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I Representations of topological
groups

I.1 Topological groups

Definition I.1.1. A topological group is a topological set G with the structure of a group such
that the multiplication mapG×G→ G, (x, y) 7−→ xy and the inversion mapG→ G, x 7−→ x−1

are continuous.

We usually will denote the unit of G by 1 or e.

Example I.1.2. - Any group with the discrete topology is a topology group. Frequently
used examples include finite groups, free groups (both commutative and noncommutative)
and “arithmetic” matrix groups such as GLn(Z) and SLn(Z).

- The additive groups of R and C are topological groups.

- The group GLn(C), with the topology given by any norm on the C-vector space Mn(C),
is a topological group (see exercise I.5.1.1), hence so are all its subgroups if we put the
induced topology on them. For example S1 := {z ∈ C||z| = 1}, GLn(R), SU(n), SO(n)
etc.

- The additive group of Qp and the group GLn(Qp) are topological groups. (See exercise
I.5.1.4.)

Definition I.1.3. We say that a topological space X is locally compact if every point of X has a
compact neighborhood.

Remark I.1.4. If X is Hausdorff, this is equivalent to the fact that every point of X has a basis of
compact neighborhoods. 1

Note that we do not assume that neighborhoods of points in topological spaces are open.

Notation I.1.5. Let G be a group, and let A,B ⊂ G, x ∈ G and n ≥ 1. We use the following
notation :

xA = {xy, y ∈ A} and Ax = {yx, y ∈ A}
1reference ?
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I Representations of topological groups

AB = {yz, y ∈ A, z ∈ B}

An = AA . . . A (n factors)

A−1 = {y−1, y ∈ A}

Definition I.1.6. We say that a subset A of G is symmetric if A = A−1.

Proposition I.1.7. Let G be a topological group.

(1). If U is an open subset of G and A is any subset of G, then the sets UA, AU and U−1 are
open.

(2). If U is a neighborhood of 1 in G, then there is an open symmetric neighborhood V of 1
such that V 2 ⊂ U .

(3). If H is a subgroup of G, then its closure H is also a subgroup of G.

(4). If H is an open subgroup of G, then it is also closed.

(5). If A and B are compact subsets of G, then the set AB is also compact.

(6). Let H be a subgroup of G. Then the quotient G/H (with the quotient topology) is :

(a) Hausdorff if H is closed;

(b) locally compact if G is locally compact;

(c) a topological group if H is normal.

Proof. (1). For x ∈ G, we denote by lx : G → G (resp. rx : G → G) left (resp. right)
multiplication by x. We also denote by ι : G→ G the map x 7−→ x−1. By the axioms for
topological groups, all these maps are continuous.

Now note that U−1 = ι−1(U), AU =
⋃
x∈A l

−1
x−1(U) and UA =

⋃
x∈A r

−1
x−1(U). So U−1,

AU and UA are open.

(2). We may assume that U is open. Letm : G×G→ G, (x, y) 7−→ xy. Thenm is continuous,
so W := s−1(U) is open. We have (1, 1) ∈ W because 12 = 1 ∈ U . By definition of the
product topology on G×G, there exists an open subset Ω 3 1 of G such that Ω×Ω ⊂ W .
We have Ω2 ⊂ U by definition of W . Let V = Ω∩Ω−1. We know that Ω−1 is open by (a),
so V is open, and it is symmetric by definition. We clearly have 1 ∈ V and V 2 ⊂ Ω2 ⊂ U .

(3). Consider the map u : G × G → G, (x, y) 7−→ xy−1; then a nonempty subset A of G is a
subgroup if and only if u(A×A) ⊂ A. Alos, by the axioms of topological groups, the map
u is continuous. Hence, for every Z ⊂ G × G, u(Z) ⊂ u(Z)). Applying this to H × H
(whose closure is H ×H), we see that H is a subgroup of G.

(4). We have G = H t ((G−H)H). If H is open, then (G−H)H is also open by (a), hence
H is closed.
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I.1 Topological groups

(5). The multiplication mapm : G×G→ G is continuous by hypothesis. AsAB = m(A×B)
and A×B is compact, the set AB is also compact.

(6). (a) Let x, y ∈ G be such that xH 6= yH . By question (a), x(G − H)y−1 is open,
so its complement xHy−1 is closed. Also, by the assumption that xH 6= yH , the
unit 1 is not in xHy−1. By (b), there exists a symmetric open set 1 ∈ U such that
U2 ⊂ G − xHy−1. Let’s show that UxH ∩ UyH = ∅, which will prove the result
because UxH (resp. UyH) is an open neighborhood of xH (resp. yH) in G/H .
If UxH ∩ UyH 6= ∅, then we can find u1, u2 ∈ U and h1, h2 ∈ H such that
u1xh1 = u2yh2. But then xh1h

−1
2 y−1 = u−1

1 u2 ∈ xHy−1∩U2, which is not possible.

(b) Let xH ∈ G/H . If K is a compact neighborhood of x in G, then its image in G/H
is a compact neighborhood of xH in G/H .

(c) If H is normal, then G/H is a group. Let’s show that its multiplication is continuous.
Let x, y ∈ G. Any open neighborhood of xyH in G/H is of the form UxyH , with
U an open neighborhood of xy in G. By the continuity of multiplication on G,
there exists open neighborhoods V and W of x and y in G such that VW ⊂ U .
Then V H and WH are open neighborhoods of xH and yH in G/H , and we have
(V H)(WH) ⊂ UH . (Remember that, as H is normal, AH = HA for every subset
A of G.) Let’s show that inversion is continuous on G/H . Let x ∈ G. Any open
neighborhood of x−1H in G/H is of the form UH , with U an open neighborhood of
x−1 in G. By question (a), the set U−1 is open, so U−1H is an open neighborhood of
xH in G/H , and we have (U−1H)−1 = HU = UH .

Remark I.1.8. In particular, if G is a topological group, then G/{1} is a Hausdorff topological
group. We are interested in continuous group actions of G on vector spaces, so we could re-
place G by G/{1} to study them. Hence, in what follows, we will only consider Hausdorff
topological groups (unless otherwise specified).

Definition I.1.9. A compact group (resp. a locally compact group) is a Hausdorff and compact
(resp. locally compact) topological group.

Example I.1.10. Among the groups of example I.1.2, finite discrete groups and the groups
S1, SU(n) and SO(n) are compact. All the other groups are locally compact. We get a non-
locally compact group by considering the group of invertible bounded linear endomorphisms of
an infinite-dimensional Banach space (see exercise I.5.1.1).

Translation operators : Let G be a group, x ∈ G and f : G→ C be a function. We define two
functions Lxf,Rxf : G→ C by :

Lxf(y) = f(x−1y) and Rxf(y) = f(yx).

We chose the convention so that Lxy = Lx ◦ Ly and Rxy = Rx ◦ Ry. Note that, if G is a
topological group and f is continuous, then Lxf and Rxf are also continuous.
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I Representations of topological groups

Function spaces : Let X be a topological set. If f : X → C is a function, we write

‖f‖∞ = sup
x∈X
|f(x)| ∈ [0,+∞].

We also us the following notation :

- C (X) for the set of continuous functions f : X → C;

- Cb(X) for the set of bounded continuous functions f : X → C (i.e. elements f of C (X)
such that ‖f‖∞ < +∞);

- C0(X) for the set of continuous functions X → C that vanish at infinity (i.e. such that, for
every ε > 0, there exists a compact subset K of X such that |f(x)| < ε for every x 6∈ K);

- Cc(X) for the set of continuous functions with compact support from X to C.

Note that we have C (X) ⊃ Cb(X) ⊃ C0(X) ⊃ Cc(X), with equality if X is compact. The
function ‖.‖∞ is a norm on Cb(X) and its subspaces, and Cb(X) and C0(X) are complete for this
norm (but not Cc(X), unless X is compact). 2

Definition I.1.11. LetG be a topological group. A function f : G→ C is called left (resp. right)
uniformly continuous if ‖Lxf − f‖∞ → 0 as x→ 1 (resp. ‖Rxf − f‖∞ → 0 as x→ 1).

Proposition I.1.12. If f ∈ Cc(G), then f is both left and right uniformly continuous.

Proof. We prove that f is right uniformly continuous (the proof that it is left uniformly con-
tinuous is similar). Let K be the support of f . Let ε > 0. For every x ∈ K, we choose a
neighborhood Ux of 1 such that |f(xy) − f(x)| < ε

2
for every y ∈ Ux; by proposition I.1.7, we

can find a symmetric open neighborhood Vx of 1 such that V 2
x ⊂ Ux. We have K ⊂

⋃
x∈K xVx.

As K is compact, we can find x1, . . . , xn ∈ K such that K ⊂
⋃n
i=1 xiVxi . Let V =

⋃n
i=1 Vxi ,

this is a symmetric open neighborhood of 1.

We claim that, if y ∈ V , then ‖Ryf − f‖∞ < ε. Indeed, let y ∈ V , and let x ∈ G. First
assume that x ∈ K. Then there exists i ∈ {1, . . . , n} such that x ∈ xiVxi . Then we have
xy ∈ xiVxiVxi ⊂ xiUxi , hence

|f(xy)− f(x)| ≤ |f(xy)− f(xi)|+ |f(xi)− f(x)| < ε
2

+ ε
2

= ε.

Now assume that xy ∈ K. Then there exists i ∈ {1, . . . , n} such that xy ∈ xiVxi , and we have
x = xyy−1 ∈ xiVxiVxi ⊂ xiUxi . Hence

|f(xy)− f(x)| ≤ |f(xy)− f(xi)|+ |f(xi)− f(x)| < ε
2

+ ε
2

= ε.

Finally, if x, xy 6∈ K, then f(x) = f(xy) = 0, and of course |f(xy)− f(x)| < ε.

2reference ?
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I.2 Haar measures

Remark I.1.13. We put the topology given by ‖.‖∞ on Cb(G). Then a function f ∈ Cb(G) is
left (resp. right) uniformly continuous if and only if the map G → Cb(G), x 7−→ Lxf (resp.
x 7−→ Rxf ) is continuous at the unit of G.

Using the fact that Lxy = Lx ◦ Ly and Rxy = Rx ◦ Ry and the operators Lx and Rx pre-
serve Cc(G), we see that the proposition above implies that, if f ∈ Cc(G), then the two maps
G→ Cc(G) sending x ∈ G to Lxf and to Rxf are continuous.

I.2 Haar measures

Definition I.2.1. Let X be a topological space.

(1). The σ-algebra of Borel sets on X is the σ-algebra on X generated by the open subsets of
X . A Borel measure on X is a measure on this σ-algebra.

(2). A regular Borel measure onX is a measure µ on the σ-algebra of Borel sets ofX satisfying
the following properties :

(a) For every compact subset K of X , µ(K) < +∞;

(b) µ is outer regular : for every Borel subset E of X , we have
µ(E) = inf{µ(U), U ⊃ E open};

(c) µ is inner regular : for every E ⊂ X that is either Borel of finite measure or open,
we have µ(E) = sup{µ(K), K ⊂ E compact}.

Notation I.2.2. We denote by C +
c (X) the subset of nonzero f ∈ Cc(X) such that f(X) ⊂ R≥0.

Theorem I.2.3 (Riesz representation theorem). Let X be a locally compact Hausdorff space,
and let Λ : Cc(X)→ C be a linear functional such that Λ(f) ≥ 0 for every f ∈ C +

c (X). 3 Then
there exists a unique regular Borel measure µ on X such that, for every f ∈ Cc(X),

Λ(f) =

∫
X

fdµ.

4

Definition I.2.4. Let G be a locally compact group. A left (resp. right) Haar measure on G is a
nonzero regular Borel measure µ on G such that, for every Borel set E of G and every x ∈ G,
we have µ(xE) = µ(E) (resp. µ(Ex) = µ(E)).

Example I.2.5. (1). If G is a discrete group, then the counting measure is a left and right Haar
measure on G.

3Such a linear functional is called positive.
4Reference ?
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I Representations of topological groups

(2). Lebesgue measure is a left and right Haar measure on the additive group of R.

Proposition I.2.6. Let G be a locally compact group and µ be a regular Borel measure on G.

(1). Let µ̃ be the Borel measure onG defined by µ̃(E) = µ(E−1). Then µ is a left Haar measure
if and only µ̃ is a right Haar measure.

(2). The measure µ is a left Haar measure on G if and only if we have : for every f ∈ Cc(G),
for every y ∈ G,

∫
G
Lyfdµ =

∫
G
fdµ.

(3). If µ is a left Haar measure on G, then µ(U) > 0 for every nonempty open subset of G and∫
G
fdµ > 0 for every f ∈ C +

c (G).

Proof. (1). First, note that µ̃ is a regular Borel measure on G because x 7−→ x−1 is a homeo-
morphism from G to itself.

If E ⊂ G is a Borel set and x ∈ E, then µ̃(Ex) = µ(x−1E−1). This implies the statement.

(2). Let x ∈ G, and let µx be the Borel measure on G defined by µx(E) = µ(xE). (This is
indeed a regular Borel measure on G, because y 7−→ xy is a homeomorphism from G to
itself.) Then, for every measurable function f : G → C, we have

∫
G
fdµx =

∫
G
Lxfdµ.

(This is obvious for characteristic functions of Borel subsets, and we get the general case
by approximating f by linear combinations of characteristic functions.)

On the one hand, the measure µ is a left Haar measure if and only if µ = µx for every
x ∈ G. On the other hand, by the uniqueness in the Riesz representation theorem (and the
paragraph above), for x ∈ G, we have µ = µx if and only

∫
G
fdµ =

∫
G
Lxfdµ for every

f ∈ Cc(G). The statement follows.

(3). Suppose that there exists a nonempty open subset U of G such that µ(U) = 0. Then
µ(xU) = 0 for every x ∈ G, so we may assume that 1 ∈ U . Let K be a compact subset
of G. Then K ⊂

⋃
x∈K xU , so there exist x1, . . . , xn ∈ K such that K ⊂

⋃n
i=1 xiU . As

µ(xiU) = 0 for every i, this implies that µ(K) = 0. But then, by inner regularity of µ, we
get µ(G) = 0, which contradicts the fact that µ is nonzero.

Let f ∈ C +
c (G). Then U := {x ∈ G|f(x) > 1

2
‖f‖∞} is a nonempty open subset of G, so

µ(U) > 0. But we have f ≥ 1
2
‖f‖∞11U , hence

∫
G
fdµ ≥ 1

2
‖f‖∞µ(U) > 0.

Theorem I.2.7. Let G be a locally compact group. Then :

(1). There exists a left Haar measure on G.

(2). If µ1 and µ2 are two left Haar measures onG, then there exists c ∈ R>0 such that µ2 = cµ1.

By proposition I.2.6, this theorem implies the similar result for right Haar measures.

Proof. We first prove existence. The idea is very similar to the construction of Lebesgue measure

12



I.2 Haar measures

on R. Suppose that c > 0, and that ϕ ∈ C+
c (R) is bounded by 1 and very close to the character-

istic function of the interval [0, c]. If f ∈ Cc(R) does not vary too quickly on intervals of length
c, then we can approximate f by a linear combination of left translates of ϕ : f '

∑
ciLxiϕ,

and then
∫
fdµ '

∑
ciLxi

∫
ϕdµ. As c → 0, we will be able to approximate every f ∈ Cc(R)

(because we know that these functions are uniformly continuous), and we’ll be able to define∫
fdµ by going to the limit. On a general locally compact group, we replace the intervals by

smaller and smaller compact neighborhoods of 1.

