,
we get

lim e KOU(NY2Y)dY = lim (dim W) / e KM gy
N1/4Q

N—+oo Jn1/4q N—+o0

= (dim W) / e KM gy,
L

As the function Y —— e~ X(Y) takes positive real values on L, the last integral is positive
and real.

If there exists a neighborhood €2 of 0 in L such that exp is a diffeomorphism from €2 to U
(which we can always assume by making U small enough), then

/ F@)Ng(@)dz = (2n + 1)V / e~ NEEOENOUXTY g (X V(X )d X,

Q
with h(X) = ¢+ O(|| X]|), ¢ € Rs. This is equal to

(2n+1)N

Am D) / e KO+OWNTIVIN g (N=12y ) h(N~Y2Y)dY.
11m N1/2Q

We can prove as in question (f) that, if we choose €2 to be a ball centered at 0 (which we
can), then the integral converges to ¢(dim W) [, e K dY as N — 400, which gives the
conclusion.

By questions (d) and (f), we can decompose |, f 2)Ng(x)dz as a sum of two terms, one

f % and one of which is dominated by

(14+2n— 5)N , for some 6 > 0. As N tends to 400, the second term will become negligible
with respect to the first, so the sum of the two terms cannot be 0 for /V big enough.

of which is equivalent to a positive multiple o

0

Exercise IV.9.4. The goal of this exercise is also to generalize exercise to a compact
group GG admitting a faithful finite-dimensional representation (p,V’). As in the beginning
of we may assume that G is a closed subgroup of U(N), that V' = C¥, and that
p: G — U(N) C GLy(C) is the inclusion.

Remember that the algebra & C €' (G) of all matrix coefficients of G was defined in [[V.4.1
As in section [IV.4] we see €'(G) and & as representations of G x GG by making (z,y) € G x G
actby L, o R,.
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IV The Peter-Weyl theorem

Fori,j € {1,..., N}, we denote by ¢;; : G — C the function sending z € G C GLx(C) to
its (7, j)th entry.

(a).

(b).
(c).
(d).

Let &' be the subalgebra of & generated by 1 and by the function e;; and €,;, for
1 <i,7 < N. Show that &” is stable by the action of G x G.

Show that there exists a subset A of G such that & = D, cabr
Show that & = &.

Show that every irreducible representation of G is a direct summand of a representation of
the form V& @ (V*)®™ (for some n, m > 1).

Solution.

(a).

(b).

(c).

(d).
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Let x € G, and write .CC_I = (aij)lgingj\[. Then Lﬁeij = E]]g\[:l ;| Chj for all
i,j € {1,...,N}, so L,e;; € &'. The proof that & is stable by the operators R, is
similar.

Remember that, by theorem [IV.3.8, & = @, 5 &r, and, if we write 7 : G — GL(V;),
then & is isomorphic to End (V) as a representation of G x G. We show that the &, are
irreducible and mutually non isomorphic as representation of G x G. Let 7w, 7’ € G. Then,

for (z,y) € G x G, we have x¢. (x,y) = Xx(y) X~ (z) by proposition [[V.5.4] and similarly

for 7', so

(X&r X&) 12(Gxa) = / X (1) X (02) X (23) X (24) A1 dod v 3d 24,
G4

By Schur orthogonality for characters (corollary [IV.5.8(ii)), this is 0 if 7 % 7, and by

corollary [IV.5.8(iii), this is 1 if 7 ~ «’. The irreducibility of &, follows from this and

corollary [[V.5.8(iii), and the fact that & 2 & if w % 7’ also follows.

For every m € G, let W, be the image W of &’ by the orthogonal projection L?(G) — &.
As & is stable by the action of G x G, so is W, hence W is {0} of &, because &
is an irreducible representation of G x G. So, if A = {r € G | W, # {0}}, then
E =P .,

TEA T

The subalgebra &” of & is stable by complex conjugation, it clearly separates points on GG
and it contains the constant function 1, so it is dense in € (G) by the Stone-Weierstrass

theorem. In particular, it is dense in &. But, if A C G is the subset of (b), we have
E =8 EBWE@\A &, so the fact that &’ is dense in & implies that A = G, i.e. that & = &.

Let W be an irreducible representation of (G, and suppose that it is not a direct summand
of any representation of the form V®" @ (V*)®™ (for n,m > 1). By a), this implies
that W is not a direct summand of any (1 V @& V*)®" n > 1, i.e., by Schur orthogonality
(theorem[[V.3.8[1)), that yy is orthogonal to any matrix coefficient of a (1 &V @ V*)",
for n > 1. But the space of matrix coefficients of (1 &V @ V*)®" is exactly the subspace
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of & generated by the products of at most n of the functions e;; and €;;, for 1 < 4,5 < N,
so the space generated by the matrix coefficients of all these representations is &”’, which
we have just seen is equal to &. It is not possible for xy to be orthogonal to every element
of &’, so we get the result.

OJ
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V Gelfand pairs

In this chapter, G will always be a locally compact group, and K a compact subgroup of G. We
fix a left Haar measure ;« = i on G and a normalized Haar measure px on K.

V.1 Invariant and bi-invariant functions

Definition V.1.1. A function f on G is called left invariant (resp. right invariant, resp. bi-
invariant) by K if, for every x € K, we have L, f = f (resp. R,.f = f,resp. L.f = R.f = f).

If .7 (G) is a space of functions on G (for example %.((G)), we denote by .# (K \ G) (resp.
F(G/K), resp. .Z# (K \G/K)) its subspace of left invariant (resp. right invariant, resp. bi-
invariant) functions.

Let Ag be the modular function of G. As K is compact, we have Agx = 1, so we can use
the results of exercise In particular :

Proposition V.1.2. Let f € €(G), and define two functions f% : G — Cand X f : G — C by
setting

@) = [ rakydi

and

“fla) = [ sk
K
Then f% is right invariant and ¥ f is left invariant.

Proposition V.1.3. There exists a unique regular Borel measure i/ (resp. prc) on G/K
(resp. K\G) such that, for every f € €.(G), we have

/Gf(x)dx: G/KfK(x)dug/K(x)

(resp. /Gf(x)dx = /K\G Kf(x)dumg(x)).
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Definition V.1.4. If f is a continuous function on GG, we write
KPR =K%y =" n*.

In other words, this is the continuous function on G defined by :

KK (2) = / f(kxk')dkdk'.
KxK

Note that X fX is obviously a bi-invariant function.

Proposition V.1.5. Let f € €(G). Then f is left invariant (resp. right invariant, resp. bi-
invariant) if and only if f = K f (resp. f = f¥, resp. f = K fK).

Proof. This follows immediately from proposition and from the fact that the measure on
K is normalized.

[

Lemma V.1.6. For every [ € 6.(G), we have

/ f(z)dx = / KK (2)dw.
G G
Proof. We have
/ KR (r)dr = / [ (kxk"dxdkdk' = / f(z)dx,
G GxK? G
because, forall k£, k' € K,
/ f(kxk')dx = A(k’)l/ f(x)dz = / f(x)dx
G G G

(by proposition [[.2.8)).

O

Proposition V.1.7. Let (7,V') be a unitary representation of G, and let Px : V' — V be the
orthogonal projection on VX. Then we have, for everyv €V,

PK(U):/KW(k)(U)dk:.

Moreover, if [ € %.(G) and v € V, then w(f)(Px(v)) = =(f%)(v) and
Pr(m(f)(v)) = 7(¥ f)(v). In particular :
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(i) If f € 6.(G) and v € VE, we have 7(f)(v) = w(f)(v).
(ii) If f € 6.(K\G) andv € V, then 7(f)(v) € VE.
(Remember that v : L'(G) — End(V) is defined in theorem|[[.4.2.6])

Proof. Let v € V. The existence of the integral w := [, 7(k)(v)dk follows from exercise
If x € K, then we have

(@) (w) = /K (k) (v)dk = /K w(B)(w)dk = w,
sow € VE. Also, if w' € VX, then
(w,w') = /K(W(k)(v),w'>dk = /K<U,7T(l€_1)(w,)>dk3 = /}((v,w'}dk = (v,w').

So w is the orthogonal projection of v on VX,

Now we prove the last statement. Let f € €.(G) and v € V. Then :

_ /G 5 () (@) (0)de = / / f(ak)m(x) (v)dudk
_ / / F()m (@) (k)" (0)dadk

/ / f(z (v)dzdk (K is unimodular)

(v))-
On the other hand :

flx v)dkda

f(kz)m(z)(v)dkdx

\\\

= f
/ F(k™ 2w (@) (v)dkda
/

The same proof gives :

Proposition V.1.8. Let f, g € 6.(G). Then
B(fxg)=("xg and (f+g)"=fx*(g").

In particular, if f and g are bi-invariant, then f * g is also bi-invariant, so 6.(K\G/K) is a
subalgebra of €.(G) for the convolution product.
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Remark V.1.9. Let LP(K \ G/K) be the subspace of bi-invariant functions in L?(G). Then, if
1 <p<+oo,if f € L} K\G/K) and g € LP(K\G/K), then their convolution product f * g
isin LP(K\G/K). This is clear on the formulas defining f * g (see proposition|.4.1.3)); indeed,
we have

f*g(x) —/Gf(y)g(y‘lfv)dfv—/Gf(xy‘l)g(y)dy

(the first formula shows that f * g is right invariant, and the second that f * g is left invariant).

In particular, the subspace L' (K\G/K) of L'(G) is a subalgebra, and we have a similar result
for the L? spaces if G is compact.

Remark V.1.10. All this is easier to remember if we extend the convolution product and the repre-

sentation 7 to the space .# (&) of Radon measures on G. (See remark[[.4.1.6]) We can see jux as
an element of ./ (G) by identifying it to the Radon measure ¢.(G) — C, f +— [} f(x)dpux(z).
Then we have pix * i = pige, f5 = f* pg, X f = ug * f and Px = 7(ug), so, for example,
the last part of proposition just follows from the fact that 7 is a *-homomorphism.

V.2 Definition of a Gelfand pair

Definition V.2.1. We say that (G, K) is a Gelfand pair if the algebra ¢.(K\G/ K) is commutative
for the convolution product.

Remark V.2.2. If p € [1,4+00), f € LP(K\G/K) and g € 6.(G), then

p
dx

— KK |p = — kxkdkdk'
I =K< |z /G‘f(x) [ gtwai

).

So, by Minkowski’s formula (see exercise ??), we have

P
dz.

/K K Flkak') — glkak'))dkdk'

If = %g"], < / |LuRuf — LiRu fllydkdk’ = |If — gl

KxK

As 6.(G) is dense in LP(G), every function of LP(K\G/K) can be approximated by elements
of €.(G), hence, by the calculation above, by elements of €.(K \ G/K). In other words, the
space ¢.(K\G/K) is dense in LP(K\G/K). So, in the definition of a Gelfand pair, we could
have replaced the condition “¢.(K \ G/K) is commutative for the convolution product” by the
condition “L'( K\ G/K) is commutative for the convolution product” (or, for G, we could have
used “L?(K\G/K) is commutative for the convolution product”).

Example V.2.3. If G is abelian, then (G, {1}) is a Gelfand pair.

Here are other examples (but we will not prove yet that they are Gelfand pairs) :
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- (SO(n + 1),S0(n)), where SO(n) is identified to a subgroup of SO(n + 1) by sending
x € SO(n) to the (n 4+ 1) x (n + 1) matrix <:(§ (1) ;

- (6n+ma 6n X Gm),

- (GLn<Qp)a GLn(Zp))~

Proposition V.2.4. Let (G, K) be a Gelfand pair. Then G' is unimodular.

Proof. By proposition[[.2.12] we have, for every [ € €.(G),

/Gf(a:)da::/GA(x)lf(xl)dx

So it suffices to prove that [, f(x)dz = [ f(z~")dx for every f € €,(G). First note that

/GKfK(:E)dx:/Gf(x)dx
/GKfK(x_l)d:r:/Gf(x_l)dx

by lemma So it suffices to show that [, f(z) Jo f(x™")dx for every
f € ¢.(K\G/K). Fix f € €.(K\G/K). We can ﬁnd g € ‘K(K\G/K) such that g is
equal to 1 on (supp f) U (supp f) ! (because supp f = K (supp f)K). Then

S W

9o 1= [owrw = [ = [

But f x g = g % f because (G, K) is a Gelfand pair, so this implies the desired result.

and

and

The following criterion will allow us to find more Gelfand pairs.

Proposition V.2.5. Suppose that there exists a continuous automorphism 0 : G — G such that :
(a) 0% =idg (i.e. 0 is an involution);
(b) forevery x € G, we have 0(z) € Kz 'K.
Then (G, K) is Gelfand pair.
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Proof. Consider the linear functional 4.(G) — C, f — [, f(0(x))dx. This is a left invariant
positive linear functional on €.(G), so, by the uniqueness statement in theorem 7, there exists
¢ € R such that, for every f € €.(G), we have

/f x:c/Gf(:E)daz

As #? = id, we must have ¢ = 1, so ¢ = 1.

Let f, g € %.(G). On the one hand, we have, for every = € G,

(fol)*(go8)(x /f —19(x))dy
/f (2))dy
= (fxg)ol(x)

(the second equality follows from the first paragraph of this proof). On the other hand, for every
z € (G, we have

@ N = [ o sy = [ £ ey = (755w,
where f/(z) = f(z7!) and ¢'(2) = g(z7'). (We used the fact that G is unimodular to do the

change of variables y — y~1.)

Suppose that f and g are bi-invariant. Then we have f(6(z)) = f(z~!) and g(6(x)) = g(z™!)
by condition (b), and a similar equality for g x f because g * f is also bi-invariant, so, for every
rzed,

(f*9)(0(z)) = (fo0) x (go8)(x) = (f'*g)(z) = (g% [)a™") = (g [)(O(z)).
As 6 is an automorphism, this implies that f x g = g * f.
O

Example V.2.6. (1) If G is abelian, then we can take 6 : * — 27!, so (G, K) is a Gelfand
pair for any compact subgroup K, and in particular for K = {1}.

(2) If G is compact, then (G x G,{(z,z), x € G}) is a Gelfand pair. Indeed, it suffices to
apply the proposition above with 0(x,y) = (y, x). Indeed, for every (z,y) € G x G, we

have 0(x,y) = (z,z) (" v 1) (y,y).

V.3 Gelfand pairs and representations

In this section, we will give two representation-theoretic criteria for (G, K) to be a Gelfand pair,
one valid in general and one for G compact.
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V.3 Gelfand pairs and representations

V.3.1 Gelfand pairs and vectors fixed by K

Theorem V.3.1.1. The couple (G, K) is a Gelfand pair if and only if, for every irreducible
unitary representation (m, V') of G, we have dim(VE) < 1.

We will need the following variant of the Gelfand-Raikov theorem.

Lemma V.3.1.2. Let f € €.(G). If f # 0, then there exists p € &(,) (see section[lIL.3) such
that [, f(x)p(z)dz # 0.

Proof. Suppose that [, fodu = 0 for every ¢ € &(27). By theorem IH.4.1|, we have
J o fedp = 0 for every function of positive type ¢. By theorem III.2.5|, for every unitary rep-
resentation (7, V") of G and any v € V, we have (7(f)(v),v) = 0. Applying this to the left
regular representation of G, we get that, for every g € L*(G), we have (f * g,9).2() = 0.
As in the proof of theorem [IIL.5.1, we see that this implies that (f * g1, g2)2() = 0 for all
g1,92 € L*(G). Again as in the proof of that theorem, we see that, for all g;, g, € L*(G), we
have (f * g1, 92) 12(c) = (f, 92 % 91) L2(G)>» Where g1 () = gi(2~'). So we get (f, g1 * g2) 2(c) = 0
for all g1, g» € L*(G). Applying this to g; = f and to g» = 1y, where (¢7)yes is an approxi-
mate identity, we finally get (f, f)r2() = 0, hence f = 0.

[]

We also need the following variant of Schur’s lemma.

Lemma V.3.1.3. Let A be a commutative Banach x-algebra, and let u : A — End(V) be a

representation of A on a nonzero Hilbert space V. Suppose that the only closed subspaces of V/
that are fixed by all the u(x), x € A are {0} and V. Then dim'V' = 1.

Proof. By assumption, the subset u(A) satisfies the hypothesis of corollary so its cen-
tralizer in End (V') is equal to Cidy. But as A is commutative, even element of u(A) is in the
centralizer in u(A), so this implies that Im(u) C Cidy. In particular, every subspace of V' is
invariant by all the elements of u(A), so V' has no nontrivial closed subspaces, which is only
possible if dim V' < 1.

O]
Lemma V.3.1.4. Let (7, V) be a unitary representation of G. Then (f) sends VX to itself for

every f € LY(K\G/K). If moreover T is irreducible, then the only closed subspaces of V'
stable by all the 7(f), f € L'(K\G/K), are {0} and V.

Proof. By proposition V.17, for every f € %.(K\G/K) and every v € VX, we have
7(f)(v) € VE. The first statement follows from the fact that 4.(K \ G/K) is dense in
LY(K\G/K).
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V' Gelfand pairs

To prove the second statement, it suffices to show that, for every v € V& — {0}, the space
{7(f)(v), f € €.(K\G/K)}isdensein VE. Letw € V¥, andlete > 0. As V is irreducible, the
space {m(f)(v), f € L'(G)}isdensein V. As ¢.(G) is dense in L'(G), there exists f € €.(G)
such that |7 (f)(v) — w|| < e. By proposition[V.1.7]again, we have 7(f)(v) = 7(f%)(v), and so
7(K &) (v) = P (m(f)(v)), where Pk is the orthogonal projection of V on VE. Asw € VX,
we get [|w(* f5)(v) — w|| = | Pu(m(f)(v)) = w]| < |7 (f)(v) —w] <e.

]

Proof of theorem|V.3.1.1] Suppose that (G, K') is a Gelfand pair. Let (7, V') be an irreducible
unitary representation of G. By lemma[V.3.1.4] 7 defines a *-homomorphism from L!(K\G/K)
to End(VE), and the only closed subspaces of VX stable by all the elements of L!(K\G/K)
are {0} and V. As L'(K\G/K) is commutative, lemma|[V.3.1.3implies that dim (V) < 1.

We prove the converse. Suppose that dim(V %) < 1 for every irreducible unitary representa-
tion (7, V) of G. Let f € 6.(K\G/K) be nonzero. By lemma|V.3.1.2] there exists ¢ € &(Z)
such that |, af gpdu 7& 0. Let (7, V') be a cyclic unitary representation of G and v € V' be a cyclic

vector such that p(z) = (7(z)(v), v) for every x € G (see theorem[[I1.2.5). Then we have
/f d:c—/f o)dr = (r()(0), ),

so 7(f)(v) # 0. By theorem[[I.3.2] the representation (m, V') is irreducible. By lemma|[V.3.1.4]
the endomorphism 7(f) of V preserves VX and, by proposition [V.1.7} if w is the orthogonal

projection of v on VK, then (f)(w) = m(f)(v) # 0. In particular, the subspace VX of V is
nonzero, so dim(V%) = 1 by assumption. Hence End(V %) = C, which means that we have
found a *-homomorphism u : 6.(K\G/K) — C (sending g to m(g)y+) such that u(f) # 0.

Now let fi,fo € G.(K \ G/K). As C is commutative, we have

u(fr x fo — fax f1) = u(fi)u(fe) — u(fo)u(fr) = 0 for every morphism of algebras
u: 6.(K\G/K) — C. By the preceding paragraph, this implies that f; * fo — fo * f; = 0, and
we are done.

]

V.3.2 Gelfand pairs and multiplicity-free representations

Definition V.3.2.1. Let (7, V") be a unitary representation of (G, and suppose that we can write
V = @,., Vi, with the V; closed G-invariant subspaces of V' that are irreducible as representa-
tions of VE] Then we say that (mw, V') is multiplicity-free if, for every irreducible unitary repre-
sentation W of G, the set of ¢ € I such that V; and W are equivalent has cardinality < 1.

Note that the group G acts by left translations on the homogenous space G/ K, so, if t € G
and f is a function on G/ K, we can define L, f by L, f(y) = f(z1y).

"This is always the case if G is compact, see theorem [[V.2.1
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V.3 Gelfand pairs and representations

Definition V.3.2.2. The quasiregular representation of G on L?>(G/K) is the representation de-
finedby x - f = L, f, forevery z € G and every f € L*(G/K).

Proposition V.3.2.3. The definition above makes sense, and gives a unitary representation of G.

Proof. By definition of the measure on G/ K, we have fG/K fduc/x = fG/K L, fdugk for
every f € 6.(G/K) and every x € G. As 6.(G/K) is dense in L*(G/K), this implies that the
operators L, preserve L?(G/K) and are isometries. By proposition it suffices to prove
that, for every f € L*(G/K), the map G — L*(G/K), x —> L, f is continuous. As in the
proof of proposition it suffices to prove this for f € 4.(G/K), in which case it follows

from proposition
[

Remark V.3.1. If we make G act on L*(G) by the right regular representation, then L*(G/K) is
the space of K-invariant vectors in L?(G). The quasi-regular regular representation is then the
restriction of the left regular representation to L?(G/K)

We could also define a quasiregular representation on L?(K \ G) (this is the space of K-
invariant vectors in L?(G) if K acts via the left regular representation, and it gets an action of
G via the right regular representation). The representation we get is unitarily equivalent to the
quasiregular representation on L?(G/K).

Theorem V.3.2.4. Assume that G is compact. Then (G, K) is a Gelfand pair if and only if the
quasiregular representation of G on L*(G/K) is multiplicity-free.

Also, if (G, K) is a Gelfand pair, then we have a G-equivariant isomorphism

L*(G/K) ~ @v

TI'VEG
vK¢o

Proof. First observe that L*(G/K) is the space of vectors of L?(G) that are K-invariant if
K acts by the right regular representation. The Peter-Weyl theorem (corollary says
that, as a representation of G x G, the space L?(G) is isomorphic to the completion of
Dvyea End(V) = B vyea V" ®c V. So L*(G/K) is isomorphic as a representation of

G to the completion of
@ (V*)dim(VK).

(m,V)EG

vEo
Note that, for every (7,V) € @ the representation V'* is also irreducible; this follows for exam-
ple from (iii) of corollary [[V.5.8] because xv+ = Xy, 80 ||xv+|l2 = ||xv||2- So the representation
L?(G/K) is multiplicity-free if and only if, for every irreducible unitary representation (7, V)
of G, we have either VE = 0 or dim(V %) = 1. Hence the first statement of the theorem follows

from theorem
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V' Gelfand pairs

We now prove the second statement. We have already seen that

—

L*(G/K)~ @ V-,

so we just need to show that, if (7, V') is a finite-dimensional representation of G, then VX #£ 0
if and only if (V*)% = 0. Applying theorem [[V.5.7| to the restrictions of the representations V'
and V* to K, we get

dim(VE) = /K v (k)dk

and

dim((V*)") = /KXV*(k:)dk: = /KXV(k:)dk = dim(VK) = dim(V*).

V.4 Spherical functions

In this section, we assume that (G, K) is a Gelfand pair.

Definition V.4.1. Let ¢ € €(K\G/K). We say that pis a spherical function if the linear
functional x, : €.(K\G/K) — C, f +— fxp(1) = [, f( Ddz is a multiplicative
functional, where the multiplication on 6.(K\G/K ) is the convolutlon product.

In other words, the function ¢ is spherical if ¢ # 0 and if, for all f,¢g € €.(K\G/K), we
have X, (f * 9) = X (f)Xe(9)-

Example V4.2. If G is commutative and K = {1}, then every continuous morphism of groups
¢ : G — C* is a spherical function. Indeed, let f, g € €.(G). Then :

/G Frg)@eladr= [ fwgl o)ele)d

GxXG

= FW)g(z)e(z"y ™" dydz
GxG

(/ Jwely™) dy) ( /G Q(Z)so(z‘l)dz),

These are actually the only spherical functions in this case. (This follows immediately from
the next proposition.)

Proposition V.4.3. Let p € € (K\G/K). The following conditions are equivalent :
(i) The function o is spherical.
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V.4 Spherical functions

(ii) The function @ is nonzero and, for all x,y € G, we have
/ p(zky)dk = o(x)p(y).
K

(iii) We have :

(a) o(1) =1;
(b) forevery f € €.(K\G/K), there exists x(f) € C such that f x ¢ = x(f)e.

Proof. We can extend x,, to ¢,(G) by using the same formula, i.e., x,(f) = [, f(@)p(z~")dz.
Note that, for all f, g € €.(G), we have

Xeo(f*g) = " FWaly 'w)e(z™)da

= FW)g(z)e(z"y ") dydz,
GxG

hence

Xo(f % 9) — X (F)xe(9) = o FWa2)(e(z"y ™) — oz ey ™)) dydz.

Let f,g € %.(G). Applying the calculation above to ' := K fX and ¢ := K¢¥ and us-
ing the bi-invariance of ¢ (and the fact that the measure on K is normalized), we get that
Xe ("% 9") = Xo(f')Xp(¢') is equal to

/G2 K f(k1$k2)9(k3yk4)(¢(y—1x—1) _ SO(y—l)()O(ZL,—l))dl_dydkldk:2dk:3dk4
B /G2 K2 f(fl?)g(y)(gp(y_lk;gk;Qx—1> - @("L‘_l)@(y—l))dl’dydedkS

=/ f(@)g(y) (/K o(y ket dk — ¢(x—1)¢(y—1)) drdy.

This shows that x,, is multiplicative if and only [, ¢(y 'kz~")dk = @(y~")p(z~") for all
z,y € G. As x, # 0if and only if ¢ # 0, this proves that (i) and (ii) are equivalent.

Suppose that ¢ satisfies conditions (a) and (b) of (iii). Then, for every f € €.(K\G/K), we
have

Xo(f) = [ *e(1) = x(f).

As f — x(f) is multiplicative (by the associativity of the convolution product), this implies
that ¢ is spherical.
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V' Gelfand pairs

Finally, suppose that ¢ is spherical. We want to prove that conditions (a) and (b) of (iii) are
satisfied. Let f € 4.(K\G/K). Then we have, for every = € G,

e /f

= f(y)p(y tkx)dydk (by left invariance of f)
GxK

/ fly (z)dy (by (ii))
—Xso )gp(z)

This shows condition (b). Choosing f € ¢.(/K\G/K) such that x,(f) # 0, and applying the
equality above to z = 1, we get x,(f) = x,(f)p(1), hence p(1) = 1.

]

Remember that L'(G) is a Banach x-algebra, for the convolution product and the involution
given by f*(z) = f(xz1). | We have seen that L' (K\G/K) is a commutative Banach subalgebra
of L'(@), and it is clear that it is also preserved by the involution. So it is natural to ask what the
spectrum of L'(K\G/K) is.

If o € 6,(K\G/K) (note the boundedness condition), then the integral [, f(z)¢(z~")dx
converges for every f € L'(G), so we can extend the linear functional x,, on ¢.(K\G/K) to a
bounded linear functional on L' ( K\ G/K), that we will still denote by x.,.

Theorem V.4.4. The map o +—— X, identifies the set of bounded spherical functions to
o(LYK\G/K)).

Example V.4.5. If G is commutative and K = {1}, a bounded spherical function is a bounded
continuous morphism of groups G — C*, that is, a continuous morphism of groups G' — S L
i.e. an irreducible unitary representation of GG. So we get a canonical bijection G — o(L'(G)).
In particular, every multiplicative functional on L' (G) is a *-homomorphism in this case, that is,
the Banach x-algebra L'(G) is symmetric. This recovers the result of question |II c)

If GG is compact, we will see (in theorem [V.7.1)) that it is still true that every spherical function
defines a *-homomorphism of L'(K'\G/K), i.e. that L'(K\G/K). But in general, this is not
true.

Proof of theorem If ¢ is a bounded spherical function, then x, is multiplicative on
%.(K\G/K), hence also on L' (K\G/K) because 6.(K\G/K) is dense in L'(K\G/K).

Conversely, let x : L'(K\G/K) — C be a multiplicative functional. By corollary [[1.2.6| the
linear functional Y is continuous and has norm < 1.

2As (G, K) is a Gelfand pair, the group G is automatically unimodular by proposition|V.2.4} so we don’t need the
factor A(z)~!
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By remark [V.2.2} the linear operator 6.(G) — 6.(K\G/K), f — X fX decreases the L!
norm, so it extends to a continuous linear operator L'(G) — L'(K\ G/K), that we will still
denote by f — X f& Then f — x (¥ ) is a continuous linear functional on L!(G), and its
norm is equal to that of y, so there exists a unique ¢ € L*(G) such that ||¢|l« = ||x]|op and
that, for every f € L'(G), we have

/ F@)p(e e = (5 f5).
G

In particular, for all k, k' € K and every f € L'(G), we have

/f o(kz™ k) d:v—/f EHo(x ) de
X" (L R+ )*)
X F5)

/f

So ¢ is bi-invariant.

Let f,g € L'(K\G/K). We have
(e = [ (Fr0@pla s
= | fygly " a)p(a™)dzdy
= | fy)ely'2)g(z"")dydz

GxXG

= / (f * 9)(2)g(=V)dz.
As x(f*g) = x(f)x(g) = x(f) J, v(2)g(z~")dz, this implies that

/G ((F % 9) — X(F)e)(2)g(z)dz = 0.

Hence, for every f € L'(K\G/K), we have f * ¢ = x(f)p. Choose f € 6.(K\G/K)

such that x(f) # 0. Then x(f) = f * ¢(1) = x(f)¢(1), so ¢(1) = 1. Also, the function
f * ¢ is continuous, because it is left uniformly continuous (note that, for every x € GG, we have

[La(f x0) = fx¢lloc = [(Laf = f) *¢lloc < || Laf — fll1]l¢lloc and apply proposition|L.3.1.13).
So ¢ is locally almost everywhere equal to a bi-invariant continuous bounded function, and this
continuous bounded function is spherical by proposition[V.4.3]

Finally, let ' be another bounded spherical function such that, for every f € L'(K\G/K),

we have
| 1@¢@ e = [ sl
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We have seen above that, for every f € L'(G), we have

/ F@)p(e e = x(< fK) = / K PR (o) o )do,
G G

and we have a similar equality for ¢’. So

/G F(@)¢ () de = /G F@)p(a)d

for every [ € L'(G), and this implies that ¢’ = ¢.

V.5 Spherical functions of positive type

For the first result, we don’t need to assume that (G, K) is a Gelfand pair.

Proposition V.5.1. Let ¢ be a function of positive type on G, and let (1,,V,) and v, € V,, be
the unitary representation of G and the cyclic vector associated to p. (See section )

Then v, € Vf if and only if  is bi-invariant.
Proof. Forall k, k' € K and x € GG, we have

o(kxk’) = <7Tso(kmk/)(“so)vv<p> = <7T¢($)<7Tso(k/)(vw)):Ww(k_l)(up))-

So, if v, € VI, we get p(kzk’) = p(x). Conversely, suppose that ¢ is bi-invariant. Taking
k' = 1 in the equation above, we see that, for every & € K and every x € G,

p(x) = (mp(2)(vy), vp) = @k~ 2) = (m(2) (v,), T (K) (V).

As v, is a cyclic vector, the span of {7,(x)(v,), © € G} is dense in V,,, and so this implies that
mo(k)(v,) = v, for every k € K.

[]

Theorem V.5.2. Assume again that (G, K) is a Gelfand pair. Let @ be a continuous bi-invariant
function on G.

If ¢ is a normalized function of positive type (i.e. p € 1), then p is spherical if and only
p € &(P), that is, if and only if the representation (7, V,,) is irreducible.

Proof. We write (7, V) and v for (7, V,,) and v,,. As ¢ is bi-invariant, we know that v € V¥ by
proposition Suppose first that ¢ € &(?), i.e., that 7 is irreducible. By theorem [V.3.1.1]
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V.5 Spherical functions of positive type
we have dim(V*) = 1. Let f € 6.(K\G/K). Then we have, for every z € G,
Frole) = [ FO)EG 0.0y

/ £ () (), 7))y
(@)(v), 7(f)(v))-
As 7(f)(v) € VE, we can write 7(f)(v) = x(f)v, with x(f) € C, and we get, for every z € G,
)

fre(@) = x(f){r(2)(v),v) = x(f)e(z).
By proposition this implies that  is spherical.