Now here is the rigorous proof. Let f, ϕ ∈ C+
c (G). Then U := {x ∈ G|ϕ(x) > 1

2
‖ϕ‖∞} is a

nonempty open subset ofG and we have ϕ ≥ 1
2
‖ϕ‖∞11U . As the support of f is compact, it can be

covered by a finite number of translates of U , so there exist x1, . . . , xn ∈ G and c1, . . . , cn ∈ R≥0

such that f ≤
∑n

i=1 ciLxiϕ. Hence, if we define (f : ϕ) to be the infimum of all finite sums∑n
i=1 ci with c1, . . . , cn ∈ R≥0 and such that there exist x1, . . . , xn ∈ G with f ≤

∑n
i=1 ciLxiϕ,

we have (f : ϕ) < +∞. We claim that :

(f : ϕ) = (Lxf : ϕ) ∀x ∈ G(I.2.0.0.1)
(f1 + f2 : ϕ) ≤ (f1 : ϕ) + (f2 + ϕ)(I.2.0.0.2)

(cf : ϕ) = c(f : ϕ) ∀c ≥ 0(I.2.0.0.3)
(f1 : ϕ) ≤ (f2 : ϕ) if f1 ≤ f2(I.2.0.0.4)

(f : ϕ) ≥ ‖f‖∞
‖ϕ‖∞(I.2.0.0.5)

(f : ϕ) ≤ (f : ψ)(ψ : ϕ) ∀ψ ∈ C +
c (G)− {0}(I.2.0.0.6)

The first four properties are easy. For the fifth property, note that, if f ≤
∑n

i=1 ciLxiϕ, then

‖f‖∞ ≤
n∑
i=1

ci‖Lxiϕ‖∞ =

(
n∑
i=1

ci

)
‖ϕ‖∞.

Finally, the last property is a consequence of the following fact : Let ψ ∈ C +
c (G). If we have

f ≤
∑n

i=1 ciLxiψ and ψ ≤
∑m

j=1 djLyjϕ, then f ≤
∑n

i=1

∑n
j=1 cidjLxiyjϕ.

Now we fix f0 ∈ C +
c (G). By I.2.0.0.5, we know that (f0 : ϕ) > 0. We define

Iϕ : C +
c (G)→ R≥0 by

Iϕ(f) = (f :ϕ)
(f0:ϕ)

.

By I.2.0.0.1-I.2.0.0.4, we have

Iϕ(f) = Iϕ(Lxf) ∀x ∈ G
Iϕ(f1 + f2) ≤ Iϕ(f1) + Iϕ(f2)

Iϕ(cf) = cIϕ(f) ∀c ≥ 0

Iϕ(f1) ≤ Iϕ(f2) if f1 ≤ f2

If the second inequality were an equality (that is, if Iϕ were additive), we could extend Iϕ to a
positive linear functional on Cc(G) and apply the Riesz representation theorem. This is not quite
true, but we have the following result :

13



I Representations of topological groups

Claim : For all f1, f2 ∈ C +
c (G) and ε > 0, there exists a neighborhood V of 1 in G such that

we have Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε whenever supp(ϕ) ⊂ V .

Let’s first prove the claim. Choose a function g ∈ C +
c (G) such that g(x) = 1 for every

x ∈ supp(f1 +f2), and let δ be a positive real number. Let h = f1 +f2 +δg. We define functions
h1, h2 : G→ R≥0 by

hi(x) =

{
fi(x)
h(x)

if fi(x) 6= 0

0 if fi(x) = 0.

Note that hi is equal to fi
h

, hence continuous on the open subset {x ∈ G|h(x) 6= 0}. As G is the
union of this open subset and of the open subset G− supp(fi) (on which hi is also continuous),
this shows that hi is continuous, hence hi ∈ C +

c (G). Note also that we have fi = hih.

By proposition I.1.12, there exists a neighborhood V of 1 such that, for i ∈ {1, 2} and x, y ∈ G
with y−1x ∈ V , we have |hi(x) − hi(y)| < δ. Let ϕ ∈ C +

c (G) be such that supp(ϕ) ⊂ V . If
c1, . . . , cn ∈ R≥0 and x1, . . . , xn ∈ G are such that h ≤

∑m
j=1 cjLxjϕ, then, for every x ∈ G and

i ∈ {1, 2},

fi(x) = h(x)hi(x) ≤
n∑
j=1

cjϕ(x−1
j x)hi(x) ≤

n∑
j=1

cjϕ(x−1
j x)(hi(xj) + δ),

because ϕ(x−1
j x) = 0 unless x−1

j x ∈ V . Hence

(f1 : ϕ) + (f2 : ϕ) ≤
n∑
j=1

cj(h1(xj) + h2(xj) + 2δ).

Since h1 + h2 ≤ 1, we get

(f1 : ϕ) + (f2 : ϕ) ≤ (1 + 2δ)
n∑
j=1

cj,

hence, taking the infimum over the families (c1, . . . , cn) and dividing by (f0 : ϕ), we get

Iϕ(f1) + Iϕ(f2) ≤ (1 + 2δ)Iϕ(h) ≤ (1 + 2δ)(Iϕ(f1 + f2) + δIϕ(g)).

The right-hand side of this tends to Iϕ(f1 + f2) as δ tends to 0, so we get the desired inequality
by taking δ small enough. This finishes the proof of the claim.

We come back to the construction of a left Haar measure on G. For every f ∈ C +
c (G), let

Xf = [(f0 : f)−1, (f : f0)] ⊂ R. Let X =
∏

f∈C +
c (G) Xf , endowed with the product topology.

Then, by Tychonoff’s theorem, 5 X is a compact Hausdorff space. It is the space of functions
I : C +

c (G)→ R such that I(f) ∈ Xf for every f (with the topology of pointwise convergence).
Also, by I.2.0.0.6, we have Iϕ ∈ X for every ϕ ∈ C +

c (G). For every neighborhood V of 1 in

5reference ?

14



I.2 Haar measures

G, let K(V ) be the closure of {Iϕ| supp(ϕ) ⊂ V } in X . We have K(V ) 6= ∅ for every V , so
K(V1) ∩ . . . K(Vn) ⊃ K(

⋂n
i=1 Vi) 6= ∅ for every finite family V1, . . . , Vn of neighborhoods of 1

in G. As X is compact, this implies that the intersection of all the sets K(V ) is nonempty. We
choose an element I of this intersection.

Let’s show that I is invariant by left translations, additive and homogenous of degree 1. (That
is, it has the same properties as Iϕ, but it is also additive instead of just subadditive.) Let
f1, f2 ∈ C +

c (G), c ∈ R≥0, x ∈ G and ε > 0. Choose a neighborhood V of 1 in G such
that Iϕ(f1) + Iϕ(f2) ≤ Iϕ(f1 + f2) + ε whenever supp(ϕ) ⊂ V ; this exists by the claim. By
definition of I , it is in the closure {Iϕ| supp(ϕ) ⊂ V }, which means that there exists ϕ ∈ C +

c (G)
such that supp(ϕ) ⊂ V and |I(aLyg)− Iϕ(aLyg)| < ε for g ∈ {f1, f2, f1 + f2}, y ∈ {1, x} and
a ∈ {1, c}. Then we get :

|I(Lxf1)− I(f1)| ≤ |I(Lxf1)− Iϕ(Lxf1)|+ |Iϕ(Lxf1)− Iϕ(f1)|+ |Iϕ(f1)− I(f1)| < 2ε,

|I(cf1)− cI(f1)| ≤ |I(cf1)− Iϕ(cf1)|+ |Iϕ(cf1)− cIϕ(f1)|+ |cIϕ(f1)− cI(f1)| < ε(1 + c)

and
|I(f1 + f2)− I(f1)− I(f2)| ≤ |Iϕ(f1 + f2)− Iϕ(f1)− Iϕ(f2)|

+|I(f1 + f2)− Iϕ(f1 + f2)|+ |I(f1)− Iϕ(f1)|+ |I(f2)− Iϕ(f2)| < 4ε.

As ε is arbitrary, this implies that I(Lxf1) = I(f1), I(cf1) = cI(f1) and
I(f1 + f2) = I(f1) + I(f2).

Now we extend I to a linear functional Cc(G) → C, that we will still denote by I . Let
f ∈ Cc(G). Then we can write f = (f1 − f2) + i(g1 − g2), with f1, f2, g1, g2 ∈ C +

c (G) ∪ {0}
(for example, take f1 = max(0,Re(f)), f2 = max(0,−Re(f)), g1 = max(0, Im(f)) and
g2 = max(0, Im(f))). We set I(f) = I(f1) − I(f2) + i(I(g1) − I(g2)) (with the convention
that I(0) = 0). If f = (F1 − F2) + i(G1 − G2), with F1, F2, G1, G2 ∈ C +

c (G) ∪ {0}, then
F1 + f2 = F2 + f1 and G1 + g2 = G2 + g1, so we get the same result for I(f). Also, it is
easy to check that I is a linear functional from Cc(G) to C, and it is positive by construction.
By the Riesz representation theorem, there exists a regular Borel measure µ on G such that
I(f) =

∫
G
fdµ. By proposition I.2.6, this measure is a left Haar measure.

We now prove the second statement of the theorem (uniqueness of left Haar measure up to
a constant). Let µ1, µ2 be two left Haar measures on G. By the uniqueness in the Riesz repre-
sentation theorem (and the fact that C +

c (G) generates Cc(G)) it suffices to find a positive real
number c such that

∫
fdµ1 = c

∫
fdµ2 for every f ∈ C +

c (G). By proposition I.2.6, we have∫
G
fdµ2 > 0 for every f ∈ C +

c (G). So it suffices to show that, if f, g ∈ C +
c (G), we have∫

fdµ1∫
fdµ2

=

∫
gdµ1∫
gdµ2

(∗).

Let f, g ∈ C +
c (G). Let V0 be a symmetric compact neighborhood of 1, and set

A = (supp(f))V0 ∪ V0(supp(f))

15



I Representations of topological groups

and
B = (supp(g))V0 ∪ V0(supp(g)).

Then A and B are compact by proposition I.1.7. If y ∈ V0, the functions x 7−→ f(xy) − f(yx)
and x 7−→ g(xy)− g(yx) are supported on A and B respectively.

Let ε > 0. By proposition I.1.12, there exists a symmetric neighborhood V ⊂ V0 of 1 such
that, for every x ∈ G and every y ∈ V , we have |f(xy)− f(yx)| < ε and |g(xy)− g(yx)| < ε.
Let h ∈ C +

c (G) be such that supp(h) ⊂ V and h(x) = h(x−1) for every x ∈ G. Then

(

∫
G

hdµ2)(

∫
G

fdµ1) =

∫
G×G

h(y)f(x)dµ1(x)dµ2(y)

=

∫
G×G

h(y)f(yx)dµ1(x)dµ2(y).

(We use the left invariance of µ1. Also, we can apply Fubini’s theorem, because all the functions
are supported on compact sets, and compact sets have finite measure.) Similarly, we have

(

∫
G

hdµ1)(

∫
G

fdµ2) =

∫
G×G

h(x)f(y)dµ1(x)dµ2(y)

=

∫
G×G

h(y−1x)f(y)dµ1(x)dµ2(y)

=

∫
G×G

h(x−1y)f(y)dµ1(x)dµ2(y)

=

∫
G×G

h(y)f(xy)dµ1(x)dµ2(y).

Hence∣∣∣∣(∫
G

hdµ1)(

∫
G

fdµ2)− (

∫
G

hdµ2)(

∫
G

fdµ1)

∣∣∣∣ =

∣∣∣∣∫
G×G

h(y)(f(xy)− f(yx))dµ1(x)µ2(y)

∣∣∣∣
≤ εµ1(A)

∫
G

hdµ2,

as supp(h) ⊂ V . Dividing by (
∫
G
fdµ2)(

∫
G
hdµ2), we get∣∣∣∣(∫

G

hdµ1)(

∫
G

hdµ2)−1 − (

∫
G

fdµ1)(

∫
G

fdµ2)−1

∣∣∣∣ ≤ εµ1(A)(

∫
G

fdµ2)−1.

Similarly, we have∣∣∣∣(∫
G

hdµ1)(

∫
G

hdµ2)−1 − (

∫
G

gdµ1)(

∫
G

gdµ2)−1

∣∣∣∣ ≤ εµ1(B)(

∫
G

gdµ2)−1.

Taking the sum gives ∣∣∣∣
∫
G
fdµ1∫

G
fdµ2

−
∫
G
gdµ1∫

G
gdµ2

∣∣∣∣ ≤ ε

(
µ1(A)∫
G
fdµ2

+
µ1(B)∫
G
fdµ2

)
.
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I.2 Haar measures

As ε is arbitrary, this gives the desired equality (*).

We now want to compare left and right Haar measures.

Proposition I.2.8. Let G be a locally compact group. Let x ∈ G. Then there exists ∆(x) ∈ R>0

such that, for every left Haar measure µ on G, we have µ(Ex) = ∆(x)µ(E). Moreover,
∆ : G→ R>0 is a continuous group homomorphism (where the group structure on R>0 is given
by multiplication) and, for every left Haar measure µ onG, every x ∈ G and every f ∈ L1(G, µ),
we have ∫

G

Rxfdµ = ∆(x−1)

∫
G

fdµ.

Proof. Let x ∈ G, and µ be a left Haar measure on G. Then the measure µx defined by
µx(E) = µ(Ex) is also a left Haar measure on G, so, by the uniqueness statement in theo-
rem I.2.7, there exists ∆(x) ∈ R>0 such that µx = ∆(x)µ, that is, µ(Ex) = ∆(x)µ(E) for every
Borel subset E of G. Suppose that λ is another left Haar measure on G. Then, again by theorem
I.2.7, there exists c > 0 such that λ = cµ, and so we get, fo every Borel subset E of G,

λ(Ex) = cµ(Ex) = c∆(x)µ(E) = ∆(x)λ(E).

This proves the first statement.

We prove that ∆ is a morphism of groups. Let x, y ∈ G, and let E be a Borel subset of G such
that µ(E) 6= 0. Then

∆(xy)µ(E) = µ(Exy) = ∆(y)µ(Ex) = ∆(y)∆(x)µ(E),

hence ∆(xy) = ∆(x)∆(y).

We now prove the last statement. If E is a Borel subset of G and x ∈ G, then Rx11E = 11Ex−1 ,
so we get ∫

G

Rx11Edµ = µ(Ex−1) = ∆(x−1)µ(E) = ∆(x)−1

∫
G

χEdµ

by definition of ∆. This proves the result for f = χE . The general case follows by approximating
f by linear combinations of functions 11E .

Finally, we prove that ∆ is continuous. Let f ∈ C +
c (G). We know that the function

G → Cc(G), x 7−→ Rx−1f is continuous (see remark I.1.13), so the function G → C,
x 7−→

∫
G
Rx−1fdµ is also continuous. But we have just seen that

∫
G
Rx−1fdµ = ∆(x)

∫
G
fdµ,

and we know that
∫
G
fdµ > 0 by proposition I.2.6. Hence ∆ is continuous.