Conversely, assume that ¢ is spherical. Then, by proposition again, there exists a map
X : 6.(K\G/K) — C such that, for every f € €.(K\G/K), we have f x ¢ = x(f). In other
words, for every f € 6.(K\G/K) and every x € GG, we have

f ol / @)y ) (), v)dy = (x(2) (), 7(f)())

= x(f)e(x)
= X(f )7 (z)(v),v).

As v is a cyclic vector, this implies that 7(f)(v) = x(f)v € VE. But we have seen in the proof
of lemma|V.3.1.4{that the space {7 (f)(v), f € €.(K\G/K)} is dense in V¥ (if v is cyclic), so
dim(VE) = 1. By lemma|V.5.3] this implies that (7, V) is irreducible.

]

Lemma V.5.3. We don’t assume that (G, K) is a Gelfand pair. Let (m,V') be a unitary repre-
sentation of G, and suppose that there is a cyclic vector in VE. If diim(VE) < 1, then (7, V) is
irreducible.

Proof. Tt suffices to prove that Endg (V) = Cidy. Indeed, if V has a closed G-invariant subspace
W such that W = {0}, V, then the orthogonal projection on W is a G-equivariant endomorphism
of V' (by lemma|l.3.4.3)) that is not a multiple of idy .

Solet T € Endg(V). Then, by proposition the operator 7' commutes with the orthog-
onal projection on VX, so it preserves V. Choose a cyclic vector v € VE. As dim(VE) =1,
we have T'(v) = Av, with A € C. As T is G-equivariant, we get that T'(7(z)(v)) = Ar(z)(v) for
every z € GG. As v is cyclic, this implies that 7' = Aidy .

]

Corollary V.5.4. Assume that (G, K) is a Gelfand pair. Then ¢ — (V) induces a bijec-
tion from the set of spherical functions in &) to the set of unitary equivalence classes of
irreducible unitary representations (7, V') of G such that VX # {0}.
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Proof. The only statement that doesn’t follows immediately from proposition and theo-
rem is the fact that, if two spherical functions in & (%) give rise to unitarily equivalent
representations, then they must be equal. Let 1,y € &(Z7;) be spherical, and suppose that
there is an isometric G-equivariant isomorphism 7" : V,,, — V,,,. By proposition the vec-
tors v, and v,,, are K -invariant. Also, as (G, K) is a Gelfand pair, the spaces Véf and Vé are
both of dimension < 1, hence of dimension 1 because they contain nonzero vectors. But 7T’ is
G-equivariant, so we have (VX)) C Vi, which implies that T'(v,,) = Av,, for some A € C.
ASs [|vg, || = ||vg, || = 1, we must have |A| = 1. So, for every = € G, we get

902( ) = <7T<Pz(w)(v<ﬁ2)av<ﬂ2>

= (7, () (A IT(Ucpl))a)‘_lT(Uw»
= (T (7, (2)(v4,)), T(vgy))
=

T (2) (Vy ) Uy ) -

V.6 The dual space and the spherical Fourier transform

In this section, we suppose that (G, K) is a Gelfand pair. We will state a few results on the
(spherical) Fourier transform without proof. In the next section, we will give proofs of some
version of these results if GG is compact.

Definition V.6.1. The dual space of (G, K) is the set Z of spherical functions in & (%), with
the weak* topology coming from the embedding & () C L*°(G) ~ Hom(L'(G), C).

Example V.6.2. If G is commutative and K = {1}, then Z = G, the dual group of G. (See
exercise [[.5.4.1])

Proposition V.6.3. The space Z is locally compact, and its topology coincides with the topology
of convergence on compact subsets of G.

Proof. For the first statement, note first that &2, = {v of positive type|y(1) < 1} is weak*
compact, because it is weak* closed in the closed unit ball of L>°(G). By the proof of
theorem the subset &, N € (K \ G/K) is the set of p € P, such that, for ev-
ery f € L'(G), we have [, f(z)p(z " )dx = [,5f¥(x)p(x™")de. These are weak*
closed conditions, so &y N (K \ G/K) is weak* closed in &, hence weak* compact. Fi-
nally, by theorem m the set Z U {O} is the set of gp € Py, NE(K\G/K) such that
Jo(f Bdx = ([, f( da:) (J 9(@)p(z7)dx) for all f,g € L'(K\G/K).
This is a Weak* closed COIldlthl’l SO Z U {0} is weak* compact, and Z is locally compact. Note
that this also proves that Z U {0} is the Alexandroff compactification of Z.

The second statement follows immediately from Raikov’s theorem (theorem [[I1.4.3)).

246



V.6 The dual space and the spherical Fourier transform

Definition V.6.4. Let f € L'(K\G/K). The (spherical) Fourier transform of f is the function
f: Z — C defined by

Flo) = /G F(@)p(a )z = xo (f).

Proposition V.6.5. The Fourier transform has the following properties :

(i)
(i1)
(iii)
(v)

Proof.

(111) and (1v)

(ii)

For every f € LY( K\G/K), the function fisin ¢0(Z), and we have ||]/‘"\||C>O < I fll1
The map L (K\G/K) — €o(Z), f —> [ is C-linear and it has dense image.
Forall f,g € LY(K\G/K), we have m = 3.

For every f € L} K\G/K), we have = ?

(1) The continuity J?follows immediately from the definition of the weak™® topology.
In fact, we can extend f (by the same formula) to a continuous linear functional on the
whole space L°°((). But have seen in the proof of proposition that Z U {0} is the
Alexandroff compactification of Z, so this implies that f € %(Z) vanishes at co. The
inequality ||]?||OO < || f|1 just follows from the fact that ||| = 1 for every p € Z.

This is just expressing the fact that x, is a x-homomorphism from L'(K\G/K) to C, for
every p € Z.

The linearity is clear. The second statement follows from the Stone-Weierstrass theorem :
indeed, the image of the spherical Fourier transform is a C-subalgebra of %,(7) by (iii),
it is stable by complex conjugation by (iv), it separates points (because, by theorem [V.4.4]
the map Z — o(L'(K\G/K)), ¢ — (f — f(p)) is injective), and it vanishes nowhere
(for every ¢ € Z, the map f —— f((p) is a multiplicative functional on L*(K'\G/K), so
it is nonzero).

]

Theorem V.6.6. (Fourier inversion) f|Let ¥'(K\G/K) be the space of L* functions that are
complex linear combinations of bi-invariant functions of positive type on G.

Then there exists a unique measure v on Z, called the Plancherel measure, such that, for every
f € VY K\G/K), we have f € L'(Z,v) and, for every z € G,

~

f(z) = / (@) Flp)dv.

Theorem V.6.7. (Plancherelformula)For every f € €.(K\G/K), we have | € L2(Z,v), and

| @ = [ [Fokat).

3See [25] Theorem 6.4.5.
4See [25] Theorem 6.4.6.
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In particular, the map f —s | extends to an isometry L*(K\G/K) — L*(Z,v), and this is an
isomorphism.

Remark V.6.8. If G is commutative and K = {1}, then Z = Gisa locally compact group, the
measure v is a Haar measure on G, and the Pontrjagin duality theorem says that the canonical

map G — G, x — (¢ — @(x)) is an isomorphism of topological groups. (See for example
[L1] Theorems 4.22 and 4.32, or [25]] Theorems 5.5.1 and 5.7.1.)

But in general, the Plancherel measure v could be supported on a strict subset of 2.

V.7 The case of compact groups

In this section, we assume that (G, K) is a Gelfand pair, and that G is compact. We also assume
that the Haar measure on G is normalized.

Theorem V.7.1. (i) The dual space Z of (G, K) is discrete, and it is an orthogonal subset of
L*(G).

(ii) Every spherical function on G is of positive type (hence in &(Z,) by theorem |V.5.2)).
In other words, the set Z is in canonical bijection (via ¢ —— (m,,V,,)) with the set of
equivalence classes of irreducible unitary representations of G such that dim(Vf ) =1

(iii) For every p € Z, we have

o(z) = /K \o (k) dk

/ (e dlmV

(iv) If f € LA(K\G/K) and (7,V) € G, then f % x» = 0if VE = {0}, and otherwise f  x»
is a multiple of the element o, of Z corresponding to w by corollary[V.5.4]

for x € G, and

Proof. Let g, ¢’ € Z suchthat ¢ # ’. We know by corollary (and proposition [[V.2.6) that
the representations V,, and V., are unitary and not equivalent. We also know (by construction of
the representation) that ¢ and ¢’ are matrix coefficients of V,, and V., respectively. By Schur

orthogonality (theorem [[V.3.8)), this implies that (¢, ¢') 12(q) = 0.

We prove that 7 is discrete. Let ¢ € Z, and consider U = {¢’ € Z|||¢ — ¢'||0 < ||¢|l2}- This
is open in the topology of convergence on compact subsets of G (because G is compact), hence

248



V.7 The case of compact groups

is an open subset of Z by Raikov’s theorem (theorem [[11.4.3)). Also, if ¢’ € U, then we have

|<907 90/>L2(G)| = |<90790>L2(G) - <90, <P/ - 90>L2(G)|
> lells = llell2lle = ¢'ll2

> llellz = llellzlle = &'llo
> 0,

hence, by the first paragraph, ¢’ = . This means that U = {¢}, i.e., that ¢ is an isolated point
of Z.

Let (7, V) be an irreducible unitary representation of G and let f € L?(K\G/K). We want
to calculate f * y,. Let (v1,...,v4) be an orthonomal basis; then, for every = € G, we have
Xx(x) = 20 (m(x)(e;), e;). Hence, for every = € G,

d d

[ xa() = /Gf(y) Y wly o) (e e) = Y (m(@)(er), m(F)(e)-

i=1 i=1

Let Pr € End(V) be the orthogonal projection on V5. As f is bi-invariant, we have
7(f) = Pg o n(f) o Px by proposition Suppose first that VX = {0}. Then the for-
mula above gives f * x, = 0. Now suppose that VX # {0}. Then, by corollary there is
a unique spherical function of positive type ¢, whose associated representation is (7, V'), and a
unitary cyclic vector v € V& such that ¢, (x) = (7(x)(v),v). We may choose the orthonormal
basis such that v; = v. Then Pk (v;) = 0 fori > 2 and Pk (v;) = vy, for every x € GG, we have

d

[ xa(@) = Y (w(2) (v3), Prc(w(F)(Prc(v3)))) = (m(a)(v1), P ((F)(vn)))-

=1

As VX is 1-dimensional, the vector P (7(f)(v1)) is a multiple of vy, and so f * x is a multiple
of .. This proves (iv). Note also that, for every = € GG, we have

/wa(kw)dk;:/}(é(w(kx)(uﬁ,vﬁdk

_ é <7T<x)(vi), /K W(kl)(vi)dk>

(m(z)(vi), Px(v;)) (by proposition [V.1.7)

(@) (01), 1)

(),

~

—~

RS

which gives the first part of (iii).
1V.3.8]

he second part of (iii) is contained in point (ii) of proposition
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Now consider a spherical function ¢ on G. By proposition (i.e. the Fourier inversion
formula), we have an equality (in L?(G))

p = dim(m)e Xr.
€@

By the calculations above, only the m € G with nonzero K-invariant vectors appear in the sum
above, and then ¢ * y, is a multiple of the function that was denoted by ¢, in the previous
paragraph. In other words, using corollary again, we get

o= e,
YeZ

for some ¢, € C. If we denote by x., (resp. xy) the linear functional f —— f % (1) (resp.
[ f*x(1))on L'(K\G/K), we know that it is multiplicative (for y,, this uses theorem

V.5.2). Also, as p = 3, cyth, we have X, = >, cyXy- Let¥h,¢)" € Z such that ¢ # o).
Then ¢ * ¢’ = 1’ *x 1) is a multiple of both ¢) and v’ (by proposition |V.4.3), so ¢ x ¢}’ = 0. In
particular, we have X (¢') = x4/ (1) = 0. This implies that x.,(¢)) = cyxy (1) for every ¥ € Z;

note also that
:/Wg) ldx_/w D@)dz > 0.
G

Hence, if v, ¢ € Z and ¢ # ¢/, then
0= Xo (¥ * ') = X (V)X (V) = cycyxp (V) xw (YY),

S0 cycyy = 0. So at most of one the ¢, can be nonzero, i.e., there exists 1 € Z such that ¢ = c,).
As (1) =1 = 1(1), we must also have ¢, = 1, so finally we see that ¢ = 1) is of positive type.
This finishes the proof of (ii).

O
Corollary V.7.2. (i) We have a G-equivariant isomorphism
L*(G/K) ~ @ V.
peZ
(ii) The family ((dim V,,)Y/2) ¢z is a Hilbert basis of L*( K \G/K).
(iii) Forevery f € L*(K\G/K), we have
= Z dim(V5) f ()¢
peZ
(Fourier inversion formula) and
1f1Z26) = D dim(V,) | f ()
peZ

(Parseval formula).
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Proof. Point (i) is just a reformulation of the last statement of theorem [V.3.2.4]

For (ii), we already know that the family (1/dim(V,,)p),ecz is orthonormal in L?(G). Also, if
f € L*(K\G/K), we have
> dim(V)f = xx

(Tr,V)Gé
by proposition [[V.7.1} so f is in the closure of Span(Z) by point (iv) of the theorem, which
means that Span(Z7) is dense in L*(K\G/K).
The second formula of (iii) follows from the first formula and from (ii). To prove the first
formula, it only remains to show that, for every f € L?(K\G/K) and every ¢ € Z, we have
[ * Xx, = f(@)p. As we already know that f * x_ is a multiple of o, we just need to check

that f * xr (1) = f(cp) By point (iii) of the theorem, we have (z) = [, xx, (kx)dk for every
ze€G.So:

*Xw /f Xﬂp —1 dz

= f(kE™ x)x,r (x)dxdk  (f is left invariant and vol(K) = 1)

= ; Kf( )X, (kx)dzdk
- /G [ @)

/G f(@)p(a
F@).

]

Remark V.7.3. The corollary says in particular that the Plancherel measure v on Z is given by
[v({e})] = dim(V5).

V.8 Exercises

V.8.1 The Gelfand pair (SO(n),SO(n — 1))

The material in this series of exercises is classical, but the exposition here ows a lot to section
2.3.2 of [22]] and section 7.3 of [25]].

Exercise V.8.1.1. Fix a positive integer n. For every m € Z(, we denote by V,,,(R™) the vector
space of complex-valued polynomial functions on R" that are homogenous of degree m. We
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define an action of O(n) on V,,(R") by (z - f)(v) = f(z7'v) if z € O(n), f € V,,(R") and
v € R” (in other words, x - f = L, f).

Fori € {1,...,n}, we denote by 0,, the endomorphism [ — % f of C>°(R™) (the space
of smooth functions from R™ to C), and we set A = """ (,,)? (this is called the Laplacian
operator).

The space of harmonic polynomials of degree m on R" is the space

().
(b).
(©).

Hn(R") ={f € Vin(R")|A(f) = 0}.
Calculate dim(V,,,(R™)).
Show that the action of O(n) on V,,(R") is a continuous representation.

Show that, for every x € O(n) and every f € C*°(R"), we have A(L,f) = L,(A(f)).
(Using |V.8.1.2| can help with this question.)

(d). Show that the subspace .7, (R") of V,,(R") is O(n)-invariant.
Solution.
(a). Forevery i € {1,...,n}, denote by z; € Vi(R") the function (21,...,2,) — z;. Then

(b).

(c).

252

{at . xb iy, iy € Zso,iy + ...+ 0, = m} is a basis of V,,,(R™). So
dim(V,(R™)) = {(i1,. .., in) € (Zs0)"|t1 + ... + in, = m}|.
This is also equal to

{015 dn) € (Zo1)" |1 + -+ Jn = m + 0}

(take j, = ¢, + 1). Choosing (ji,...,jn) in the set above is equivalent to choosing the
numbers ji, j1 + j2,---,j1 + ... + Jn_1, which form a subset of {1,...,n +m — 1} of
cardinality n — 1. So we get

dim(V,,(R")) = (n+m—1) _ (n—i—m—l).

n—1 m

If we use the basis of V,,,(R™) from (a), the action of x € O(n) is given by a matrix with
coefficients polynomial functions in the entries of z. So, for every f € V,,(R"), the map
O(n) — V,,(R™), z - f is continuous. As V,,(R") is finite-dimensional, this implies that
the action is continuous.

To avoid doing the calculation, let’s use [V.8.1.2(c). Note that A = 0,2, i,2. So, by
V.8.1.2(c), for every f € C*°(R") and every x € G, we have

Al - f) = - (9,f),

where g = Lyr(22 + ... + x,). So we just need to show that 22 + ... + 22 € V5(R") is
invariant by all the elements of O(n), which follows directly from the definition of O(n).
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(d). Question (c) implies that A : V,,(R™) — V,,_o(R") is O(n)-equivariant, and .77, (R") is
its kernel.

U

Exercise V.8.1.2. We keep the notation of problem|V.8.1.1| Fori € {1,...,n}, we denote by x;
the ith coordinate function on R".

(a). Show that the map z; — 0, extends to a unique morphism of C-algebras
from P,,5, Vim(R") (the algebra of complex-valued polynomial functions on R") to
End(#*>(R™)). We will denote this morphism by f —— 0.

If f,g € Vi,(R™), we set (f, g) = 05(f). (Note that g is still a polynomial function on R".)

(a). Show that (.,.) is an inner form on V,,,(R™). (Hint : Can you find an orthogonal basis ?)

(b). Show that, for every f € V,,(R") and every y € O(n), we have 9y o L, = L, o I py in
End(C*(R")).

(c). Show that the continuous representation of O(n) on V,,,(R™) defined in problem|V.8.1.1|is
unitary for the inner product (., .).

(d). If m < 1, show that V,,,(R") = 72,,(R™).

(e). If m > 2, show that J%,(R")* = |z|*V,,_o(R"), where |z|? is the function
Yoy ai € Va(R™).

(f). Show that
Lm/2]
Vn(R") = @ | [** 0 on(R"),

k=0
and that this induces a O(n)-equivariant isomorphism

m/2]
Vo (R") = @ H-(R").
k=0

(g). If S C R™ is the unit sphere, show that the map €P,,~, . (R") — €(S5), f > fsis
injective.

(h). Show that, for every f € V,,,(R"), there is a unique g € @,EZ(/EJ H—21(R™) such that
fis = gis-

Solution.

(a). Note that P, Vi (R") is isomorphic to the polynomial algebra Clx1, . . ., x,]. So we just
need to check that 0, and 0,; commute for all ¢, j € {1,...,n}. But this is a well-known
property of partial derivatives of C? functions.
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(b).

(c).

254

First, it is clear from the definition that (., .) is linear in the first variable and antilinear in
the second variable. We calculate the matrix of this form in the basis of [V.8.1.1)(a).

Let f = 2! ... 2%, withdy,... 4, € Zsgandi; +... +4, =m. Ifr € {1,...,n} and
a € Zxo, we have

0 [0 ifa>i
wf =il = 1) (i — a+ et [, 20 ifa <y

Let ¢ = af'...xi, with ji,....jn € Zso and j; + ... + jn = m. As
i1+ ...+ i, = j1+ ...+ Jn, either there exists r € {1,...,n} such that j, > i,, or
i, = j, for every r € {1,...,n}. In the first case, we have (f,g) = 0;f = 0. In the
second case, we have

(f,g) = Ogf = irlin). . i,

So the matrix of (.,.) in the basis {z' ... 2% i),... i, € Zs0,41 + ... + i, = m} of
Vi (R™) is diagonal with real positive entries, and in particular Hermitian definite positive.
This implies that (., .) is an inner product.

The statement is actually true for every y € GL, (R), and we will prove this.

First note that the identity of the statement makes sense for f in the algebra
V(R™) := @ V,,(R™), and it is linear in f. Also, if it is true for f,g € V(R"), then
we have, for y € GL,(R),
Opgo Ly =0r00,01L,

=dpoLyo 8LyTg

= Lyodp 17 o0L rg

= Lyodr riLrg

=1Lyo 8LyT(fg)’
that is, the identity also holds for fg. In conclusion, we only need to prove it for the

functions x4, ..., x,.

Leti € {1,...,n}, and, lety € GL,(R), and write y ' = a = (a;;) € GL,(R). Then for
every (z1,...,2,) € R", we have

(LyTLI}i)<21, s >zn> = xi<aT(Zla s 7Zn)) = Z QjiZg-
j=1

In other words, we have
n

LyTaﬁi: E aj;2j,

j=1



(d).

(e).
().

(2).

V.8 Exercises

SO
n
aLyTxi = g Clji@:c,--
Jj=1

Letp € C*°(R") and z = (z1, ..., z,) € R". We have

3Lmii90 = Z sz'a—xja
j=1

SO

On the other hand, L,¢(z) = ¢(az), with

n

az = (Z arjzr)lgrgm

i=1

SO

n

(Ou; Lyp)(2) = Za7'iaxr90(az)'

r=1

We see that we do get the same result for LyﬁLyT%.cp(z) and (0, Lyp)(2).
Let f,g € V,,(R") and y € O(n). By (c), we have

<Lyf7 Lyg> = %Lyf = LyaLyTLygf = Lya?f
As 0;f is a constant function, we have

Ly05f = 05f = (/. 9),
which is what we wanted.
If m > 1, then A = 0 on V,,(R"), so 7, (R") = ker(A) = V,,(R").
Note that A = 92. So, if f € V,,(R™) and g € V,,_»(R"™), we have

In other words, the map V,, »(R") — V,,(R"), g —— |x|?¢ is the adjoint of
AV, (R™) — V,,_2(R™), and so its image is the orthogonal of Ker A = .77, (R").

The first formula just follows from (f) by an easy induction. For the second for-

mula, we note that, for every k € {0,...,[%]}, the injective linear transformation

Vina(R") — V,,(R"), g — |z|**¢ is O(n)-equivariant, because the function |z|?* is
invariant by O(n).
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(h). We will use polar coordinates on R™ : a point z of R"” can be written as z = rs, with
r € Rspand s € S, and r and s are uniquely determined if z # 0.

Let f € 7,,(R™) and g € 5,(R™). Then, if r > R>gand s € S, we have f(rs) = " f(s)
and g(rs) = rPg(s). By Green’s second formula, we have

_ 99 _ Of
[ ung—oanar=c [ (15— ohin

where B is the closed unit ball, ) is Lebesgue measure on R", ¢ is a positive constant and
and 4 is the measure on S defined in 4(g). As f and g are in the kernel of A, this gives

0= cp—m) / £(5)g(s)dp(s).

If m # p, we get [ f(s)g(s)du(s) = 0. So, for m # p, the subspaces .7, (R") s
and .#,(R")s are orthogonal for the inner product of L?*(S,u). In particular, if
€ @,,50 7 (R")is such that fjg = 0, then, writing f = > . fm With f,,, € 2, (R"),
we must have f,, s = 0 for every m > 0. But f,, is homogeneous of degree m, so
fm(rs) =™ fi(s) forevery r € R>g and s € S, 50 f,s = 0 implies f,,, = 0.

(i). The existence follows from the first identity of (g) (because |z|? = 1 on S), and the unique-
ness from (h).

0

Exercise V.8.1.3. Let n > 2, and embed O(n — 1) into O(n) by using the map = — ((1) 2)

Let G = SO(n), and let K be the image of SO(n — 1) in G by the embedding we just defined.
(a). Let A be the subset of SO(n) consisting of matrices of the form

cos 0 sinf
0 ]n—2 0 )
—sing 0  cosé@

with 6 € R.
Show that A is a subgroup of G and that we have G = K AK.

(b). Show that (G, K) is a Gelfand pair. (You might want to use the involution § of GG defined
by O(x) = JxJ, where J is the diagonal matrix with diagonal coefficients —1,1,...,1.)

Solution.

cos 0 0 sinf
(a). For every 6 € R, we write Ay = 0 I,.o 0 |.Wehave A = {4y, 6 € R}.
—sinf 0 cosé
We check easily that Ag Ay = Ag.g, s0 A is a subgroup of G.
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Let vo = (1,0,...,0) € S. Then the action of O(n) on R™ preserves S (and O(n)
acts transitively on S), and K is the stabilizer of vy in O(n). Let x € O(n), and write
z=x-v9 = (21,...,2,). Wecan findy € K suchthaty -z = (z1,0,...,0,c), with
=22+ ...+ 22, and then we can find a € A suchthata- (y-2) = (1,0,...,0) = .
Then we have (ayz) - vy = vo, so ayr € K,andr € Ka™'y~! C KAK.

We want to apply proposition to 6, where 6 sends * € G to JxJ, with

0 I,
and an involution. It is also clear that §(K) = K. We need to check that §(z) € Kz 'K
for every x € G. Let x € G, and write x = kak’, with k, k" € K and a € A. Then
6(x) = 0(k)0(a)0(k') and 6(k),0(k') € K, and, if a = Ay, we have f(a) = A_y = a™ .
Sof(x) =0(k)Kx'kO(K') € Kz 'K.

J = (_1 0 . Note that J?> = I,, so J = J!, so 0 is a morphism of groups

[l

Exercise V.8.1.4. We use the notation of problems [V.8.1.1] and [V.8.1.2] and the embedding
O(n — 1) € O(n) defined in problem|V.8.1.3

(a).

(b).

(c).

Show that we have a O(n — 1)-equivariant isomorphism
= Vi
k=0

Show that we have a O(n — 1)-equivariant isomorphism

@% Rnl

If m > 2, show that 77, (R?) is an irreducible representation of O(2), but that it is not
irreducible as a representation of SO(2).

From now on, we assume that n > 3.

(a).
(b).
(c).

(d).

If m > 1, show that .7, (R")S°() = {0}.
Show that, for every m > 0, the space .7, (R")5°("~1) is 1-dimensional.

Let S C R" be the unit sphere, and let vo = (1,0,...,0) € S. Show that the map
SO(n) — S, x — z - vy induces a homeomorphism SO(n)/SO(n — 1) = S.

Show that the measure ;4 on S defined in [[.5.3.5(f) (using the normalized Haar measures
on SO(n) and SO(n — 1)) is given by u(E) = cA({tz, t € [0,1], € E}) for every Borel
subset E of S, where ) is Lebesgue measure on R" and ¢! is the volume of the unit ball
(for \).
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(e).

().
(2).

By the previous question, we have the quasi-regular representation of SO(n) on L%(S),
and it preserves the subspace of continuous functions. If V' C %(.S) is a nonzero finite-
dimensional SO(n)-stable subspace, show that VS°("=1 £ {0}, (Hint : Start with a
function f € V such that f(vy) # 0.)

Show that the representation .77, (R") of SO(n) is irreducible.

Show that the representations .77,(R") and 77, (R™) of SO(n) are not equivalent if
m # m/. (Hint : Compare the dimensions.)

(h). If m > 2, show that J7,(R") is spanned by the functions
(21,5 2n) — (121 + - .. an2zp)™, with ay, ..., a, € Csuchthata? + ...+ a2 = 0.
Solution.
(@). If f € V,(R"), then we can write f = Y ", a%f,, for uniquely determined

(b).

(c).
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fr € Vik(R™1). As O(n — 1) C O(n) acts trivially on 1, this gives an O(n — 1)-
equivariant isomorphism V,,(R") ~ @, Vi—r(R"1).

In this proof, we will use the convention that V,,(R") = 0 if m < 0. Fix
n and m. By [V.8.1.2(f) and (g), we have an O(n)-equivariant isomorphism
Vin(R™) =~ 7, (R")®V,,_(R™). Using (a), we deduce from this an O(m — 1)-equivariant

isomorphism
m—2

Vi (R") = 6, (R") & @D Vinoai(R™1).
k=0
On the other hand, applying (a) to V,,(R™) gives an O(n — 1)-equivariant isomorphism
Vin(R™) ~ @) Vin—r(R"1). Using [V.8.1.2(f) or (g) on each summand, we get an

O(n — 1)-equivariant isomorphism

Vi B") = @ (Hon (R @ Vi o 4(R'))
k=0
m m—2
- <@ mek(wl)> ® <@ vm”(R“)> :
k=0 k=0
Define representations Vi, V, and V3 of O(n — 1) by Vi = J,(R"),
Vo = @ity Hn—r(R"1) and V5 = Z:(f Vin_o_1(R™1).  We have just seen that

‘/1 S ‘/3 = ‘/2 D va’ SO Xvi + Xvs = X1 T X3, 8O X1y = XVs- By corollary
this implies that V; and V; are equivalent.

Note that SO(2) is a commutative group (it is isomorphic to S?), so its irreducible rep-

resentations are all 1-dimensional. On the other hand, by [V.8.1.2(f) and [V.8.1.2(a), we

have

dim 57, (R?) = dim V;,(R?) — dim V,,,_»(R?) = (m i 1) — (m a ;) =2>1
m m —



(d).

(e).

(®).

V.8 Exercises

if m > 2, so 7,,(R") cannot be an irreducible representation of SO(2).

If m = 2, then a basis of %7, (IR?) is given by the functions 23 — z3 and z,z5, and they

both span lines that are stable by the action of O(2), so J%(RR?) is not an irreducible
representation of O(2).

Suppose that m > 3. As dim %, (R?) = 2, if J,(R?) is not an irreducible represen-
tation of O(2), we must have a nonzero f € ,,(R?) such that L,f € Cf for every
r € O(2). We identify R? with the complex plane C in the usual way. Then f(z), for
z € C, can be written as f(z) = > " a,2"z™"", with ay,...,a, € C. The action of
SO(2) becomes the action of S* on C by multiplication, and the action of (é _01 cor-
responds to complex conjugation. By the assumption on f, for every” u € S*, the function
fluz) = 3" au*™z"Z™" is a multiple of f. This is only possible if there exists
r € {0,...,m} such that a; = 0 for s # r. So we may assume that f(z) = 2"2"". The
function f(Z) = 2™ "Z" is also a multiple of f, so we must have m = 2r and f = |z|™.
Then Af = m(m — 1)|x|™2, which contradicts the fact that A f = 0.

Let f € V,,,(R")S°() As f is invariant by SO(n), it is constant on the sphere with center
0,50 f(2) = f(||z|lvo) for every z € R". As f is homogeneous of degree m, we get that
f(z) = ||z]|™f(vo), for every z € R™. So f is a polynomial if and only if m is even. Also,
we check easily that Af = m(m — 1)|z|72f, so f € ,,(R") if and only if f = 0 or
m = 0.

By (b), we have a SO(n — 1)-equivariant isomorphism .7, (R™) ~ ;"
H f,_x(R"1). So, by (d), we get

%m(Rn)SO(n—l) ~ %(R”_I)SO(”_I) ~ C.

Let us denote the map SO(n) — S, x — x - vy by . First, this map is clearly continuous,
and it is surjective because SO(n) acts transitively on S. (If we have vy, v] € S, we want
to find x € SO(n) such that = - v; = v}. We can complete v; and v} to two orthonormal

bases (v1,...,v,) and (v],...,v)) of R". The change of basis matrix between these two
bases is in O(n). If it is in SO(n), we are done. Otherwise, the change of basis matrix
between (vy,...,v,) and (v],... v, _;,—v!) will be in SO(n).)

1

0

Also, the stabilizer of vy in SO(n) is the subgroup of SO(n) whose elements have
0
as their first column, and we see easily that this is SO(n — 1). So ¢ induces a continuous

bijective map SO(n)/SO(n — 1) = S. As SO(n)/SO(n — 1) is compact, this map is a
homeomorphism.
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(2).

(h).

().
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Define a regular Borel measure v on S by
V(E) =c\({tz, t €[0,1], x € E}).

Define a linear functional I : € (SO(n)) — C by

1(f) = / £500=D(5)d(s),

where

e = [ sy

(we are using the normalized Haar measure on SO(n — 1)) for every s € SO(n); the
function fS°"~1) is right invariant by SO(n — 1), hence can be identified to a function on

S by (f).

This is a positive functional on ¢’ (SO(n)), so it comes from a regular Borel measure on
SO(n), say p. We want to show that p is the normalized Haar measure on SO(n).

Note that, if f is the constant function 1, then I(f) = 1. So, to show that p is the
normalized Haar measure on SO(n), it suffices to show that it is left invariant. Let
f € €(SO(n)) and y € SO(n). Then it follows immediately from the definition that
(L, )= = L (f5°m=1) 5o we only need to show that the measure v on S is left
invariant by the action of SO(n). But this follows immediately from the fact that Lebesgue
measure \ is left invariant by the action of SO(n) (which we can see using the change of
variables formula).

Let V be as in the question. As SO(n) acts transitively on S and V' is stable by SO(n), we
can find f € V such that f(vy) # 0. Let (fi,..., f,) be a basis of V. As V is stable by
SO(n) and as the action of SO(n) on V' is continuous, we can find continuous functions
C1y...,¢ 2 SO(n) — C such that, for every z € SO(n) and every s € S, we have

f(z-s)=>""_, ¢i(x)fi(s). Define f : S — C by

Fs) = / o e

Then f = >, (fsom—l) c,-(x)dx) fi» SO f e V. Also, fis SO(n — 1)-invariant by

construction. Finally, as x - vy = v for every x € SO(n — 1), we have f(vy) = f(vg) # 0,
so f # 0.

By |V.8.1.2(h), restriction from R" to S is injective on .77, (R"), so %, (R") is irreducible
as a representation of SO(n) if and only H,, = J,(R");s C ¢(9) is irreducible as a

representation of SO(n). As SO(n) is compact, if H,, is not irreducible, then we can write
H,, =V @ V' with V and V' nonzero SO(n)-invariant subspaces of H,,. By (h), this

implies that dim(H,iO(")) > 2 and contradicts (d). So H,, is irreducible.
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(). Letd,, = dim 77, (R"™). We will show that d,,,.; > d,, for every m € Zx(, which implies
that d,,, # d,, if m # m/, hence that .,,(R") and /7, (R™) are not equivalent.

If m < 1, then, by V.8.1.1ka) and [V.8.1.2(e), we have d,,, = dim V,,,(R") = (ern’;‘*l). If
m > 2, then, by [V.8.1.1[(a) and [V.8.1.2(f), we have

dy, = dim V,,(R") — dim V,,,_»(R")

("))
- (ngni;)?(; E)i)! ((m : ”72(2(7 J S 1)
(2m+n—2)(m+n—3)!

ml(n — 2)!

In particular, dy = 1, d; =nand dy = 2n — 1, so dy > dy > dy. Let m > 2. Then
2m+1)+n—-2)m+1+n-3)! ©Cm+n-—2)(m+n-—3)!

i1 — = (m+ 1)l(n — 2)! B ml(n — 2)!
m+n—3)! (2m+n)(m+n—2
- (m!(n—z)? << 721(4—1 )_(2m+"_2>)
_ (mAn=3)!2m+n)(m+n—2)—(2m+n—2)(m+1)
ml(n —2)! m+1
>0

(becausem +n—2>m+ 1land 2m +n > 2m +n — 2).

(k). Let ay,...,a, € C, and consider f = (ajz1 + ... + apx,)™ € V,,(R™). Then
Af=m(m—1)(a?+ ... +a®)(ax1 + ... + apxy,)™ 2%, s0 f € H#,,(R") if and only if
ai+...+a2=0.Let

W = Span{(ayz, + ...+ apz,)™, a1,...,a, € C,a] + ...+ a2 = 0} C A, (R™).

As W # 0 and s7,(R™) is irreducible as a representation of SO(n), to show that
W = ,,(R"), it suffices to show that IV is invariant by SO(m). Let z € SO(n) and
ai,...,a, € C,andlet f = (a1x1 + ... + apx,)™. Write (by, ..., b,) = (ay,...,an)zT
(we see (a1, ...,a,) as a row vector). Then b3 + ... + b> = 0 because z € O(n), and
L.f = (bix1 4+ ...+ byx,)", s0 L, f € W.

O

Exercise V.8.1.5. We keep the notation of problems|V.8.1.11V.8.1.4, and we assume that n > 3.

(a). Show that the space ), -, 7%,(R")|s is dense in L*(S) and that the sum is direct.

(b). Show that the subspaces .7, (R")s and .7, (R")s of L?(S) are orthogonal (for the L?
inner form) if m # m/'.
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(c). Show that every irreducible unitary representation of SO(n) having a nonzero SO(n — 1)-
invariant vector is isomorphic to one of the .7, (R").

Solution.

(a). By|V.8.1.2(i), we have

an the right hand side is dense in 4(.S) (hence in L?(S)) by the Stone-Weierstrass theo-
rem. Also, we have seen in the proof of |V.8.1.2(h) that the spaces .7Z,,(R")|g are pairwise
orthogonal in L?(.9), so they are in direct sum.

(b). See (a).

(c). Let V be an irreducible unitary representation of SO(n) such that VS0~ —£ (. By
theorem|V.3.2.4] V is a subrepresentation of L*(S). But we have seen that

L*(S) = P #.(R")s

and that all these summands are irreducible, so V' is isomorphic to one of them.

O

Exercise V.8.1.6. We keep the notation of problems [V.8.1.THV.8.1.5] We say that a function
p € €(9) is zonal if it is left invariant by SO(n — 1). (As S = SO(n)/SO(n — 1), we can also
see the function ¢ as a bi-invariant function on SO(n).) Suppose that n > 3.

(a). Show that ¢ € %(S) is zonal if and only if there exists a continuous function
f:[—1,1] — C such that, for every z = (21,...,2,) € S, we have ¢(z) = f(z1).

(b). Show that there exists ¢ € R.( such that, for every zonal ¢ € %(S5), if we define
f:]=1,1] — Casin (a), then

z z)=rc 1 — 2)(n =32
/Sso< Jdp(z) /1f(t)(1 1) 9/2gy

(Hint : You can try using spherical coordinates, asinhttps://en.wikipedia.org/
wiki/N-sphere#Spherical_coordinates.)

(). Let m > 0. If t € S, let f; be the unique element of .7, (R™) such that, for every
g € 7, (R"), we have (g, f:) = g(t). (Note that we are using the inner form of problem

[V38.1.2)

Show that the function Z,,, = f,,s (Where vy = (1,0,...,0)) is a zonal function.
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(d). Let f,, : [=1,1] — C be the continuous function corresponding to Z,, as in question (a).
Show that f,, is a polynomial function of degree < m.

(e). If m # m/, show that f_ll Fon () frr () (1 — £2) (=324t = 0.
(f). Show that the degree of f,, is m.

1
(g) Show that x —— Zm(w0)

function is of this form.

Zm(x-vp) is a spherical function on SO(n), and that every spherical

The polynomials fm;(l) fm are called Gegenbauer polynomials (and also Legendre polynomials
if n = 3).

We will now give a different formula for the spherical functions.

(h). Consider the function h,, € V,,,(R") defined by h,,(z1,...,2,) = (21 + i22)™. Show that
hm € 6,(R™).

(i). Define a function v, : S — C by ¢,,(2) = fso(n_l) hm(k - z)dk. Show that 1), is left
invariant by SO(n — 1), that ¢, € J,(R")|s and that ¢, (vy) = 1.

(j)- Show that every spherical function on SO(n) is of the form z — 1), (x - vg), for a unique
m > 0.

We can calculate the integral defining v,,,, and we get

Um(cos @, za, ..., 2,) = —TnQ) / (cos ¢ + isin ¢ cos §)™ sin" > §d6.
0

Solution.

(a). If there exists a continuous function f : [—1, 1] — C such that p(z1,...,2,) = f(21), then
@ 1is clearly zonal.

Conversely, suppose that ¢ is zonal, and define f : [-1,1] — C by

(z21) = p(21,0,...,0,4/1 = 22).

Then f is clearly continuous. Let s = (z1,...,2,) € S. Then there exists z € SO(n — 1)
suchthat z - s = (21,0,...,0,4/1 — 27) (we are using the fact that SO(n — 1) acts transi-
tively on any sphere in R"™!). As ¢ is zonal, we have ¢(s) = f(21).

SReference.
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(b). We use spherical coordinates on R". That is, given (z1, ..., z,) € R", we write

Z1 = T COoS 1

Zy = T Sin @1 COS o

Zp_1 = TSin ¢ sin g, . .. sin ¢, _s cos ¢, _1

Zp = TSN @1 8in @y . .. siN @p,_o SN Dy, _1,

with r = \/ Z% + ...+ Z?L € Rzo, le, N (bn,Q € [O,ﬂ'] and ¢n71 S [O, 27'(') (¢1, R 7¢n71
are not uniquely determined in general, but they are if for example z1,..., z, are all
nonzero). If dz is Lebesgue measure on R", then we have

dz = r"1sin™ 2 ¢y sin™ > ¢o . . . Sin Gp_odrdoy . . . dy_1.
Let ¢ € %(S) be zonal. Up to a positive real constant, |, Scp s)du(s) is equal to

fB—{O} Y(2)dz, where B is the closed unit ball and ¢)(z) = ¢(||z]|7*2) for z # 0. This is

equal to the product of fol r"~Ldr (another positive real constant) and of

T T 2T
/ . / / ©(cos ¢1, Sin @1 €S o, ..., sin gy ...sin P, _osin P, 1)
0 o Jo

sin"_2 QZ51 Sil’ln_3 gbg ...sin ¢n_2d¢1 ce dd)n_l.

As ¢ is zonal, the big integral above is equal to

™ s 2w
/ . / / f(cos ¢1)sin™ 2 ¢y sin™ > ¢y . .. 5in Ppy_oddy . . . dpp_1.
0 o Jo

/ / / 0" gy .. sin ¢y _ody . .. ddy

(which has to be positive because it calculates the integral of the constant function 1 up to
a positive constant), this is equal to

Up to the constant

/ﬂ— f(COS ¢1) sin"_2 ¢1d¢1.
0

Finally, we use the change of variable ¢t = cos ¢;. We have dr = — sin ¢1d¢, so

/ f(cos ¢1)sin™ 2 ¢p1dep; = / f(t) V1—¢" )dt

/ f _ (n— 3/2dt
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Let y € SO(n — 1). By definition of f,,, we have, for every g € 77, (R"),

(9, Ly foo) = (Ly-19, fuo) = Lyg(vo) = g(y~'v0) = g(vo) = (9, fuo)

(because SO(n — 1) is the stabilizer of vy in SO(n)). So f,, — L, f,, is orthogonal to every
element of .77, (R™), which implies that f,, — L, f,, = 0, i.e. that f,, = L, f,,. So Z,, is
zonal.

The function Z,,, is the restriction of f,,, which is an element of .77, (R™), and in particular
a polynomial function of degree m. As f,, is defined by f,,,(t) = Z,,(¢,0,...,0,v1 —t2),
we can write

() =) ext"(1 = 82)m 7072,
k=0

with ¢y, ..., ¢, € C. But we also have f,,(t) = Z,,(¢,0,...,0, —v/1 —t?), s0

Z thk(l . 252)(m—k)/2 _ Z(—l)m_kcktk(l _ t2)(m_k)/2.
k=0 k=0

This forces ¢, to be 0 unless m — k is even, and so f(¢) is indeed polynomial of degree
< mint.

The function s — Z,,,(s)Z,(s) is zonal, so we have

1
/SZm(S)Zm/(S)dM(S) = C/1 fm(t)fm/(t)(l — t2)(n_3)/2dt
by (b). By[V.8.1.5(b), the left hand side is 0.

For every m > 0, the function Z,, is nonzero by definition (and because there ex-
ist functions f € ,(R") such that g(vg) # 0, see the proof of [V.8.1.4(h)), so

fm # 0 by h). By (e), the functions (f,,)m>0 form an orthogonal family in
L2([~1,1], (1 — t3)("=3)/24t), so they also form a linearly independent family. Fix m > 0.
The space P, of polynomials of degree < m is of dimension m + 1 and contains the lin-
early independent family (fo, ..., fm), so this family is a basis of P,,. But fy,..., fm_1
are of degree < m — 1, so f,, has to be of degree m.

By corollary |V.7.2} if Z is the set of spherical functions on SO(n), then we have

1X(S) = V.

peZ

and ¢ generates VS On=1), So, using problem V.8.1.5L we see that the spherical functions
are exactly the generators of the spaces (7,(R")5)5° 1) that send v to 1.

For every m > 0, the function Z,, € J#,(R")s is invariant by SO(n — 3), so it gen-
erates the space of SO(n — 1)-invariant vectors in 7%, (R")s and has a multiple which
is a spherical functions. Because a spherical function must send v, to 1, this multiple is

T — mZm(x - ).
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(h). This follows from[V.8.1.4(k). It is also easy to prove it directly.

(1). This is exactly the same construction as in the proof of [V.8.1.4(h) (with V' = %m(R”)| 5).
The same proof shows that v, € J2,(R")|g, that 1y, is left invariant by SO(n — 1) and

that ¢m(UO) = fm(UO) =1

(j). Same idea as in the proof of (g) : we have one spherical function in each Z,,(R") g, and
it is the unique SO(n — 1)-invariant element of this space that sends vy to 1. By (i), the
function v, satisfies all the required properties.

0

V.8.2 The Gelfand pair (G,,,6, x&,,_,)

The goal of this series of exercises, which were extracted from sections 5.1, 6.1 and 6.2 of [7], is
to study the Gelfand pair (&, 5, x &,,_,). We will embed &, X &,,_, in &,, in the following
way: Ifoc e G, and 7S,,_,,theno x 7 € G, is given by

(o % 7)(i) = o(i) ifl1<i<r
Sl Tt =r)+r ifr+1<i<n.

If E is a finite set, we will denote by L(F) the space of functions f : F — C, with the L?
inner product given by (f, f') = > . f(x)f'(x).

Exercise V.8.2.1. In this problem, we fix a finite group G acting transitively (on the left) on a set
E. Letxg € E, and let K C G be the stabilizer of x.

(a). Show that the following conditions are equivalent :
(i) Forall z,y € E, there exists g € G such that g - (x,y) = (y, z).
(ii) Forevery g € G, we have ¢! € KgK.

(b). If the conditions of (a) are satisfied, show that (G, K) is a Gelfand pair.

We now assume that there is a metric d : E x E — Ry, and that the group G
acts by isometries. Suppose that the action of G on F is distance-transitive, that is : for
all (z,y),(2',y) € E x E such that d(z,y) = d(2,1), there exists g € G such that

g-(z,y) = («",y).
(c). Show that (G, K) is a Gelfand pair.
(d). Show that the orbits of K on E are the spheres {x € E|d(x,x¢) = j}, for j € Rxo.

(e). Let Q. be the set of cardinality r subsets of {1,...,n}. Show that the formula
d(A, B) = r — |AN B| defines a metric on 2,.

(f). Show that (&,,,S, x &,,_,) is a Gelfand pair.
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Solution.

(a).

(b).
(c).

().

(e).

(®).

Suppose that (i) holds. Let ¢ € (. By (i), there exists h &€ G such that
h-(K,gK) = (¢9K, K). Then the equality of the first entries gives g~ 'h € K, and the
equality of the second entries gives g 'hg € g 'K, hence g € (¢7'h) g 'K C K¢ 'K.

Suppose that (ii) holds. Let g,h € G. By (i), we can find k,k; € K such that
g 'h = k;h~1gks, and then

(9K, hK) =g (K,g7'hK) = g - (K,kih"'gK) = gki* - (K, h ™' gK)
— ghT'h L (WK, gK).

This follows from proposition taking 6 = idg.

Let z,y € X. Then d(y,z) = d(z,y), so there exists g € G such that g - (z,y) = (y, ).
In other words, condition (i) of (a) is satisfied, so condition (ii) is also satisfied. By (b),
this implies that (G, K) is a Gelfand pair.

Write S; = {z € X|d(z,z9) = j}, for j € Z>o. As G acts by isometries on X and K
fixes xo, the sets .S; are stable by K. To show that they are the orbits of & on X, we need
to show that K acts transitively on each nonempty .S;. So let j > 0, and suppose that we
have z,y € S;. Then d(zo,z) = d(zo,y) = j, so, by the hypothesis, there exists g € G
such that g - (zo, x) = (x¢, y). The fact that g - ©q = ¢ implies that g € K, so x and y are
in the same K -orbit.

We clearly have d(A, B) = d(B,A) forall A,B € Q,. Let A,B,C € ,. First, if
d(A,B) = 0,then [ANB| =r =|A| = |B|,so ANB = Aand AN B = B, and so
A = B. Let’s prove the triangle inequality. We have

IANB|+|BNC| = |[(ANB)U(BNCO)|+|ANBNC| < |B|+|ANC| =r+|ANC|,

SO
dA,C)=r—|ANC|<2r—|AnB|—|BNC|=d(A,B)+d(B,C).

We make S,, act by 2. by 0 - A = o(A). This action is transitive, and &, x S,,_, is the
stabilizer of {1,...,7}. Also, it is clear that &,, acts by isometries on €2,.. So, by (c), we
just need to check that the action is distance-transitive. Let A, B, A’, B’ € 2, such that
d(A,B) = d(A',B'), ie. |[AN B| = |A' N B'|. Choose a bijection ¢ : A — A’ that
sends the subset A N B of A onto A’ N B’; this is possible because |A N B| = |A'N B'|.
Choose a bijection 1 : B — (AN B) = B’ — (A’ N B’); this is also possible, because
|B—(ANB)|=r—|ANB| = |B'—(A'NB’)|. Putting ¢ and 9 together gives a bijection
AUB 5 A’U B’ that sends A to A’ and B to B’, and any extension of this to an element
o of &, will satisfy o - (A4, B) = (4', B).

0
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Exercise V.8.2.2. Let ({2, d) be the finite metric space of question [V.8.2.1(e). Let N be the
diameter of 2, that is,
N =max{d(A, B), A, B € Q,}.

Fori € {0,..., N}, we define a linear operator A; : L(€2,.) — L(,) by

AfA) = S B,

BeQ,., d(A,B)=i

for every f € L(,). We also denote by A, the subalgebra of End(L(€2,)) generated by
Ao, ..., An.

(a). Show that N = min(r,n — r).

(b). Show that there exist integers by, ..., by, co,C1,...,cy such that, for every ¢ and all
A, B € Q, such that d(A, B) = i, we have

HC € Q.|d(A,C)=1and d(B,C) =i+ 1} =1
and
{C € Q. |d(A,C) =1and d(B,C) =i — 1} = ¢;.
(Of course, ¢y = 0 and ¢; = 1.)|§]
(c). Show that cy,...,cy > 0.
(d). Ifi € {1,..., N}, show that

AAL =010+ (bo — b — i) A + i1y,

with the convention that Ay, = 0.

(e). Show that there exist polynomials pg,...,py € R[t] such that deg(p;) = ¢ and

(f). Show that A is the subalgebra of End(L(£2,)) generated by A;.
(g). Show that Ay is spanned as a C-vector space by A, ..., Ay.
(h). Show that dimc Ay = N + 1.

(i). Show that the endormorphism A; of L(2,) is self-adjoint.

(j)- Show that we have a decomposition into pairwise orthogonal subspaces L(£2,) = @i]\io V;
where V;, ..., Vv are the eigenspaces of A;. (Hint : problem[[1.5.2])

Solution.

®In other words, the graph with set of vertices €2, and an edge between any A, B € Q, such that d(A, B) = 1 is
distance-regular, see definition 5.1.1 of [7] .
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Note that d(A, B) < r for all A, B € , by definition of d, so N < r. Also, for all
A, B € (),, we have

d(A,B)=r—|AnB|=r—(|A|+|B|—|AUB|) =|AUB|—r<n-—r,

soN<n-—r,and N < min(r,n —r).

Now take A = {1,...,r} and B = {n —r + 1,...,n}. Then A,B € (,, and
|AN B| = max(0,2r —n). So N > d(A, B) = r —max(0,2r —n) = min(r,n — r).

Fixi € {0,...,N}. Forall A, B € Q, such that d(A, B) =1, let
X;(A,B) ={C € Q,|d(A,C)=1and d(B,C) =i+ 1}
and
Yi(A,B) = {C € Q|d(A,C) = Land d(B,C) = i — 1}

If o € &, is such that o(A,B) = (A, B’), then o induces bijections
Xi(A,B) 5 X;(A', B")and Y;(A, B) = Y;(A4’, B'), because &, acts on (2, by isometries.
So the statement follows from the fact that the action of &,, on 2, is distance-transitive,
which we showed in the proof of [V.8.2.1}f).

Leti € {2,...,N}. Take A= {1,...,r}and B = {i + 1,i+ 2,...,i + r}. (Note that
1+1r < N+ r < nby(a).) We need to show that there exists at least one C' € €2, such
that d(A,C) =1(G.e. |[ANC|=r—1andd(B,C)=i—1Ge. |[BNC|=r—i+1).
This holds for C = {2,3,...,r + 1}.

Let f € L(€2,) and A € ©,. Then we have

AiAf(A) = Z Z f(C).

BEQ, d(A,B)=i C€Q, d(B,C)=1

Let C' € Q,. If there exists B € 2, such that d(A, B) = i and d(B, C) = 1, then we must
have i — 1 < d(A,C) < i+ 1 by the triangle inequality.

Suppose that d(A,C') =i + 1. Then
{B€Q.|d(A,B) =iand d(B,C) =1} =Y;;1(C, A)
(with the notation of the proof of (b)). Suppose that d(A, C') =i — 1. Then
{B € Qd(A,B)=iand d(B,C) =1} = X, 1(C, A).
Finally, suppose that d(A, C') = i. Consider the set

{BeQ|d(A,B)=iand d(B,C) =1} U{B € Q,|d(A,B) =i+ land d(B,C) =1}
U{B € Q|d(A,B)=i—1andd(B,C) = 1}.
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(e).

(®).

().

(h).
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The union is clearly disjoint. We are trying to calculate the cardinality of the first set, the
second set is X;(C, A) and the third set is Y;(C, A). Also, by the triangle inequality, the
union is simply

{B € Q.|d(B,C) =1} = Xo(C,C).

So we get
{B e Q|d(A B) =iand d(B,C) = 1} + b; + ¢; = b.

Finally, we see that

Aibif(A)=cin Y. fObr > fO)+bo—bi—c) Y. ()

C, d(A,C)=i+1 C, d(A,C)=i—1 C, d(A,0)=i
= i1 D1 f(A) + b1 A1 f(A) + (b — bi — i) A f(A).

We prove the statement by induction on i. It is obvious ¢ = 0 (note that Ay = id, so we
take po = 1) and for i = 1 (take p;(¢) = t). Suppose the result known up to some i > 1,
and let’s prove it for © + 1. By (c) and (d), we have

Aipr = i (AAT — b Ay — (by — by — ) Ay,
$0 Ajr1 = pir1(Aq), with

pir1(t) = i (tpi(t) — pima(t) — (bo — by — ci)pi(t)).

It is also clear that deg(p;1(t)) =i + 1.

Let A be the subalgebra of End(L(€2,)) generated by A;. Then A’, C A by definition of
Ay. By (e), we have A, ..., Ay € A}, and so Ay C A

We show by induction on i > 0 that A} € Span(Ag, Ay, ..., A;). (The conclusion will
follow by (f).) The assertion is clear for = 0 and + = 1. Suppose that holds up to ¢ > 1,
and let’s prove it for 7 + 1. By (e), there exist a nonnezero ¢ € R and ¢y, ..., c; € R such
that Ay = aAT + Z;:o a; ). As A € Span(A, ..., A,) for every j € {0,...,i}
by the induction, we deduce that AT € Span(Ay, ..., Ajq).

We know that Ay = Span(Ay,...,Ay) by (g), so we must show that the family
(A, ....Ay) is linearly independent. Let ¢y,...,cxy € C. If A;B € Q,, and if we
denote by 4 the indicator function of { A}, then A;04(B) # 0 only if d(A, B) = i, and
we have

N
Z CZAl(SA(B) = Cd(A,B)-
=0

As there are couples (A, B) € Q2 such that d(A, B) = i for every i € {0,..., N}, we
conclude that, if Zfio c¢i\; = 0,thency = ... =cy = 0.
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(i). Let f,g € L(Q2,). Then

A,BEQ,, d(A,B)=1

=Y (Af)(B)g(B)

BeQ),

= (ALf,9).

(G). As A, is self-adjoint, the spectral theorem says that it is diagonalizable and that its
eigenspaces are pairwise orthogonal. So the only thing we have to show is that there are
N + 1 eigenspaces. By [IL.5.2(b), we know that the subalgebra of End(L(£2,)) generated
by Ay, i.e. Ay (see (f)), is reduced. By c), we know that the number of eigenspaces
of Ay, ie. of Ay,is dim(Ay), and by (h), we know that dim(A,) = N + 1.

O

Exercise V.8.2.3. We use the notation of problem Note that we have an action of
G = &,, on (,, and that the stabilizer of {1,...,r}is K := &, x &,,_,.. Let M"™"" = L(,),
seen as a representation of G,, via the quasi-regular representation (thatis, if g € G, f € M~ "™"
and A € Q,, we have (g- f)(A4) = f(g 1 A)).

We define d : M"™~"" — M"r+HLr=Land d* : ML=l s M by
A= Y f(B)
BeQ,|ACB

and

(@f(B)= > f(4

AeQ,|ACB

(Ifr =0, we take d = 0 and d* = 0.)

We also denote by A the operator A; of problem [V.8.2.2} that is, for every f € M" ™", the
function Af € M™"" is defined by

AN =3 ).

BeQ,|d(A,B)=1

E]Note that the functions d, d* and A are defined for every r; we will not indicate 7 in the notation,
it should be clear from the context.

"This is closely related to the discrete Laplace operator. In fact, the most common definition of the discrete
Laplace operator on M"~"" would be %A —id.
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Finally, if « € C and i € Z>,, we write

(a)j=ala+1)...(a+i—-1).

(n—k+1)k

For example, we have (1),, = nland (}) = "=

(a).
(b).
(c).
(d).

(e).

Show that A — {1,...,n}— Ainduces a G-equivariant isomorphism M""~" = M"="",
Show that d and A are G-equivariant.

Show that d* is the adjoint of d.

If f € M™"", show that

dd"f =Af+(n—r)f and d'df =Af+rf.
Let fe M™ "™ and 1 < p < g <n — r. Show that

d(d*)f = (d*)df + q(n — 2r — q+ 1)(d*)7' f.
If moreover df = 0, show that

d(d*)'f = (q=p+1)p(n —2r — g+ 1)p(d")"" .

Suppose that 0 < r < n/2. If r > 0, set S*"" = Ker(d : M"™"" — M +br=1) if r = 0,
set S = M"™"", This is a G-stable subspace of M"~"".

(a).

(b).

(0).
(d).
(e).

(®).
(2)-
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If0 <m <mnand 0 < r < min(m,n —m), show that (d*)™" : S*"" — M""™"™ ig
injective. (Hint : calculate ||(d*)™ " f||2).

Under the hypothesis of (f), show that (d*)™~"(S™ ") is contained in the eigenspace of A
for the eigenvalue m(n —m) —r(n —r + 1).

Show that the orthogonal of S™~"™™ in M"~™™ is d*(M"~™Tbm=1) if 1 <m < n/2.
Show that S™~"" # 0 for every r such that 0 < r < n/2.

If 0 < m < n, show that we have

min(m,n—m)

Moo @ (d*)m—r<5n—r,r)’

r=0
where the summands are pairwise orthogonal and are exactly the eigenspaces of A.

Show that dim¢(S™"") = (*) — (,",) if r > 0.

r

Show that the representations ™", 0 < r < n/2, are irreducible and pairwise inequiva-
lent. (Hint : how many irreducible constituents does M~ have ?)
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Solution.

(a). The map A — {1,...,n} — Ais a bijection from €, to 2,,_,, and it commutes with the
action of GG on these two sets. The conclusion follows immediately.

(b). Let fe M™ ™" ando € G,,. If A € ),_4, then

(Lo f)(A) = > fle™(B))

BeQ,, BDA

= ) [B)
B'eQ., B'Do~1(A)

= (df)(07(4))

= Lo (df)(A).

If A€ (,,then

AL A= > flo7'(B)

BeQ,, d(A,B)=1

= > f(B")
B'€Q,, d(o—1(A),B")=1

= Af(o™H(A))

= La(Af)(A)

(c). Let f € M™ ™" and g € M" "t1"=1 Then

(df.g) = > df(A)g(A)

AEQ_1

= > f(B)g(A)

AEQT‘—17B€QT7 ACB

= Y f(B)d'g(B).

BeQ,
(d). Let f € M™ ™" and A € Q2,.. Then

dd*f(A)= > d'f(B)

BEQ,11,BDA

= > £(C)

BEQ, 11, CEQ, CCBDA

Let C' € (),. If there exists B € €)1 suchthat C C B D A, thend(A,C) < 1.IfC = A,
then
{Be€Qu|CCBDA={Be€Q|AC B} =n—r}
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If d(A, C) = 1, then the only element of €2, ; that contains both A and C'is AUC' Finally,
we get

dd'f(A) = (n—-n)fA)+ > fO)

CeQ,, d(A,C)=1

= (n—=r)f(A) + Af(A).

Similarly, we have

ddf(A)= > df(B)

BGQT‘—I,BCA

= > f(0).

ceQ,, BeQ,_1,CODBCA

Let C' € (,. If there exists B € €,_; suchthat C D B C A, thend(A,C) < 1.If A= C,
then
H{B € Q,_1|C DB C A} =r.

If d(A,C') = 1, then the only B € 2, that is contained in both Aand C'is B = AN C.
So we get

ddf(A)=rf(A+ > f(C)

CeQ,, d(A,C)=1

=rf(A) +Af(A).

(e). We show the first identity by induction on q. If ¢ = 1, then, by (d), we have

274

dd'f = Af+(n—r)f = Af +rf+(n—2r)f =d"df +qn—2r —q+1)(d)"'f

for every f € M"™ "". Now suppose the identity known for ¢ € {1,...,n —r — 1}, every
s and every element of M"~%° and let’s show it for ¢ + 1. If f € M"™™"", we have

d(d*) ™ f = d(d*)*(d" )
= (d")d(d" f) + q(n — 2(r +1) — ¢+ 1)(d") " (d" )
(by the induction hypothesis for d* f € M™ "1+
= (d)(d"df + (n = 2r)f) +q(n —2r —q—1)(d")*f
(by the case ¢ = 1)
= (@) df + (n —2r + q(n — 2r —q — 1))(d*)7f
= (d)"df + (g + 1) (n—2r — (g + 1) + 1)(d")f.

Now let’s prove the second identity by induction on p. If p = 1, it just reduce to the first
identity (using that df = 0). Suppose that we have proved it for some p € {1,...,q — 1}



(®).

().

(h).
).
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(and all s and all f € M"™** such that df = 0), and let’s prove it for p+ 1. Let f € M"™™""
such that df = 0. Then we have

T (d) f = d(dP(d")f)
=d((g—p+1)p(n—2r —q+1),(d")""f)
=(g=p+1)p(n—2r —q+1),(qg—p)(n—2r —(¢g—p) +1)(d)"7'f
(using the first identity and the fact that df = 0)
=(q—p)pr1(n—2r —q+ 1)p+l<d*)q_p_lf'

Let f € S™™"", f 2 0. Using (c) and then the second identity of (e), we see that

()™ f, ()™ f) = (d™ " (d)" " f, f)
= (1)m—r(n —2r — (m - T) + 1)m—7“<f7 f>
40,

so (d*)™ " f #0.

Let f € S ", Using the second formula of (d) to calculate A on M™ "™ and the second
formula of (e) (with p = 1), we get

A((@)" 7 f)y = d(d)" " f = (n = m)(d )" f
=m—-r+1)n=—2r—(m—-r+1)+ 1)) ""f—n—-—m)(d)""f
=(mn—-—m)—r(n—r+1))(d)""f.

This is an immediate consequence of the definition of S™~ ™™ and of (c).

The space S™ " is the kemel of d : M*»™ — ML=l and

dim(Mm= =) = (")) < (7) dim(M™7"") because r < n/2, so d cannot be injective.