Definition I.2.9. The function ∆ of the previous proposition is called the modular function of
G. We say that the group G is unimodular if ∆ = 1 (that is, if some (or any) left Haar measure
on G is also a right Haar measure).
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Remark I.2.10. Suppose that α : G → G is a homeomorphism such that for every x ∈ G, we
have β(x) ∈ G satisfying : for every y ∈ G, α(xy) = β(x)α(y). (For example, α could be right
translation by a fixed element ofG, or a continuous group isomorphism with continuous inverse.)
Then we can generalize the construction of proposition I.2.8 to get a ∆(α) ∈ R>0 satisfying :
for every f ∈ Cc(G), for every left Haar measure µ on G,

∆(α)

∫
G

f(α(x))dµ(x) =

∫
G

f(x)dµ(x)

(or equivalently µ(α(E)) = ∆(α)µ(E) for every Borel subset E of G). Moreover, if β : G→ G
satisfies the same conditions as α, then so does α ◦ β and we have ∆(α ◦ β) = ∆(α)∆(β).

Example I.2.11. (1). Any compact group is unimodular. Indeed, if G is compact, then ∆(G)
is a compact subgroup of R>0, but the only compact subgroup of R>0 is {1}. In particular,
a compact group G has a unique left and right Haar measure µ such that µ(G) = 1; we call
this measure the normalized Haar measure of G.

(2). Any discrete group is unimodular. Indeed, we have a left Haar measure on G that is also a
right Haar measure : the counting measure.

(3). If G is commutative, then left and right translations are equal on G, so G is unimodular.

(4). The groups GLn(R) and GLn(C) are unimodular. (This is proved in exercise I.5.3.2(c) for
GLn(R), and the same proof works for GLn(C).)

(5). The group of invertible upper triangular matrices in M2(R) is not unimodular (see exercise
I.5.3.2(d)). In fact, its modular function is

∆ :

(
a b
0 c

)
7−→ |ac−1|.

(6). Remember the commutator subgroup [G,G] is the subgroup generated by all the
xyx−1y−1, for x, y ∈ G. It is a normal subgroup of G, and every group morphism from G
to a commutative group is trivial on [G,G]. In particular, the modular function ∆ is trivial
on [G,G], so G is unimodular if G = [G,G]. More generally, using the first example, we
see that G is unimodular if the quotient group G/[G,G] is compact.

Proposition I.2.12. Let G be a locally compact group, and let µ be a left Haar measure on G.
We define a right Haar measure ν on G by ν(E) = µ(E−1) (see proposition I.2.6).

Then, for every f ∈ Cc(G), we have∫
G

f(x−1)dµG(x) =

∫
G

f(x)dν(x) =

∫
G

∆(x−1)f(x)dµ(x).

We also write this property as dν(x) = ∆(x−1)dµ(x), or dµ(x−1) = ∆(x−1)dµ(x).
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Proof. We prove the first equality. It is actually true for every f ∈ L1(G, µ). If f is character-
istic function of a Borel subset E, then x 7−→ f(x−1) is the characteristic function of E−1, so∫
f(x−1)dµ(x) =

∫
fdν by definition of ν. We get the general result by approximation f by

linear combination of characteristic functions of Borel subsets.

We prove the second equality. Consider the linear function Λ : Cc(G) → C,
f 7−→

∫
G

∆(x−1)f(x)dµ(x). As ∆ takes its values in R>0, Λ is positive. Also, for every
y ∈ G, we have

Λ(Ryf) =

∫
G

f(xy)∆(x−1)dµ(x) = ∆(y)

∫
G

f(xy)∆((xy)−1)dµ(x)

=

∫
G

f(x)∆(x−1)dµ(x) = Λ(f)

(using the left invariance of µ and the fact that ∆ is a morphism of groups). So the unique
regular Borel measure ρ that corresponds to Λ by the Riesz representation theorem is a right
Haar measure (see proposition I.2.6). By theorem I.2.7, there exists c > 0 such that ρ = cν. To
finish the proof, it suffices to show that c = 1. Suppose that c 6= 1. Then we can find a compact
symmetric neighborhood U of 1 such that, for every x ∈ U , we have |∆(x−1) − 1| ≤ 1

2
|c − 1|.

As U is symmetric, we have µ(U) = ν(U), hence

|c− 1|µ(U) = |cν(U)− µ(U)| =
∣∣∣∣∫
U

(∆(x−1)− 1)dµ(x)

∣∣∣∣ ≤ 1

2
|c− 1|µ(U),

which contradicts the fact that µ(U) 6= 0 (by proposition I.2.6).

I.3 Representations

In this section, G is a topological group.

I.3.1 Continuous representations

Definition I.3.1.1. If V and W are normed C-vector spaces, we denote by Hom(V,W ) the C-
vector space of bounded linear operators from V to W , and we put on it the topology given by
the operator norm ‖.‖op. We also write End(V ) for Hom(V, V ), and GL(V ) for End(V )×, with
the topology induced by that of End(V ).

Definition I.3.1.2. Let V be a normed C-vector space. Then a (continuous) representation of G
on V is a group morphism ρ from G to the group of C-linear automorphisms of V such that the
action map G× V → V , (g, v) 7−→ ρ(g)(v), is continuous.
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We refer to the representation by (ρ, V ), ρ or often simply by V . Sometimes, we don’t ex-
plicitely name the map ρ and write the action of G on V as (g, v) 7−→ gv.

Remark I.3.1.3. - The definition makes sense if V is any topological vector space (over a
topological field).

- If (ρ, V ) is a continuous representation of G, then the action of every g ∈ G on V is a
continuous endomorphism of V , so we get a group morphism ρ : G → GL(V ). But this
morphism is not necessarily continuous, unless V is finite-dimensional (see proposition
I.3.5.1). An example of this is given by the regular representations of G on Lp(G) defined
in example I.3.1.11.

- If ρ : G → GL(V ) is a morphism of groups that is continuous for the weak* topology
on End(V ), then it is not necessarily a continuous representation. (For example, take
G = GL(V ), with the topology induced by the weak* topology on End(V ), and ρ = id.
This is not a continuous representation of G on V if V is infinite-dimensional.)

Example I.3.1.4. - The trivial representation of G on V is the representation given by
ρ(x) = idV for every x ∈ G. (It is a continuous representation.)

- If V is finite-dimensional, then the identity map of GL(V ) is a continuous representation
of GL(V ) on V .

- If G = S1 and n ∈ Z, the map G → C, z 7−→ zn is a continuous representation of G on
C.

- The map ρ : R→ GL2(C), x 7−→
(

1 x
0 1

)
is a continuous representation of R on C2.

- See example I.3.1.11 for the representations of G on its function spaces.

Definition I.3.1.5. Let (ρ1, V1) and (ρ2, V2) be two representations of G. An intertwining opera-
tor (or G-equivariant map) from V1 to V2 is a bounded C-linear map T : V1 → V2 such that, for
every g ∈ G and every v ∈ V1, we have T (ρ1(g)v) = ρ2(g)T (v).

We write HomG(V1, V2) for the space of intertwining operators from V1 to V2, and EndG(V1)
for the space of intertwining operators from V1 to itself.

We say that the representations (ρ1, V1) and (ρ2, V2) are isomorphic (or equivalent) if there
exists intertwining operators T : V1 → V2 and T ′ : V2 → V1 such that T ′ ◦ T = idV1 and
T ◦ T ′ = idV2 .

Definition I.3.1.6. Let (ρ, V ) be a representation of V .

(1). A subrepresentation of V (or G-invariant subspace) is a linear subspace W such that, for
every g ∈ G, we have ρ(g)(W ) ⊂ W .

(2). The representation (ρ, V ) is called irreducible if V 6= 0 and if its only closed G-invariant
subspaces are 0 and V . Otherwise, the representation is called reducible.
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(3). The representation (ρ, V ) is called indecomposable if, whenever V = W1 ⊕W2 with W1

and W2 two closed G-invariant subspaces of V , we have W1 = 0 or W2 = 0.

(4). The representation (ρ, V ) is called semisimple if there exists a family (Wi)i∈I of closed
G-invariant subspaces of V that are in direct sum and such that

⊕
i∈IWi is dense in V . (If

I is finite, the direct sum is also closed in V , so this implies that V =
⊕

i∈IWi.)

Remark I.3.1.7. If (ρ, V ) is a representation of G and W ⊂ V is a G-stable subspace, then its
closure W is also stable by G.

Example I.3.1.8. The representation ρ of R on C2 given by ρ(x) =

(
1 x
0 1

)
is indecomposable

but not irreducible.

Lemma I.3.1.9. Let (ρ1, V1) and (ρ2, V2) be two representations of G, and let T : V1 → V2 be
an intertwining operator. Then Ker(T ) is a subrepresentation of V1, and Im(T ) is a subrepre-
sentation of V2.

Proof. Let v ∈ Ker(T ) and g ∈ G. Then T (ρ1(g)(v)) = ρ2(g)(T (v)) = 0, so
ρ1(g)(v) ∈ Ker(T ).

Now let w ∈ Im(T ), and choose v ∈ V1 such that w = T (v). Then
ρ2(g)(w) = T (ρ1(g)(v)) ∈ Im(T ).

Proposition I.3.1.10. Let V be a normed vector space and ρ : G→ End(V ) be a multiplicative
map. We denote by ‖.‖op the operator norm on End(V ). Suppose that :

(a) For every g ∈ G, we have ‖ρ(g)‖op ≤ 1;

(b) For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v) is continuous.

Then (ρ, V ) is a continuous representation of G.

Proof. Let g0 ∈ G, v0 ∈ V , and ε > 0. We want to find a neighborhood U of g in G and a δ > 0
such that : g ∈ U and ‖v − v0‖ < δ⇒ ‖ρ(g)(v)− ρ(g0)(v0)‖ < ε.

Choose a neighborhood U of g in G such that : g ∈ U ⇒ ‖ρ(g)(v0)− ρ(g0)(v0)‖ < ε/2, and
take δ = ε/2. Then, if g ∈ U and ‖v − v0‖ < δ, we have

‖ρ(g)(v)− ρ(g0)(v0)‖ ≤ ‖ρ(g)(v)− ρ(g)(v0)‖+ ‖ρ(g)(v0)− ρ(g0)(v0)‖
< ‖ρ(g)‖op‖v − v0‖+ ε/2
< ε/2 + ε/2 = ε,

because ‖ρ(g)‖op ≤ 1.
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I Representations of topological groups

Example I.3.1.11. (1). We have defined, for every x ∈ G, two endomorphisms Lx and Rx of
the space of functions on G, and these endomorphisms preserve ‖.‖∞. So, by proposition
I.3.1.10 and remark I.1.13, they define two representations of G on Cc(G).

(2). Suppose that G is locally compact Hausdorff. We fix a left Haar measure dx on G, and
we denote Lp(G) the Lp spaces for this measure, for 1 ≤ p ≤ ∞. The left invariance of
the measure implies that the operators Lx preserve the Lp norm, so we get a C-linear left
action of G on Lp(G), and, by proposition I.3.1.10, to show that it is a representation, we
just need to show that, if f ∈ Lp(G), the map G→ Lp(G), x 7−→ Lxf is continuous. This
is not necessarily true if p = ∞, but it is for 1 ≤ p < ∞, by proposition I.3.1.13 below.
So we get a representation of G on Lp(G) for 1 ≤ p <∞.

If we chose instead a right Haar measure on G, then the operators Rx would define a
representation of G on Lp(G) for 1 ≤ p < ∞. So, if G is unimodular, we get two
commuting representations of G on Lp(G).

Definition I.3.1.12. Let G be a locally compact group with a left (resp. right) Haar measure dx,
and let L2(G) be the corresponding L2 space. The representation of G on L2(G) given by the
operators Lx (resp. Rx) is called the left (resp. right) regular representation of G.

Proposition I.3.1.13. Let G be a locally compact group, let µ be a left Haar measure on G, and
let Lp(G) be the corresponding Lp space. Suppose that 1 ≤ p <∞.

Then, for every f ∈ Lp(G), we have ‖Lxf − f‖p → 0 and ‖Rxf − f‖p → 0 as x→ 1.

Proof. Suppose first that f ∈ Cc(G), and fix a compact neighborhood V of 1. Then
K := V (supp f) ∪ (supp f)V is compact by proposition I.1.7, so µ(K) < +∞. For every
x ∈ V , we have supp(f), supp(Lxf), supp(Rxf) ⊂ K, so ‖Lxf − f‖p ≤ µ(K)1/p‖Lx − f‖∞
and ‖Rxf − f‖p ≤ µ(K)1/p‖Rxf − f‖∞. The result then follows from proposition I.1.12.

Now let f be any element of Lp(G). We still fix a compact neighborhood V of 1, and we set
C = supx∈V ∆(x)−1/p. Let ε > 0. There exists g ∈ Cc(G) such that ‖f − g‖p < ε. Then we
have, for x ∈ V ,

‖Lxf − f‖p ≤ ‖Lx(f − g)‖p + ‖Lxg − g‖p + ‖g − f‖p ≤ 2ε+ ‖Lxg − g‖p

(as ‖Lx(f − g)‖p = ‖f − g‖p) and

‖Rxf − f‖p ≤ ‖Rx(f − g)‖p + ‖Rxg − g‖p + ‖g − f‖p ≤ (1 + C)ε+ ‖Rxg − g‖p

(as ‖Rx(f−g)‖p = ∆(x)−1/p‖f−g‖p). We have seen in the first part of the proof that ‖Lxg−g‖p
and ‖Rxg − g‖p tend to 0 as x tends to 1, so we can find a neighborhood U ⊂ V of 1 such that
‖Lxf − f‖p ≤ 3ε and ‖Rxf − f‖p ≤ (2 + C)ε for x ∈ U .
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I.3 Representations

I.3.2 Unitary representations

Remember that a (complex) Hilbert space is a C-vector space V with a Hermitian inner product6

such that V is complete for the corresponding norm. If V is a finite-dimensional C-vector space
with a Hermitian inner product, then it is automatically complete, hence a Hilbert space. We will
usually denote the inner product on all Hermitian inner product spaces by 〈., .〉 (unless otherwise
specified).

Notation I.3.2.1. Let V and W be Hermitian inner product spaces. For every continuous C-
linear map T : V → W , we write T ∗ : W → V for the adjoint of T , if it exists. Remember that
we have 〈T (v), w〉 = 〈v, T ∗(w)〉 for every v ∈ V and w ∈ W , and that T ∗ always exists if V
and W are Hilbert spaces.

If V ′ is a subspace of V , we write V ′⊥ for the orthogonal of V ′; it is defined by

(V ′)⊥ = {v ∈ V |∀v′ ∈ V ′, 〈v, v′〉 = 0}.

Finally, we write U(V ) for the group of unitary endomorphisms of V , that is, of endomor-
phisms T of V that preserve the inner product (〈T (v), T (w)〉 = 〈v, w〉 for all v, w ∈ V ). A
unitary endomorphism T is automatically bounded and invertible (with inverse equal to T ∗).

The following result is an immediate corollary of proposition I.3.1.10 (and of the fact that
unitary operators have norm 1).

Corollary I.3.2.2. If V is a Hilbert space and ρ : G→ U(V ) is a morphism of groups, then the
following are equivalent :

(1). The map G× V → V , (g, v) 7−→ ρ(g)(v), is continuous.

(2). For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v), is continuous.

Definition I.3.2.3. If V is a Hilbert space, a unitary representation of G on V is a morphism of
groups ρ : G→ U(V ) satisfying the conditions of corollary I.3.2.2.

These representations are our main object of study.

Example I.3.2.4. If (X,µ) is any measure space, then L2(X) is a Hilbert space, with the follow-
ing inner product :

〈f, g〉 =

∫
X

f(x)g(x)dµ(x).

So if G is a locally compact group, then the left regular representation and right regular repre-
sentations of G are unitary representations of G (on the same space if G is unimodular).

6We will always assume Hermitian inner products to be C-linear in the first variable.
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I Representations of topological groups

Remark I.3.2.5. Note that ρ is still not necessarily a continuous map in general. (Unless
dimC V < +∞.) For example, it is not continuous for the left regular representation of S1.

Also, note that we don’t need the completeness of V in the proof, so corollary I.3.2.2 is actually
true for any Hermitian inner product space.

Lemma I.3.2.6. Let (ρ, V ) be a unitary representation of G. Then, for every G-invariant sub-
space W of V , the subspace W⊥ is also G-invariant.

In particular, if W is a closed G-invariant subspace of V , then we have V = W ⊕W⊥ with
W⊥ a closed G-invariant subspace.

Proof. Let v ∈ W⊥ and g ∈ G. Then, for every w ∈ W , we have

〈ρ(g)(v), w〉 = 〈v, ρ(g)−1w〉 = 0

(the last equality comes from the fact that ρ(g)−1w ∈ W ), hence ρ(g)(v) ∈ W⊥.

Lemma I.3.2.7. Let (ρ1, V1) and (ρ2, V2) be two unitary representations of G, and let
T : V1 → V2 be an intertwining operator. Then T ∗ : V2 → V1 is also an intertwining oper-
ator.

Proof. Let w ∈ V2 and g ∈ G. Then, for every v ∈ V1, we have

〈v, T ∗(ρ2(g)(w))〉 = 〈T (v), ρ2(g)(w)〉 = 〈ρ2(g)−1T (v), w〉 = 〈T (ρ1(g)−1(v)), w〉 =

〈ρ1(g)−1(v), T ∗(w)〉 = 〈v, ρ1(g)T ∗(w)〉.

So T ∗(ρ2(g)(w)) = ρ1(g)(T ∗(w)).

Theorem I.3.2.8. Assume that the group G is compact Hausdorff. Let (V, 〈., .〉0) be a Hilbert
space and ρ : G → GL(V ) be a continuous representation of G on V . Then there exists a
Hermitian inner product 〈., .〉 on V satisfying the following properties :

(1). There exist real numbers c, C > 0 such that, for every v ∈ V , we have
c|〈v, v〉0| ≤ |〈v, v〉| ≤ C|〈v, v〉0|. In other words, the norms coming from the two in-
ner products are equivalent, and so V is still a Hilbert space for the inner product 〈., .〉.

(2). The representation ρ is unitary for the inner product 〈., .〉.

Remark I.3.1. (a) If V is irreducible, it follows from Schur’s lemma (see theorem I.3.4.1) that
this inner product is unique up to a constant.
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I.3 Representations

(b) This is false for noncompact groups. For example, consider the representation ρ of R on C2

given by ρ(t) =

(
1 t
0 1

)
. There is no inner product on C2 that makes this representation

unitary (otherwise ρ(R) would be a closed subgroup of the unitary group of this inner
product, hence compact, but this impossible because ρ(R) ' R).

Proof of the theorem. We define 〈., .〉 : V × V → C by the following formula : for all v, w ∈ V ,

〈v, w〉 =

∫
G

〈ρ(g)v, ρ(g)w〉0dg,

where dg is a normalized Haar measure on G. This defines a Hermitian form on V , and we have
〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for every v, w ∈ V and g ∈ G by left invariance of the measure.

If we prove property (1), it will also imply that 〈., .〉 is definite (hence an inner product), and so
we will be done. Let v ∈ V . Then the two maps G → V sending v to ρ(g)(v) and to ρ(g)−1(v)
are continuous. As G is compact, they are both bounded. By the uniform boundedness principle
(theorem I.3.2.11), there exist A,B ∈ R>0 such that ‖ρ(g)−1‖op ≤ A and ‖ρ(g)‖op ≤ B for
every g ∈ G. By the submultiplicativity of the operator norm, the first inequality implies that
‖ρ(g)‖ ≤ A−1 for every g ∈ G. So the definition of 〈., .〉 (and the fact that G has volume 1) gives
property (1), with c = A−2 and C = B2.

Corollary I.3.2.9. If G is compact Hausdorff, then every nonzero finite-dimensional continuous
representation of G is semisimple.

Proof. We may assume that the representation is unitary by the theorem. We prove the corollary
by induction on dimV . The result is obvious if dimV ≤ 1, so assume that dimV ≥ 2 and that
we know the result for all spaces of strictly smaller dimension. If V is irreducible, we are done.
Otherwise, there is a G-invariant subspace W ( V such that W 6= 0. This subspace is closed
because it is finite-dimensional, and we have V = W⊕W⊥ withW⊥ invariant by lemma I.3.2.6.
As dim(W ), dim(W⊥) < dim(V ), we can apply the induction hypothesis to W and W⊥ and
conclude that they are semisimple. But then their direct sum V is also semisimple.

Remark I.3.2.10. This is still true (but harder to prove) for infinite-dimensional unitary repre-
sentations of compact groups (see theorem IV.2.1), but it is false for infinite-dimensional unitary
representations of noncompact groups (if for example G is abelian and not compact, its regu-
lar representation is not semisimple by corollary I.3.4.4 and exercise III.6.1.2(c)), or for finite-
dimensional (non-unitary) representations of noncompact groups (see example I.3.1.8).

Theorem I.3.2.11 (Uniform boundedness principle or Banach-Steinhaus theorem). Let V and
W be normed vector spaces, and suppose that V is a Banach space (i.e. that it is complete for
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I Representations of topological groups

the metric induced by its norm). Let (Ti)i∈I be a family of bounded linear operators from V to
W .

If the family (Ti)i∈I is pointwise bounded (that is, if supi∈I ‖Ti(v)‖ < +∞ for every v ∈ V ),
then it is bounded (that is, supi∈I ‖Ti‖op < +∞).

Proof. 7 8 Suppose that supi∈I ‖Ti‖op = +∞, and choose a sequence (in)n≥0 of elements of I
such that ‖Tin‖op ≥ 4n. We define a sequence (vn)n≥0 of elements of V in the following way :

- v0 = 0;

- For n ≥ 1, we can find, thanks to lemma I.3.2.12 below, an element vn of V such that
‖vn − vn−1‖ ≤ 3−n and ‖Tin(vn)‖ ≥ 2

3
3−n‖Tin‖op.

We have ‖vn − vm‖ ≤ 1
2
3−n for m ≥ n, so the sequence (vn)n≥0 is a Cauchy se-

quence; as V is complete, it has a limit v, and we have ‖vn − v‖ ≤ 1
2
3−n for every

n ≥ 0. The inequality ‖Tin(vn)‖ ≥ 2
3
3−n‖Tin‖op and the triangle inequality now imply that

‖Tin(x)‖ ≥ 1
6
3−n‖Tin‖op ≥ 1

6
(4

3
)n, and so the sequence (‖Tin(x)‖)n≥0 is unbounded, which

contradicts the hypothesis.

Lemma I.3.2.12. Let V and W be two normed vector spaces, and let T : V → W be a bounded
linear operator. Then for any v ∈ V and r > 0, we have

sup
v′∈B(v,r)

‖T (v′)‖ ≥ r‖T‖op,

where B(v, r) = {v′ ∈ V |‖v − v′‖ < r}.

Proof. For every x ∈ V , we have

‖T (x)‖ ≤ 1

2
(‖T (v + x)‖+ T (v − x)‖) ≤ max(‖T (v + x)‖, ‖T (v − x)‖).

Taking the supremum over x ∈ B(0, r) gives the inequality of the lemma.

Finally, we have the following result, whose proof uses Schur’s lemma (theorem I.3.4.1) and
is given in exercise I.5.5.9.

Theorem I.3.2.13. If G is a compact group, then every irreducible unitary representation of G
is finite-dimensional.

7Taken from a paper of Alan Sokal.
8Precise ref.
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I.3 Representations

I.3.3 Cyclic representations

Definition I.3.3.1. Let (ρ, V ) be a continuous representation of G, and let v ∈ V . Then the
closure W of Span{ρ(g)(v), g ∈ G} is a subrepresentation of V , called the cyclic subspace
generated by v.

If V = W , we say that V is a cyclic representation and that v is a cyclic vector for V .

Example I.3.3.2. An irreducible representation is cyclic, and every nonzero vector is a cyclic
vector for it.

The converse is not true. For example, consider the representation ρ of the symmetric group
Sn on Cn defined by ρ(σ)(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)), and let v = (1, 0, . . . , 0) ∈ Cn.
Then the set ρ(Sn)(v) is the canonical basis of Cn, hence it generates Cn, and so v is a cyclic
vector for ρ. But ρ is not irreducible, because C(1, 1, . . . , 1) is a subrepresentation.

Proposition I.3.3.3. Every unitary representation of G is a direct sum of cyclic representations.

If the indexing set is infinite, we understand the direct sum to be the closed direct sum (that is,
the closure of the algebraic direct sum).

Proof. Let (π, V ) be a unitary representation of G. By Zorn’s lemma, we can find a maximal
collection (Wi)i∈I of pairwise orthogonal cyclic subspaces of V . Suppose that V is not the direct
sum of the Wi, then there exists a nonzero vector v ∈ (

⊕
i∈IWi)

⊥. By lemma I.3.2.6, the cyclic
subspace generated by v is included in (

⊕
i∈IWi)

⊥, which contradicts the maximality of the
family (Wi)i∈I . Hence V =

⊕
i∈IWi.

I.3.4 Schur’s lemma

The following theorem is fundamental. We will not be able to prove it totally until we have the
spectral theorem for normal endomorphisms of Hilbert spaces (theorem II.4.1).

Theorem I.3.4.1 (Schur’s lemma). Let (ρ1, V1) and (ρ2, V2) be two representations of G, and let
T : V1 → V2 be an intertwining operator.

(1). If V1 is irreducible, then T is either zero or injective.

(2). If V2 is irreducible, then T is zero or has dense image.

(3). Suppose that V1 is unitary. Then it is irreducible if and only if EndG(V1) = C · idV1 .

(4). Suppose that V1 and V2 are unitary and irreducible. Then HomG(V1, V2) is of dimension
zero (if V1 and V2 are not isomorphic) or 1 (if V1 and V2 are isomorphic).
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I Representations of topological groups

Proof. We prove the first two points. By lemma I.3.1.9, Ker(T ) and Im(T ) are G-invariant
subspaces of V1 and V2. Moreover, Ker(T ) is a closed subspace of V1. If V1 is irreducible, then
its only closed invariant subspaces are 0 and V1; this gives the first point. If V2 is irreducible,
then its only closed invariant subspaces are 0 and V2; this gives the second point.

We prove the third point. Suppose first that V1 is not irreducible. Then it has a closed invari-
ant subspace W such that 0 6= W 6= V1, and orthogonal projection on W is a G-equivariant
endomorphism by lemma I.3.4.3. So EndG(V1) strictly contains C · idV1 .

Now suppose that V1 is irreducible, and let T ∈ EndG(V1). We want to show that T ∈ CidV1 .
If V1 is finite-dimensional, then T has an eigenvalue λ, and then Ker(T − λidV1) is a nonzero G-
invariant subspace of V1, hence equal to V1, and we get T = λidV1 . In general, we still know that
every T ∈ End(V ) has a nonempty spectrum (by theorem II.1.1.3), but, if λ is in the spectrum
of T , we only know that T − λidV is not invertible, not that Ker(T − λidV ) 6= 0. So we cannot
apply the same strategy. Instead, we will use a corollary of the spectral theorem (theorem II.4.1).
Note that the subgroup ρ1(G) of End(V1) satisfies the hypothesis of corollary II.4.4 because
V1 is irreducible, so its centralizer in End(V1) is equal to CidV1; but this centralizer is exactly
EndG(V1), so we are done.

We prove the fourth point. Let T : V1 → V2 be an intertwining operator. Then T ∗ : V2 → V1

is also an intertwining operator by lemma I.3.2.7, so T ∗T ∈ EndG(V1) and TT ∗ ∈ EndG(V2).
By the third point, there exists c ∈ C such that T ∗T = cidV1 . If c 6= 0, then T is injective and
Im(T ) is closed (because ‖T (v)‖ ≥ |c|

‖T ∗‖op‖v‖ for every v ∈ V1, see lemma I.3.4.2), so T is an
isomorphism by the second point, and its inverse c−1T ∗; hence V1 and V2 are isomorphic, and
HomG(V1, V2) ' EndG(V1) is 1-dimensional. Suppose that c = 0. If T 6= 0, then it has dense
image by the second point, but then T ∗ = 0 by the first point, hence T = (T ∗)∗ = 0, which
is absurd; so T = 0. So we have proved that, if HomG(V1, V2) 6= 0, then V1 and V2 must be
isomorphic; this finishes the proof of the fourth point.

Lemma I.3.4.2. Let V , W be two normed vector spaces, and let T : V → W be a bounded
linear operator. Suppose that V is complete. If there exists c > 0 such that ‖T (v)‖ ≥ c‖v‖ for
every v ∈ V , then Im(T ) is closed.

Proof. Let (vn)n∈N be a sequence of elements of V such that the sequence (T (vn))n∈N con-
verges to a w ∈ W . We want to show that w ∈ Im(T ). Note that, for all n,m ∈ N, we have
‖vn − vm‖ ≤ c−1‖T (vn)− T (vm)‖. This implies that (vn)n∈N is a Cauchy sequence, so it has a
limit v ∈ V because V is complete. As T is continuous, we have w = limn→+∞ T (vn) = T (v),
so w ∈ Im(T ).

Lemma I.3.4.3. Let (ρ, V ) be a unitary representation of G, let W be a closed subspace of V ,
and let π be the orthogonal projection on W , seen as a linear endomorphism of V .

Then W is G-invariant if and only if π is G-equivariant.
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Proof. Suppose that π is G-equivariant. Let w ∈ W and g ∈ G. Then
ρ(g)(w) = ρ(g)(π(w)) = π(ρ(g)(w)) ∈ W . So W is invariant by G.

Conversely, suppose that W is G-invariant. By lemma I.3.2.6, its orthogonal W⊥ is also
invariant by G. Let v ∈ V and g ∈ G. We write w = π(g) and w′ = g − π(g).
Then ρ(g)(v) = ρ(g)(w) + ρ(g)(w′) with ρ(g)(w) ∈ W and ρ(g)(w′) ∈ W⊥, so
π(ρ(g)(v)) = ρ(g)(w).