The subspaces (d*)™"(S™ "), for 0 < r < min(m, n —m), are contained in eigenspaces
of A for different eigenvalues by (g). They are all nonzero by (f) and (i). We know
that A is seld-adjoint by [V.8.2.2(i), so these spaces are pairwise orthogonal. Also, we
know that A € End(M"~™™) has exactly 1 + min(m,n — m) eigenvalues by [V.8.2.2{a)
and [V.8.2.2(j), so these eigenvalues have to be the numbers m(n — m) — r(n — r + 1),
0 <r < min(m,n — m). It remains to show that

min(m,n—m)

L i < I (0 K ]

r=0

We prove this by induction on m. It’s obvious if m = 0. Suppose that we have the result
form — 1, withn/2 > m > 1, and let’s prove it for m. By (h), we have

Mrmem — Snfm,m o d*<Mn7m+1,m71>.
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(k).

.

276

By the induction hypothesis, we have

m—1

Mn—m+1,m—1 _ @(d*)m—l—r(sn—r,r»

r=0
The result for m follows immediately from these two facts.

Finally, we treat the case m > n/2. Let m’ = n — m. We have seen that

ml

Mn—m’,m’ _ @(d*)m’—r(sn—r,r)'

r=0

By (f), this implies that dim(M™~™ m/) = Z;":/O dim(S™""). We have also seen that

m/

Mo @(d*)m—r(sn—r,r)7

r=0

and, again by (f), this implies that dim(M"~""™) > Z;n:/o dim(S""") = dim(M™ "™,
But dim (M "™™) = dim(M"™ ™™ (by (a)), so the inequality above is an equality, and

m/

M = EH(d)T (ST,

r=0

By (j) and (f), the map d* : M™~"tLr=1 5 M"="" i injective. By (h), this implies that

dim(S™"") = dim(M™ ") — dim(M™ L) = (”) - ( " )

T r—1

Let m = |n/2]. As the maps d and d* are &,,-equivariant (see (b) for d, and d* is the
adjoint of d by (c) so it also equivariant), the subspace S™"" C M""" is G,,-stable for
every r < n/2, and the decomposition of (j) is a decomposition into &,,-subspaces. Next,
we know that (&,,,5,, X G,,_,,) is a Gelfand pair by [V.8.2.1(f), so the corresponding
quasi-regular representation, which is M" """, decomposes into a direct sum of distinct
irreducible representations by theorem By corollary the number of irre-
ducible summands in M/"~"™™ is the number of spherical functions for the Gelfand pair,
which is the dimension of the space of bi-invariant functions on &,, (because spherical
functions form a basis for these bi-invariants functions by (iii) of the same corollary), i.e.
the cardinality of (&,, x &,,_,,) \ &, /(6&,, x &,,_,,), and this is also equal to the num-
ber of orbits of &,, X &,,_,, on §2,,,. But we have seen in [V.8.2.1((d) that the orbits of
S X 6,y on €, are the spheres with center Ay := {1,...,m}. The possible radii for
these spheres are 0, 1, ..., min(m,n —m) = m by 2(a), and it is easy to see that all the
spheres are nonempty (we already used this in the proof of [V.8.2.2(f)). Finally, we get
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that the number of irreducible constituents of M"™~™™ is m + 1. As the decomposition
of (j) is a decomposition of M"™~ "™ int m + 1 nonzero subrepresentations, it must be
its decomposition into irreducible constituents, and so we get the conclusion. (Note that
(d*)m™=7(S™ ") is equivalent to S™~"" as a representation of &,, by (f).)

O
Exercise V.8.2.4. We keep the notation of problem |[V.8.2.3 If m,h € {0,...,n}, A € Q,,

and max (0, h —m) < ¢ < min(n — m, h), we denote by oy;_,(A) € L(€2;,) the characteristic
function of the set {C' € Q,||ANC| = h — (}. We also write 0_1 511(A) = 0. We fix A € €2,.

(a). If h = m, show that, for every ¢ € {0, ..., min(m,n —m)}, the function oy ,,_¢(A) is the
characteristic function of the sphere {C' € 2,,|d(A, C) = (}.

(b). Show that
d(O’g,h,g(A)) = (n —m—/ + 1)0'571’h,g(14) + (m —h + 12 + 1)0’57h,g,1(A>.

(¢). If £ < hand max(0, k —m) < i < min(k,n — m), show that

{=max(i,h—m)

From now on, we take A = {1,...,m}.

(@). If 0 < h < min(m,n — m), show that the space of &,, x &,,_,,-invariant vectors in
Mm=h" is spanned by the functions o 4,_¢(A), for 0 < ¢ < h.

(b). If0 < h < min(m, n—m), show that the space of &,,, x &,,_,,-invariant vectors in S~ "
is spanned by the function

Z (n—m—h+ 1)}%@0'(,;1_((14).

h
— (—m)h—e

(c). For0 < h < min(m,n—m), let o, € M™ ™™ be the unique spherical function contained
in the summand (d*)™~"(S"~""). Show that

min(m,n—m)

®n = Z @(na m, ha g)O'g’m,g(A),

=0
where
min(¢,h)
1 m—0\ [\ (n—m—h+1),
hil) = (—1)" :
90(7% m, n; ) ( ) (nzm) ' Z (h — @> (z) (—m)h—i
i=max(0,—m+h)
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(d).

Fix h such that 0 < h < min(m,n — m). Show that the coefficient of oy ,,,—1(A) in
h(n —h+1)
m(n —m)

calculations.)

ppis 1 — . (Remark : there is a way to solve this question with minimal

Solution.

(a).

(b).

(c).

278

The function oy,,,—¢(A) is the characteristic function of the set {C' € ,,||[ANC| = m—(}.
Asd(A,C) =m — |ANC|, this set is exactly the sphere of radius ¢ with center A.

Let B € €2;,_1. We have
d(oeno(A))B) = > ouni(A)(C)

ceQy, COB
_ {C eC o> Band|ANC| =h—1}].

If there exists at least one C' € €, such that C' O B and |ANC| = h—/, then ANC' D ANB
and these two sets differ by at most one element, so |[ANB| € {h—¢,h —{ —1}.

Suppose that |[A N B| = h — {. Then, for every C' € ), such that C' O B and
|IANC| = h — ¢, we must have ANC = AN B. We get each such C' by adding an
element of {1,...,n} — (AU B) to B, so the number of possibilities for C' is

n—|AUB|=n—(JA|+|B|—|ANnB|)=n—(m+h—1—(h—0))=n—m—{+1.
Suppose that |A N B| = h — ¢ + 1. Then, for every C' € €, such that C O B and

|ANC| = h — ¢, the unique element of C' — B must be the element of ANC — AN B. So
the number of possibilities for C' is

IA—ANB|l=m—h+(—1.

Finally, we get
d(O‘&h_g(A))(B) = (n —m —¥{ — 1)0‘g_17h_g(B) + (m —h+/4— 1)O'g,h_g_1(B),
as desired.

For every i and every D € ();, denote by 0p € L(£2;) the characteristic function of {D}.
Let S be the set {C' € Qi||ANC| =k —i}. Then 0, ;_;(A) is the characteristic function
of S. If C' € S, then, for every D € ();,, we have

()60 (D) = > 1.
CCD1C...CDp g1 CDp—,=D, D;€Qpy;
IfC gZ D, the set {O CcCDyC...CDy_j_1 C Dy = D, D; € Qk-i—z} 18 empty; if
C' C D, this set has (h — k)! elements. So we see that

(d)"*oc = (h—k)! Y op.

CCDeQy,



(d).

(e).
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So, if D € ), the coefficient of §, in ﬁ(d*)h_kai,k,i(/l) is the cardinality of the set

{C € S|C C D}. Write |AN D| = h — ¢, with 0 < ¢ < h; note that we have
h—0=|AND|=|Al+|D|—|AUD|>m+h—|AUD|

and h < |AU D| <n,soh —m < {¢<n—m,and all the nonnegative ¢ in this range can
occur. We get a C' € S such that C' C D by removing (h — ¢) — (k — ¢) elements from
AN D and ¢ — i elements from D — (AN D). This is only possible if h — ¢ — (kK — 1) > 0
and 0 < ¢ — i, and we have ((h_ él;:sz—i)) (,°,) different possible choices. Putting all this
together, we see that, if [AND| = h—/, then the coefficient of dp in ﬁ(d*)h_kai,k,i(fl)
is ("= (%) if max(h —m, i) < ¢ < min(n —m, h— k+i) and 0 otherwise. This gives the
result.

The statement is equivalent to the fact that the orbits &,, x &,,_,, in §2, are the
S = {C € W||ANC| = h—1(}, for 0 < ¢ < h. Let’s prove this fact. As
S x 6, fixes A, the sets S, are invariant by &,, x &,,_,,, so we just need to show
that S, x &,,_,, acts transitively on these sets. Fix ¢ € {0,...,h} and take C,C" € S,.
As |[ANC|=|ANC’|, we can find an element 0 € S,, that sends ANC to ANC". Also,
we have [{m+1,....n}NC|=|{m+1,...,n} NC’'| =4, so we can find an element
T € 8, thatsends {m+1,...,n}NCto{m+1,...,n}NC". Thenox71 € S,,, X &,,_p,
sends C' and C'.

Let f € S" " be a &,, X &,_,,-invariant vector. By (d), the invariance condition is
equivalent to the fact that we can write [ = Z?:O agopp—o(A), with ag, . .., a, € C. The
fact that f € S"~"" means that df = 0. Using (b), we can rewrite this condition as

T
M-

ag((n —m—/ + 1)O'g_17h_g(A) + (m —h + 14 + 1)0’[7}1_1_3(14))

70
|
—_ O

h

(7% (?”L —m — g)O'&h,ngl(A) + Z ag(m —h + f + 1)0'5,;1,1,5(14).
/=0

T
o

As the functions o4 ,—1_¢(A), 0 < ¢ < h — 1, are linearly independent (because they have
disjoint supports), this equality if equivalent to the fact that

n—m—¥{
—m4+h—0—1’

Ay = Qu41

forevery ¢ € {0,...,h — 1}. A straightforward descending induction on ¢ shows that this
is equivalent to
(n—m—h+1)h_g

(=m)n—e

Ay = ap,

for every ¢ € {0, ..., h}. This implies the desired result.
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(f). By (e) (and the G,,-equivariance of d*), the function ¢}, is a multiple of

. 1 xt—h L m—m—h+1)n_
Y= m(d ) <Z ' Ui,hi(A)) :

1=0

We calculate v using the formula of (c). We get

h min(m—h+i,n—m)
¢:Z (n—m— h+ 1)n- Z (f) (Tz:f)aﬂm—f("q)

M) (=i

mm(m,n m) min(4,h)

R <><>

(=0 t=max(0,{—m-+h

This is almost the formula we want, except for the constant (—1)" ) at the beginning.

Z
The spherical function ), is normalized by the fact that ¢ (Ap)
Yp = mw. So to finish the proof, we just need to show that (A
Note that o, ¢(A)(Ag) = O unless £ = 0 and 0 ,,(A)(Ay) = 1, s0

1, so we have

o) = (=1 ().

(m\(n—m—h+1),

v = ()=,
_ m! (n—m)!  (=1)"(m — h)!
hl(m — h)! (n —m — h)! m!

(g). Let’s try and ignore questions (c), (d), (e) and ().

The function ¢, is spherical, so it is constant on the &,,, X &,,_,,-orbits in €2,,,, which are
the spheres with center A by[V.8.2.1(d). By (a) and[V.8.2.2|(a), this means that ¢y, is a linear
combination of the functions oy,,,—¢(A), for 0 < ¢ < min(m,n —m). Also, by[V.8.2.3(g),
the function ¢y, is an eigenvector of A with eigenvalue m(n — m) — h(n — h + 1). Let
S ={B € Qu|d(A, B) = 1}. Then 0y ,,_1(A) is the characteristic function of S, and we
have seen that ), is constant on .S, the coefficient of oy ,,,_1(A) in @y, is |—é| Y pes Pn(B).
On the other hand, ) _ 5 @1 (B) is equal to Ay, (A) by definition of A, and this is equal to
(m(n—m)—h(n—h+1))p,(A). Moreover, as ¢, is spherical, we must have ¢, (A) = 1.
Finally, the coefficient of o ,,—1(A) in ¢y, is \SI( m(n —m) — h(n — h —1)). To finish the
calculation, we just need to show that |S| = m(n — m). This just follows from the fact
that we get every element B of S by removing one element of A (m choices) and adding
an element of {1,...,n} — A (n — m choices).

O
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V.8.3 Problem : the Satake isomorphism

This probolem was extracted from Cartier’s survey in Corvalley ([6]]), especially chapter IV, and
from unpublished notes of Kottwitz.

We will use the following conventions :

- If GG is a locally compact group, we denote by i a left Haar measure on GG (sometimes
normalized in a particular way). We then denote the corresponding L? spaces by L?(G).

- If G is a locally compact group and H C G is a closed subgroup, then we denote by jiq/n
(resp. pme) the left (resp. right) G-invariant measure on GG /H (resp. H\G) induced by
the measures (¢ and 7. See proposition To construct the measure g, we need
[ to be right invariant.

To make things a bit more concrete, I wrote this problem for GL3(Q,). Everything generalizes
to GL,,(Q,) (for any n > 1), and in fact most questions have a solution that applies to GL,,(Q,)
with minimal changes.

Let n = 3. We write G = GL3(Q,) and K = GL3(Z,). We denote by B the subgroup of
upper triangular matrices in GG, by 7' the group of diagonal matrices in G' and by N the group
of unipotent upper triangular matrices in GG (i.e. upper triangular matrices with all their diagonal
entries equal to 1). We write X = Z3 and

X+ = {(Alv/\27/\3> S Z?)’)\l Z AQ Z /\3}
If A = (A1, A2, A3) € X, we set

We fix left Haar measures uq, pg, pr, iy and pux on G, B, T, N and K; if there is no risk
of confusion, we will just write dx instead of dug(z) etc in the integrals. We normalize all the
Haar measures by demanding that vol(H N K) = 1 for H € {G, B,T, N, K }. In this problem
only, we will write %.(X) for the space of locally constant functions f : X — C with compact
support. (Where “locally constant” means exactly what you would image : f : X — Cis locally
constant if for every € X, there exists a neighborhood U of = in X such that f|;; is constant.
Note that this implies that f is continuous.)

Let 7 = 6.(K\G/K) and ¢ = %.(T/(T N K)), with the algebra structure given by the
convolution product. (It is very easy to check that the convolution product respects the “locally
constant” condition.) The goal of this problem is to understand the structure of the algebra .77.

(1) Define § : B — R. by

aq * * n
510 ay x| = H Jag 72
0 0 ag i=1
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Show that 6! is the modular function of B, and that we have

[ 530 =57 t0) [ 503

for every f € 6.(B) and every by € B.
(2) Show that G = BK, and that we have

/Gf(g)dg:/B/Kf(bk:)dbdk;:/T/N/Kf(tnk:)dtdndk

for every f € €.(G).

(3) Let (ej,eq,e3) be the canonical basis of @2. Show that the map
g — Zpg(er) + Zyg(es) + Zyg(es) induces a bijection between GG/K and the set
of free Z,-submodules of rank 3 of Qg.

(4) Show that
G¢= ] 5K

AeX+

(This is called the Cartan decomposition.) .
(5) Show that (G, K) is a Gelfand pair. (Hint : §(x) = (z7)~1.)
Let z = (21, 22, 23) € (C*)3. We define a morphism ., : B — C* by

a; * * n

X2 | 0 ay = :Hzf"(ai),
0 0 ag i=1

where, for every a € Q, we write |a|, = p~*(*) (so that v,(a) € Z). We denote by V. the space
of functions f : G — C such that :

(i) forevery b € B and every g € (G, we have
f(bg) = x=(0)3(0)'* f(9);
(ii) there exists an open compact subgroup K of G such that f(gk) = f(g) forevery g € G

and every k € K.
We make G acton V, by g - f = R,(f).

(6) Show that V. is a representation of GG (note that I am not saying anything about continuity)
and that dim(VX) = 1.

Remark. (Not necessary to do the problem.) The elements of V, are locally constant but don’t
have compact support in general, because of condition (i). Also, we did not define a topology
on V., so we cannot say that V, is a continuous representation of GG. In fact, it is what is called

282



V.8 Exercises

a smooth representation, which means that every element of V, is fixed by an open compact
subgroup of G (this is automatic from condition (ii)). This means that the representation is con-
tinuous if we put the discrete topology on V, and it is a more natural condition for representations
of totally disconnected groups. If we wanted a continuous representation on a Hilbert space, we
would put the inner form (fy, f2) = || w J1(k) fi(k)dk on V, and complete for this inner form.
Note that, even then, the representation would not be unitary unless |z1| = 22| = |z3| = 1.

We denote by ¢, the unique element of VX such that ¢, (1) = 1ﬂ For every f € 7, we
denote by £V : (C*)* — C the function’]

If f € 77, we define fV : (C*)® — C by

_ / F()x.(0)dt

(7) Show that, for all fi, fo € S, we have (f1 * f2)¥ = [ [ .

(8) Show that
T =[[(@nK)p

AeX

(9) Show that f —— fV is a an isomorphism of C- algebras from 77 to the algebra of
functions on (C*)? that are polynomial in zi', 25!, 23; we will identify this algebra to
Clei 2z 23

For every f € %.(G), we define a function f®) : ' — C by

B = ()2 /N f(tn)dn

(10) Show that f(B) € €.(T) for every f € €.(G), and that fB) ¢ 7 if f € 7.
(11) Show that, for every f € . and every z € (C*)3, we have f¥(z) = (fP)V(2).
Define D : T' — R- by

aq 0 0
D{0 a 0= J] N-aa'],
0 0 aj i,je{l,...n},i#j

81t is a spherical function (except that it’s not bounded in general), hence the notation. But you cannot use this fact

unless you prove it first !
9This is morally the spherical Fourier transform, but unfortunately the usual convention for p-adic groups differs

from the convention that we used in class.
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If f € 6.(G)and t € T is such that D(t) # 0, we set

Of)= [ [flg "tg)durc-
TG

(12) Show that, for every f € %.(IN) and every ¢ € T such that D(t) # 0, we have

f(n)dn = D)'26()"* [ f(ntn~'t")dn.
fo s " f o

(Hint : Consider the subgroup U C N defined by
1 0 =
U= 010
001

and use the formula [, f(n)dn = [ [;; f(nu)dpyo(n)dpy (u).)
(13) Show that, for every f € J# and every ¢t € T such that D(t) # 0, we have

Ou(f) = D(&)" /2 fP(1).

(14) Show that, for every [ € J, the function f¥ : (C*)> — C is an element of

Clzi!, 25, 21]®3, the algebra of symmetric polynomial functions in 27!, 257, 257, i.e.

{p(21, 22, 23) € C[Zflﬂflazs ||Vo € &3, (%(1),%(2),%(3)) = p(21, 22, 23) }-

We define a partial order on X = Z3 by saying that (u1, fio, pt3) < (A1, A2, A3) if and only if

1 < Ap, i+ pe <A+ A and pg + po + s = A+ )\2 + As. (Note that the last relation is an
equality !) For every A = (Ay, Ay, A3) € X, we define 2 € C[2f!, 2572, 257!] by

PP VP PP
z 21t 7252 25

and f) € J by
f)\ = ]1Kp’\K'
(15) Show that (fy)ex+ is a basis of 7.
(16) Forevery A = (A1, Ao, A3) € X, let
o= Z Z()\”(l)’)‘ff(Q):)‘a(g)).
€G3

Show that (cy)xex+ is a basis of C[2], 257!, 2513,

(17) For every A\ € X, we write

() =3 el

neX

with the ¢ (u) € C. The goal of this question is to show the following two facts :
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(i) If A\, p € XTand u £ A\, then ¢y (u) = 0.

(ii) For every A € X, we have

C)\()\) = p% Z?:l(n-i-l—%))\i'

If po = (pa, iz, p13) € X, we write i = (g, piz, pua).

(a). For every g = (g;;) € M3(Qp), let ||g|| = sup;;|gijl,- Show that, for every
g € M3(Q,) and k, k' € K, we have ||g|| = ||kgk'|.

(b). Let r € {1,...,n}, and let 2, be the set of cardinality r subsets of {1,...,n}. If
g = (9i;) € M3(Q,), we define A"g : Q. x Q, — Q, by
A (9)(A, A) = det((gij)ica,jen),
and [[A"g|| by
IA"gll = sup [A"g(A, A);.
AAEQ,
Show that, for every g € M5(Q,) andr € {1,...,n}:
(@) Tk, K € K, then | A"(kgh')| = 7]
(B) Ift € T'and n € N, then ||[A"(tn)|| > ||A"(t)]].
(7) If g = p* with A = (A1, Ao, A3) € X, then

47| = p O,

(c). Forall \, u € X, show that
am) = K70 = 1P 0.

(d). Let \, n € X*. If there exists n € N such that p"n € Kp K, show that ;1 < .
(e). Prove (i).

(f). Let A € XT, and let t = p*. For every n € N, show that tn € KtK if and only if
ne NNK.

(g). Prove (i1).

(18) Show that f — fV induces an isomorphism of C-algebras # = Cl[zi, 257", 2573,

(This isomorphism is called the Satake isomorphism.)

Solution.
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(1) We have seen that 6! is the modular function of B in [1.5.3.8(d). The second statement

follows from the left invariance of db and proposition[[.2.8]

(2) Note that, as B and K are subgroups of G, it is equivalent to, prove that G = BK and to
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prove that G = K B. (This decomposition of G is called the Iwasawa decomposition.) We
will prove the second statement, using a variant of the algorithm of Gaussian elimination
(a.k.a. row reduction). In this algorithm, we apply three kinds of operations on a matrix of

GL3(Q,) :
(a) swapping two rows;
(b) multiplying a row by an element v of Q.
(c) adding a multiple by an element 3 of QQ,, of a row to another row.

Each of these operations corresponds to multiplication on the left by an elementary matrix.
Moreover, this matrix is in GL3(Z,) in case (a), in case (b) if a € Z;, and in case (c)
if B € Z,. So it suffices to show that, if we apply a sequence of operations (a), (b), (c)
with the restrictions just noted on the operations, we can always get an upper triangular
matrix. So let ¢ = (g;;) be an element of GL3(Q,). As g is invertible, it has a nonzero
entry in its first column. After permuting the rows of g (operation (a)), we may assume
that g;; # 0 and that, for ¢ = 2,3, we have |g11], > |gi1|,. After adding —g1 ga1 (resp.
— gﬁl g31) times the first row of g to the second (resp. third) row of g (operation (b), note
that we are multiplying the first row by an element of Z, by the first step), we may assume
that gq; is the only nonzero element of the first column of g. Then at least one of g9» and
go3 1s nonzero (otherwise the rank of g would be < 2), so, after possibly switching the last
two rows of g, we may assume that g # 0 and that | 922|p > | g23]p- Then, after adding
— 92_21 go3 times the second row to the third row, we may assume that go5 = 0. At this point,
the matrix ¢ is upper triangular, so we are done.

We now prove the second statement. Consider the group G = B x K, and its subgroup
H = {(z,z), * € BN K}. We consider the measure po = pp X pgx on G'; this
is obviously a left Haar measure. We also put the normalized Haar measure 1y on the
compact group H. Consider the continuous action of G’ of G given by (b, k) - g = bgk™L.
By the first part of this question, this action is transitive. Also, the stabilizer of 1 € G is
clearly H, so we get a surjective continuous map ¢ : G'/H — G. Let’s show that ¢ is also
open. If x € G'/H, then ((BN K) x K )z is an open neighborhood of = (because BN K is
open in B), and its image by ¢ is (BN K )p(z) K, which is open in GG because K is an open
subgroup of G. So ¢ is open, hence it is a homeomorphism. Let y be the image by ¢!
of the fixed Haar measure on . As G is unimodular (by [[.5.3.8|c)), the measure  is left
invariant by G, so the positive linear functional ¢.(G") — C, h— [, b (2)du(z) is
left invariant, so it is a positive multiple of u¢, say cug with ¢ > 0. Let f € €.(G). We
define a function h € € (G’') by h(b, k) = f(bk™'); we have h(b,k) = 0if b & (supp f)K,



3)

V.8 Exercises

so h has compact support. Applying problem|[.5.3.6, we get

/ h(b, k)dpuc: (b, k) = / / F(ok)dbdk = ¢! / hH (2)dp(z).
/ BJK G'/H
Let x € G'/H. We choose a preimage (b, k) € G’ of z, so that p(z) = bk. Then

W (z) = /H h((b, k)h)dh = FOhh™k)dh = f(bk).

BNK

| [ s = [ pig)a,

forevery f € €.(G). To calculate ¢, we apply this to f = 1 (this is a continuous function
with compact support, because K is an open compact subgroup of G by [[.5.1.4(m)). The
left hand side is popy (H )i (K) = 1, and the right hand side is p(K) = 1 (by the choice
of ug). Soc = 1.

Finally, we prove the last formula by applying to the subgroups 7" and N of B : we
get that a positive constant ¢’ such that, for every f € %.(B), we have

/B fus = ¢ / /N F(tn)dpz (£ ().

To show that ¢ = 1, it suffices to calculate both sides of this equality for f = 1~x and to
use the (easy) fact that BN K = (T'N K)(N N K).

We first note the following easy fact : Let (21, 5, x3) be a family of elements of Q2; then
this family is linearly independent over Z,, if and only if it is linearly independent over Q..
Indeed, linear independence over QQ, clearly implies linear independence over Z,, (because
Z, C Q). Conversely, suppose that (x,x,z3) is linearly independent over Z,; if we
have a1z + asxs + asrs = 0 with ay,a2,a3 € Q,, then there exists m € Z such that
pay, p™ag, pas € Zjy,, and the relation p™a;x1 + pTaswe + pTazxrs = 0 implies that
p"a; = p™as = p™az = 0, hence a; = a; = az = 0.

Let £ be the set of free Z,-submodules of rank 3 of Q2 and let
Lo = Zpey + Zpey + Lpes = Z) € Z. If L € £ and g € GL3(Q,), then g(L)
is also an element of .. Indeed, if (xy,x9,x3) is a Z,-basis of L, then the family
(w1, 2, 23) is also linearly independent over Q,, so the family (g(x1), g(z2), g(x3)) of
Qf; is linearly independent over Q,, hence over Z,, so the Z,-submodule of Qf; that it
generates is an element of .. This shows that (g, L) — g¢(L) defines a left action of G
on .Z. Moreover, the stabilizer of L is clearly GL3(Z,).

We show that this action if transitive, which will give the desired bijection G/K — Z.
Let L € £, and let (21, x4, x3) be a basis of L over Z,,. Then we have seen that the family
(21, x2, x3) is also linearly independent over Q. So (21, z2, x3) is a basis of the Q,-vector
space Qf;, hence there exists g € GL3(Q,) such that z; = g(e;) fori = 1,2, 3, and then we
have L = g(Ly).
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“4)

&)

(6)
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We first prove that G = |J,.y+ Kp*K. Let g € G. Let 2y, x5, 23 € Q) be the columns
of g, and let let L be the sub-Z,-module of Qg generated by (z1, e, 3); in the notation
of the solution of (3), this is g(Lo). As Q, = pZZp, we can choose m € Z such that the
entries of the matrix p™g are all in Z,,. Then the sub-Z,-module L’ of Qf; generated by
(p"axy, pTag, pas) satisfies Ly O L' = p™L. By Theorem 4 of chapter 12 of Dummit
and Foote, there exists a basis (y1, Y2, y3) of Ly and elements a1, as, a3 € Z, — {0} such
that as|as|a, and that (a;y1, asys, asys) is a basis of L. As each element a of Z, — {0}
can be written (in a unique way) a = p"u with nZ>, and v € Z;, we may assume that
a; = p™ with ny,no,n3 € Z>p and ny > ny > ng. Let ¢’ (resp. k) be the matrix with
columns a,y1, asys, asys (resp. y1, Y2, y3) and ¢ the diagonal matrix with diagonal entries
ai, a9, as; in other words, we have t = p(”l’”%m). Then k£ € K and ¢’ = kt. Also, as
L' = ¢'(Lo) = p™L = p™g(Ly), question (3) implies that there exists ¥’ € K such that
p"g = g'k'. So we get

g= p—mg/k/ _ kp(n1—m,n2—m,n3—m) k‘/ c Kp(nl—m,ng—m,n;;—m)K‘
Note that we have also shown that, if m = 0 (for example if all the entries of g are already
in Z,), so that L C Ly, then we have Ly/L ~ (Z/p™Z) x (Z/p™7Z) x (Z/p™Z).

Now we show that the union is a disjoint union. Let A\, \’ € X, and suppose that
Kp K N Kp¥K # @. After multiplying p* and p* by p™ with m € Z big enough,
we may assume that A and \ are in Z3,,. Let g € Kp*K N KpV K, and let L = g(Ly).
As the entries of ¢ are elements of Z, (by the assumption on \), we have L. C Ly. Write
A = (n1,n2,n3) and X' = (n},nh, n}), with ny > ny > ng and | > ny, > nj. By the
previous paragraph, we have

Lo/L ~ (Z/p™Z) x (Z)p"™7Z) x (Z/p™7Z) ~ (Z/p"'lz) X (Z/p”QZ) > (Z/pnéz)‘
By Theorem 9 of Chapter 12 of Dummit and Foote, this implies that n; = n, fori = 1,2, 3,
i.e. that A\ = \.

Consider the map 6 : G — G, x — (27)~L. This is a continuous isomorphism of groups,
hence a homeomorphism because 6~ = . We also have §(K) = K. Let g € G. By (4),
we can write g = kp*k’, with k, k' € K and \ € Z3. Then

0(g) = 0(k)p0(K) = 0(k)k' g 'kO(K') € Kg~'K.

So, by proposition [V.2.3| (G, K) is a Gelfand pair.

The space of all functions f : G — C, with the action of G given by x - f = R, f, is a
representation of (G. We check that V is a subrepresentation of this space. First, it is a
vector subspace :

- the function 0 is in V,;

- condition (i) is clearly stable by linear combinations;
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- let f,f" € V,, and let K; and K| be open compact subgroups of G such that f
(resp. f’) is right K-invariant (resp. right K{-invariant); then K; N K7 is a compact
subgroup of (G, and any linear combination of f and f’ is right K; N K{-invariant, so
it satisfies condition (ii).

Now we check that V, is G-invariant. Let f € V, and x € G. For every b € B and every
g € G, we have

(Rof)(bg) = f(bgr) = x-(b)5(b)"/*f(gz) = x=(b)5(b)" />R, f (9),

so R, f satisfies condition (i). Let K be an open compact subgroup of G such that f is
right K;-invariant. Then, for every g € G and k € K, we have

R, f(gwka™) = f(gzk) = f(g92) = R f(9),

so R, [ is right invariant under the open compact subgroup x Kz~ ! of G, and so it satisfies
condition (ii).

Finally, we compute the dimension of V. Remember that the map G’ := B x K — G,
(b, k) — bk~ identifies G with the quotient G'/H, where H = {(z,z), * € BN K}.
Consider the function

varphi’, : G' = Rsg, (b, k) — x.(b)§(b)}/2. This is a continuous morphism of groups,
so it is trivial on the compact subgroup H, and so it descends to the quotient G'/H and
defines a continuous function from G to R, which we will denote by .. By construction,
the function ¢, satisfies

5 (bk) = Xz<b)5(b>1/2
for every b € B and every k € K, s0 (1) = 1 and ¢, € VX, To finish the proof, we

show that VX is generated by .. Let f € V. If g € G, then, by question (2), we can
find b € B and k € K such that g = bk, and then

flg) = f(b) = x=(0)3 (1) f(1) = p.(9) f(1).
So f is a multiple of ¢, .
Fix z € (C*)3.