Corollary I.3.4.4. If G is commutative, then every irreducible unitary representation of G is
1-dimensional.

So each unitary irreducible representation of G is equivalent to one (and only one) continuous
group morphism G→ S1.

Proof. Let (ρ, V ) be an irreducible unitary representation. As G is commutative, the operators
ρ(x) and ρ(y) commute for all x, y ∈ G, so we have ρ(x) ∈ EndG(V ) for every x ∈ G.
By Schur’s lemma, this implies that ρ(x) ∈ C · idV for every x ∈ G. In particular, every
linear subspace of V is invariant by G. As V is irreducible, it has no nontrivial closed invariant
subspaces, so it must be 1-dimensional.

Example I.3.4.5. Let G = R. Then every irreducible unitary representation of G is of the form
ρy : x 7−→ eixy, for y ∈ R. The representation ρy factors through S1 ' R/Z if and only
y ∈ 2πZ. (See exercise I.5.4.1(c) and (d).)

I.3.5 Finite-dimensional representations

Remember that, if V is a finite-dimensional C-vector space, then all norms on V are equivalent.
9 So V has a canonical topology, and so does End(V ) (as it is also a finite-dimensional vector
space).

Proposition I.3.5.1. Let V be a normed C-vector space and ρ : G→ GL(V ) be a morphism of
groups. Consider the following conditions.

(i) The map G × V → V , (g, v) 7−→ ρ(g)(v), is continuous (i.e. ρ is a continuous represen-
tation of G on V ).

(ii) For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v), is continuous.

(iii) The map ρ : G→ GL(V ) is continuous.

9reference ?
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I Representations of topological groups

Then we have (iii)⇒(i)⇒(ii). If moreover V is finite-dimensional, then all three conditions
are equivalent.

Proof.

(i)⇒(ii) is obvious.

(ii)⇒(iii) : Suppose that V is finite-dimensional, and let (e1, . . . , en) be a basis of V , and let
‖.‖ be the norm on V defined by ‖

∑x
i=1 xiei‖ = sup1≤i≤n |xi|. We use the corresponding

operator norm on End(V ) and still denote it by ‖.‖. Let g0 ∈ G and let ε > 0; we are
looking for a neighborhoord U of g0 ∈ G such that : g ∈ U ⇒ ‖ρ(g)− ρ(g0)‖ ≤ ε.

For every i ∈ {1, . . . , n}, the function G → V , g 7−→ ρ(g)(ei), is contin-
uous by assumption, so there exists a neighborhood Ui of g0 in G such that :
g ∈ U ⇒ ‖ρ(g)(ei) − ρ(g0)(ei)‖ ≤ ε/n. Let U =

⋂n
i=1 Ui. Then if g ∈ U , for ev-

ery v =
∑n

i=1 xiei ∈ V , we have

‖ρ(g)(v)− ρ(g0)(v)‖ ≤
n∑
i=1

‖xi‖‖ρ(g)(ei)− ρ(g0)(ei)‖ <
n∑
i=1

|xi|ε/n ≤ ε‖v‖,

which means that ‖ρ(g)− ρ(g0)‖ ≤ ε.

(iii)⇒(i) : Let g0 ∈ G, v0 ∈ V , and ε > 0. We want to find a neighborhood U of g and G
and a δ > 0 such that : g ∈ U and ‖v − v0‖ < δ⇒ ‖ρ(g)(v)− ρ(g0)(v0)‖ < ε.

Choose a δ such that 0 < δ ≤ ε
2‖ρ(g0)‖ , and let U be a neighborhood of g0 in G such that

: g ∈ G ⇒ ‖ρ(g) − ρ(g0)‖ < ε
2(‖v0‖+δ) . Then, if g ∈ U and ‖v − v0‖ < δ, we have

‖v‖ ≤ ‖v0‖+ δ, and hence

‖ρ(g)(v)− ρ(g0)(v0)‖ ≤ ‖ρ(g)(v)− ρ(g0)(v)‖+ ‖ρ(g0)(v)− ρ(g0)(v0)‖
≤ ‖ρ(g)− ρ(g0)‖‖v‖+ ‖ρ(g0)‖‖v − v0‖
<

ε

2(‖v0‖+ δ)
(‖v0‖+ δ) + ‖ρ(g0)‖δ

≤ ε/2 + ε/2 = ε.

I.4 The convolution product and the group algebra

Let G be a locally compact group, and let dx be a left Haar measure on G. We denote by Lp(G)
the Lp spaces for this measure. We also denote by ∆ the modular function of G.
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I.4.1 Convolution on L1(G) and the group algebra of G

Definition I.4.1.1. Let f and g be functions from G to C. The convolution of f and g, denoted
by f ∗ g, is the function x 7−→

∫
G
f(y)g(y−1x)dy (if it makes sense).

Proposition I.4.1.2. Let f, g ∈ L1(G). Then the integral
∫
G
f(y)g(y−1x)dy is absolutely con-

vergent for almost every x inG, so f ∗g is defined almost everywhere, and we have f ∗g ∈ L1(G)
and

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

Proof. By the Fubini-Tonelli theorem and the left invariance of the measure on G, the function
G×G→ C, (x, y) 7−→ f(y)g(y−1x) is integrable and we have∫

G×G
|f(y)g(y−1x)|dxdy =

∫
G×G
|f(y)||g(x)|dxdy = ‖f‖1‖g‖1.

So the first statement also follows from Fubini’s theorem, and the second statement is obvious.

Note that the convolution product is clearly linear in both arguments.

Proposition I.4.1.3. Let f, g ∈ L1(G).

(1). For almost every x ∈ G, we have

f ∗ g(x) =

∫
G

f(y)g(y−1x)dy

=

∫
G

f(xy)g(y−1)dy

=

∫
G

f(y−1)g(yx)∆(y−1)dy

=

∫
G

f(xy−1)g(y)∆(y−1)dy

=

∫
G

f(y)Lyg(x)dy

=

∫
G

g(y−1)Ryf(x)dy.

(2). For every h ∈ L1(G), we have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

(In other words, the convolution product is associative.)
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(3). For every x ∈ G, we have
Lx(f ∗ g) = (Lxf) ∗ g

and
Rx(f ∗ g) = f ∗ (Rxg).

(4). If G is abelian, then f ∗ g = g ∗ f .

Proof. (1). We get the equalities of the first four lines by using the substitutions y 7−→ xy and
y 7−→ y−1, the left invariance of dy and proposition I.2.12. The last two lines are just
reformulations of the first two.

(2). For almost every x ∈ G, we have

((f ∗ g) ∗ h)(x) =

∫
G

(f ∗ g)(y)h(y−1x)dy

=

∫
G×G

f(z)g(z−1y)h(y−1x)dzdy

=

∫
G

f(z)

(∫
G

g(z−1y)h(y−1x)dy

)
dz

=

∫
G

f(z)

(∫
G

g(y)h(y−1z−1x)dy

)
dz

=

∫
G

f(z)(g ∗ h)(z−1x)dz

= (f ∗ (g ∗ h))(x).

(3). This follows immediately from the definition and the equality of the first two lines in point
(1).

(4). This follows from (1) and from the fact that ∆ = 1.

Definition I.4.1.4. A Banach algebra (over C) is an associative C-algebra A with a norm ‖.‖
making A a Banach space (i.e. a complete normed vector space) and such that, for every
x, y ∈ A, we have ‖xy‖ ≤ ‖x‖‖y‖ (i.e. the norm is submultiplicative). If A has a unit e,
we also require that ‖e‖ = 1.

Note that we do not assume that A has a unit. If it does, we say that A is unital.

Example I.4.1.5. (a) If V is a Banach space, then End(V ) is a unital Banach algebra.

(b) By propositions I.4.1.2 and I.4.1.3, the space L1(G) with the convolution product is a
Banach algebra. We call it the (L1) group algebra of G.
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Remark I.4.1.6. If the group G is discrete and dx is the counting measure, then δ1 := 11{1} is a
unit for the convolution product. In general, L1(G) does not always have a unit. (It does if and
only if G is discrete.)10 We can actually see it as a subalgebra of a bigger Banach algebra that
does have a unit, the measure algebra M (G) of G (see for example section 2.5 of [11]) :

Remember that a (complex) Radon measure on G is a bounded linear functional on C0(G)
(with the norm ‖.‖∞). We denote by M (G) the space of Radon measures and by ‖.‖ its norm
(which is the operator norm); this is a Banach space. If µ is a Radon measure, we write
f 7−→

∫
G
f(x)dµ(x) for the corresponding linear functional on C0(G). We define the convo-

lution product µ ∗ ν of two Radon measures µ and ν to be the linear functional

f 7−→
∫
G×G

f(xy)dµ(x)dν(y).

Then it is not very hard to check that ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖ and that the convolution product is
associative on M (G). This makes M (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of M (G).

Note also that M (G) is commutative if and only if G is abelian. Indeed, it is obvious on the
definition of ∗ that M (G) is commutative if G is abelian. To show the converse, we denote by
δx the Dirac measure at x (so

∫
G
fdδx = f(x)). Then we clearly have δx ∗ δy = δxy for every

x, y ∈ G. So, if M (G) is commutative, then δxy = δyx for every x, y ∈ G, and this implies that
G is abelian.

Even though L1(G) does not contain the unit of M (G), we have families of functions called
“approximate identities” that will be almost as good as δ1 in practice. In particular, we will be
able to prove that L1(G) is commutative if and only if G is abelian (see corollary I.4.1.10).

Definition I.4.1.7. A (symmetric, continuous) approximate identity with supports in a basis of
neighborhoods U of 1 in G is a family of functions (ψU)U∈U in C +

c (G) such that, for every
U ∈ U , we have

- supp(ψU) ⊂ U ;

- ψU(x−1) = ψU(x), ∀x ∈ G;

-
∫
G
ψU(x)dx = 1.

For some results, we don’t need the continuity of the ψU or the fact that ψU(x−1) = ψU(x).

Proposition I.4.1.8. For every basis of neighborhoods U of 1 in G, there exists an approximate
identity with supports in U .

Proof. Let U ∈ U . Then U contains a symmetric neighborhood V ⊂ U of 1 and a com-
pact neighborhood K ⊂ V of 1, and, by corollary A.3.1, there exists a continuous function

10reference ?
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f : X → [0, 1] with compact support contained in V such that f|K = 1. In particular, f 6= 0,
so f ∈ C +

c (X). Define g : X → [0, 2] by g(x) = f(x) + f(x−1). Then g ∈ C +
c (X) (because

g|K = 2) and supp(g) ⊂ V ⊂ U . Now take ψU = 1∫
G g(x)dx

g.

Proposition I.4.1.9. Let U be a basis of neighborhoods of 1 in G, and let (ψU)U∈U be an
approximate identity with supports in U .

(1). For every f ∈ L1(G), we have ‖ψU ∗ f − f‖1 → 0 and ‖f ∗ ψU − f‖1 → 0 as U → {1}.
In fact, we have :

‖ψU ∗ f − f‖1 ≤ sup
y∈U
‖LY f − f‖1

and
‖f ∗ ψU − f‖1 ≤ sup

y∈U
‖RY f − f‖1.

(2). If f ∈ L∞(G) and f is left (resp. right) uniformly continuous, then ‖ψU ∗ f − f‖∞ → 0
(resp. ‖f ∗ ψU − f‖∞ → 0) as U → {1}. In fact, we have :

‖ψU ∗ f − f‖∞ ≤ sup
y∈U
‖LY f − f‖∞

and
‖f ∗ ψU − f‖∞ ≤ sup

y∈U
‖RY f − f‖∞.

In point (2), note that if f : G → C is bounded and g ∈ Cc(G), then the integral defining
(f ∗ g)(x) converges absolutely for every x ∈ G.

Proof. (1). Let U ∈ U . For every x ∈ G, we have

(ψU ∗ f)(x)− f(x) =

∫
G

ψU(y)(Lyf(x)− f(x))dy

(because
∫
G
ψU(y)dy = 1). So

‖ψU ∗ f − f‖1 =

∫
G

|
∫
G

ψU(y)(Lyf(x)− f(x))dy|dx

≤
∫
G×G

ψU(y)|Lyf(x)− f(x)|dydx

≤
∫
G

ψU(y)‖Ly − f‖1dy

≤ sup
y∈U
‖Lyf − f‖1.
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The first convergence result then follows from the fact that ‖Lyf − f‖1 → 0 as y → 1,
which is proposition I.3.1.13.

The proof of the second convergence result is similar (we get that
‖f ∗ ψU − f‖1 ≤ supy∈U ‖Ryf − f‖1 and apply proposition I.3.1.13).

(2). Let U ∈ U . Then for every x ∈ G,

|(ψU ∗ f)(x)− f(x)| ≤
∫
G

ψU(y)|Lyf(x)− f(x)|dy.

As ψU(y) = 0 for y 6∈ U , this implies that

|(ψU ∗ f)(x)− f(x)| ≤ (sup
y∈U
|Lyf(x)− f(x)|)(

∫
G

ψU(y)dy) = sup
y∈U
|Lyf(x)− f(x)|.

Taking the supremum over x ∈ G gives

‖ψU ∗ f − f‖∞ ≤ sup
y∈U
‖Lyf − f‖∞.

So the first statement follows immediately from the definition of left uniform continuity.
The proof of the second statement is similar.

Corollary I.4.1.10. (1). The Banach algebra L1(G) is commutative if and only if the group G
is abelian.

(2). Let I be a closed linear subspace of L1(G). Then I is a left (resp. right) ideal if and
only if it is stable under the operators Lx (resp. Rx), x ∈ G.

Proof. (1). If G is abelian, then we have already seen that L1(G) is commutative. Conversely,
suppose that L1(G) is commutative. Let x, y ∈ G. Let f ∈ Cc(G), and choose an approx-
imate identity (ψU)U∈U . By proposition I.4.1.3, we have, for every U ∈ U ,

(Rxf) ∗ (RyψU) = Ry((Rxf) ∗ ψU) = Ry(ψU ∗ (Rxf)) = RyRx(ψU ∗ f) = Ryx(f ∗ ψU)

and

(Rxf) ∗ (RyψU) = (RyψU) ∗ (Rxf) = Rx(f ∗ (RyψU)) = RxRy(f ∗ψU) = Rxy(f ∗ψU).

Evaluating at 1 gives (f∗ψU)(xy) = (f∗ψU)(yx). But proposition I.4.1.9 (and proposition
I.1.12) implies that ‖f ∗ ψU − f‖∞ → 0 as U → {1}, so we get

f(xy) = lim
U→{1}

(f ∗ ψU)(xy) = lim
U→{1}

(f ∗ ψU)(yx) = f(yx).

As this is true for every f ∈ Cc(G), we must have xy = yx (this follows from local
compactness and Urysohn’s lemma). 11

11reference ?
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(2). We prove the result for left ideals (the proof for right ideals is similar). Suppose that I
is a left ideal, and let x ∈ G. Choose an approximate identity (ψU)U∈U . We know that
ψU ∗ f → f in L1(G) as U → {1}, and so Lx(ψU ∗ f) → Lxf as U → {1} (because
Lx preserves the L1 norm). But Lx(ψU ∗ f) = (LxψU) ∗ f by proposition I.4.1.3; as I is
a left ideal, we have (LxψU) ∗ f ∈ I for every U ∈ U , and as I is closed, this finally
implies that Lxf ∈ I .