Let f € J. Wedeﬁnef € by f(x) = f(z~ ) Let’s show that ¢, f = f¥(z),. First
note that ¢, * f is right K -invariant, because f is (this follows from proposition h
Letx € G and b € B. Then

0.+ f(bx) =/Gsoz(bwy)f(y)dy=/Gxz(b)5(b)1/2¢z($y)f(y)dy=Xz(b)5(b)1/2¢z*f(w)

(because ¢, € V). So ¢, * J? € VX, which implies that o, * fis a scalar multiple of ¢, by
question (6). To find the scalar, we evaluate both functions at 1 : we have . (1) = 1, and

oo (1) = /G (0 f()dy = £ (2).

289



V' Gelfand pairs

)

)

290

Now let f1, fo € . Then, for every x € GG, we have

f1 * fo(x x_l)

/flﬂU Y (y)dy

= / 1 (yx)fz(y‘l)dy = (ﬁ * fl)(x) (because G is unimodular)
G

= (fi % f2)(x) (because (G, K) is a Gelfand pair),

SO f1 * fo = fl fg (Actually, the fact that f; % fo— = fQ * ]71 would be good enough for
our purposes.) Using the calculation of the previous paragraph, we get

P

(fref2)"(2) = (pox frx f2) (1) = (o x frx f2) (1) = (7Y (2)e2) % o) (1) = FY' (2) 15 (2).

Note that 7'M K is the group of invertible diagonal matrices ¢ such that both ¢ and ¢! have
all their entries in Z,, i.e. such that all the entries of ¢ are in Z;. So the statement follows
from the fact that Q) = Hmez p™Z, (applied to each diagonal entries of the matrices),

and this fact follows from [L5.1.4(1).

The map f —— [V is clearly linear in f € 7. Let’s show that it is a morphism of
algebras. Let fi, fo € 7, and let z € (C*)3. Then

(i + f2)"(2) = /T A
= FL ) f((#) 1) x. () dtdt

TxT

= [ fo()x(¢t)dtdt’

TxT

< / f1(t)x-(¢)dt' ) ( / fg(t)xz(t)dt) (because . is multiplicative)
T T

= ()£ (2),
as desired.

By question (8), the family (1 7q)»)acx is a basis of 777, Let A = (A, Ao, A3) € X,
and let g = 1 pr)n. Then, for every z = (21, 22, 23) € (C*)?, we have

gl() = / ()t = vol(T N K)x.(p) = 232200,
(TNK)p*

As the functions of the form (zy, 2o, 23) — 27" 252233, for (A1, Ay, A3) € X, for a basis of

Clzi, 257, 2, this shows that the linear transformation f — f" sends a basis of 7

to a basis of C[z{™", 25!, 23], so it is an isomorphism from .7 to C[zi™!, 257", 23]
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By [[.5.2.2] the open compact subgroups of GG form a basis of neighborhoods of
1. Let f € %.(G). By definition of %.(G), for every € G, there exists an
open compact subgroup K, of G such that f is constant on KZzxK?  We have
supp [ C UxeSuppx K,xK, and supp f is compact, so there exist zy,...,x,, € supp f
such that supp f C (%, Ky, 2:K,,. Let L = (", K,,; this is an open compact subgroup
of G. Let’s show that f is bi-L-invariant. Let x € G. If x € supp f, then there exists
ie{l,...,m}suchthatx € K, x;,K,,. Then LaL C K ;K2 so fisconstanton Lz L.
If x ¢ supp f, we want to show that Lz L N (supp f) = &. But suppose that there exist
[,I' € L such that [xl' € supp f, then we know that f is constant on L(lzl')L = Lz L by
what we have just seen, and in particular f cannot vanish at x. So Lz L N (supp f) = &,
and in particular f is constant (and equal to 0) on Lx L.

Now we show that f(?) is bi-invariant under LNT'; this implies that f(%) is locally constant,
as L N1 is an open compact subgroup of 7". As 7' is commutative, we only need to show
that f(P) is left invariant under K N7, but then this follows immediately from the definition
and from the fact that § : 7" — R+ is multiplicative (because then § must be trivial on the
compact subgroup K NT of T').

Finally, we need to show that f() has compact support. Lett € T be such that f(5)(¢) # 0.
Then there exists n € N such that tn € BN (supp f). In particular, ¢ is in the image of the
compact set B N (supp f) by the continuous projection map B — T' ~ B/N. This image
is compact and contains the support of f(5), so (&) has compact support.

If f € 7, then we can take L = K in the proof of the first assertion, and we get that f(5)
is bi-invariant under K N T, i.e. that fB) € J#.

Let z € (C*)3. Note that the multiplicative functions ¢ and x are both trivial on N. So, if
t € T and n € N, then we have @, (tn) = x.(t)0(¢)"/2.

Let f € 7. Then, using the integration formula of question (2), we get

fv(z):///f(tnk)goz(tnk)dtdndk’
T JINJK
= / / f(tn)p.(tn)dtdn (because both f and ¢, are right K-invariant)
TJN

_ /T /N Ftn)y.(08()2dtdn
- [ 1 oxma
= (fP)(2).

We could actually do the calculation directly (by writing the formula for ntn='t~! and
using the change of variables), but we’ll take the hint, as it generalizes better to GL,,(Q,)
for arbitrary n.

First we note that the subgroup U of NV is normal (and even central) and isomorphic to the
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additive group Q,. In particular, we have the Haar measure p;; = A on U given by|.5.3.4
(which is normalized by requiring that Z, have volume 1).

1 a b
Next, we note that the map N — @22,, 0 1 ¢| = (a,c) induces an isomor-
0 0 1

phism of topological groups from N/U to Qg, and that the action by left translations
of N on N/U corresponds via this isomorphism to the action of N on QZ% given by

1 a b

01 ¢

001
ular Borel measure dyin/y on N/U that is left invariant by N. Then the positive linear
function 6.(N) — C, f +— [y Jiy f(nu)dpnyu(n)dp (u) is left invariant, hence it is
a multiple of the Haar measure p. Also, by taking f = 1x~n (and using the fact that
KNU = Zy,and (K N N)/(K NU) corresponds to the subgroup Z2 of Q> in the iso-
morphism above), we see that this positive linear functional is actually equal to p, which
proves the integration formula of the hint.

- (z,y) = (a + z,c + v). In particular, the measure \?> on Q? gives a reg-
Yy Y p p & g

In the calculation that follows, we will identify U to Q, and N/U to @g. Let

T 0 0
t =10 x;, 0| € T. Note that the map N — N, n —— ntn~'t~! preserves
0 0 T3

U, so it induces maps U — U and N/U — N/U. If u € U = Q,, we have
utu™t™' = (1—z123" )u. On the other hand, if n € N and if the image of nin N/U = Q2
is (a,b), then the image of ntn~'t~in N/U is (a(1 — zy25 "), b(1 — zp231)).

Suppose that D(t) # 0. By the change of variable formula proved in|.5.3.8] we have :
- forevery f € %.(U),

/ flu)du =11 — x1x§1|p/ futu™ ) du;
U U
- forevery f € €.(N/U),

f(n)dn =1 — z25*,]1 — x2x31]p/ f(ntn~'t"Hdn.
N/U N/U

Also, using the fact that U is central in N and that ¢t 'Ut = U, we see that, for every
n € N and every u € U, we have

(ntn 't D (utu™ ) = ntn T ut)u T = k(T ut)u T n T = nut(nu) T
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Let f € €.(N). Then

/ f(n)dn = / f(nu)duN/U(n)d,uU(u)
N vJNw
=1 — @@y |1 — wowy |1 — zy25
[ et ) dpsg ) )
vJnww
= |1 - xlxgllp‘l - x2$§1’p‘1 - flx:;l’p

/U . f(nut(nu)_lt_l)duN/U(n)d,uU(u)

Iy

=1 — 225 |,|1 — zox3 ']l — :clmBl]p/ f(ntn~'t"Hdn.
N

To finish the proof, it suffices to notice that

1= 2125 |1 = woay |1 = aay ], = D(1)'/26(6)%.

We will actually need a variant of the formula of this question in question (13), so let’s
prove it now. Define a function f € %.(N) by f(n) = f(n~'). Applying the formula we
just obtained to f and using the fact that N is unimodular, we get :

/Nf(n)dn:/f(n_l)dn

1/25 1/2/ ntn 1 “dn

-1 —1

1/2(5 1/2 fltnt™" n™")dn

1/2(5 1/2 f(tn™ 1=t n)dn

\\

(13) Let f € 2, and let h € %.(T\ G) be the function defined by h(g) = f(g 'tg). By

1.5.1.1(d), we can find &’ € 6.(G) such that Th’ = h. By [L.5.1.1(f), we have

0,(f) = /T\ hladmels) = /G W (9)d.
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Using question (2), we get :

:A[Vl(h’(tnk)dtdndk

= / / h(nk)dndk (by definition of T1h’)
NJK

_ /N /K (k' k) dndk:

= / f(n~'tn)dn (because f is bi-K-invariant)

/f (t'n"'tn))dn

= Dt HY25(t7h) 1/2/ f(tn)dn (by the end of the proof of (12)
= Dt ),

where we used the facts that 6(¢7') = §(¢)~! and D(t~') = D(t), which are both obvious
on the definitions.

Let f € . Then we have f¥ = (f(P))" by question (11), so f¥ € C[z;!, 257, 23] by
question (9).

We want to show that fV is symmetric in the variables 21, 29, 23. So let 0 € &3; we write
0 1(2) = (20(1), Z0(2), Z0(3))- If t € T has diagonal entries 1, z2, 23, then

vp(z1) _vp(z2) _vp (28 p(T,-1(1)) vp(To—1(2)) Vp(T,—1(5)) —
Xo-1a(8) = 2ty oty Dty = T =y (A71A),

where A is the permutation matrix associated to . Applying this to the formula defining
(fP)Y(2), we get

/ FB () x.(AtA)d / FBALA™ Yy, (t)dt,

where the second equality comes from the fact that dt is the product of the Haar measures
on the three factors Q of 7', so it is invariant by permutation of these factors. So, to
show that V(o7 1(2)) = fV(2), it suffices to prove that f(B)(AtA~") = fB)(t). We use
the equality of question (14). First note that it is obvious on the definition of D(¢) that
the value of D(t) doesn’t change if we permute the diagonal entries of ¢. So it suffices to
prove that O,(f) = Oaa-1(f). Using the fact that A € GL3(Z) C GL3(Z,) (hence f is
invariant by left and right translation by A and A~1), the fact that the Haar measure on G
is invariant by left and right translations (because G is unimodular), and the fact (which
we have just noted) that the Haar measure on 7’ is invariant by conjugation by A*!, we see
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(16)
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that

Oaa—r(f)= | flg7'AtA g)dg = | f((A7'gA) 't(A7 gA))dy
G TG

= [ flg 'tg)dg = Ou(f).
TG

As K is open and compact, every function f is in €.(G); also, f is clearly bi- K -invariant,
so itisin J7.

Now let f € 7. By question (4), the function f is constant on every set Kp*K, A € X;
also, as all these sets are open and f has compact support, the support of f must be a
finite union of sets of the form Kp*K. This shows that f is a (finite) linear combination
of functions fy, A € X, so the family (f)),cx+ generates 7. As the supports of the fy
(for A € X) are disjoint (by question (4)) again, this family is linearly independent, so it
is a basis of 7.

First, the family (c))aecx+ is linearly independent, because the sets of monomials that
appear in its elements are pairwise disjoint.

Let’s show that this famlly generates C[zi™!, 237, 25193 (it is clearly contained in this

space). Let f € C[zi, 23", 257!]%2. We can find a family of complex numbers (a)) ez
such that all but a finite number of the a, are O and that f = 3", _, a »2>. Moreover, as f is
symmetric, we must have a,(») = a, forevery A € I and every o € G3. For every A € Z7,
there is a unique element of {o(\), o0 € &3} thatisin X*. So f is a linear combination

of the c¢,; more precisely, we have f = > rex+ bacx, where

1
by = ).
T e & To) =T 2
(a). Let & = 3(/’%) € GL3(Z). 3Then, for all 4,7 € {1,2,3}, we have
(kg)lj = Zr:l ki?’gTj and (gk>lj = Zr:l girij’ SO

|(k9)ijlp < sup |kirlplgrilp < sup [grjlp, < |9l
1<r<3 1<r<3

and
[(9k)ijlp < sup [Girlplkrilp < sup |gilp < 9|
1<r<3 1<r<3

(because all the entries of k, being elements of Z,,, have p-adic absolute value < 1).
This implies that ||kg|| < ||g|| and ||gk|| < ||g||- As k™! is also in GL3(Z,), we can
apply this result to £~ and kg (resp. gk) to get ||g|| < ||kg]| (resp. ||g|| < ||gk|), so
we have finally ||kg|| = ||g|| = ||gk||- This implies the statement.

(b). (o) What is hidden behind this proof if the fact that, for all g.h € GL3(Q,) and
every r, we have A"(gh) = A"(g)A"(h); as A"(h) has coefficients in Z,, if h
does, we can then just use the same proof as in (a) to get the desired statement.
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(c).

The reason for the compatibility of A™ with products is that A"¢g is the matrix
of the action of g on the rth exterior power of @g, but in our case, we can also
prove it directly. There is nothing to prove if r = 1 (because A'g = g) orr = 3
(because A%g = det(g)), so we may assume r = 2. Let g,h € GL3(Q,) and
A, A € Q. We want to show that A*(gh)aar = D 4neq, A (9)a,avA*(h) ar a.
We may assume that A = A’ = {1,2} (the other cases are similar). Then
> areq, N2(9) 4,40\ (h) av 4 is equal to

(911922 — G12921)(h11haz — highar) + (911923 — g13g21) (harhas — hazha)

+ (912923 — 913922) (h12has — hizhas),
while A?(gh) s is equal to
(g11h11 + gi2ha1 + g13ha1) (921012 + gaohos + ga3hso)
—(g11h12 + Gi2has + gi3hs2)(g21ha1 + gazhor + gazhar).

It is easy to check that these two expressions are equal.

(8) We have seen in the proof of («) that A" (tn) = A" (¢)A"(n). As A"(¢) is diagonal
and the diagonal entries of A"(n) are all equal to 1, the diagonal entries of A" (tn)
are equal to the diagonal entries A"(t). So ||A"(tn)|| is at least the supremum of
the p-adic absolute values of the diagonal entries of A"t, and this last number is
[[A7E].

(7) We already noted that A" g is diagonal. So

_ — ianEQr ZiEA )\2
p P :

47l = sup [pZrea™
AeQ,
As )\1 > )\2 > )\3, we have

Algffl‘r ; /\z = /\3—7‘+1 + ...+ /\3.

First we note that we can prove as in question (15) that (1 xr7r),»)acx is a basis of
the C-vector space 777.

Now let’s show that, for every h € 7, we have h¥ =} _ h(p¥)2". As both sides
are linear in i, we may assume that i = 1gnp),» for some A € X. Then, for every
z € (C*)?, we have :

BY(z) = / B(t)x.(H)dt = /(W) (it

As x. is constant on the set (K N T)p* (because T' N K is the group of diagonal
matrices with entries in Z, and we have |ul, = 1 for every u € Z)), and as this set
has volume 1, we get

WY (2) = x=(p") = 2* = h(pY)2* = D h(p*)2*

pneX
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(for the last equality, note that h(p*) = 0 for every u # A, because the sets (K N7T")p*
are pairwise disjoint by question (8)).

Now let f € 7. By applying the statement proved in the previous paragraph to
P, we getex(p) = fA(B) (p"). But p# = Ap*A~! where A is the permutation matrix
associated to o = (13) (i.e. the matrix with antidiagonal entries 1 and all other entries
0), and we have seen in the proof of question (14) that fB)(AtA~1) = fB)(¢) for
every f € ¢ and every t € T. So we are done.

Suppose that p*n €  Kp*K for some n €  N. Then
det(p’) = det(p'n) € Z)det(p) (because det(K) C ZX), so
| det(p*)]|, = || det(p*)|l,» which gives p1 + p2 + 3 = A + A2 + A3. Also,
by (b), we have, for every r € {1,2, 3},

prltsnere i) = AT < AT ()| = AT = pm et

Taking r» = 1 gives u3 > A3, and taking r = 2 gives o + 3 > Ao + A3. Using this
and the fact that 1 + o + 13 = A1+ Ao+ A3, we get g + o < A+ Agand py < Aq,
as desired.

Suppose that ¢, (1) # 0. By (c), we have
) = 170" =36 [ f@nyin
N

As this is nonzero, the set p* N must intersect supp(\) = Kp* K. By (d), this implies
that n < .

Letn € N. If n € NN K, then tn € t(K N N) C KtK. Conversely, suppose
1 a b P pMa p*b

that tn € KtK. Wewriten = |0 1 c|;thentn = [ 0 p** phc|. We
0 01 0 0 ph

want to show that n € N N K, which means that a,b,c € Z,. As K C M,(Z,)
and as \; > Ay > )3, the fact that in € K{¢K implies that every entry of
tn is p* times an element of Zp,. In particular, a,b € Z,. Moreover, we have
|A%(tn)|| = ||A%t]| = p~P2+23) by (b). Applying this to the entry of A%(¢n) indexed
by A= {1,2} and A’ = {1, 3}, we get

A3 A3
proe = faa (1) )| <y,

so |c|, < 1, which means that ¢ € Z,.

Let A € X*. By (¢), we have
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As fr = lgpr = 1 ki (because p* and pX are conjugate under a permutation
matrix, and permutation matrices are in /), question (f) implies that

ex(N) = 8(p*)V2vol(K N N),

where the volume is taken for the Haar measure on N. By the choice of the Haar
measure on N, we have vol(K N N) = 1. So

() =62 = [pMlplpM ]t = ph .

This is the statement of (ii).

(18) We denote the map 7# = C[zi, 257, 25793, f — fY by S. We have seen in question

(14) that this map is well-defined, and in question (7) that it is a morphism of C-algebras.
So we just need to show that it is an isomorphism of C-vector spaces. We have given a basis
(fa)aex+ of H in question (15), and a basis (cy)yex+ of C[zi, 25, 251]® in question
(16). Moreover, the set X is partially ordered, and the matrix of S in the two bases is
upper triangular (for this partial order) by question (17)(i) and has nonzero diagonal entries

by 17(ii). So S is invertible.

If we want to make the argument more explicit, we could say the following : By (17)(i)
and (ii), we have, for every A € X,

S(f)\) = Z CA(V“)C;M

REXT, pu<X

with ¢y (\) € C*. We will try to construct the inverse T : C[z!, 25!, 257192 — J# of S.
It suffices to give the value of T" on the basis elements ¢y, A € X . If thereisno u € X+
such that 4 < X and p # A, we set T(cy) = cx(A)7!fa. Otherwise, we define T'(cy)
recursively by

T(e) =MW Hh—al)™ D el

M€X+—{>\}7 USA

As {u € Xt | p < A} is finite (indeed, if p € X* and p < A, then
ps = (A + Ao+ A3) — (1 + p2) > A3, 80 A3 < g < e < pg < Ap), this process
will always terminate.

O

V.8.4 Problem

[

10What is the name of this result ? And a reference ?
""H/t G. Dospinescu.
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In this problem, we write G = SLy(R) and K = SO(2). We denote the subgroup of upper
triangular matrices in G' by B and the subgroup of unipotent upper triangular matrices by N
(“unipotent upper triangular” means “upper triangular with diagonal entries all equal to 17).
B We fix left Haar measures on all the groups. Remember that G is unimodular.

(1) The goal of this question is to prove the following fact : (*) If (7, V') is a unitary represen-
tation of G and if v € V' is a vector that is fixed by an element of G of the form ((1) Qf)
with u # 0, then v is fixed by every element of G.

We fix a unitary representation (7, V) of G.

(a). Let v € V, and suppose that there exists a continuous morphism of groups
X : R — S! such that, for every u € R, we have 7 <(1) Qf) (v) = x(u)v. De-
fine ¢ : G — Cby ¢(z) = (7(z)(v),v).

!/ /
(i) Show that, if z = CCL Z) and ©’ = <Z, 2,) are such that ¢ = ¢, then we have
o(x)] = [e(2)].
(ii) Show that, if z € B, then |p(x)| = |p(1)].

(iii) Show that there exists a continuous group morphism 1) : B — S! such that
7(x)(v) = ¢¥(x)v for every x € B.

(iv) Show that the function  — |¢(x)| is constant on G.
(v) Show that 7(z)(v) = v for every = € G.
(b). Prove (*).
(2) Let

A+:{(8 agl),aERzl} C G.

G = H KakK.

acAt

(a). Show that

(As sets, not as topological spaces.)
(b). Show that (G, K) is a Gelfand pair.

(c). Generalize questions (a) and (b) to SL,(R), where K = SO(n) and A*
is the set of diagonal matrices with diagonal coefficients aq,...,a, satisfying
ay > as > ...a, > 0.

12We could make everything in this problem work for SL,,(R), but the generalization is a bit more painful than in

problem

I3References.
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(3) The goal of this question is to prove the following fact : (**) For every unitary representa-
tion (7, V') of G such that V¢ = {0}, for all v, w € V, we have lim,_,.(7(z)(v),w) = 0,
where oo is the point at infinity of the Alexandroff compactification of G. (So
lim, o0 (m(x)(v),w) = 0 means that for every ¢ > 0, there exists a compact subset X
of G such that [(7(x)(v),w)| < e foreveryz € G — X.)

We fix a unitary representation (7,V") of GG, and we assume that it does not satisfy the
conclusion of (*¥%).

(a). Show that there exists v,v" € V, a sequence (a,),>o of elements of R>; and
a € C— {0} such that :

® a, — +oocasn — 400,

0 at!

n

o (7(ty)(v),v") = aasn — +oo, where t,, = (a" 0 )
(b). Show that, after replacing (a,,),>0 by a subsequence, we may assume that there exists
vy € V such that, for every w € V, we have (r(t,)(v), w) — (vg, w) as n — +oc.

(c). Show that vy # 0 and that vy is fixed by every element of N. (Hint : If x € N and
w € V, what is the behavior of (7 (zt,)(v), w) — (7(t,)(v),w) — 0asn — +oo0 ?)

(d). Conclude.

(4) The goal of this question is to show that the quotient SLy(Z)\ G has finite volume.
Let b := {z € C|Im(z) > 0}.

For g = (CCL 2) € Gand z € b, we set

az+b
cz+d

g-z=

(a) Show that this defines a left action of G on b.

(b) Show that the stabilizer of + € b is K, and that this induces a homeomorphism
G/K = b.

(c) Show that the homeomorphism of (b) sends the measure yi/x to a multiple of d“;;iy,

where x and y are the real and imaginary parts of z € ) and dx and dy are Lebesgue
measure on R.

(d) Let @ = {z € h||Re(2)| < % and |z| > 1}. Show that, for every z € b, there exists
g € SLo(Z) such that g - z € Q.
dxd
(e) Show that [ _ Ciyen y—zy < +o00.

(f) Show that vol(SLy(Z)\G) < +oc.
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In this question, we fix a closed discrete subgroup I" of G such that vol(I'\G) < +oc. Note
that GG is unimodular by so the Haar measure on G is also right invariant. We write
X = I'\G and we denote by 1 the measure /ir\;; we normalize the Haar measures on G and
I so that u(X) = 1. We consider the space L*(X) = L?*(X, ) with the right quasi-regular
representation 7 of G (i.e. we have 7(g)(f) = R, f for g € G and f € L*(X)).

Show that, for all fi, fo € L*(X), we have

11m/f1$9f2 Jdpu(a /f1 Jdpu(a /fz )y

(Hint : what are the G-invariant vectors in V' := {f € L*(X)| [ f =0}?

We use the notation of question (5). Let Y = (I' 1N K)\ K. We put the measure
ty = prnr)pg on Y, and we normalize the Haar measures on I' N K" and K so that
Y has volume 1.

The goal of this question is to prove the following statement : (***) For every f € %.(X),

we have
lim [ fug)dir (o) = [ fe)dnto)
[

We think of 1 as the continuous linear functional on %, (G) given by

_ /K F(@)durc(x)

for f € €.(G). Proving (***) would be relatively easy (from what we have already done)
if py were representable by an element of ¢.(G) (i.e. if we had some h € %.(G) such
that [, f(z)dpx(z) = [, f(@)h(x)dug(x) for every f € %.(G)), but this is not the
case. Nevertheless we can try to approximate px by elements of %.(G). You might
remember that we have used that kind of technique several times already to approximate
Dirac measures.

(a). If Y € 6.(G), we define a continuous linear functional ¢ * px on 6,.(G) by

b pxc(f) = fay)(x)dpa(v)dpx (y).

GxK

Show that there exists h € 6.(G) such that

b e (f /f x)dpg ()

for every f € 6.(G).

“In other words, the sets Yg become equidistributed in X as ¢ — oo in G. Note that g — oo if and only if

g

-1 5 .
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(b). Show that there exists a sequence (1, ),>0 of elements of €.(G) such that pix is the
limit of the sequence (1, * ik )n>0 in the weak™* topology of Hom(%.(G), C).

(c). Prove (*¥*%),

Solution.

0 1

!
(1) (a). Note that, if n = (1 ”) 0 = (1 “) € N and z € G, then

302

[p(nan’)| = [(m(2)(x(n')(v)), 7(n) " ()] = [x(W)x(u)(7(2)(v), v)| = ()]

@

(ii)
(iii)

(iv)

10 _
Suppose first that ¢ = ¢ # 0. Let n = ((1) ¢ (dl d)) and
-1/, _
n' = ((1) ¢ (&1 a)).Then we have

n'an = o w
c/ d/ Y

forsomew € R. As 1 = det(n’zn) = d’'d'—wd = a’d'—b'c’ and ¢ # 0, we must
have w = b/, so n’xn = 2, and the remark above implies that |p(x)| = |@(2')].

Now suppose that ¢ = ¢ = 0. Then we can sequence (z,,)>; and (2] )>; in G

such that z,, — z, x;, — 2’ and, for every n > 1, the (2, 1)-entries of z,, and z/,
b

are both equal to % For example, we can take x,, = “ E nd 2 ,

sense because det(x) = ad = 1 implies that d # 0, and we can define z/, by a

similar formula. Applying the first case to x,, and x/, gives |p(x,)| = |p(z))]

for every n > 1; as ¢ is continuous, we can go to the limit in n, and we get
o(@)] = lp(a)].

This follows from the case ”c = ¢ = 0” of question (i).

which makes

Let € B. We have |(7(z)(v),v))| = |(v,v)] by (ii), so, by the case of equal-
ity in the Cauchy-Schwartz formula, we must have 7(z)(v) = ¢(z)v for some
P(z) € St As x — 7w(z)(v) is continuous in z and ¥ (z) = (7(z)(v),v), the
function x — () is also continuous. The fact that it is a morphism of groups
follows immediately from the fact that 7(xy) = 7(z) o w(y) for all z,y € B.

Repeating what we did at the beginning of the proof of (a) and using (iii), we see

that |p(bxt')| = |¢(x)| for every x € G and all b,b' € G. Let zy = <_01 é)

Letx = (Z b) € G.If ¢ # 0, then

d
(1 cla c —d
TTlo 1 )"\0 b—ctad)



(b).

2) (a).
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so |p(z)] = |p(zo)|. If ¢ = 0, then we can approximate x by elements of G
whose (2, 1)-entry is nonzero (as in the proof of (i)), so, by the first case and
continuity of ¢, we also get |p(z)| = |¢(x0)]-

(v) We repeat the reasoning of (iii) to show that there exists a continuous group
morphism ¢ : G — S! (extending the map 1) of (iii)) such that 7(x)(v) = ¢ (x)v
for every x € (. But there are no nontrivial group morphisms from G to a
commutative group (because G is equal to its commutator subgroup, and a group
morphism into a commutative is trivial on every commutator), so 1 = 1, so
v e Ve,

We denote by 7’ the unitary representation of R on V' defined by 7'(t) = 7 (é i) ,

for every ¢ € R. By hypothesis, we have 7’(u)(v) = v. As R is commutative, this
implies that 7(u)(w) = w for every w in {7 (¢)(u), t € R}, hence (because both sides
are linear and continuous in w) for every w € W := Span{n(t)(v), t € R}. In other
words, the unitary representation 7r|’W is trivial on the subgroup Zu of R, so it in-
duces a unitary representation of the compact group R/Zu on W. By theorem
and corollary the space W is the closure of a direct sum of 1-dimensional
representations of R/Zu, that is, there exists a linearly independent family (v;);cs
generating a dense subspace of W and such that every v; is an eigenvector of all the
m(n), n € N. By question (a), this implies that all v; are in V¢, hence W C V¢, and
in particular v € VC.

We prove the result directly for SL,(R), so we will write G = SL,(R) and
K = SO(n).

We will use the polar decomposition for elements of GL,,(R) (see Theorem 12.35 of
Rudin’s [20], E] though that is overkill because we only need the finite-dimensional
case) : for every g € GL,(R), there exists a unique couple (u,p) such that u is
orthogonal, p is symmetric positive definite and g = up; also, we have p? = ¢g7g. If
g € G, then det(p)? = det(g”g) = 1; as p is definite positive, we have det(p) > 0,
so det(p) = 1, and then we also deduce that det(u) = 1, i.e. that u is in K.

We prove that G = | J,. 4+ KaK. Let g € G. Let g = up be the polar decomposition
of g. As p is symmetric, is is diagonalizable in an orthonormal basis by the spectral
theorem, so we can write p = kak™! with k¥ € O(n) and a diagonal. The diagonal
entries of a are the eigenvalues of p, and we may assume that they are in decreasing
order, so that a € A*. Also, if k is not in SO(n), then we can change the sign of the
one of the vectors of the eigenbasis; this does not affect a, and the new £ is in SO(n).
Finally, we get g = (uk)ak™ € KaK.

We also want to prove that the set KaK, a € A", are pairwise disjoint. Let
a,a’ € A*, and suppose that KaK N Ka’'K # &. Then there exist k,] € K such

>Better ref.
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(b).

that o’ = kal. So

(a)? =da" = kall"ak” = ka?k™",
which implies that the (a’)? and a? have the same eigenvalues, i.e. they have the
same diagonal entries up to reordering. As the diagonal entries of (a’)? and a? are de-
creasing, these two matrices actually have the same diagonal entries, i.e. (a')? = a®.
Finally, as a and o’ are diagonal with positive entries, the fact that (a’)? = a? implies
that o’ = a.

(We still take G = SL,(R) and K = SO(n).) Consider the continuous group au-
tomorphism 6 : G — G, g — (¢7)~'. We have 6 = idg, and 0 = idg.
For every ¢ € @, if we write ¢ = kal with k,l € K and a € A", then
0(g) = ka 'l = klg~'kl € Kg~'K. By proposition [V.2.3 (G, K) is a Gelfand
pair.

(3) Now we are back in SLy(R), so that frees the letter n.
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(a).

(b).

As V' does not satisfy the conclusion of (**), there exists vy,v; € V and ¢ > 0
such that, for every compact subset X of G, there exists x € G — X such that

|(m(z)(v1), v2)| > €.

a O
0 at
Uiear KTK is relatively compact in G, because, if ¢ € KtK with t € A7, then
all the entries of ¢ and of g~! are bounded by 4n in absolute value (note that, if
k € K, then the entries of £ are all bounded by 1 in absolute value). So we can find
Tn € G — Uyear KtK such that [{7(z,)(v1),v2)| > e. Write z, = kntpl, with

a, 0O
kn,l, € Kand t, = (0 4l

(I,,) by subsequences, we may assume that (k,,) (resp. ([,)) has a limit &k € K (resp.
l € L). Letv = 7(l)(v;) and v' = (k)" (vy). As the sequence ({n(t,)(v),v')) of
elements of C is bounded (by ||v||||v'||), after going to a subsequence, we may assume
that it converges to some o € C. To finish the proof, we just need to show that o # 0.

Note that, for every n > 1, we have

For every n > 1, let A} be the set of ( ) € AT such that @ < n.. Then

€ Al. As K is compact, after replacing (k) and

(m(t)v, ') = (w(kk ) (Bntal)w (Do, v2) = (m(z)m (L oy, w(knk ™ )vs),
(7 (tn)v,0") = (7 (@n)or, v2) | < o [[|val[ (|75, 11) = idllop + |17 (knk—1) — id]|,p.