Conversely, suppose that I is stable by all the operators Lx, x ∈ G. Let f ∈ L1(G) and
g ∈ I . By proposition I.4.1.3, we have f ∗ g =

∫
G
f(y)Lygdy. By the definition of the

integral, the function f ∗ g is in the closure of the span of the Lyg, y ∈ G, and so it is in I
by hypothesis (and because I is closed).

I.4.2 Representations of G vs representations of L1(G)

Definition I.4.2.1. A Banach ∗-algebra is a Banach algebra A with an involutive anti-
automorphism ∗. (That is, for every x, y ∈ A and λ ∈ C, we have (x + y)∗ = x∗ + y∗,
(λx)∗ = λx∗, (xy)∗ = y∗x∗ and (x∗)∗ = x.)

The anti-automorphism ∗ is called an involution on the Banach algebra A.

Example I.4.2.2. (a) C, with the involution z∗ = z.

(b) If G is a locally compact group with a left Haar measure, then L1(G) with the con-
volution product and the involution ∗ defined by f ∗(x) = ∆(x)−1f(x−1) is a Banach
∗-algebra (note that f ∗ is in L1(G) and that we have

∫
G
f ∗(x)dx =

∫
G
f(x)dx and∫

G
|f ∗(x)|dx =

∫
G
|f(x)|dx by proposition I.2.12; so ‖f ∗‖1 = ‖f‖1). It is commutative if

and only G is abelian, and it has a unit if and only G is discrete.

(c) If X is a locally compact Hausdorff space, the space C0(X) with the norm ‖.‖∞, the usual
(pointwise) multiplication and the involution ∗ defined by f ∗(x) = f(x) is a commutative
Banach ∗-algebra. It has a unit if and only if X is compact (and the unit is the constant
function 1).

(d) Let H be a Hilbert space. Then End(H), with the operator norm and the involution
T 7−→ T ∗ (where T ∗ is the adjoint of T as above) is a unital Banach ∗-algebra. It is
commutative if and only if dimC(H) = 1.

Definition I.4.2.3. (i) If A and B are two Banach ∗-algebras, a ∗-homomorphism from A to
B is a morphism of C-algebras u : A → B that is bounded as a linear operator and such
that u(x∗) = u(x)∗, for every x ∈ A.

(ii) A representation of a Banach ∗-algebra A on a Hilbert space H is a ∗-homomorphism
π from A to End(H). We say that the representation is nondegenerate if, for every
v ∈ H − {0}, there exists x ∈ A such that π(x)(v) 6= 0.
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We will need the following result, which we will prove in the next section. (See corollary
II.3.9.)

Proposition I.4.2.4. Let V be a Hilbert space. Then, for every T ∈ End(H) such that
TT ∗ = T ∗T , we have

‖T‖op = lim
n→∞

‖T n‖1/n
op .

Corollary I.4.2.5. Let A be a Banach ∗-algebra such that ‖x∗‖ = ‖x‖ for every x ∈ A, and let
π be a representation of A on a Hilbert space V . Then ‖π‖op ≤ 1.

Proof. By definition, the operator π is bounded; let C = ‖π‖op. Let x ∈ A, and let
T = π(x∗x) ∈ End(H). Note that T = T ∗. For every n ≥ 1, we have

‖T n‖ ≤ C‖(x∗x)‖n1 ≤ C‖x‖2n

(because ‖x∗‖ = ‖x‖). On the other hand, we have

‖T‖op = lim
n→+∞

‖T n‖1/n

by proposition I.4.2.4, hence

‖π(x)‖op = ‖π(x)∗π(x)‖1/2
op = ‖T‖1/2

op ≤ ( lim
n→+∞

C1/n‖x‖2n/n)1/2 = ‖x‖.

In other words, ‖π‖op ≤ 1.

We now fix a locally compact group G as before. We will use vector-valued integrals, as
defined in exercise I.5.6.1, and the properties proved in exercises I.5.6.2 and I.5.6.3.

Theorem I.4.2.6. (1). Let (π, V ) be a unitary representation of G. We define a map from
L1(G) to the space of linear endomorphisms of V , still denoted by π, in the following way
: if f ∈ L1(G), we set

π(f) =

∫
G

f(x)π(x)dx,

by which we mean that

π(f)(v) =

∫
G

f(x)π(x)(v)dx

for every v ∈ V (the integral converges by exercise I.5.6.3). Then this is a nondegenerate
representation of the Banach ∗-algebra L1(G) on V , and moreover we have, for every
x ∈ G and every f ∈ L1(G),

π(Lxf) = π(x)π(f) and π(Rxf) = ∆(x)−1π(f)π(x)−1.
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(2). Every nondegenerate representation π of the Banach ∗-algebra L1(G) on a Hilbert space
V comes from a unitary representation π of the group G as in point (1).

Moreover, if (ψU)U∈U is an approximate identity, then, for every x ∈ G and every v ∈ V ,
we have

π(x)(v) = lim
U→{1}

π(LxψU)(v).

(3). Let (π, V ) be a unitary representation of G, and π : L1(G) → End(V ) be the asso-
ciated ∗-homomorphism. Then a closed subspace W of V is G-invariant if and only if
π(f)(W ) ⊂ W for every f ∈ L1(G).

(4). Let (π1, V1) and (π2, V2) be unitary representations of G, and πi : L1(G) → End(Vi),
i = 1, 2, be the associated ∗-homomorphisms. Then a bounded linear map T : V1 → V2 is
G-equivariant if and only if T ◦ π1(f) = π2(f) ◦ T for every f ∈ L1(G).

Proof. (1). If f ∈ L1(G), then the map π(f) : V → V is clearly C-linear, and we have for
every v ∈ V :

‖π(f)(v)‖ = ‖
∫
G

f(x)π(x)(v)dx‖ ≤
∫
G

|f(x)|‖v‖dx ≤ ‖v‖‖f‖1,

so the endomorphism π(f) of V is bounded and ‖π(f)‖op ≤ ‖f‖1. Also, it is easy to
see that the map π : L1(G) → End(H) sending f to π(f) is C-linear, and the equality
‖π(f)‖op ≤ ‖f‖1 implies that it is also bounded (we also see that ‖π‖op is bounded by 1,
as it should according to corollary I.4.2.5).

Let f, g ∈ L1(G). Then, for every v ∈ V ,

π(f ∗ g)(v) =

∫
G×G

f(y)g(y−1x)π(x)(v)dxdy

=

∫
G

f(y)

(∫
G

g(y−1x)π(x)(v)dx

)
dy

=

∫
G

f(y)

(∫
G

g(x)π(yx)(v)dx

)
dy

=

∫
G

f(y)π(y)(π(g)(v))dy

= π(f)(π(g)(v)).

So π(f ∗ g) = π(f) ◦ π(g). Also,

π(f ∗)(v) =

∫
G

∆(x)−1f(x−1)π(x)(v)dx

=

∫
G

f(x)π(x−1)(v)dx by proposition I.2.12

=

∫
G

f(x)π(x)∗(v)dx,
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so that, if w ∈ V ,

〈π(f ∗)(v), w〉 =

∫
G

〈f(x)π(x)∗(v), w〉dx =

∫
G

〈v, f(x)π(x)(w)〉 = 〈v, π(f)(w)〉.

This means that π(f ∗) = π(f)∗. So we have proved that π is a ∗-homomorphism.

Let f ∈ L1(G) and x ∈ G. Then, for every v ∈ V ,

π(x)(π(f)(v)) =

∫
G

f(y)π(x)(π(y)(v))dy

=

∫
G

f(x−1y)π(y)(v)dy

π(Lxf)(v)

and

π(f)(π(x)−1(v)) =

∫
G

f(y)π(y)(π(x−1)(v))dy

= ∆(x)

∫
G

f(yx)π(y)(v)dy

= ∆(x)π(Rxf)(v).

Finally, we show that the representation π : L1(G) → End(V ) is nondegenerate.
Let v ∈ V − {0}, and choose a compact neighborhood K of 1 in G such that
‖π(x)(v)− v‖ ≤ 1

2
‖v‖ for every x ∈ K. Let f = vol(K)−111K . Then

‖π(f)(v)− v‖ =
1

vol(K)
‖
∫
K

(π(x)(v)− v)dx‖ ≤ 1

2
‖v‖,

and in particular π(f)(v) 6= 0.

(2). Let π be a nondegenerate representation of the Banach ∗-algebra L1(G) on a Hilbert space
V . Choose an approximate identity (ψU)U∈U of G. The idea of the proof is that π(x)
should be the limit of the π(LxψU) as U tends to {1}.

We now make the idea of proof above more rigorous. Note that, by corollary I.4.2.5, we
have ‖π‖op ≤ 1. Let W be the span of the π(f)(v), for f ∈ L1(G) and v. I claim
thet W is dense in V . Indeed, let v ∈ W⊥. Then, for every f ∈ L1(G), we have
〈π(f)(v), v′〉 = 〈v, π(f ∗)(v′)〉 = 0 for all v′ ∈ V , hence π(f)(v) = 0. As π is non-
degenerate, this is only possible if v = 0. Hence W⊥ = 0, which means that W is dense
in V .

Let x ∈ G. We want to define an element π̃(x) ∈ End(V ) such that, for every
f ∈ L1(G), we have π̃(x)π(f) = π(Lxf). This forces us to define π̃(x) on an element
w =

∑n
j=1 π(fj)(vj) of W (fj ∈ L1(G), vj ∈ V ) as

π̃(x)(w) =
n∑
j=1

π(Lxfj)(vj).
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This is well-defined because, for every ≥ 1, and for all f1, . . . , fn ∈ L1(G) and
v1, . . . , vn ∈ V , we have

n∑
j=1

π(Lxfj)(vj) = lim
U→{1}

n∑
j=1

π(Lx(ψU ∗ fj))(vj)

= lim
U→{1}

n∑
j=1

π((LxψU) ∗ fj))(vj)

= lim
U→{1}

π(LxψU)

(
n∑
j=1

π(fj)(vj)

)

so
∑n

j=1 π(Lxfj)(vj) = 0 if
∑n

j=1 π(fj)(vj) = 0.

Moreover, as ‖π(LxψU)‖op ≤ ‖π‖op‖ψU‖1 ≤ 1 for every U ∈ U , we have
‖π̃(x)(w)‖ ≤ ‖w‖ for every w ∈ W , so π̃(x) is a bounded linear operator of norm ≤ 1
on W , hence extends by continuity to a bounded linear operator π̃(x) ∈ End(V ) of norm
≤ 1.

Next, using the fact that Lxy = Lx ◦ Ly, we see that, for all x, y ∈ G, π̃(xy) = π̃(x)π̃(y)
on W , hence on all of V . Similarly, the fact that L1 = idL1(G) implies that π̃(1) = idV .
Also, for every x ∈ G, we have, if v ∈ V ,

‖v‖ = ‖π̃(x−1)π̃(x)(v)‖ ≤ ‖π̃(x−1)‖op‖π̃(x)(v)‖ ≤ ‖π̃(x)(v)‖ ≤ ‖v‖,

so ‖π̃(x)(v)‖ = ‖v‖, i.e., π̃(x) is a unitary operator.

Let v ∈ V . We want to show that the map G → V , x 7−→ π̃(x)(v) is continuous. By
proposition I.3.1.10, this will imply that π̃ : G → End(V ) is a unitary representation
of G on V . We first suppose that v = π(f)(v′), with f ∈ L1(G) and v′ ∈ V . Then
π̃(x)(v) = π(Lxf)(v′), so the result follows from the continuity of the map G → L1(G),
x 7−→ Lxf (see proposition I.3.1.13), of π and of the evaluation map End(V ) → V ,
T 7−→ T (v′). As finite sums of continuous functions G → V are continuous, we get the
result for every v ∈ W . Now we treat the general case. Let x ∈ G and ε > 0. We must find
a neighborhood U of x in G such that, for every y ∈ U , we have ‖π̃(y)(v)− π̃(x)(v)‖ < ε.
Choose w ∈ W such that ‖v − w‖ < ε/3, and a neighborhood U of x in G such that, for
every y ∈ U , we have ‖π̃(y)(w)− π̃(x)(w)‖ < ε/3 (this is possible by the first part of this
paragraph). Then, for every y ∈ U , we have

‖π̃(y)(v)− π̃(x)(v)‖ ≤ ‖π̃(y)(v)− π̃(y)(w)‖+ ‖π̃(y)(w)− π̃(x)(w)‖+ ‖π̃(x)(w)− π̃(x)(v)‖
< ‖v − w‖+ ε/3 + ‖v − w‖ (because π̃(x) and π̃(y) are unitary)
< ε,

as desired.
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We show that the representation π̃ of L1(G) induced by π̃ is the representation π that we
started from. Let f, g ∈ L1(G). Then, for every v ∈ V ,

π̃(f)π(g)(v) =

∫
G

f(x)π̃(x)π(g)(v)dx

=

∫
G

f(x)π(Lxg)(v)dx

=

∫
G

π(f(x)Lxg)(v)dx

= π

(∫
G

f(x)Lxgdx

)
(v)

= π(f ∗ g)(v)

= π(f)π(g)(v).

So, if f ∈ L1(G), then π̃(f) and π(f) are equal on W . As W is dense in V , this implies
that π̃(f) = π(f).

Finally, we show the last statement. Let (ψU)U∈U be an approximate identity as above.
Let x ∈ G. We have already seen that, for every v ∈ W , we have

π̃(x)(v) = lim
U→{1}

π(LxψU)(v).

As both sides are continuous functions of v ∈ V (for the right hand side, we use the fact
that ‖π(LxψU)‖op = 1, this identity extends to all v ∈ V .

(3). Suppose that W is G-invariant. Let f ∈ L1(G) and w ∈ W . As
π(f)(w) =

∫
G
f(x)π(x)(w)dx is a limit of linear combinations of elements of the form

π(x)(w), x ∈ G, it is still in W .

Conversely, suppose that π(f)(W ) ⊂ W for every f ∈ L1(G). Let x ∈ G, and let
(ψU)U∈U be an approximate identity. Then, by the last statement of (2), for every w ∈ W ,
we have

π(x)(w) = lim
U→{1}

π(LxψU)(w) ∈ W.

So W is G-invariant.

(4). Let T : V1 → V2 be a bounded linear map, and let W ⊂ V1 × V2 be the graph of T ; this is
a closed linear subspace of V1×V2. Then T is G-equivariant if and only W is G-invariant,
and T is L1(G)-equivariant if and only W is stable by all the π1(f) × π2(f), f ∈ L1(G).
So the conclusion follows from point (3).

Example I.4.2.7. Let π be the representation of G given by π(x)(f) = Lxf (see exam-
ple I.3.1.11). Then, for every f, g ∈ L1(G), we have π(f)(g) = f ∗ g. Indeed, we have
π(f)(g) =

∫
G
f(x)Lxgdx by definition of π(f), so the statement follows from exercise I.5.6.4.
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I Representations of topological groups

I.4.3 Convolution on other Lp spaces

We will only see a few results that we’ll need later to prove the Peter-Weyl theorem for compact
groups. The most important case is that of L2(G).

Most of the results are based on Minkowski’s inequality, which is proved in exercise I.5.6.7.
Here, we only state it for functions on G.

Proposition I.4.3.1 (Minkowski’s inequality). Let p ∈ [1,+∞), and let ϕ be a function from
G×G to C. Then(∫

G

∣∣∣∣∫
G

ϕ(x, y)dµ(y)

∣∣∣∣p dµ(x)

)1/p

≤
∫
G

(∫
G

|ϕ(x, y)|pdµ(x)

)1/p

dµ(y),

in the sense that if the right hand side is finite, then
∫
G
ϕ(x, y)dµ(y) converges absolutely for

almost all x ∈ G, the left hand side is finite and the inequality holds.

Corollary I.4.3.2. Let p ∈ [1,+∞), and let f ∈ L1(G) and g ∈ Lp(G).

(1). The integral defining f ∗ g(x) converges absolutely for almost every x ∈ G, and we have
f ∗ g ∈ Lp(G) and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

(2). If G is unimodular, then the same conclusions hold with f ∗ g replaced by g ∗ f .

Proof. (1). we apply Minkowski’s inequality to the function ϕ(x, y) = f(y)g(y−1x). For every
y ∈ G, we have∫

G

|ϕ(x, y)|pdµ(x) = |f(y)|p
∫
G

|g(x)|pdµ(x) = |f(y)|p‖g‖pp

by left invariance of µ, so∫
G

(∫
G

|ϕ(x, y)|pdµ(x)

)1/p

dµ(y) = ‖g‖p
∫
G

|f(y)|dµ(y) = ‖f‖1‖g‖p.

Minkowski’s inequality first says that
∫
G
ϕ(x, y)dµ(y) = f ∗ g(x) converges absolutely

for almost all x ∈ G, which is the first statement. The rest of Minkowski’s inequality is
exactly the fact that ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

(2). Suppose that G is unimodular. Then

g ∗ f(x) =

∫
G

g(y)f(y−1x)dµ(x) =

∫
G

g(xy−1)f(y)dµ(y).

So the proof is the same as in (1), by applying Minkowski’s ineqality to the function
ϕ(x, y) = g(xy−1)f(y).
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Now we generalize proposition I.4.1.9 to other Lp spaces.

Corollary I.4.3.3. Let U be a basis of neighborhoods of 1 in G, and let (ψU)U∈U be an ap-
proximate identity with supports in U . Then, for every 1 ≤ p < +∞, if f ∈ Lp(G), we have
‖ψU ∗ f − f‖p → 1 and ‖f ∗ ψU − f‖p → 1 as U → {1}.

Proof. Let U ∈ U and f ∈ Lp(G). Then we have, for every x ∈ G,

ψU ∗ f(x)− f(x) =

∫
G

ψU(y)(Lyf(x)− f(x))dµ(y)

(because
∫
G
ψUdµ = 1). Applying Minkowski’s inequality to the function

ϕ(x, y) = ψU(y)(Lyf(x)− f(x)), we get

‖ψU ∗ f − f‖p ≤
∫
G

‖Lyf − f‖pψU(y)dµ(y) ≤ sup
y∈U
‖Lyf − f‖p.

Similarly, we have

f ∗ ψU(x)− f(x) =

∫
G

f(xy)ψU(y−1)dµ(y)− f(x)

∫
G

ψU(y)dµ(y)

=

∫
G

(Ryf(x)− f(x))ψU(y)dµ(y).

So applying Minkowski’s inequality to the function ϕ(x, y) = (Ryf(x)− f(x))ψU(y) gives

‖f ∗ ψU − f‖p ≤
∫
G

‖Ry − f‖pψU(y)dµ(y) ≤ sup
y∈U
‖Ryf − f‖p.

Hence both statements follow from proposition I.3.1.13.

Finally, we prove that the convolution product makes functions more regular in some cases.
The most important case (for us) in the following proposition is when G is compact and
p = q = 2.

Proposition I.4.3.4. Suppose that G is unimodular. Let p, q ∈ (1,+∞) such that p−1 + q−1 = 1
and let f ∈ Lp(G), g ∈ Lq(G).

Then f ∗ g exists, f ∗ g ∈ C0(G) and ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.

Proof. Let x ∈ G. We have

f ∗ g(x) =

∫
G

f(y)Rxg(y−1)dµ(y).
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As G is unimodular, the function y 7−→ Rxg(y−1) is still in Lq(G) and has the same Lq

norm as g. So, by Hölder’s inequality,12 the integral above converges absolutely and we have
|f ∗ g(x)| ≤ ‖f‖p‖g‖q. This proves the existence of f ∗ g and the result about its norm. It also
shows that the bilinear map Lp(G) × Lq(G) → L∞(G), (f, g) 7−→ f ∗ g is continuous. As
C0(G) is closed in L∞(G) and Cc(G) is dense in both Lp(G) and Lq(G), it suffices to prove that
f ∗ g ∈ C0(G) if f, g ∈ Cc(G).

So let f, g ∈ Cc(G). Let x ∈ G, let ε > 0, and choose a neighborhood U of x such that, for
every y ∈ G and x′ ∈ U , we have |g(yx)− g(yx′)| ≤ ε. Then, if x′ ∈ U ,

|f ∗ g(x)− f ∗ g(x′)| ≤
∫
G

|f(y)||g(y−1x)− g(y−1x′)|dµ(y) ≤ ε

∫
G

|f(y)|dµ(y).

This shows that f ∗ g is continuous. Let K = (supp g)(supp f); this is a compact subset of G.
We want to show that supp(f ∗g) ⊂ K, which will finish the proof. Let x ∈ G, and suppose that
f ∗ g(x) 6= 0. Then there exists y ∈ G such that f(y)g(y−1x) 6= 0. We must have y ∈ supp f
and y−1x ∈ supp g, so x ∈ y(supp g) ⊂ K.

I.5 Exercises

I.5.1 Examples of topological groups

Exercise I.5.1.1. Let V be a Banach space over C. (That is, V is a normed C-vector space which
is complete for the metric given by its norm.) We denote by End(V ) the space of bounded linear
operators from V to itself, equipped with the operator norm. Remember that, if ‖.‖ is the norm
on V , then the operator norm ‖.‖op is defined by : for every f ∈ End(V ),

‖f‖op = inf{c ∈ R≥0|∀v ∈ V, ‖f(v)‖ ≤ c‖v‖} = sup
v∈V, ‖v‖=1

‖f(v)‖

Let GL(V ) be the group of invertible elements in End(V ), with the topology induced by that
of End(V ).

(a). Show that GL(V ) is an open subset of End(V ).

(b). Show that GL(V ) is a topological group.

(c). Show that GL(V ) is locally compact if and only if V is finite-dimensional.

Solution.
12Which reduces to the Cauchy-Schwarz inequality when p = q = 2.
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(a). Note that, by definition of the operator norm, we have ‖xy‖op ≤ ‖x‖op‖y‖op for all
x, y ∈ End(V ). (This property is called “submultiplicativity”.) So, if x ∈ End(V ) is such
that ‖x‖op < 1, then the series

∑
n≥0 x

n converges (we take x0 = idV by convention), and
we have (idV − x)(

∑
n≥0 x

n) = (
∑

n≥0 x
n)(idV − x) = idV . Hence, if ‖x‖op < 1, then

idV − x ∈ GL(V ).

Now let x ∈ GL(V ). We want to show that GL(V ) contains a neighborhood of x in
End(V ). Let y ∈ End(V ) be such that ‖y‖op < ‖x−1‖op. Then ‖x−1y‖op < 1, so
idV − x−1y is invertible, hence so is x − y = x(idV − x−1y). So every element x′ of
End(V ) such that ‖x− x′‖op < ‖x−1‖op is in GL(V ), which proves the result.

If V is finite-dimensional, we can also use tha fact that the determinant is a continuous
map det : End(V )→ C, and that GL(V ) is the inverse image of the open subset C× of C.

(b). Let’s show that multiplication is a continuous map from End(V ) × End(V ) to End(V ).
(This implies immediately that multiplication is continuous on GL(V ).) This fol-
lows immediately from the submultiplicativity of the operator norm. Indeed, if
x, x′, y, y′ ∈ End(V ), then we have

‖xy − x′y′‖op = ‖x(y − y′) + (x− x′)y′‖op ≤ ‖x‖op‖y − y′‖op + ‖x− x′‖op‖y′‖op.

Using the fact that

‖y′‖op = ‖y + (y′ − y)‖op ≤ ‖y‖op + ‖y − y′‖op,

we see that, if we fix x and y, then ‖xy − x′y′‖op tends to 0 as (‖x − x′‖op, ‖y − y′‖op)
tends to (0, 0).

Let’s show that inversion is continuous on GL(V ). Let x ∈ GL(V ). Let y ∈ End(V ),
and write h = x − y and c = ‖h‖op‖x−1‖op. Then y = x − h = x(idV − x−1h).
We have seen in the answer of (a) that, if c < 1, then y is invertible and
y−1 = (

∑
n≥0(x−1h)n)x−1 = x−1 +

∑
n≥1(x−1h)nx−1; in particular, we also have

‖y−1 − x−1‖op ≤
∑
n≥1

‖(x−1h)nx−1‖op = ‖x−1‖op
∑
n≥1

cn = c
1−c‖x

−1‖op.

This shows that, if x is fixed, then ‖x−1− y−1‖op tends to 0 as ‖x− y‖op tends to 0, which
implies the result.

There is another way to prove the second point if V is finite-dimensional. Indeed, in that
case, we may assume that V = Cn for some n ∈ N, so GL(V ) = GLn(C). Then we
use the fact that, if x ∈ GLn(C), the inverse of x is equal to (detx)−1yT , where y is the
matrix of cofactors of x. As the coefficients of y are continuous functions of x (because
they are±1 times determinants of submatrices of x), this shows that the coefficients of x−1

are continuous functions of x.

(c). By (1)(a), a topological group is locally compact if and only its unit has a compact neigh-
borhood. As GL(V ) is open in End(V ) by question (a), this implies that GL(V ) is locally
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I Representations of topological groups

compact if and only if e has an open neighborhood in End(V ). As the topology of End(V )
is defined by a norm, this is equivalent to the fact that closed balls in End(V ) are compact.
By Riesz’s lemma, this is equivalent to the fact that End(V ) is finite-dimensional. If V
is finite-dimensional, then End(V ) is also finite-dimensional. If V is infinite-dimensional,
then it follows from the Hahn-Banach theorem that End(V ) is also infinite-dimensional.

�

Exercise I.5.1.2. Let (Gi)i∈I be a family of topological groups.

(a). Show that
∏

i∈I Gi is a topological group (for the product topology).

(b). If all the Gi are locally compact, is
∏

i∈I Gi always locally compact ? (Give a proof or a
counterexample.)

Solution.

(a). Let’s show that multiplication is continuous. Let (xi), (yi) ∈
∏

i∈I Gi. Let U be a
neighborhood of (xiyi) in

∏
i∈I Gi. By the definition of the product topology, there ex-

ists a finite subset J of I and open neighborhoods Ui of xiyi in G, for i ∈ J , such that
U ⊃ (

∏
i∈J Ui) × (

∏
i∈I−J Gi). By continuity of multiplication on the Gi for i ∈ J , we

can find, for every i ∈ J , open neighborhoods Vi and Wi of xi and yi such that ViWi ⊂ Ui.
Let V = (

∏
i∈J Vi) × (

∏
i∈I−J Gi) and W = (

∏
i∈JWi) × (

∏
i∈I−J Gi). Then V and W

are open neighborhoods of (xi) and (yi) in
∏

i∈I Gi, and we have VW ⊂ U .

Let’s show that inversion is continuous. (The proof is similar.) Let (xi) ∈
∏

i∈I Gi. Let
U be a neighborhood of (x−1

i ) in
∏

i∈I Gi. By the definition of the product topology, there
exists a finite subset J of I and open neighborhoods Ui of xiyi in G, for i ∈ J , such
that U ⊃ (

∏
i∈J Ui) × (

∏
i∈I−J Gi). By continuity of inversion on the Gi for i ∈ J ,

we can find, for every i ∈ J , an open neighborhood Vi of xi such that V −1
i ⊂ Ui. Let

V = (
∏

i∈J Vi) × (
∏

i∈I−J Gi). Then V is an open neighborhood of (xi) in
∏

i∈I Gi, and
we have V −1 ⊂ U .

(b). The answer is “no”, as soon as infinitely many of Gi are not compact. Indeed, let us de-
note by pj :

∏
i∈I Gi → Gj the projection maps. These are continuous maps, so they

send compact sets to compact sets. Now suppose that the set of i ∈ I such that Gi is not
compact is infinite. If

∏
i∈I Gi is locally compact, then its unit has a a compact neighbor-

hood K. By the definition of the product topology, K must contain a set U of the form
(
∏

i∈J Ui) × (
∏

i∈I−J Gi), where J is a finite subset of I and, for every i ∈ J , Ui is a
neighborhood of e inGi. By hypothesis, there exists i ∈ I−J such thatGi is not compact.
But we have Gi ⊃ pi(K) ⊃ pi(U) = Gi, so Gi = pi(J) is compact, which is absurd.

Conversely, suppose that there exists a finite subset J of I such that Gi is com-
pact for every i ∈ I − J . Then

∏
i∈I Gi is locally compact. Indeed, we have∏

i∈I Gi = (
∏

i∈J Gi)× (
∏

i∈I−J Gi) and
∏

i∈I−J Gi is compact by Tychonoff’s theorem,
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so it suffices to prove that
∏

i∈J Gi is locally compact. In other words, we may assume that
I is finite. But then, if (xi) ∈

∏
i∈I Gi and Ki is a compact neighborhood of xi for every

i ∈ I , the product
∏

i∈I Ki is a compact neighborhood of (xi).

�

Exercise I.5.1.3. Let (I,≤) be an ordered set. Consider a family (Xi)i∈I of sets and a family
(uij : Xi → Xj)i≥j of maps such that :

- For every i ∈ I , we have uii = idXi;

- For all i ≥ j ≥ k, we have uik = uij ◦ ujk.

This is called a projective system of sets indexed by the ordered set I . The projective limit of this
projective system is the subset lim←−i∈I Xi of

∏
i∈I Xi defined by :

lim←−
i∈I

Xi = {(xi)i∈I ∈
∏
i∈I

Xi|∀i, j ∈ I such that i ≥ j, uij(xi) = xj}.

(a). If all the Xi are Hausdorff topological spaces and all the uij are continuous maps, show
that lim←−i∈I Xi is a closed subset of

∏
i∈I Xi. From now on, we will always put the induced

topology on lim←−i∈I Xi.

(b). If all the Xi are compact Hausdorff topological spaces and all the uij are continuous maps,
show that lim←−i∈I Xi is also compact Hausdorff. (Hint : Tychonoff’s theorem.)

(c). If all the Xi are groups (resp. rings) and all the uij are morphisms of groups (resp. of
rings), show that lim←−i∈I Xi is a subgroup (resp. a subgroup) of

∏
i∈I Xi.