This tends to 0 as n — 1. As |(7(z,)v1,ve)| > € for every n > 1, the limit « of the
sequence ({7 (t,)(v),v’)) cannot be 0.

The conclusion means that the sequence of bounded linear forms
(A, : w — (m(ty)(v),w)),>1 on V converges to the bounded linear form
w +— (vg, w) in the weak* topology of V*. As each A, is in the closed unit ball
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of V* (for the operator norm), and as this closed unit ball is weak* compact by the
Banach-Alaoglu theorem, we may indeed assume, after going to a subsequence, that
the sequence (A,),>; converges to some element A € V* in the weak* topology.
But we know that A has to be of the form w —— (vg, w), for a uniquely determined
v € V, so we are done.

(c). We have (vg, v') = lim,, o0 (7(t,) (v),v") = a # 0, s0 vy # 0.

Let x € N, and write x = (é 1) Letw € V. Then

(m(tn)(v), w) = (w(tn) (v), w) = (m(tn) (w(t, 2tn) (V) — v), w),

SO
| {mr(at (tn) (), w)] < ||(w(t, " wtn) — 7 (1)) ()| [[w]]-
1 (1 a,, u) . .
As t ‘xt, and as lim,...a, = +oo, we have
lim,, ot 2ty = . Using the continuity of the representa-
tion 7, we deduce that lim, .\ oo(m(t; 2t,)(v) — v) = 0, so that
lim, o0 |[(m(2t,)(v),w) — (w(t,)(v),w)| = 0. But we know that

limy, s 4 oo (7 (L) (v), w) = (v, w), so we get lim,, o (7(2t,)(v), w) = (v, w). On
the other hand, we have

Jim (w(xt,) (v), w) = lm (7w (t) (v), 7(2) ™ (W) = (v, 7(@) ™ (w)) = (7(2)(vo), w),

n—-+00
As this holds for every w € V, we deduce that 7(x)(vg) = vp.

(d). By question (1), (d) implies that v, is fixed by every element of G. So V¢ # {0},
which finishes the proof of the contrapositive of (**).

(4) (a). We first check that g - z is well-defined and in b if 2 € h. Write g = (CCL Z) If

¢ # 0, then Im(cz + d) = c¢Im(z) # 0, so the quotient 2% makes sense. If ¢ = 0,
then ad = det(g) = 1,s0d # 0,80 cz +d = d # 0, so once again the quotient ‘cl;rd
makes sense. We calculate the imaginary part of this quotient. We have

az+b  (az+b)(cZ+d)  aczZ+ bd+ adz + bcz

cz+d  (cz+d)(cz+d)  (cz+d)(cz+d)
az+b\ 1 B Im(z)
tm (cz+d) ~ (cz+d)(cz+d) (aelm(z) = bd Im(z)) = (cz+d)(czZ +d) >0,
and &% ¢ p.

cz+d

/ /

If g=1,thenclearly g-z = 2. Let h = CCL, Z,) be another element of G. We must

check that (gh) - z = g - (h - z). This is a straightforward calculation.
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(b).

(c).

Let ¢ = CCL Z) € G such that ¢ - ¢« = 4.  This is equivalent
ai +b =i(ci +d) = —c+1id, i.e. tothe fact thata = dand b = —c. If a = d
andb = —c,then 1 = ad — bc = a®> + b*> = d* + ¢® and ac + bd = 0, so g is an
orthogonal matrix, hence g € K because det(g) = 1. Conversely, if g € K, then g is

of the form ( cosf  sin@

) ,sowedohavea =dand b= —c,hence g - 1 = 1.
—sin@ cosf

If z is an arbitrary element of h, we write = = x + iy with z € R and y € R.,.
-1

Then z = g(z) - i, with g(z) = (‘6@ \\//%_i%) € G. So the action of G on b is

transitive, and it induces a continuous bijection o : G/K = h. To show that « is a

homeomorphism, we note that the map h — G, z — ¢(z) that we just constructed

is continuous, and that z — ¢(z) K is the inverse of «.

dxdy
2

Let 1 be the image by o * in the proof of (2) of
problem [V.8.3] we see that it suffices to prove that x is left invariant by G. In other
d“y”;ly is invariant by the action of G on b.

Letg = (CCL Z) € GG, and let z = x + iy € h. We have seen in the proof of (a) that

) Y
I . = = .
m{g - 2) (cz+d)(cz+d) A(x?+y?) + 2cdx + d?
Similarly,
Re(g - 2) = ac(z?* + y*) + (ad + be)x + bd

A(x? 4 y?) + 2cdr + d?

If we write 2/ = Re(g - z) and i/ = Im(g - z), we want to show that 9= dy = dzgy.
0 1 ) ) )
Let gy = 1 0) We saw in the proof of (1)(a)(iv) that G = B U BgyB, so it

suffices to show that dmy is invariant under the action of an element of B and of g.
In both cases, we will use the usual change of variables on R? to calculate dx’dy’.

If g € B(ie.c=0),thena’ = % (z+bd) and y = %, so da'dy’ = Jrdady, and we

d2 ’
get dx dy _ dzgy.
Ifg:go,thenm’:—x2+y2 and iy = 2,so
—(224y?)+2x2 —2zy
dzd
de'dy’ = |det < (x224;z2)2 (ngfytgi);f) dxdy = e 92)27
(22+12)2 (22+12)2 )

dx’ dy dacdy

and again this implies immediately that %



(d).

(e).

(®).

V.8 Exercises

a b
Ifg= (c d
in Z. Conversely, if c and d are relatively prime in Z, then there exist a, d € Z such

that ad — be = 1, and then g := (Z Z) is in SLy(Z).

€ SLy(Z), then we have ad — bc = 1, so ¢ and d are relatively prime

Let z € h. Then the group Z + Zz is discrete in C (because z ¢ R), so its intersection
with every ball is finite. In particular, the infimum of |cz+d| as ¢, d € Z are relatively

prime is attained. By the previous paragraph and the fact that Im(g - 2) = ;2(2‘)2 if

g= (Z 2), we see that sup{|Im(g - )|, g € SLy(Z)} is also attained. We want to

show that there exists g € SLy(Z) such that g - z € Q. After replacing z by some g - 2
with ¢ € SLy(Z), we may assume that | Im(z)| = sup{|Im(g - 2)|, g € SLy(Z)}.

In particular, taking ¢ = (1) _O ), we get |Im(z)| > |IT;|(§)‘, so |z| > 1. If
gn = (1) ZL withn € Z, then g, - z = z 4+ n, so Im(g, - z) = Im(z) and we

still have | Im(g,, - 2)| = sup{| Im((hgn) - 2)|, h € SLs(Z)}, and in particular we still
have |g - z| > 1. We can choose n € Z such that —1 < Re(z) +n < 3, and then we
have g, - z € {2 and we are done.

We have :
/ drdy /1/2 oo dxdy
o Y —1/2 JV1=22
1/2
= —dx < 400.
/1/2 V1—a?
For every € € (0,1/4), let

Q.={z€h]||z| >1—cand|Im(z)| < 1 +¢}.

As in (e), we see that
dzdy /1/2+€ 1
]:z/—: ——dx < +00.
: Q. y? 12— V1 — 2 —¢

QA ={geG|g-ieQ}.

This is the inverse image of (). by the continuous map G — G/ K. In particular, it is
an open subset of G, so, by the definition of a regular Borel measure (and Urysohn’s
lemma), we have

Let

p1c(€2) = sup {Lfduc, fe€E.(G), 0< f<1land supp(f) C Q’e}-
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If f € 6.(G)is such that 0 < f < 1 and supp(€2.), then, for every g € G, we have
fRgK) = [, f x J(gk)dug (k) € [0,1] (because the Haar measure 115 has total volume
1), and f5(gK) =0if g € ., ie. if gK & Q.; s0 fG/K fRdpc ik < peyr (). As
Jo fdpe = fG/K [5duc,k for every f € €.(G), and as pu/r is a multiple of the

measure % by (c), we see that pc(€2.) is bounded by a multiple of /., hence finite.

On the other hand, as €. DO (2, the restriction to . of the projection
m : G — SLy(Z)\ G is surjective; indeed, if g € G, then, by (d), there exists
h € SLy(Z) such that hg - i € Q, and then hg € Q. and 7(hg) = 7(g). Again by the
definition of a regular Borel measure and Urysohn’s lemma, there exists f € €."(G)
such that fio, = L and [, fdug < +oo. Let h =52 f € €,(SLy(Z)\G). We have
fSLQ(Z)\G hdpsiyzye = [o fdpua < +oo. Butif 2 € SLy(Z)\ G and g is an element
of Q. such that 7(g) = x, then

= Y flhg)=flg) =

heSLy(Z)

(using the fact that f > 0). So

vol(SLy(Z)\G) < / hdjist,z)a < +00.
SL2(ZN\G

(5) Let V := {f € L*(X)| [y f(z)du(x) = 0}. This is a G-invariant subspace of L?(X)
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because the measure 4 is left invariant by G. We show that V¢ = 0. Let f € L*(X)¢.
Then we have || R, f — f||2(x) = 0 for every g € G. Applying Minkowski inequality (see
[.5.6.7) to the function ¢ : G x X — C, (g,z) — | f(zg) — f(x)|, we see that

/\farg o)ldg| a0,

so the function = — [, |f(zg) — f(z)|dg is 0 almost everywhere on x. Choose o € X
such that [, |f(zog) — f(x0)|dg = 0. Then the function g — f(z0g) — f(xo) is 0 almost
everywhere on G, so f is equal in L?(X) to the class of the constant function f(xq). If
moreover f € V, this forces f to be 0.

Now we can apply question (4) to V. Its conclusion says that, for allf1, fo € V, we have

lim <Rgf17 fo) =0

g—r—+o0

Let fi, f, € L*(X). We write ¢; = [, fidp and ¢; = [ fodp. As vol(X) = 1, the
functions f; — ¢y and fy — ¢ are in V, so, by what we have just seen, we have

lim <R f1 C1, f2 - Cg> = 0.

g—++o0
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For every g € GG, we have

(Rofi — 1, Jo —a) = /X (f1(xg) — &) (falz) — c2)da

= /Xfl(xg)fQ(x)dx - cl/ng(a;)dx — cg/Xfl(xg)dx+clcg
_ /X Fi(@g) fo)da — crca.

Finally, we get

lim /Xfl(xg)fz($)d$zc1027

g—+oo

as desired.

6) (a).

(b).

We define a function i : G — C by

h(z) = /K ey )y (4),

for every y € G. Let’s show that h is continuous. Let ¢ > 0. As ¢ € %.(G), proposi-
tion implies that ¢ is left uniformly continuous, so there exists a neighborhood
U of 1 in G such that |¢)(z'z) — 1(z)| < e for every x € G and every 2’ € U. Then,
if r € G and 2/ € U, we have

[h(2'x) — h(z)| < /K [(a"zy™") — d(ay)ldux(y) < /stux =&,

so h is also left uniformly continuous (and in particular continuous). Moreover, ince
we have ¥ (zy~!) = 0 unless * € (suppv)y C (supp)K, the support of 1 is
contained in (supp ¢) K, hence it is compact.

Finally, for every f € 6.(G), we have :

Vg (f) = f(@y)(z)duc(v)duk (y)

GxXK

— g f(x)l/J(xy*l)d,uG(ac)duK(y) (because Agx = 1)
x K

_ /G F@)h(@)dpe (@),

Let (U,,)n>0 be a decreasing sequence of neighborhoods of 1 in G that forms a basis
of neighborhoods; for example, we can take for U, the intersection of GG with the ball
of radius 27" in M,(R), for any choice of norm on M;(R). By proposition
there exists an approximate identity (¢,,),,>0 such that supp(¢,,) C U, for every n.
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We prove as in proposition [I.4.1.9|that this sequence (¢,,),>0 works. Let f € €.(G).
Then i (f) = [ F(W)dur () = [y x f(9)¥n(@)dpc(w)dp (y) for every n, so

[V pure (f) =t (f)] S/ |f(zy)—f ()| (2)dpe(x)dpk (y) < sup || Loy f—flloo-

Gx K zeUn

As f is left uniformly continuous, this tends to 0 when n. — +o0.
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VI Application of Fourier analysis to
random walks on groups

We will mostly be interested in the case of finite groups in this chapter, but we will give some
results for more general groups in the last section.

V1.1 Finite Markov chains

We fix once and for all a probability space € (i.e. a measure space with total volume one).

Definition VI.1.1. Let X be a measurable space (i.e. a space with a g-algebra). A random
variable with values in X is a measurable function X : 2 — X.

For every measurable subset A of X, we write P(X € A) for the measure of X !(A). (We
think of this as the probability that X is in A.) The distribution of X is the probability distribution
pon X defined by u(A) =P(X € A).

We think of random variables as representing the outcome of some experiment or observation.
The probability space (2 is usually not specified (you can think of it as something like “all the
possible universes”). For example, we could think of the outcome of flipping a coin as a random
variable with values in the finite set {heads, tails}. If the coin is unbiased, the distribution of that
random variable is given by p({heads}) = p({tails}) = 3.

In this notes, we will only be concerned with the case where X is finite and its o-algebra is the
set of all subsets of X. We can (and will) think of measures on X as functions p : X — Rxy.

From now on, we assume that X is finite.

Definition VI.1.2. A matrix P = (P,;) € M,(R) is called stochastic if P;,; > 0 for all
i,j€4{1,...,n}and Y 7| P ;= 1foreveryi€ {1,...,n}.

If P: X x X — Ris a function, we think of it as a matrix of size |X| x |X| and we call is

stochastic if P(z,y) > Oforallz,y € X and }_ y P(z,y) = 1foreveryz € X.

Definition VI.1.3. Let P : X2 — R be a stochastic function and v be a probability distribution
on X A (discrete-time homogeneous) Markov chain with state space X, initial distribution v
and transition matrix P is a sequence (X,,),>o of random variables with values in X such that :
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(a) The distribution of X is v.

(b) Foreveryn > 0andall zg,..., x4 € X, if P(X,, = 2,,...,Xo = x¢) > 0, then

P(Xoi1 = 2pi1| Xn = 2py ..., Xo = x0) = P2y, Tny1)-

Let P,(Q : X? — R be two functions. We write P() for the function X? — R defined by

PQ(z,y) = > P(z,2)Q(z,y).

zeX

(If we see functions on X2 as matrices, this is the usual matrix product.)

In particular, we write P" for the product PP ... P (n times); by convention, PV is the char-
acteristic function of the diagonal.

Lemma VI.14. Let (X,,)n>0 be a Markov chain on X with initial distribution v and transition
matrix P. Then, for every x € X, we have

P(X, =) =) v(y)P"(y,2).

yeX

In other words, if we see P as a matrix and v as a row vector, then the distribution of X, is
vP"™.

Proof. We prove the result by induction on n. It is obvious for n = 0. Suppose that we know it
for some n, and let’s prove it for n 4+ 1. Let x € X. Then

]P)(Xn+1 = x) = Z ]P)(XnJrl = x|Xn = y)

yeX, P(Xn=y)#0

— Z P(X, = y)P(Xpy1 = 2| X =9)

yeX

= P(X, =y)P(y,x).

yeX

Using the induction hypothesis, we get

P(Xois = 2) = 3 P(,0) 3 v(2)P" () = S w(2) P (z),

yeX zeX zeX
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Example VI.1.5. (1) Random walk on the discrete circle : We take X = Z/rZ, v = 6, and

2)

3)

P defined b
’ Py = {3 Tr-ve i)
Y= 0 otherwise.

The Markov chain is modeling a random walk on the “discrete circle” Z/nZ where we
start at 0 with probability 1, and then, at each time n, we have a 50% chance to go to the
preceding point on the discrete circle and a 50% chance to go to the next point of the circle.

Mixing a deck of cards using random transpositions : We are trying to understand the fol-
lowing situation : We have a deck of NV cards. At each time n, we randomly (uniformly
and independently) choose two cards and switch their positions in the deck. How long will
it take to mix the deck ?

This problem is modeled by a Markov chain with state space Sy (representing all the
possible orderings of the deck), initial distribution the Dirac measure supported at our
starting position, and transition matrix P given by

% ifr=1
P(10,0) =} +» if 7 is a transposition
0  otherwise.

The Bernoulli-Laplace diffusion model : We have two urns labeled by 0 and 1. At the start,
urn O contains 7 red balls and urn 1 contains b blue balls. At each time n, we choose a ball
in each urn (uniformly and independently) and switch them. How long will it take to mix
the balls ?

We model this problem using a Markov chain with state space Sy /6, X G,
where N = r + b, and G, xS, is embedded in Gy via the obvious bijection
{1,...,r} x{1,...,b} ~ {1,...,N}. Indeed, we can think of the N balls as the set
{1,..., N}, where the first r balls are red and the last b balls are blue. A state of the pro-
cess described above is a subset A of {1,..., N} such that | A| = r (the content of urn 0);
note that switching two balls between the urns does not change the number of balls in each
urn. The group & acts transitively on the set 2, of cardinality r subsets of {1,..., N},
and its subgroup &, x &, is the stabilizer of {1,...,r}, so the state set is indeed in bi-
jection with & / &, x &;. The initial distribution is the Dirac measure concentrated at
{1,...,r} The transition matrix P is given by

D=1 e "n_
P(A’,A):{ G ifr—jAnA]=1

otherwise.

Indeed, we need the calculate the number of pairs (A, A’) of subsets of cardinality r of
{1,..., N} such that r — |[A N A’| = 1; note that the condition means that A’ — A and

A — A’ both have exactly one element. There are (TTT;?! choices for A, b choicse for the

element of A’ — A and r choices for the element of A — A’.
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We have been asking if the chains described in the examples converge, but the first question
should be : to what distribution(s) can they converge ?

Definition VI.1.6. Consider a stochastic function P : X? — R. A stationary distribution for P
is a probability distribution x4 on X such that, for every y € X, we have

ply) = p(x)P(z,y).

rzeX

If we think of P as a | X| x | X| matrix and of x as a row vector of size | X |, then the condition
becomes P = .

If a Markov chain with transition matrix P converges in any reasonable sense, then the distri-
bution of its limit should be a stationary distribution of P.

Finally, we define the distance that we will use on random variables. Note that this definition
makes just as much sense if X is a general measure space, and the lemma following it stays true
with essentially the same proof.

Definition VI.1.7. Let 1 and v be two probability distributions on X. Their fotal variation
distance is
IX = Yllrv = max|u(A) = v(A)].

This is clearly a metric on the set of probability distributions, and in fact it is closely related
to the L' metric.
Lemma VI.1.8. Let ;o and v be two probability distributions on X. Then we have

= vl = 5 3 lute) — vi)]

rzeX

Proof. Let B = {x € X|u(z) > v(z)}. Forevery A C X, we have

W(A) = v(A) = w(ANB) —v(ANB) + 3 (ul() - v(a)

<u(ANnB)—-v(ANB) o
=u(B)—v(B) = Y (u(z) —v(x))
< u(B) —v(B).

Similarly, we have

v(A) = p(A) < v(X = B) = p(X — B) = u(B) — v(B).
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VL2 The Perron-Frobenius theorem and convergence of Markov chains

Hence |u(A) — v(A)| < u(B) — v(B), with equality if A = Bor A = X — B, and we get

I~ vlirv = u(B) ~ (B) = S(n(B) ~ v(B) + (X ~ B) — u(X ~ B))

= S ule) v+ S )~ v)

€D z€eX—-B

L=l
= —||lp — |1
SLAE

V1.2 The Perron-Frobenius theorem and convergence of
Markov chains

Notation VI.2.1. Let A, B € M,,,,(R). We say that A > B (resp. A > B) if A;; > B,; (resp.
A;; > By;) forevery (7,5) € {1,...,n} x {1,...,m}. We also denote by |A| the n x m matrix
(1441)-

Definition VI.2.2. We say that a matrix P = (P;;) € M,,(R) is positive if P > 0.

Definition VI.2.3. We say that a stochastic matric P € M, (R) is ergodic if there exists a positive
integer 1 such that P" is positive.

Remember the following classical theorem from linear algebra :

Theorem VI.2.4 (Perron-Frobenius theorem). Let P = (P;;) € M,,(R) be an ergodic stochastic
matrix. Then :

(i) The matrix P has 1 as a simple eigenvalue, and every complex eigenvalue )\ of P satisfies
A < L

(ii) The space of row vectors w € My, (R) such that wP = w is 1-dimensional, and it has a
generator v = (vy, ..., v,) such that v; > 0 for every i and vy + ... + v, = 1.

(iii) Let P, be the n X n matrix all of whose rows are equal to the vector v of (ii). Then
P — P, asr — +o00. More precisely, let p = max{|\|, A # 1 eigenvalue of P}, by (i),
we know that p < 1. Fix any norm ||.|| on M, (R). Then there exists a polynomial f € 7Z[t|
such that

|P* = Pall < F(R)6

Lemma VL.2.5. Let A = (A;;) € M,(R) be a positive matrix, let

Z={x=(x1,...,2,) € Rz >0and x, + ... + z, = 1},
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VI Application of Fourier analysis to random walks on groups

and let
A={XeR|Fx € Z, Ax > A\z}.

Then the real number Ao = sup A is positive and a simple root of the characteristic polynomial
of A, and it has an eigenvector all of whose entries are positive. Moreover, for any complex
eigenvalue \ # \g of A, we have |\| < \o.

Proof. Note that A # @ because 0 € A, and A is bounded above by the sum of all the entries of
A. So )¢ is well-defined and nonnegative. Let (1, ),>0 be a sequence of elements of A converging
to \g; for every n > 0, choose 2™ € Z such that Ax(™ > unx(”). As Z is compact, we may
assume that the sequence (2(™), converges to some = € Z, and then we have Az > \gz.
Suppose that Az # Aoz, then, as A > 0, we get A(Azx) > NgAz. As Az > 0 and Az # 0, we
can multiply Az by a positive scalar to get a vector y € Z such that Ay > A\gy, which contradicts
the definition of \g. So Ax = Agx. Also, as x has at least one positive entry and A > 0, the
vector \opx = Ax has all its entries positive, which implies that A\ > 0 and = > 0.

Next we show that every complex eigenvalue A # )\ of A satisfies |[A\| < Ao. Let A be a
complex eigenvalue of A. Then there exists a nonzero vector y = (y1,...,y,) € C" such that
Ay = X\y. Forevery i € {1,...,n}, we have

DAy <D Aiglygl
o =1

In other words, we have Aly| > |A||y|. As we can normalize |y| to get an element of Z, this
shows that |A| < A\g. Suppose that |\| = \g. As A > 0, there exists a positive real number §
such that A’ := A — 61, > 0. Then u — p— 6 induces a bijection between the eigenvalues and
those of A’, and in particular A\ — 0 is the biggest real eigenvalue of A’ (and it is positive because
A" > 0). By applying the beginning of the paragraph to A’, we see that |\ — J| < Ay — J. But
then

Allys| =

Ao=[A=[A=0+5<|A=0]+0d < Ao,
80 |A — & + 0 = |A|, so A € Rss, and we must have A = .

Let’s show that the eigenspace E,, := Ker(A — \g/,,) has dimension 1. Suppose that there
exists y = (yi1,...,yn) € E), (with real entries) such that the family {z,y} is linearly inde-
pendent. We may assume that y has at least one positive entry. Write © = (xy,...,x,), and let
w=sup{v € RVi € {1,...,n}, z; > vy;}. Thenz — vy > 0 and x — vy # 0. The vector
x—vy is nonzero because x and y are linearly independent, and we have A(x—vy) = A\o(z—ry).
As A >0, x — vy > 0and )\, this implies z — vy > 0, contradicting the choice of v.

Now we show that )\, is a simple root of the characteristic polynomial y 4(¢) of A. We can
find ¢ € GL,(R) such that g~*Ag is of the form <)(\)0 ; , with B € M,_;(R). We have
xa(t) = (t — o) xn(t). Suppose that the multiplicity of g as a root of x 4(¢) is > 2. Then X,
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VL2 The Perron-Frobenius theorem and convergence of Markov chains

is a root of xp(t), so there exists 2 € R""! such that Bz = \gz. Lety = g <2) € R", then

Ay = Ay + ax for some a € R. As dim(E,,) # 0, the vector y cannot be an eigenvector of
A, so a # 0. An easy induction (using the fact that Az = A\gz) shows that, for every positive
integer r, we have A"y = Aoy + ra\y 'z. As A" > 0, this implies that

Aly| = [Ay| = Mgy + raX; a] = [radg z] = Ajlyl = Ay (r|az] — Aolyl)-

As o # 0 and = > 0, there exists a positive integer 7 such that r|az| — Ag|ly| > Ao|y|, and then
we have A"|y| > Aj|y|. As A" > 0, applying the beginning of the proof to A", we see that this
implies that A" has a real eigenvalue > Aj. But this impossible, because the eigenvalues of A"
are the rth powers of the eigenvalues of A, so they all absolute value < A{.

]

Proof of the theorem. We prove (i). Let vy = (1,...,1) € R™. Then the fact that P is stochastic
is equivalent to the fact P > 0 and Pvy = vy. As all the matrices P" for r > 1 have nonnegative
entries and satisfy P vy = vy, they are all stochastic. Also, if z = (z1,...,2,) € (R>¢)" and
Q = (Qi;) € M,(R) is stochastic, then, for every i € {1,...,n}, we have

(Qx); = ZQz‘j%’ < sup z;.
j=1

1<j<n

Fix an integer » > 1 such that P* > 0. By the lemma, the matrix P" has a simple real
positive eigenvalue \q such that every complex eigenvalue A # \q of P satisfies |A\| < A\g. By
the definition of )\q in the lemma and the observation above about stochastic matrices, we have
Ao < 1. On the other hand, we have Pvy = vy, so 1 is an eigenvalue of P, hence also of P", and
so A\g = 1. Let A € C be an eigenvalue of P, and y € C" be an eigenvector for this eigenvalue.
Then P'y = A"y, so A" is an eigenvalue of P". If A" # 1, then |\"| < 1 by the lemma, hence
|A| < 1. If A" = 1, then the eigenvector y must be in Ker(P" — I,,), and we know (again by the
lemma) that this space is 1-dimensional. As vy € Ker(P" — I,,), the vector y must be a multiple
of vy, and then \ = 1.

Finally, if the characteristic polynomial of P is xp(t) = (t — A1) ... (t — A,.), then that of P"
is xpr(t) = (t — A])...(t — A). So the multiplicity of 1 in xp(¢) is at most its mutliplicity in
X pr(t), which we know is 1 by the lemma. This finishes the proof of (i).

Let’s prove (ii). As P and P? have the same characteristic polynomial, we know that 1 is a
simple eigenvalue of P by (i), so the space of row vectors w such that wP = w has dimension
1. Let w = (wy,...,w,) be a nonzero vector in this space. Then we also have |w|P = |w]|.
Indeed, for every j € {1,...,n}, we have

n
g w; Py
i=1

lw;| =

n
<> jwi|Py
i=1
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VI Application of Fourier analysis to random walks on groups

(because all the P;; are nonnegative). Suppose that |w| # |w|P. Then there exists
Jo € {1,...,n} suchthat |wj,| < >7 | |w;| Py, and this implies that

n n

n
D lwil = wil Py > Yy,
j=1

i=1 ij=1

a contradiction. As w # 0, at least one of the |w;| is positive. If we choose as before
r > 1 such that P* > 0, then |w| = P"|w|, so, for every j € {1,...,n}, we have
lw;| =7 (P");j|lw;| > 0. This finishes the proof of (ii).

We finally prove (iii). As all the norms on M, (R) are equivalent, it suffices to prove the state-
ment for a particular norm. By the existence of the Jordan normal form (actually by the Jordan-

0 B
with B € M,,_1(R) such that B = D + N, with D a diagonal matrix, N a nilpotent matrix and
DN = ND. Choose the operator norm ||.|| on M, (R) coming from the usual Euclidian norm
on R"™. The entries of D are the eigenvalues of P different from 1, so |D|| = p. As D and N
commute, we have, for every k € Z>,

Chevalley decomposition), there exists a matrix g € GL,(R) with g7'Pg = A = (1 O),

B"=(D+ N)kF = Zk: <§) DFTINT,

J=0

If £ > n (in fact, K > n — 1 suffices), then this simplifies to Z?:o (I;) D¥=INJ because N7 = 0
for j > n. Hence, if k£ > n,

" [k . : AN :
1B <3 (j)nDn’f SN < A S RIIN
=0

J=0

1 0
Let A, = <O B.
A* — A as k — +oo (because p < 1). This implies that P¥ — P’ := gA, g~ ' as k — +o0.
Also,

>, with B, = 0 € M,,_(R). Then ||A* — A, || = || B¥|| for every k > 0, so

|1PE = P'|| = [lg" (A* — A )gll < llgllllg™ 1 B,

which is bounded by the product of p* and of a polynomial in k. So it only remains to show that
P’ = P.. As P' = limj_,, . P*, we have P"P = PP’ = P’. Remember that 1 is a simple
eigenvalue of P and of PT. So all the rows of P’ are multiples of the corresponding eigenvector
of PT, ie. of v. Also, as P* is stochastic for every k > 0, its limit P’ is stochastic. So all the
rows of P’ have nonnegative entries whose sum is 1, which means that they are all equal to v,
and that P’ = P..

]

Definition VL.2.6. A Markov chain with transition matrix P is called ergodic if P is ergodic.
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V1.3 A criterion for ergodicity

In example [VI.1.5] all the chains are ergodic, except the Markov chain of (1) when r is even.

Corollary VI.2.7. Let (X,,),>0 be an ergodic Markov chain with transition matrix P. Then P
has a unique stationary distribution i, and, if |, is the distribution of X,,, we have

|t — pellrv < f(n)p",

where f is a polynomial and p = max{|\|, A\ # 1 eigenvalue of P} < 1.

Proof. Let v be the initial distribution of the Markov chain. By lemma we have
wn = vP". Let Py be the limit of the sequence (P"),>o. All the rows of P, are equal to
i, 80 VP, = p. If we use the L! norm on the space of functions from X to R (for the counting
measure on X) to define the operator norm ||.|| on the space of matrices, then we have

| 1, 1 :
e = pllrv = Sl = plls = Sl P" = vPuli < Sl P = Peoll,

so the bound on ||, — p||7v follows immediately from (iii) of the theorem.

]

Remark V1.2.8. Although the bound on ||, — u||7v looks quite good (it is exponential), it is
useless if we want to know when exactly p,, becomes close to the stationary distribution. We
need to analyse the problem more closely to answer that kind of question. This is what we will
now try to do in some particular cases.

Example VI.2.9. The chain of example [VI.1.5(2) is ergodic. Indeed, let 7' C &,, be the union
of {1} and of the set of transpositions. Then, for » > 1 and 0,0’ € &,,, we have P"(¢’,0) > 0
if and only if 0’c~! can be written as a product of exactly r elements of T'; as 1 € T, this is
equivalent to the condition that 0’c~! can be written as a product of s transpositions, for some
s <r. Soifr > @ (the length of the longest element of &,,), then P"(o’,0) > 0 for all
o,0 € G,.

VI.3 A criterion for ergodicity

The definitions and results ot this sectiona are not used in the next sections.

Remember the following definitions :

Definition VI.3.1. A (finite unoriented) graph is a pair G = (X, F), where X is a finite set and
FE is a set of unordered pairs {x, y} of distinct elements of X. We say that X is the set of vertices
of GG and that F is the set of edges.

Let x,y € X. A path connecting = and y in the graph G is a sequence p = (ey,...,e,) of
edges of G such that we can write e; = {z;,y;} with zg = z, y,, = y and y; = x;,; for every
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i € {0,...,n — 1}. We call the integer n + 1 the length of the path p and denoted by |p|. If
x =y, we say that the path if a closed path or a loop based at x.

We say that the graph G is connected if for every x,y € X, there exists a path connected x
and y. We say that G is bipartite if there exists a surjective function ¢ : X — {—1, 1} such that,
for every edge e = {x,y} of G, we gave ¢(z) # ¢(y). (In other parts, we can partition X into
two nonempty subsets X, and X such that every edge connects an element of X to an element
of X1.)

For every =,y € X, the distance d(z,y) between x and y is the length of the shortest path
connecting x and y; if there is no such path, then we set d(x,y) = +oco. Note that this defines a
metric on X if G is connected.

The following result is classical.

Proposition VI.3.2. Let G = (X, E) be a connected graph such that | X | > 2. Then the follow-
ing conditions are equivalent :

(i) G is bipartite;
(ii) every loop in G has even length;

(iii) there exists xy such that every loop based at x has even length.

Proof. We show that (i) implies (ii). Suppose that G is bipartite, and let ¢ : X — {—1,1} be as
in the definition above. Let (e, ..., e,) be aloop in G. We write ¢; = {z;,y;} with x; = y;11
for0 <7 <n—1andy, = xo. Then an easy induction on 7 shows that, if 7 is even, we have
¢(z;) = ¢(x0) and ¢(y;) # ¢(z0), and, if ¢ is odd, we have @(z;) # ¢(xo) and ¢(y;) = P(o).
But y,, = 0, 80 ¢(yn) = &(x0), so n is odd, and the loop has even length.

It is obvious that (ii) implies (iii). Now assume (iii) and let’s show (i). Pick zo € X such
that every loop based at z has even length. We want to define a function ¢ : X — {0,1}. Let
y € X. As G is connected, there exists a path p = (ey, . .., e,) connecting o and z, and we set
#(x) = (—1)!"). We need to show that this does not depend on the path. Let ¢ = (fy, ..., fm) be
another path connecting = and x. Then (e, ..., €, fm,-- -, fo) is a loop based at z, so it has
even length by assumption, so |p| + |¢| and even, and (—1)/?l = (—1)l9. Note that ¢(xo) = 1
and that ¢(x) = —1 if {x¢, x} is an edge (such an edge must exist because G is connected and
| X| > 2). So ¢ is surjective. Let e = {x,y} be an edge of G. Let p = (ey,...,e,) be a path
connecting x and x. Then p’ := (ey, . .. .e,, €) is a path connecting x, and y, and |p'| = |p| + 1,
so ¢(x) # ¢(y). This shows that G is bipartite.

]

We now come to the connection with Markov chains.

Proposition VLI.3.3. Let X be a finite set and P : X x X — R be a stochastic function. We
define a graph G = (X, E) in the following way : a pair {x,y} of distinct elements of X is an
edge of G if and only if P(x,y) > 0.
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Suppose that G is connected and that it is not bipartite. Then the function P is ergodic.

Proof. Note that, for every =,y € X and every n > 1, we have P"(z,y) > 0 if and only if there
exists a path of length n connecting = and y.

By proposition for every x € X, there exists a loop p, of odd length based at x. Write
2m + 1 = maxgex |pz|, with m € Zso. Let z € X. Let’s show that, for every n > 2m, there
is a loop of length n based at =. Let {x, 2z} be an edge. For every r > 0, write g3, for the loop
of length 2r given by ¢o, = ({z, 2}, {z, 2}, ..., {2, 2}, {2,2}). Let n > 2m. If n is even, then

n—|ps|

qn 1s a loop of length n based at x. If n is odd, then r := == is a nonnegative integer, and the

loop obtained by concatening p, and ¢, has length n and contains z.

Let 6 = max, yex d(z,y). (This is called the diameter of the graph G.) Let z,y € X and
n > 2m + 6, and let’s show that there is a path of length connecting x and y (this will finish the
proof). Let p be any path connecting x and y. Then |p| < 9, so, by the previous paragraph, there
exists a loop ¢ of length n — |p| based at x. The concatenation of p and ¢ is the desired path.

O]
Corollary VI.3.4. (i) The chain of example|V1.1.5(1) is ergodic if and only if r is odd.
(ii) The chain of example [VI.1.5(3) is ergodic if r < n — 1.

We will reprove (ii) by a different method in section

Proof. (i) The graph corresponding to the chain has Z/rZ as set of vertices, and there is an
edge between a,b € Z/rZ if and only if a — b € {£1}. This graph is obviously connected,
and ti is easy to see that it is bipartite if and only if 7 is even. In particular, if  is odd, then
the proposition implies that the chain is ergodic.

Now assume that r is even. An easy induction on n shows that, for every n > 1 and all
a,b € Z/rZ, we have P"(a,b) = 0 if the image of n + a + b in Z/27Z is nonzero. Indeed,
this follows from the definition of P if n = 1. Suppose the result known up to some
n > 1, and let’s prove it for n + 1. Let a,b € Z/rZ be such that P"*!(a,b) # 0. As
Pt a,b) = 3 cz),p Pla, ¢)P(c,b), there exists ¢ € Z/rZ such that P(a,c) # 0 and
P™(c,b) # 0. By the induction hypothesis and the case n = 1, this implies that a + ¢ # 0
mod 2andn+c¢+b#0 mod 2,andthenn+a+b+2c=n+a+b=0 mod 2.

(i) The graph corresponding to the Markov chain has the set €2, of cardinality » subsets of
{1,...,n} as its set of vertices, and there is an edge linking A, A’ € €, if and only if
|ANA| =r—1. Let Ay = {1,...,r}. We first show that the graph is connected. Let
A € Q,. We write A = {n4,...,n,}, and we choose the ordering of the elements such that
ANAy={1,...,n:}, with s = |AN Ag|. Let my, ..., m,_, be the elements of Ay — A.
For0 <i<r—s,let B; ={ny,...,nsri,Mis1,...,My_s}. Then By = Ay, B,_s = A,
and there is an edge between B; and B, for every ¢ € {0,...,7 — s — 1}. So the graph
is connected.
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VI Application of Fourier analysis to random walks on groups

Now we show that the graph is not bipartite, by finding a loop of odd length. Let
A={1,...,r=1,r+1}and B={2,...,r,7+ 1}. Then { Ay, A}, {A, B} and { B, Ao}
are edges, so we have found a loop of length 3.

]

V1.4 Random walks on homogeneous spaces

Now suppose that we have a finite group G acting transitively (on the left) on the finite set X.
Fix 7o € X, and let K be the stabilizer of z, in G, so that we have a bijection G/K ~ X,
gr— g - .

Warning : We will be using the counting measure on G to define convolution products and
LP norms in this section. Beware constants ! (The reason for this choice is that we want the
convolution of two probability distributions to be a probability distribution.)

Definition VI.4.1. If 7 is a probability distribution on G, we denote by P, : X x X — R the

function defined by
Pr(xK,yK) = m(yKa™"),

forall x,y € G.

Definition VI.4.2. A left-invariant random walk on X driven by 7 and with initial distribution v
is a Markov chain with state space X, initial distribution v and transition matrix P;.

Here is the description of this Markov chain (X,),>0 in words : We choosing a starting point
on X according to the probability distribution v. At time n, we choose an element of G using
the probability distribution 7 and act on our position by this element to get to the position at time
n+ 1.

Remark V1.4.3. The matrix P; is actually bistochastic, i.e. both P, and its transpose are stochas-
tic. Indeed, for every y € G, we have

Z P.(zK,yK) = Z m(yKa™)

zeG/K zeG/K

=> w(yz")

zeG
=1.

In particular, the uniform probability distribution on X is an invariant distribution for P,. If
P, is ergodic, it is the only invariant distribution.

If the homogeneous space is G itself, we can give a simple criterino for ergodicity. (See lemma
16.20 and proposition 16.21 of [1]].)
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Proposition V1.4.4. Suppose that X = G, and let S = supp(). Write G g for the set of elements

of G that can be written as ¢, . . . go, for some r > 0, with exactly r of the g; in S and r of the g;
in S~

Then G'g is a subgroup of G, and the function P; is ergodic if and only if G = Gy.

In particular, if (1) # 0, then P, is ergodic if and only S generates G. More generally, if S
generates (G and is not contained in a coset of a strict subgroup of G, then Py is ergodic. (Note
that we have S C gGg forevery g € S.)

Proposition VI.4.5. For every n > 1, we have P]' = P, where 7" is the n-fold convolution
product of .

Proof. We prove the result by induction on n. It is just the definition of P, if n = 1. Suppose
the equality known for some n > 1, and let’s prove it for n + 1. Let z,y € X. Then

PP K yK) = ) Pu(aK, 2K)Pp (2K, yK)
z€G/K
= Z T(zKx Da"(yKz ")

z€G/K

= Z m(za )" (yhz ™)

2€G, heK

_ Z ﬂ_*(?’b—‘rl)(yhx—l)
heK

*(n—l—l)(

= z,y).

]

Corollary V1.4.6. Let 7 a probability measure on (G, and suppose that 7 is right invariant by
K. Consider a left-invariant random walk (X,,),>0 driven by m and with initial distribution
the Dirac measure concentrated at xo € X. Let i, be the distribution of X,, and let |1 be the
uniform probability distribution on X.

Then, for every n > 0, we have
1 . ~/ \¥\n A~/ AR
lpn = pilify < 5 > dim(V)Tr((7(p)*)" 0 7(p)"),
(p,V)eGIVE £0 and pz1

where we denote by 1 the trivial representation of G.

Remember that, if (p, V') € @ is an irreducible unitary representation of G and f : G — Cis

-~

a function, then f(p) is then endomorphism of V' defined by

Fp) =" fl@)p(a™).

zeG
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VI Application of Fourier analysis to random walks on groups

Proof. Fix n > 0. For every x € GG, we have
pin(2) = PP (x0, 7) = 7" (1K)

by lemma [VI.1.4] and proposition Let 7y be the uniform probability distribution on G.
By lemma[VIL.1.8] we have

2

o=l = 3 [ 32 o) - o)

z€G/K

<Z |7 () = mo(x )\)

1

= 717" = ol
G
< Bl —mol,

where the last inequality is the Cauchy-Schwarz inequality. (Note that we are using the counting
measure on G to define the L? norms.) Let f = 7" — my € L*(G). By the Parseval formula
(theorem [[V.6.3(iii), note the factor ﬁ coming from the unnormalized Haar measure), we have

1£11? = }jmm Te(f(p)* o f(p))-

pV)EG

So we need to calculate the j?(p) Note that we have

for every p € G.
Suppose first that p = 1. Then 7(p) = 7i(p) = 1, s0 f(p) =

Let (p,V) € G, and suppose that p 2 1. Then a(p) = 3 ,cqp(z™) is an element of
End(V) that is G-equivariant, hence a multiple of idy, by Schur’s lemma, and has trace equal
to \_Cl¥| > wec X(x) = 0 (by corollary [[V.5.8). So fi(p) = 0, and F(p) = 7(p)". To finish the
proof, we just need to show that T(p) = 0if VX = 0. Let T = 7(p) = >, .o 7(x)p(z~") and
Px = Y .cxp(x). As 7 is right invariant by K, we have p(z) o T = T for every € K,
so P o T = |K|T. But Pg is the orthogonal projection on VX by proposition [V.1.7}, so
Im(T) c VE, andso T = 0if VE = 0.

]

Corollary V1.4.7. With the notation of the previous corollary, suppose that (G, K) is a Gelfand
pair and that 7 is bi- K -invariant. As in section let Z be the dual space of (G, K) (i.e. the
set of spherical functions by theorem[V.7.1)).
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Then, for every n > 0, we have

1 : ~ n
e = w7y < 5 dim(V,) |7 ()",
4
PEZ, p#1

-~

where now, if f € €(K\G/K) and p € Z, the scalar f(p) € C is the spherical Fourier
transform, defined by

Flo) =" fl@)p(a™).

zeG

Proof. The proof is almost the same as for the previous corollary, except that we use the Parseval
formula of corollary to calculate ||7*™ — 7o||2. By this formula, we have

*n 1 : A
|77 = moll3 = = D dim(Ve) [ F (o),
Gl 2=

where f = 7" —m,. If p = 1 is the spherical function corresponding to the trivial representation,
then 7(p) = mo(p) = 1,80 f(p) = 0. If  # 1, then

folp) =D ela™)

zeG

(L, o)z =0

(by (i) of theorem for example). So f(gp) = 7(¢)™, which finishes the proof.

VI.5 Application to the Bernoulli-Laplace diffusion
model

Remember that the Bernoulli-Laplace diffusion model was described in example [VI.1.5(3). We
have two positive integers 7 and b. This model is a Markov chain (X, ),,>0 on the set (2, of subsets
of cardinality  of {1,...,r + b} with initial distribution the Dirac distribution concentrated at
{1,...,r}. The group G := &, acts transitively on 2,, and the stabilizer of Ay := {1,...,r}
is K := 6, X G,. The transition matrix P of the chain is given by

(r=DI(b-1)! .o "n_
P(A',A):{ —<r6b>! iftr—lAnAl=1

otherwise.

Remember that we have defined in exercise [V.8.2.1(e) a metric d on (2. by
d(A,A") = r —|AN A’|, and that we have proved in |V.8.2.1(d) (and |V.8.2.1(f)) that the or-

bits of K on G/K ~ (), are the spheres with center A for this metric. Bi-invariant probability
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VI Application of Fourier analysis to random walks on groups

distributions 7 on G correspond bijectively to probability distributions on the set K'\G/K of K-
orbits on G/ K, and the description of P implies easily that P = P,, where 7 is the bi-invariant
probability distribution that corresponding to the uniform distribution on the sphere with center
Ay and radius 1.

If 11, is the distribution of X,, and y is the uniform distribution of 2,., then, by corollary[VI.4.7]
we have

1 , . iom
1t — pll7v < 1 > dim(Vp)[r(e)["

peZ—{1}

We calculated all these terms in the exercises of section Suppose for example that » < b
(if not, we can just switch r and b and we get an equivalent problem). Then we saw how to
decompose the quasi-regular representation of G' on L?(f2,) into irreducible subrepresentations
in exercise [V.8.2.3] (see [V.8.2.3|j) and [V.8.2.3[k)), and we have exactly r + 1 of them. We
denote the corresponding spherical functions by ¢y, . . ., ©,, as in exercise In particular,
the function ¢ is just the constant function 1. We calculated these functions in [V.8.2.3(f), but
actually we only need [V.8.2.3g). Indeed, we only care about T(¢,), for 1 < s < r. Asm
corresponds to the uniform distribution on the sphere or radius 1 centered at Ay, the number
T(ps) is just the coefficient of oy ,_1(Ap) in ¢, (with the notation of exercise[V.8.2.3)), that is,

~ s(r+b—s+1)
W(SOS) = 1 - Tb °
Also, [V.8.2.3(f) says that
r+0b r+0b
dim(V,,,) = —
= () ()
ifl1<s<r.

So corollary gives

1 — r+b r+b s(rab—s+1)\*"
lptn — il < (( )—( )) (1— ( >) |
— S s—1 rb

With some more effort, we can get the following result.

Theorem VIL.5.1. (See theorem 10 of chapter 3F of [8].) There exists a universal constant
a € R such that, if n = ™2 (log(2(r 4 b)) + ¢) with ¢ > 0, then we have

it — pllrv < ae™/2.

A different calculation (still using spherical functions) gives the following theorem :

Theorem VI1.5.2. (See theorem 6.3.2 of [7].) If r = b is large enough, then, for
n = =2(log(2(r +b)) — ¢) with 0 < ¢ < log(2(r + b)), we have

[t = el =1 —32e™".
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V1.6 Random walks on locally compact groups

In this section, we will see a few results (mostly without proofs) about random walks on more
general groups. A good reference for many questions that we did not touch on here is Breuillard’s
survey [S].

We fix a locally compact group G and a left Haar measure on G.

VI.6.1 Setup

Definition V1.6.1.1. (See remark[[.4.1.6]) A (complex) Radon measure on G is a bounded linear
functional on %;(G) (with the norm ||.||,). We denote by .# () the space of Radon measures
and by ||.|| its norm (which is the operator norm); this is a Banach space. If ;1 is a Radon measure,
we write f — [, f(z)du(x) for the corresponding linear functional on %,(G).

Example V1.6.1.2. (1) Any regular Borel measure is a Radon measure on GG (such measure
are called “positive” when we want to distinguish them from general Radon measures).

(2) If ¢ € L'(G), then the linear functional f — [, f(z)¢(x)dx is a Radon measure on G,
often denoted by ¢(z)dx or pdz.

(3) Forevery x € G, the linear functional 6,(G) — C, f —— f(z) is a Radon measure on G,
called the Dirac measure at x.

We define the convolution product y * v of two Radon measures i and v to be the linear
functional

fr— f(zy)du(z)dv(y).
GxG

Then it is not very hard to check that || % v|| < ||p||||v|| and that the convolution product is
associative on . (G). This makes .# (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of .Z (G).

If © = pdx and (' = ¢'dz, then it is easy to check that p * 1/ = (¢ * ¢')dx, where ¢ * ¢’ is
the usual convolution in L'(G).

We denote by G the set of unitary equivalence classes of irreducible unitary representations of
G. We can extend the Fourier transform (both the ordinary and the spherical versions) to .# (G)

(1) If g € .#(G) and (m, V) € G, define 7i() € End(V) by

() () = /G () (0)dp(z).
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VI Application of Fourier analysis to random walks on groups

(2) Suppose that G is the first entry of a Gelfand pair (G, K'), and that ¢ is a spherical function
of positive type on GG. Then, for every u € .#(G), we define fi(f) € C by :

Af) = / )

For both versions of the Fourier transform, the equality
pox g = !
for all p, i/ € 4 (G) (where the product on the right is composition of endomorphisms in the
first case and multiplication in the second case).

The following theorem is a generalization of Lévy’s convergence criterion. We say that a
sequence (1, )n>0 of Radon measures converges weakly if it converges in the weak* topology of

M (G).
Theorem VI1.6.1.3. (See [lI2)], section 5.2, theorem 5.2.)
(i) If p, ' € A (G) are such that ﬁ(w)ﬁ’(w)for every m € G, then ju = (1.

(ii) Let (in)n>0 be a sequence of (positive) probability measures on G and i be another prob-
ability measure on G. If (p,)n>0 converges weakly to i, then, for every (m,V) € G and
every v € V, we have lim,,_, o0 fin () (v) = fi(7)(v). Conversely, if, for every (z,V) € G
and all v,w € V, we have lim,,_, (i1, (7)(v),w) = ((7w)(v),w), then (w,)n>o con-
verges weakly to [i.

VI.6.2 Random walks

We fix a regular Borel probability measure ;o on (G, and we want to understand the behavior of
W asn — +oo.

The connection with random walks is that 1*" is the distribution of the nth step of a Markov
chain with state space G, initial distribution §; and “transition matrix” y(yz ). (We are choosing
01 as initial distribution to simplify the notation, but this is not really necessary for most results.)
In other words, we consider a sequence (g, ),>1 of independent random variables with values
in G and distribution p. The Markov chain (X,),>¢ is defined by X,, = g1n... g (so X is
the constant function 1). We could also consider random walks on a space GG/ K, where K is a
subgroup of GG : take (g,,),>1 as before, fix some initial random variable X, with values in G/ K
(for example a constant function) and set X,, = g, . .. g1 Xo.

VI1.6.3 Compact groups

In this section, we suppose that GG is compact. We start with a general convergence result, due to
Ito and Kawada ([[14]], see also theorem 2.3 of [5]).
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V1.6 Random walks on locally compact groups

Remember that the support of u is by definition the set of x € G such that, for every neigh-
borhood U of z, we have p(U) > 0.

Theorem V1.6.3.1. Suppose that the support of | generates a dense subgroup of G and is not
contained in any (left or right) coset of a proper closed subgroup of G. Then the sequence
(™) >0 converges weakly to the normalized Haar measure on G.

The proof is based on the convergence criterion of theorem[VI.6.1.3(ii). We must show that, for
every (m,V) € G nontrivial, the sequence ;" () = 7i(m)™ converges to 0 in End(V/). Note that
V' is finite-dimensional (because G is compact), so all the notions of convergence in End(V) are
equivalent, and we just need to prove that all the eigenvalues of fi(7) are < 1 in absolute value.
Suppose that this not the case, then there exists a unit vector v € V' such that

/G () (W)dpu(x) = M,

with [A| = 1. Itis not hard to see that this forces 7(z~1)(v) to be equal to A\v p-almost everywhere
and contradicts the hypothesis of the theorem.

Note that this result is much weaker that proposition (and the Perron-Frobenius the-
orem), because it only guarantees the weak convergence of (u*"),>o and says nothing about
convergence for other topologies (such as the one induced by the total variation distance) or
about the speed of convergence. If G is finite, all the notions of convergence on the set of prob-
ability measures on G coincide (it’s just a convex subset of the space of functions on GG, which
is finite-dimensional); also, it follows from the upper bound lemma (corollary that the
speed is convergence is exponential and controlled by the biggest eigenvalue of a ji(m) that is
# 1. But if G is infinite, then G is also infinite, so, also ji(7) has all its eigenvalues < 1 (in
absolute value), we can get eigenvalues that are arbitrarily close to 1. In fact, there is a special
name for when this doesn’t happen :

Definition VI.6.3.2. We say that the probability measure 1 on G has a spectral gap if there
exists € > 0 such that, for every 7 € G nontrivial and for every eigenvalue \ of fi(7), we have
A <1—e.

Let’s first look at some examples.

Example VI.6.3.3. If 1 = odx with ¢ € L?(G), then y has a spectral gap. In fact, the upper
bound lemma (corollary [VI.4.6) holds with essentially the same proof : for every n > 0, we have

*n 1 . ~ \n n
I = nelpv <5 D dim(V)T(F(p))" 0 7(p)"),
(p,V)€EGp1

where we denote by 1 the trivial representation of G and by j the normalized Haar measure on
G. (We could also prove a version for random walks on spaces GG/ K.) So we have convergence
in total variation distance and with exponential speed in this case.
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VI Application of Fourier analysis to random walks on groups

At the other extreme, we have measures with finite support.

Example V1.6.3.4. Take G = S'. Let \, ..., )\, € R, and consider the measure

1 T
ILL = 5 ;(5621'77/\5 + (56—22'7\'%5)
on G. Remember that G = Z (where n € Z corresponds to the representation z — z" of G).
For every n € Z, we have

r

Z(CQiﬂn)\s _{_e—QiﬂnAs)‘

s=1

N 1
f(n) = o

Suppose that the family (1, \;,...,\,) is Q-linearly independent. Then Kronecker’s theorem
(see for example chapter XXIII of [13]]) says that the set {(e*™*1 ... e%™A) n € Z} is dense
in (S1)". So we can find n # 0 such that fi(n) is arbitrarily close to 1. In other words, the
measure p has no spectral gap.

The question of which measures on nice groups like SU(d) have a spectral gap is a very
difficult and an active area of research. We’ll give some (difficult) recent results, due to Bourgain
and Gamburd (cf. [4] and [3])) for G = SU(d) and to Benoist and de Saxcé (cf. [2]) for a general
simple compact Lie group.

Theorem V1.6.3.5. Let G be a simple compact Lie group (for example G = SU(d) for d > 2
or G = S0O(d) for d = 3 or d > 5), and let |1 be a probability measure on G. We say that p is
almost Diophantine if there exists c1, co > 0 such that for every proper closed subgroup H of G
and for every n € Z big enough, we have p*"({x € G|d(z, H) < e="}) < e~ " (where d is
any metric on G).

Then yu has a spectral gap if and only if it is amost Diophantine.

Although the next version has a generalization to any simple compact Lie group, we’ll just
state it for SU(d) for simplicity.

Theorem VI.6.3.6. Let G = SU(d), and let i be a probability measure on G such that the
support of |1 generates a dense subgroup of G (such a measure is sometimes called “adapted” ).

If every element of the support of 1 has algebraic entries, then . has a spectral gap.

In fact, Benoist and de Saxcé conjecture that the algebraicity condition is not necessary (so
every adapted measure should have a spectral gap), see the introduction of [2]].

Remark V1.6.3.7. The spectral gap question is also connected to the Banach-Ruziewicz problem
(see chapter 2 of Sarnak’s book [21]] for the connection; another good reference on the Banach-
Ruziewicz problem is Lubotzky’s book [[15]). This problem asks whether Lebesgue measure is
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the only (up to a constant) finitely additive SO(n+ 1)-invariant measure on Lebesgue measurable
subsets of the sphere S” C R”. The answer is known to be “no” for n = 1 and “yes” for n > 2.
For n > 4, it is due to Margulis and Sullivan and uses the fact that SO(n + 1) has a finitely
generated dense subgroup that satisfies Kazhdan’s property (T) for n > 4 (in fact, the same
methods will show that Haar measure is the only left-invariant mean on any simple compact Lie
group that is not SO(n) with n > 4). For n = 2, 3, the solution is originally due to Drinfeld and
uses the Jacquet-Langlands correspondence and the Ramanujan-Petersson conjecture. (All this
and more is explained in [15].)

V1.6.4 Convergence of random walks with Fourier analysis
We now present some example of random walks on compact groups (or homogeneous spaces)

that can be analyzed using Fourier analysis, in the spirit of section

As we noted before (in example |V1.6.3.3), the upper bound lemma (corollary [VI.4.6)) still
holds for general compact groups.

As for finite groups, Fourier analysis works best if the measure y is conjugation or if p is
bi- K -invariant and (G, K) is a Gelfand pair.

Random reflections in SO(n)

The reference for this result is Rosenthal’s paper [17]. Fix n > 2 and 6 € (0, 27). Let

cosf sind 0
—sinf cosf
Ry = 1 € SO(n),
0 1

and let 19 be the unique conjugation-invariant probability measure concentrated on the conjugacy
class of Ry (in other words, the measure /i is the image of the normalized Haar measure of SO(n)
by the map SO(n) — SO(n), x — zRez ™).

Theorem V1.6.4.1. (i) There exist I') A > 0 (with A independent of 0) such that, for every

n > 1andevery c > 0, if k = mmlogn — cn), then

1
sk — del|py > 1 — Te™2 — A%.

(ii) Suppose that @ = m. Then there exist A, > 0 such that, for every n > 3 and every ¢ > 0,
ifk = inlogn + cn, then
155" — dz||rv < Ae™".
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The Gelfand pair case

The reference for this result is Su’s paper [24].
Fix 0 € (0, 7) and consider the following random process on S? ~ SO(3)/SO(2) :
- X is constant with value the North pole;

- to go from X, to X,, 11, choose a direction (independently and uniformly) and move a
distance of # following the geodesic (= big circle) in that direction.

This random walk is not driven by a measure on SO(3), but it is equivalent to one that is
(see section 3 of [24]). Let p, be the distribution of X,, and A\ be the unique SO(3)-invariant
probability measure on §2. Then we have the following result :

Theorem V1.6.4.2. Ifn = ﬁ with ¢ > 0, then

in

04332 < || — M| pp < 4.442¢/3.

In this theorem, ||.||pp is the discrepancy distance : If X is a metric space and pu, pi’ are two
(Borel) probability measures on X, then

| —|lpp = sup |u(B) —u'(B)|.
BCX ball

It is bounded above by the total variation distance, but it can see some phenomena that the total
variation distance misses (see the next subsection).

Remark about the different types of convergence

The reference for this subsection is Su’s paper [23].

Consider a random walk (X, ),,>0 on the circle S* driven by the masure ;1 = %(562im +0,-2ima),
for some a € R irrational, and let y,, be the distribution of X,,. Then :

- The general convergence result of Ito-Kawada (theorem [V1.6.3.1)) says that (1,,),,>0 con-
verges weakly to the normalized Haar measure dx on S*.

- On the other hand, we have seen in example that 1 has no spectral gap, so the
convergence cannot be too good. In fact, (1, ),>0 does not converge to dx in total variation
distance.

- On the third hand, (x,,),>0 does converge to dz (but not exponentially fast) in discrepancy
distance in many cases. More precisely, we have :

Theorem V1.6.4.3. Let 1) be the type of , i.e.

n = sup{y > 0] lim inf m’{ma} =0}
m—r—+00
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(where {.} is the fractional part). Then we have, for every € > 0,
it — dz|[pp = O(n~"/21+)

and
lttn — dz||pp = Qn~1/?77).

If « is irrational quadratic, we can do better : there exist constants cy,co > 0 such that, for

everyn > 1, we have
&1

vn

Co

vn

< ||, — dx||pp <

It is known that 7 = 1 if « is algebraic, and also that the subset of type 1 elements of [0, 1] has
Lebesgue measure 1.

VI.6.5 Random walks on honcompact groups

We don’t assume that G is compact anymore. We fix a probability measure ; on GG. One of the
many questions we can ask is whether a random walk on G driven by p goes to infinity, and if
so, how fast.

A reference for this section are the excellent course notes of Quint ([[16]).

First, we define a continuous linear operator P, : L?*(G) — L?*(G) by setting

Pu(f)(x) = /G £ (y)du(y)

if f € €.(G) and = € G; this extends to L*(G) by continuity. (If 4 = pdz with ¢ € L'(G), this
is just the construction of theorem [I.4.2.6(i) applied to the right regular representation of G.)

We denote by p(F,) the spectral radius of P,, seen as an element of the Banach algebra
End(L?*(G)). We always have p(P,) < 1 (because 1 is a probability measure).

Theorem V1.6.5.1. (Kesten’s criterion, theorem 5.2 of [16].)
(i) If G is amenable, then p(P,) = 1.

(ii) Let H be the closure of the subgroup of G generated by the support of . If p(P,) = 1,
then H is amenable.

Definition V1.6.5.2. We say that G is compactly generated if there exists a compact subset K of
G that generates G'.

If G is discrete, this just means that G is finitely generated.
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Definition V1.6.5.3. Suppose that G is compactly generated, and let X be a symmetric compact
subset generating GG. We define jx : G — Z by

Jr(x) = min{n € Zso|lx € K"}
(with the convention that K° = {1}).

Lemma V1.6.5.4. If K and L are two symmetric compact subsets generating G, then there exists
a > 0 such that j;, < ajk.

Corollary V1.6.5.5. (Corollary 7.3 of [16].) Suppose that G is compactly generated, and let
K be a symmetric compact subset generating G. Let . be a probability measure on G, and let
(gn)n>1 be a sequence of idenpendent random variables valued on G with distribution .

Let H be the closure of the subgroup of G generated by the support of ji. If H is not amenable,
then there exist o, e > 0 such that, for every n > 1, we have

P(jc(gn - - 1) < £n) = o(e™").

In particular, by the Borel-Cantelli lemma (see section 17.1 of [18]]), if n is large enough, we
have jx (g - .. g1) > en almost surely.

We finish with an example. We say that a subgroup H of SLy(R) is non-elementary if no
conjugate of H is contained in SO(2), in

{(5 L) aerver)
{5 1) aerbof(2 §) aer)

(An equivalent condition is that H is not compact and does not fix a line in R? or the union of
two lines in R%. Here the action of SLy(R) in R? is the standard one, given by the inclusion
SLy(R) € GL(R).)
Proposition VL.6.5.6. (Proposition 8.6 of [16].) A closed subgroup of SLy(R) is non-amenable
if and only if it is non-elementary.
([t O
at —_— t_l O .

Example VL.6.5.7. If t € R*, we set
_( cosf sind
"0=\ _sing cosh)

Then, if s, > 1 and 0 < 6 < 7/2, the subgroup of SLy(R) spanned by a, and rga;r, "

is non-elementary, and so corollary applies to a random walk driven by the measure
1

H = 5(6% + 0

orin

If 0 € R, we set

T’@at’l”gl)'
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VI.7 Problem : Random walks on non-amenable groups

Let G be a locally compact group. We fix a left invariant Haar measure yi; on G. In this problem,
all the measures on G are assumed to be regular Borel measures, and you may assume that G is
o-compact]]

(1) Let H be a closed subgroup of GG, and let 1y be a left-invariant Haar measure on /. The
goal of this question is to show that, if there exists a mean on L>°(G) that is left invariant
by H, then H is amenable. [

(a). We want to show that, for every open neighborhood U of 1 in G, there exists a subset
T of G/H such that :

e G/H = UteT Ut;
e for every compact subset K of G/H, the set K N T is finite.

To simplify the proof (and because this is the only case we’ll need later), we as-
sume that G is the union of a countable family of compact subsets. Choose an open
neighborhood V of 1 in G such that V'V C U.

(i) Show that, if K is a compact subset of G/ H, there is no infinite sequence (,,),,>0
of elements of K such that V¢, N Vt,, = @ for n # m.

(i) Write G/H = |J,5( K, with the K,, compact subsets of G/H such that
K, C K, for every n > 0. Define a family (7},),>0 of finite subsets of

G/ H inductively like so :
x Ty = 9,
* for n > 1, take for 7, a maximal finite subset of

L, = K, — (UIly U...UUT,_1) such that Vt N V' = o for all
t,t" € T, such that t # t'.

Show that the definition makes sense and that we have K,, C |J;_, UT; for every
n > 1.

(ii1)) Show that 7" := Un20 T,, satisfies the two required properties.
(b). Show that there exists a bounded continuous function ¢ : G — R such that :
e for any compact subset K of (&, the function |,z has compact support;
e forevery x € G, we have [, 0(xy)dpun(y) = 1.

(Hint : Take 7" as in question (a) with U relatively compact, take ¢ € €.t (G) such
that oy = 1, define ¢ by ¢(z) = >, ¢(xg; ') where g; € G is a lift of ¢, and

"'We are mostly interested in compactly generated groups, and those are clearly o-compact.
2The converse is also true and much easier to prove, but we won’t need it.
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modify v a bit.)
(c). Forevery ¢ € L*(H), define ¢y : G — C by

oo(z) = /H )0y dun(y).

Show that ¢y € L>®(G).

(d). If M is a mean on L*>°(@) that is left-invariant by H, show that ¢ — M (gy) is a
left-invariant mean on L>°(H).

(2) LetT : V — W be a bounded linear operator between two normed C-vector spaces.

(a). If V and W are Hilbert spaces and if Im(7") is not dense in W, show that 7™ is not
injective.

(b). If V' is complete and Im(7") is not closed in W, show that there exists a sequence
(Un)n>0 of norm 1 vectors in V' such that lim,,_, 1 o 7'(v,,) = 0.

(3) Let p be a probability measure on G. For every f € %.(G), we define a function
P,f:G— Chby

(Buf)(z) = /G £ (y)du(y).

(a). Forevery f € €.(G), show that P, f is continuous and that || P, f]2 < || f]]2.

(b). Show that P, extends to a continuous linear operator P, : L?(G) — L?(G) and that
we have || P,|,, < 1.

(c). Show that (P,)* = P, where v is the probability measure defined by
V(E) = u(E).

(4) Suppose that (G is amenable, and let i be a probability measure on G. We want to show that
p(P,) = 1. (Where p(P,) is the spectral radius of P, seen as an element of End(L?*(G)).)

(a) For every ¢ > 0, show that there exists a compact subset K of G and a function
f € L*(G) such that :

x p(K)>1-—¢;
* || fll2 =1
* SUD,cpe | Laf — fll2 < e

(b) For every € > 0, show that there exists a function f € L*(G) such that || ||, = 1 and
1Puf = fll2 < e
(c) Show that p(P,) = 1.

(5) Let p be a probability measure on G. Suppose that p(FP,) = 1, and let H be the closure of
the subgroup generated by the support of y. (Where the support of 1 is the set of x € G
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V1.7 Problem : Random walks on non-amenable groups

such that every open neighborhood of z has positive volume for ;1.) We want to show that
H is amenable.

(a). Show that at least one of the following conditions holds :
() There exists A € C such that |\| = 1 and P, — Xid2(¢) is not injective.

() There exists A € C such that |A\| = 1 and Im(FP, — Aidz2(g)) is not dense in
L*(@G).

(7) There exists A\ € C such that |A\| = 1 and Im(F, — Aid2(¢)) is not closed in
L*(@G).

(b). Suppose that condition («) holds.
(i) Show that P, — id2 () is not injective.
(i) Show that there exists a nonzero element of L?(G) that is left H-invariant.
(i11) Show that H is compact.
(c). If condition () holds, show that H is compact.
(d). Suppose that condition () holds.

(i) Show that there exists a sequence (f,,),>0 of norm 1 elements of L?(G) such that
hmn—H—OO HP,Ufn - /\an2 = 0.

(ii) Define g, : G — R>( by
gn(@) = ||Lafn — Xfﬂ”%
Show that the sequence (g,,),>0 converges to 0 in L'(G, ;1) (note the measure !).

(iii) Show that we may assume that lim,, , , . g,(z) = 0 p-almost everywhere on G.

(iv) Define h,, : G — Ry by hy(z) = | fu(2)|*. Show that [, hy,(z)dpg(x) = 1 for
every n and that lim,, ,, o || Lzh, — h,||1 p-almost everywhere on GG. (Note that
we are back in L!(G).)

(v) Show that there exists a mean M on L>(() that is left invariant by H.

(6) If K is a compact symmetric (i.e. K~! = K) subset of G that generates GG, we define
jK G — ZZO by
Jr(x) = min{n € Zso|lx € K"}

(with the convention that K° = {1}).

Show that, if L is another compact symmetric subset that generates (7, then there exists
a > 0 such that j;, < ajk.

- Let K be a compact symmetric subset of G with nonempty interior. The goal of this
question is to show that the sequence (yg(K™)Y™),> converges.
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VI Application of Fourier analysis to random walks on groups

(a). If A, B and C' are compact subsets of (G, show that

1c(AB)uc(C) < pa(AC)ug(C™'B).
(Hint : Look at 1 40 * 1o-15.)

(b). Show that, for all n,m € Z>;, we have

pa(K™™) < pa(K) ™ pa(K™) pa (K™,

(c). Conclude.

(7) Let u be a probability measure on GG. Suppose that the closure H of the subgroup generated
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by the support of 1 is not amenable, and that G is compactly generated. Fix a symmetric
compact subset K of G generating G. We want to show that there exist €, @ > 0 such that,
if (gn)n>1 is a sequence of independent random variables valued in G with distribution g,
then, for every n > 0, we have

P(jk(gn...-q1) <en)=o(e *").
In other words, we want to show that
lu*n(KLan) _ O<€fom),

where p*" is the image of the measure p” on G™ by the multiplication map
(x1,...,2,) —> x1...x,. (The equivalence of these two statements is basically the
definition of “independent”, and you don’t need to prove it.)

(a). Show that we may assume that & has nonempty interior.

(b). Show that, for every compact subset L of GG and every n > 1, we have
P (Lpe(K) < (Pilik, k) r2).-
(c). Lete > 0. Show that there exists o > 0 such that, for every n > 1, we have
(P gtensr, L) 2y = o(e™ ™" [ Lo |2y | L | 22y )-
(d). Show that, if we choose £ small enough in (c), then we have
—an/2y

<PIIL]I.K\_57LJ+1’ ][K)LQ(G) — 0(6

(e). Conclude.



A Urysohn’s lemma and some
consequences

A.1 Urysohn’s lemma

Definition A.1.1. A topological space X is called normal if whenever we have two disjoint
closed subsets A and B of X, there exist open subsets U and V' of X such that A C U and
BcCV.

Proposition A.1.2. Any topological space that is compact Hausdorff or metrizable is normal.

Theorem A.1.3 (Urysohn’s lemma). Let X be a normal topological space, and let A, B be two
disjoint closed subsets of X. Then there exists a continuous functions f : X — [0, 1] such that
f(x) =0 forevery x € Aand f(x) =1 for every x € B.

A.2 The Tietze extension theorem

Corollary A.2.1 (Tietze extension theorem). Let X be a normal topological space, A be a closed
subset of X and f : A — C be a continuous function. Then there exists a continuous function
F : X — Rsuch that Fx = f and that sup,cx |F(x)| = sup,e | f(2)].

A.3 Applications

Corollary A.3.1. Let X be a locally compact Hausdorff topological space, and let K C U be
two subsets of X such that K is compact and U is open. Then there exists a continuous function
with compact support f : X — [0, 1] such that fjx = 1 andsupp f C U.

Proof. As X is locally, for every x € K, we can find an open neighborhood V. of x such that
V, is compact and contained in U. We have K C UIe i Vai as K is compact, we can find
z1,...,7, € K suchthat K C ., Va,. Set K’ = |, V,. Then K’ is a compact subset of
X, it is contained in U and its interior contains K. Applying the same procedure to K'subsetU,
we can find a compact subset K’ C U of X whose interiot contains K.
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A Urysohn’s lemma and some consequences

The space K" is compact, hence normal, and its subsets K and K" — K" are closed and disjoint,
so, by Urysohn’s lemma, we have a continuous function f : K” — [0, 1] such that fjx = 1 and
fien_gr = 0. We extend [ to X by setting f(z) =0ifx € X — K”. Then f is equal to 0 (hence
comtinuous) on X — K’, and it is also continuous on K". As X — K’ and K" are open subset
whose union is X, the function f is continuous on X. It is clear from the construction of f that
it satisfies all the desired properties.

O

Corollary A.3.2. Let X be a locally compact Hausdorff topological space, and let K C U be
two subsets of X such that K is compact and U is open. Then, for every continuous function
f K — C, there exists a continuous function with compact F' : X — C such that :

(a) supp(F) C U;
(b) Fik = [;
(¢) sup,ex |[F(2)| = supp,ep [ f(2)]-

Proof. By corollary we can find a continuous function with compact support
¢+ X — [0,1] such that ¢k = 1 and supp(v)) C U. On the other hand, we can find, as
in the proof of corollary a compact set K’ C U whose interior contains supp ). Applying
the Tietze extension to the normal space K’, we get a continuous function f’ : K’ — C such
that f{ = f and supp,c [f'(2)| = supp,ck [f(x)[. We define a function F' : X — C by
F(z) = f'(x)¢¥(z)if v € K',and F(z) = 0if z € X — K’. This functuion F clearly satisfies
conditions (a)-(c), so we just need to check that it is continuous. But this follows from the fact
that F is continuous on the open sets X — supp(¢)) (because it is zero on that set) and K’, and
that the union of these open sets is X.

[]
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B Useful things about normed vector
spaces

B.1 The quotient norm

See [19] 18.15 or [20] 1.40, 1.41.

Definition B.1.1. Let IV be a normed vector space and W' C V' be a subspace. Then the quotient
seminorm on V /W is defined by

|z + W] = inf |jv+ w]|.
weW

If W is closed, this is called the quotient norm.

Proposition B.1.2. (i) The formula of the preceding definition gives a seminorm on V /W,
which is a norm if and only if W is closed in V.

(ii) IfV is a Banach space and W is closed in 'V, then V /W is a Banach space for the quotient
norm.
Proof. (i) Letwv,v' € V and A € C. Then we have
lo+v'+W| = inf lv+o'+w| < inf [lv+w||+ inf [0 +w] = v+ W][+]]o"+W].
zeW weW weW

If A =0, then \v € W, so |[A\v 4+ W || = 0; otherwise,
[Av+ Wl = inf |[A+wl = inf [[Av+w)|=[Al inf [[o+w]] = [Al[jv+ W]
weW weW weWw

This shows that the quotient seminorm is indeed a seminorm on V//W. Now let’s prove
that ||v + W|| = 0 if and only v € W, which will imply the last statement. By definition
of |[v + W|| (and the fact that TV is a subspace), we have ||v + W|| = 0 and and only if],
for every € > 0, there exists w € W such that ||v — w|| < e. This is equivalent to v € W.

(ii) Let (v,)n>0 be a sequence in V' such that (v, + W),,>¢ is a Cauchy sequence in V/WW. Up
to replacing (v,,),>o by a subsequence, we may assume that ||v,1 — v, + W| < 27" for
every n > 0. We define another sequence (v,),>¢ such that v/, € v,, + W for n > 0 and
v, — vl || <27 for n > 1, in the following way :
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B Usetul things about normed vector spaces

o Take v, = vy.

e Suppose that we have v{, ..., v), satisfying the two required conditions, with n > 0.
Then we have ||[v,11 — v, + W|| = ||vnt1 — va + W] < 277, so, by definition of
the quotient norm, we can find w € W such that ||v,, 11 — v), + w| < 27". Take
V), 41 = Ung1 + W.

By the second condition, (v/,),>o is a Cauchy sequence, so it has a limit v in V. By the
first condition, v, + W = v,, + W for every n > 0, so v + W is the limit of the sequence
(Un + W)nZO in V/W

]

B.2 The open mapping theorem

This is also known as the Banach-Schauder theorem. See for example theorem 5.10 of [19].

Theorem B.2.1. Let V and W be Banach spaces, and let T : V. — W be a bounded linear
transformation that is bijective. Then T~ : W — V is also bounded.

B.3 The Hahn-Banach theorem

See [[19] Theorem 5.16 or [20] Theorems 3.2-3.7.

Theorem B.3.1 (Hahn-Banach theorem, analytic version, real case). Let V' be a vector space
over R, letp : V — R such that :

(a) p(v+v') <pv)+p)forallv,v' €V (ie. pissubadditive);
(b) p(Av) = Ap(v) for every v € V and ever A € Ry,,.

Let E C V be a K-subspace and let f : E — K be a linear functional such that, for every
x € E, we have f(z) < p(x).

Then there exists a linear function F' : V' — K such that Flyy = f and F(x) < p(x) for every
reV.

Note that, in this version, there is no norm or topology or V' and no continuity condition on
the linear functionals.

Proof. Consider the set X of pairs (W, g), where W D E is a subspace of V and g : W — R
is a linear functional such that gz = f and g(x) < p(z) for every x € W. We order this set by
saying that (W, g) < (W', ¢') if W C W' and g = g[;;,. Suppose that (IW;, g;);er is a nonempty
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B.3 The Hahn-Banach theorem

totally ordered family in X, and let’s show that it has an upper bound. We set W = (J,.; Wi;
this is a subspace of V' because (W;);c; is totally ordered (so, for all ¢, j € I, we have W; C W;
or W; C W;). We define g : W — R in the following way : If v € W, then there exists i €
such that v € W;, and we set g(v) = g;(v). We obviously have g(v) < p(v). Also, if j € [ is
another element such that v € W;, then we have (W;, f;) < (W}, f;) or (W;, f;) < (W;, f;), and

in both cases this forces g;(v) = g;(v), so the definition makes sense. It is also easy to see that g
is R-linear, so that (W, g) € X. This is an upper bound for the family.

So we can apply Zorn’s lemma to the set X. Let (I¥, g) be a maximal element of X, and
let’s show that W = V. Suppose that W # V, and choose v € V' — W. We want to extend g
to a linear functional ~ on on W & Rv such that 4 < p, which will contradict the maximality
of (W, g). This just means that we have to choose the value of h(v), say h(v) = o € R. The
condition i < p means that we want, for every w € W and every t € R :

h(w +tv) = g(w) + ta < p(w + tv).

If the inequality above is true for a¢ € R and all w € W, it is also true for all ct, ¢ € R-(, and
for all w € W (because W is a subspace and the values of both g and p are multiplied by c when
their argument is multiplied by c). So it suffices to check it for £ = £1, which means that we
want, for every w € W :

g(w) + a < p(w+v) and g(w) — a < p(w — v).
In other words, we want to have :

sup (g(w) —p(w —v)) < a < inf (p(w +v) = g(w)).

We can find such a « because we have, for all w, w’ € W,
g(w) +g(w') = g(w + ') < p(w + ') < p(w +v) + p(w' —v),
ie.
g(w') = p(w' —v) < p(w +v) — g(w).
So we get our contradiction, we can conclude that W' was equal to V' after all, and we are done.

]

Theorem B.3.2 (Hahn-Banach theorem, analytic version, complex case). Let V' be a vector
space over C, letp : V — R be a semi-norm, E]let E C V be aC-subspace andlet f : E — C
be a linear functional such that, for every x € E, we have |f(x)| < p(x).

Then there exists a linear function F' : V. — C such that Fjy, = f and |F(x)| < p(x) for
everyxr € V.

I'This means that, for all x,y € V and all A\ € C, we have p(z + y) < p(x) + p(y) and p(\z) = |A|p(z).
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Proof. We see V' and E as R-vector spaces, and define a R-linear functional i : £ — R by

h(v) = 3(f(v) + f(v)).

Then we have, for every v € E,

h(v) < 5(IF @]+ [1f@)]) < po).

Note that satisfies conditions (a) and (b) of theorem [B.3.1l By that theorem, we can find a R-
linear functional H : V' — R such that H|z = h and that H(v) < p(v) for every v € V. Define
F:V — Cby

1
F(v) = H(v) + = H(iv),
)
and let’s show that it has all the desired properties.
(i) F'is R-linear by construction, and, for everey v € V', we have
1
F(iv) = H(iv) + —=H(i(iv)) = iF (v).
1
So F'is C-linear.
(1) If v € E, then
1. . 1 — ... TS
F(v) = h(v) + ~h(iv) = 5(f(v) + f(v) = if(iv) = if (iv)) = f(v)
(because f is C-linear), so Fjp = E.
(iii) Let v € V and choose 6 € R such that e’ F’ (v) € Rsp. Then we have
|F(v)| = e’ F(v) = F(e"v) = H(e"v) — iH (ie”v) € R.
As H(e%v) € R and iH (e?v) € iR, we must have i H (ie?v) = 0. So

|F(v)] = H(e"v) < p(ev) = p(v).

]

Corollary B.3.3. Let V be a normed vector space (over R or C), let W be a subspace of V', and
let Ty be a bounded linear functional on W. Then there exists a bounded linear functional T' on
V such that Ty = Tw and ||T||op = ||Tw |op-

Proof. LetC' = || Tw]||,p. Apply the Hahn-Banach with p(v) = C'||V'||. We get a linear functional
T :V — C extending Ty and such that |T'(v)| < C||v|| for every v € V, which means that 7" is
bounded and || T'||op < ||Tw ||op- As the inequality ||Tw ||,, < ||| is obvious, we are done.

]
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B.3 The Hahn-Banach theorem

Corollary B.3.4. (See Theorem 5.20 and Remark 5.21 of [l19].) Let V be a normed vector space
over K = R or C. We write V* = Hom(V, K'). Then the map V' — V** sending v € V to the
linear functional v : V* — C, T —— T (v) is an isometry.

In particular, this map is injective, which means that bounded linear functionals on V' separate
points.

We can now deduce the geometric versions of the Hahn-Banach theorem. (In finite dimension,
these are sometimes called “the hyperplane separation theorem”).

Definition B.3.5. Let I/ be a vector space over the field K, with K = R or C. We say that V' is
a topological vector space over K if it has a topology such that :

- (V,+) is a topological group;
- themap K x V — V, (a,v) — av is continuous.

We say that a topological vector space is locally convex if every point has a basis of convex
neighborhoods.

Example B.3.6. (a) Any normed vector is a locally convex topological vector, as is its dual
for the weak™* topology.

(b) Let (X, i) be a measure space, let p € (0, 1), and consider the space L?(X, 1), with the
metric given by

d(f.g) = /X (@) — g(@)Pdu(z).

This makes LP(X, i) into a topological vector space, which is not locally convex if y is
atomless and finite (for example if i is Lebesgue measure on a bounded subset of R"”, or
the Haar measure on a compact group).

Theorem B.3.7 (Hahn-Banach theorem, first geometric version). Let V' be a topological R-
vector space, and let A and B be two nonempty convex subsets of V. Suppose that A is open and
that AN B = @.

Then there exists a continuous linear functional f : V — R and ¢ € R such that, for every
x € Aandeveryy € B, we have

flx) <e< fly).

We are going to use as our function p what is called the gauge of an open convex set C' 5 0.

Lemma B.3.8. Let C be a nonempty open convex subset of V, and suppose that 0 € C. We
define the gauge p : V — R of C by

p(v) = inf{a > 0|v € aC'}.

Then p satisfies conditions (a) and (b) of theorem[B.3.1} and moreover :
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B Usetul things about normed vector spaces

(c) If V is a normed vector space, then there exists M € R such that, for everyv € V,

0 < p(v) < MlJo||.
(d) C ={veVp) <1}

Proof. The fact that p(A\v) = Ap(v) for every A € R.( and every v € V follows immediately
from the definition (and doesn’t use the convexity or openness of ().

Let’s prove (c). As C'is open and 0 € C, there exists » > 0 such that C' D {v € V|||v|| < r}.
Then, for every v € V — {0}, we have 7ov € C, so p(v) < |-

Let’s prove (d). Let v € C. As C is open, there exists ¢ > 0 such that (1 + ¢)v € C. So
p(v) < 7= < 1. Conversely, let v € V such that p(v) < 1. Then there exists a € (0, 1) such
that z € aC, i.e. =v € C, and then we have v = a(2v) + (1 — a)0 € C, because C'is convex.

Finally, we prove that p is subadditive, i.e. condition (b). Let v,w € V. Lete > 0. By (b)

(and the first property we proved), we have p(v) v € C and p(w) w € C. As C'is convex, this

implies that, for every ¢ € [0, 1], we have

¢
po)+e ¥ -

p(w)+e

p(v)+e

. _ (’L}
Taklngt = p(v)+p(w)+2e’

we get that

1
p(v) + p(w) + 2¢

(v+w) € C,

ie. that p(v + w) < p(v) + p(w) + 26. As ¢ > 0 was arbitrary, this implies that

p(v+w) < p(v) + p(w).
[
Lemma B.3.9. Let C' C V be a nonempty open convex subset, and let vg € V — C.
Then there exists a continuous linear functional F on V such that, for every v € C, we have
F(v) < F(vp).
Proof. We may assume 0 € C' (by translating the situation). Let p : V' — R be the gauge of
C, i.e. the function defined in the preceding lemma.

Let £ = Rug, and let f : E — R be the linear functional defined by f(Avg) = A, for
every A € R. Let’s show that f < p. If XA <0, then f(Avy) < 0 < p(Avg). If A > 0, then
A = g(Avg) < p(Avg) because 5 (Avg) = vy & C.

So we can apply the analytic form of the Hahn-Banach theorem to get a linear function
F :V — R such that F'(v) < p(v) for every v € V. In particular, F'(vy) = 1, and, if v € C,
then F'(v) < p(v) < 1 (by (d) in the first lemma).
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B.3 The Hahn-Banach theorem

Finally, we show that F' is continuous. Note that, if v € —C, we have —F'(v) = F(—v) < 1.
So, for every v in the open neighborhood U := C' N (—C) of 0, we have |F(v)| < 1. If ¢ > 0,
then €U is an open neighborhood of 0 in V', and we have |F'(v)| < ¢ for every v € eU. So F'
is continuous at 0. As F’ is linear and translations are continuous on V/, this implies that F' is
continous at every point of V.

]

Proof of the theorem. Let C = A— B ={x —vy, v € A,y € B}. Then C is clearly convex, C'
is open because it is equal to (J,.z(A — y), and 0 ¢ C because AN B = &. So we can apply
the second lemma above to get a continuous linear functional f : V' — R such that f(x) < 0 for
every x € C'. Then, for every x € A and every y € B, we have f(z) < f(y). So the conclusion
is true for f and for ¢ = sup,.4 f(x).

]

Theorem B.3.10 (Hahn-Banach theorem, second geometric version). Let V' be a locally convex
topological R-vector space, and let A and B be two nonempty convex subsets of V. Suppose that
A is closed, that B is compact, and that AN B = @.

Then there exists a continuous linear functional f : V — R and ¢ € R such that, for every
x € Aandeveryy € B, we have

f(x) <ec< f(y)

Proof. We first find a convex open neighborhood U of 0 in V' such that (A+U)N(B+U) = @.
(Note : this only uses that V" is locally and that A is closed and B compact, but not the fact that
A and B are convex.)

For every * € B, choose a symmetric convex open neighborhood U, of 0 such that
(x+U, +U, +U,) N A = @; as U, is symmetric, this is equivalent to saying that
(x+U, +U,)N(A+ U, = &. As B is compact, we can find zy,...,z, € B such that
B c UL (x;i+U,,). LetU = ()., Uy,. Then U is a convex open neighborhood of 0, and we
have B+U C U, (z; + Uy, #U)and A+ U C (" (A+U,,),s0 (B+U)N(A+U) = 2.

The sets A + U and B + U are convex and open, so, by theorem there exists a con-
tinuous linear functional f : V' — R and ¢ € R such that f(z) < ¢ < f(y) for every
x € A+ Uandeveryy € B+ U. As B is compact and f continuous, there exists yo € B
such that f(yo) = mingep f(y). In particular, ¢ < mingep f(y). Choose ¢ € R such that
¢ < ¢ <mingep f(y). Then we have f(z) < ¢ < f(y) forevery z € A and every y € B.

]
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B.4 The Banach-Alaoglu theorem

See section 15.1 of [[18] or Theorem 3.15 of [20]. This theorem is also called “Alaoglu’s theo-

rem’.
Theorem B.4.1. Let V' be a normed vector space. Then the closed unit ball in Hom(V, C) is
compact Hausdorff for the weak* topology.

Compare with the following results, usually called “Riesz’s lemma” or “Riesz’s theorem” (see
section 13.3 of [[18]] or Theorem 1.22 of [20]) :

Theorem B.4.2. Let V' be normed vector space. Then the closed unit ball of V' is compact if and
only if V' is finite-dimensional.

B.5 The Krein-Milman theorem

See section 14.6 of [I18]] (or theorem 3.23 of [20])).

Definition B.5.1. Let VV be a R-vector space and C be a convex subset of V. We say that z € C
is extremal if, whenever x = ty+ (1 —t)z witht € (0,1) and y, z € C, we musthave y = z = z.

Theorem B.5.2. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V. Then K is the closure of the convex hull of its set of extremal points.

Lemma B.5.3. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V. Then K has an extremal point.

Proof. We say that a subset S of K is extremal if for every z € S, if we have x =ty + (1 — 1)z
with y,z € K and t € (0, 1), then we must have y, z € S. (Note that a point x € K is extremal
if and only if {x} is extremal.)

Let X be the set of nonempty closed extremal subsets of A, ordered by reverse inclusion. Let
Y a nonempty totally ordered subset of X, and let’s show that it has a maximal element. As
Y is totally ordered, for all 7y,...,T,, € Y, there exists ¢ € {1,...,n} such that T; C Tj for
every j € {1,...,n},andthen Ty N...N 7T, D T; # @&. As K is compact, this implies that
S := ey T is not empty. The set S is clearly closed, so if we can show that it is extremal, we
will be done. Let = € S, and write x = ty + (1 — t)z, with y,z € K and ¢ € (0, 1). For every
T €Y, as T is extremal, we must have y, 2 € T. Soy, 2z € S, and S is indeed extremal.

By Zorn’s lemma, the set X has a maximal element, let’s call it S. To finish the proof, we just
need to show that S is a singleton. If |S| > 2, let x,y € S such that = # y. By the geometric
version of the Hahn-Banach theorem (theorem|[B.3.10)), there exists a continuous linear functional
f:V — Rsuch that f(z) < f(y). As S is compact, the continuous function f reaches its
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minimum on S. Let m = min,cg f(2), and let S = {z € S|f(z) < m}. Then 5’ is closed, it
is nonempty by the observation we just made, and S’ # S because y ¢ S’. Let’s show that S’ is
extremal, which will give a contradiction (and imply that S had to be a singleton). Let z € .5,
and write z = t2' + (1 — t)2”, with 2/, 2" € K andt € (0,1). As S, we have 2/, 2" € S. By
definition of m, we have m = f(z) = tf(2') + (1 — t) f(2") < tm + (1 — t)m, which forces
m= f(z) = f(z'),1e. 2/, 2" € 5"

]

Proof of the theorem. Let L be the closure of the convex hull of the set of extremal points of K.
Then L is convex, closed and contained in K; in particular, L is also compact. Suppose that
L # K, and let z € K\ L. By the geometric version of the Hahn-Banach theorem (theorem
[B.3.10), there exists a continuous linear functional f : V' — R such that max,c, f(y) < f(z).
Let M = max,cx f(2),and let K’ = {z € K|f(z) = M}. Then K’ is a closed convex subset
of K (hence it is compact), and K’ N L = &. By the lemma, K’ must have an extremal point z,
and it is easy to see (as in the proof of the lemma) that z is also an extremal point of K. But then
z should be in L, contradiction.

O

B.6 The Stone-Weierstrass theorem

See section 12.3 of [[18] or theorem 5.7 of [20] for the case of a compact space.

Theorem B.6.1. Let X be a locally compact Hausdorff topological space, and let A be a C-
subalgebra of €,(X) such that :

(a) forevery f € A, the function x — f(x) is also in A;

(b) forall x,y € X such that © # v, there exists [ € A such that f(x) # f(y) (“A separates
the points of X ”);

(c) forevery x € X, there exists f € A such that f(x) # 0 (“A vanishes nowehere on X ”).
Then A is dense in 6o(X).
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s«-homomorphism, 36]

C*-algebra, [128]
G-invariant mean, [79]

adjoining an identity, [124]
affine action,
affine map (on a convex set), [I79)

amenable group, [T79)
approximate identity, [33]

Banach x-algebra, [35]
Banach algebra, [32]
Borel measure, [T1]
Borel set, [11]

Cartan decomposition, [276]
central function, 207]
centralizer, [132]

character of a representation, [207]
class function, 207|

compact group, [9]

compactly generated group,
convolution, 30|

cyclic representation, [26]

cyclic subspace, [26]

cyclic vector, 26|

diagonal matrix coefficient, [[63]
diameter, 262]

Dirac measure, [321]

discrepancy distance, [326]

discrete Laplace operator, 263
distance-regular graph, 262
distribution of a random variable, [303]
dual group,

dual space, [240]

equivalent representations, [20]
equivariant map, 20]

ergodic Markov chain, [312]
extremal point, 342

fixed point property, m
Fourier transform, 211}, 241]

function of positive type, 143

gauge (of a convex set), 339

Gegenbauer polynomials,

Gelfand pair, [22§|

Gelfand representation, @

Gelfand transform, [126]

Gelfand’s formula for the spectral radius,
Gelfand-Mazur theorem, [123|
Gelfand-Naimark theorem, [130]
Gelfand-Raikov theorem, [159]

group algebra, [32]

Haar measure, [T1]

Hahn-Banach theorem (analytic version),
336

Hahn-Banach theorem (geometric version),
339

Hilbert space, [22]

ideal, [123]

indecomposable representation, [20]
intertwining operator, 20|
involution on a Banach algebra, 36|
irreducible representation, @
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isomorphic representations, [20)
Krein-Milman theorem, 342

Lévy’s convergence criterion, 322
left regular representation, 22} [161]
Legendre polynomials,
locally almost everywhere, [145]
locally Borel set, [145]

locally compact, [7]

locally compact group, [9]

locally convex, 339

locally measurable function, [145]
locally null subset, [145]

Markov chain, 303]

matrix coefficient, [160] 200]

mean,

measure algebra, [32]

Milman’s theorem, [166]
Minkowski’s inequality, 41|
modular function,

multiplicative functional, [124]
multiplicity-free representation, 232]

nondegenerate representation, 36|
normal (in a Banach x-algebra), @
normal topological space, 333
normalized Haar measure, [I8§]
normalized matrix coefficient, [163]

Peter-Weyl theorem, [200]

Ping pong lemma. Reference ?,[192]
Plancherel measure, 241]

positive linear functional, [T 1]
positive matrix, 309

proper ideal, [123]

quasiregular representation, 233

quotient norm, [123] 335]

Radon measure, [32] B21]
random variable, [303]

reducible representation, 20|
regular Borel measure, [I1]
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regular representation, 22 [161]
representation, [T9]

representation (of a Banach x-algebra), [36]
right regular representation, 22]

Satake isomorphism,
semisimple representation, 20|

spectral gap, 323

spectral radius, [TT9]

spectral theorem, [131]

spectral theorem for self-adjoint compact
operators, [193]

spectrum of a Banach algebra, [124]

spectrum of an element, [ 19|

spherical Fourier transform, 241]

spherical function, 234

stochastic matrix, [303]

subrepresentation, [20]

symmetric *-algebra, [129]

symmetric subset, [g]

topological group,
topological vector space, [339]
total variation distance, 308
trivial representation, @

uniformly continuous, [T0]
unimodular group, [17]
unital (Banach algebra), [32]

unitary dual, 200]
unitary equivalence,
unitary representation, 23|

weak containment, [164]

zonal function, 256
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