(d). If all the Xi are topological groups and all the uij are continuous group morphisms, show
that lim←−i∈I Xi is a topological group.

(e). Let p be a prime number. Take I = N, with the usual order, Xn = Z/pnZ and
unm : Z/pnZ→ Z/pmZ be the reduction modulo pm map. Show that Zp := lim←−i∈I Xi is a
ring, and a compact topological group for the addition.

Solution.

(a). We write X =
∏

i∈I Xi and X ′ = lim←−i∈I Xi. For every i ∈ I , let pi : X → Xi be the
projection; this is a continuous map. Hence, if i, j ∈ I are such that i ≥ j, the subset
{x ∈ X|uij ◦pi(x) = pj(x)} ofX is closed (because it is the inverse image of the diagonal
by the continuous map (uij ◦pi, pj) : X → Xj×Xj , and the diagonal of Xj×Xj is closed
as Xj is Hausdorff). But, by definition of the projective limit, we have

X ′ =
⋂

i,j∈I, i≥j

{x ∈ X|uij ◦ pi(x) = pj(x)}.

So X ′ is also closed.
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(b). If all the Xi are compact Hausdorff topological spaces, then X is compact Hausdorff by
Tychonoff’s theorem. By (a), the projective limit is a closed subspace of X , so it is also
compact Hausdorff.

(c). We keep the notation of (a). Then all the projections pi are morphisms of groups (resp.
rings), so, for all i, j ∈ I such that i ≥ j, the subset {x ∈ X|uij ◦ pi(x) = pj(x)} of X is
a subgroup (resp. subring). By definition of the projective limit, we have

X ′ =
⋂

i,j∈I, i≥j

{x ∈ X|uij ◦ pi(x) = pj(x)}.

So X ′ is also a subgroup (resp. subring).

(d). By I.5.1.2(a), the direct product is a topological group. By question (c), the projective limit
X ′ is a subgroup of X . Hence X ′ is a topological group.

(e). The set Zp is a ring by question (c) and a topological group by question (d). It is compact
by question (b) (note that finite sets with the discrete topology are compact Hausdorff).

�

Exercise I.5.1.4. Let p be a prime number. We define the p-adic norm |.|p on Q in the following
way :

- |0|p = 0;

- if x is a nonzero rational number, we write x = pny with y a rational number whose
numerator and denominator are prime to p, and we set |x|p = p−n.

(a). Show that we have, for every x, y ∈ Q :

- |x+ y|p ≤ max(|x|p, |y|p), with equality if |x|p 6= |y|p;

- |xy|p = |x|p|y|p.

In particular, the p-adic distance function d(x, y) = |x − y|p is a metric on Q. We denote by
Qp the completion of Q for this metric.

(a). Show that the p-adic norm |.|p, the addition and the multiplication of Q extend to Qp by
continuity, that Qp is a field (called the field of p-adic numbers), and that the statements of
(a) extend to Qp.

(b). Show that the additive group of Qp is a topological group.

(c). Calculate the subset |Qp|p of R.

(d). Show that every open ball in Qp is also a closed ball, and that every closed ball of positive
radius in Qp is also an open ball.

(e). Show that Qp is totally disconnected (i.e. its only nonempty connected subsets are the
singletons) but not discrete.
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(f). Show that a series
∑

n≥0 xn is convergent if and only if limn→+∞ |xn|p = 0.

(g). If m ∈ Z and (cn)n≥m is a family of integers, show that the series
∑

n≥m cnp
n converges

in Qp, and that its p-adic absolute value is ≤ p−m, with equality if cm is prime to p.

(h). Let x ∈ Qp − {0}. Show that there exists a unique m ∈ Z and a unique family (cn)n≥m of
elements of {0, 1, . . . , p− 1} such that xm 6= 0 and x =

∑
n≥m cnp

n, and that |x|p = p−m.

(i). Let B = {x ∈ Qp|‖x‖p ≤ 1}. Show that this is a subring of Qp, and the closure of Z in
Qp.

(j). We define a map u from B to
∏

n≥0 Z/pnZ in the following way : If x ∈ B, then, by
question (e), we can find a Cauchy sequence (xn)n≥0 of elements of Z converging to x.
After replacing it by a subsequence, we may assume that |x− xn|p ≤ p−n for every n. We
set u(x) = (xn mod pnZ)n≥0.

Show that u is well-defined, a homeomorphism fromB to Zp, and that it is also a morphism
of rings. We will use this to identify B and Zp.

(k). We identify Mn(Qp) with Qn2

p , we put the product topology on it, and we use the induced
topology on GLn(Qp). Show that GLn(Qp) is a locally compact topological group.

(l). Show that GLn(Zp) is an open compact subgroup of GLn(Qp). (Hint : Show that Z×p is
closed in Zp.)

Solution.

(a). We first note that, if x ∈ Z − {0}, then we can write x = pmx′ with m ≥ 0 and x′ ∈ Z
prime to p, so |x|p = pm ≤ 1. Of course, if x = 0, we also have |x|p ≤ 1.

We also note that it follows immediately from the definition of |.|p that, if x ∈ Q×, we
have |x−1|p = |x|−1

p .

Let x, y ∈ Qp. If x = 0, then x + y = y and xy = 0, so both points are obvious; the case
y = 0 is similar. So we assume that both x and y are nonzero, and we write x = pnx′ and
y = pmy′, with x′ and y′ rational numbers whose numerator and denominator are prime to
p. Then the numerator and denominator of x′y′ are also prime to p, and xy = pn+mx′y′, so

|xy|p = p−n−m = p−np−m = |x|p|y|p.

To prove the first identity, note that, as the identity is symmetric in x and y, we may assume
that n ≤ m. (Note that then we have p−n = |x|p = max(|x|p, |y|p).) We write x′ = a

b
and

y′ = c
d
, with a, b, c, d ∈ Z prime to p. Then

x+ y = pn(x′ + pm−ny) = pn ad+pm−ncb
bd

,

hence, by what we already proved,

|x+ y|p = |pn|p|ad+ pm−nbc|p|bd|−1
p .
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As bd is prime to p, we have |bd|p = 1 (by definition of |.|p). As ad + pm−nbc ∈ Z, we
have |ad+ pm−ncb|p ≤ 1 by the remark at the beginning. Finally, we get

|x+ y|p ≤ |pn|p = p−n = max(|x|p, |y|p).

Finally, if |x|p 6= |y|p, we have n < m, hence ad+ pm−ncb is prime to p, and the definition
of |.|p gives |x+ y|p = p−n.

(b). By definition, Qp is the set of Cauchy sequences (xn)n≥0 of elements of Q (for the
metric given by the p-adic distance), modulo the equivalence relation ∼ defined by :
(xn)n≥0 ∼ (yn)n≥0 if and only if |xn − yn|p → 0 as n→ +∞.

Note that the second identity of (a) imply the triangle inequality : for all x, y ∈ Q, we have
|x+ y|p ≤ |x|p + |y|p.

Let x ∈ Qp, and let (xn)n≥0 be a Cauchy sequence representing x. By the triangle inequal-
ity, we have, for all n,m ∈ N, ||xn|p − |xm|p| ≤ |xn − xm|p. So (|xn|p)n≥0 is a Cauchy
sequence in R, and, as R is complete, it has a limit. Let (yn)n≥0 be another Cauchy se-
quence representing x. By the triangle inequality, we have ||xn|p − |yn|p| ≤ |xn − yn|p for
every n ≥ 0, so the limits of (|xn|p)n≥0 and (|yn|p)n≥0 are equal. Hence we can define |x|p
by |x|p = limn→+∞ |xn|p.

Now let x, y ∈ Qp, and choose Cauchy sequences (xn)n≥0 and (yn)n≥0 representing x
and y. First note that the sequences (|xn|p)n≥0 and (|yn|p)n≥0 are bounded (for example
because they converge, as we have seen above). Now, using (a), we get for all n,m ∈ N :

|(xn + yn)− (xm + ym)|p ≤ max(|xn − xm|p, |yn + ym|p)

and

|xnyn−xmym|p = |xn(yn−ym)+(xn−xm)ym|p ≤ max(|xn|p|yn−ym|p, |ym|p|xn−xm|p).

Hence the sequences (xn + yn)n≥0 and (xnyn)n≥0 are Cauchy sequences (for the second
one, we use the fact that (|xn|p)n≥0 and (|yn|p)n≥0 are bounded), so they represent elements
of Qp. We want to call these elements x+y and xy, but first we have to check that they are
independent of the choice of the Cauchy sequences representing x and y. So let (x′n)n≥0

and (y′n)n≥0 be two other Cauchy sequences representing x and y respectively. Then we
have, for every n ≥ 0,

|(xn + yn)− (x′n + y′n)|p ≤ max(|xn − x′n|p, |yn, y′n|p)

and

|xnyn− x′ny′n|p = |xn(yn− y′n) + (xn− x′n)y′n|p ≤ max(|xn|p|yn− y′n|p, |y′n|p|xn− x′n|p).

So both sequences ((xn + yn)− (x′n + y′n))n≥0 and (xnyn−x′ny′n)n≥0 converge to 0, which
means that the sequences (xn + yn)n≥0 and (x′n + y′n)n≥0 (resp. (xnyn)n≥0 and (x′ny

′
n)n≥0)

have the same limit, and so the definition of x+ y and xy makes sense.

50



I.5 Exercises

The ring axioms for Qp follow immediately from the definition of the operations. Let’s
check that Qp is a field. Let x ∈ Qp − {0}, and choose a Cauchy sequence (xn)n≥0

representing x. As x 6= 0, the sequence (|xn|p)n≥0 cannot converge to 0, so its limit (which
is |x|p) is nonzero. So we have |xn − xm|p ≤ |x|p/2 for n,m big enough, and, up to
replacing (xn)n≥0 by an equivalent Cauchy sequence, we can assume that it is true for all
n,m ≥ 0. Let n,m ≥ 0. By (a), we have |xn|p ≤ max(|xm|p, |xn − xm|p). Going to the
limit as m → +∞, we get |xn|p ≤ |x|p. Similarly, going to the limit as n → +∞ and
using the fact that |x|p > |x|p/2 ≥ limn→+∞ |xn − xm|p gives |x|p ≤ |xm|p. This implies
that |x|p = |xn|p for every n ≥ 0. Now, if we can show that the sequence (x−1

n )n≥0 is a
Cauchy sequence, then the element of Qp that it represents will clearly be an inverse of x.
But we have, for all n,m ≥ 0,

|x−1
n − x−1

m |p = |x−1
n x−1

m |p|xm − xn|p = |x|−2
p |xm − xn|p,

so |x−1
n − x−1

m |p does converge to 0 as n,m→ +∞.

We finally prove that the identities of (a) stay true in Qp. If x, y ∈ Qp − {0}, then we just
saw that we can find Cauchy sequences (xn)n≥0 and (yn)n≥0 converging to x and y such
that, for every n ≥ 0, |x|p = |xn|p and |y| = |yn|p. Of course, this is also true if x or y is 0.
Then the identities follow immediately from (a) and from the definition of the operations
on Qp.

(c). The addition on Qp is continuous by definition (it is defined as the extension by continuity
of a map). The inversion map x 7−→ −x is continuous because |x|p = | − x|p.

(d). We have seen that, if x ∈ Qp, then there is a Cauchy sequence of Q converging to x and
such that |x|p = |xn|p for every n ≥ 0. So |Qp|p = |Q|p = {0} ∪ pZ.

(e). If x ∈ Qp and r ∈ R, we write B(x, r) and B(x, r) for the open and closed balls of center
x and radius r.

Let x ∈ Qp. Let r ∈ R. If r ≤ 0, then B(x, r) = ∅ = B(x,−1). Suppose that r > 0,
and let n be the unique integer such that pn < r ≤ pn+1. By the previous question, if
a ∈ Qp is such that |a|p < r, then |a|p ≤ pn, and obviously the converse is true. So
B(x, r) = B(x, pn). Now let m be the unique integer such that pm ≤ r < pm+1. Then we
see similarly that B(x, r) = B(x, pm+1).

(f). Let x, y ∈ Qp such that x 6= y. Then |x − y|p > 0, so we can choose r > 0 such that
r < |x − y|p. Then B(x, r) is an open and closed subset of Qp containing x and not y,
so x and y cannot be in the same connected subset of Qp. This shows that Qp is totally
disconnected.

To show that Qp is not discrete, it suffices to show that its subset {0} is not open. This
follows from the fact that the sequence (pn)n≥0 converges to 0 in Qp, and that pn 6= 0 for
every n ∈ Z.

(g). Define a sequence (Sn)n≥0 of rational numbers by Sn =
∑n

i=0 xn. Then the series
∑
≥0 xn

converges if and only if the sequence (Sn)n≥0. In particular, if the series converges, then
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|xn|p = |Sn+1 − Sn|p tends to 0 as n→ +∞.

Conversely, suppose that limn→+∞ |xn|p = 0. For all n, n′ ∈ N, if n ≤ n′, then (using (b))
:

|Sn′ − Sn|p = |
n′∑

i=n+1

xi|p ≤ max
n+1≤i≤n′

|xi|p ≤ sup
i≥n+1

|xi|p.

This tends to 0 as n → +∞, so (Sn)n≥0 is a Cauchy sequence, hence it converges in Qp,
and so does the series

∑
n≥0 xn.

(h). The convergence follows from the previous question and from the fact, noted in the proof
of (b), that |c|p ≤ 1 for every c ∈ Z. Let x =

∑
n≥m cmp

m. By definition, we have

x = lim
n→+∞

n∑
i=m

cip
i.

For every n ≥ m, we have

|
n∑

i=m

cip
i|p ≤ max

m≤i≤n
|ci|p|pi|p = p−m,

so |x|p ≤ p−m. Suppose that cm is prime to p; then |cm|p = 1. Hence
|cmpm|p = p−m > |cipi|p for every i > m, so, using (b) again, for every n ≥ m,

|
n∑

i=m

cip
i|p = p−m.

This gives |x|p = p−m.

(i). Let’s show existence. We may assume x 6= 0 (otherwise the result is trivial). We know
that |x|p = p−m for some m ∈ Z. Choose a Cauchy sequence (xn)n≥0 converging to x.
After replacing (xn)n≥0 by a subsequence, we may assume that |x− xn|p < p−n for every
n ≥ 0.

Let n ≥ 0. We write xn in base p as xn =
∑bn

i=an
ci,np

i, with an, bn ∈ Z and
ci,n ∈ {0, 1, . . . , p − 1}. We may assume that can,n 6= 0. Then can,n is prime to p, so
|can,npan|p = p−an > |ci,npi| for every i > an, and so (b) gives

p−m = |xn|p = p−an ,

hence finally m = an.

Also, we can replace bn by +∞ in the expression for xn, by setting ci,n = 0 for i > bn.

Let n, n′ ∈ N, and suppose that n ≥ n′. Then
|xn − xn′ |p ≤ max(|xn − x|p, |x − xn′|p) < p−n

′ . On the other hand, we have
xn − xn′ =

∑
i≥m(ci,n − ci,n′)pi. Note that the ci,n − ci,n′ are in {1 − p, . . . , p − 1}, so
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they are either 0 or prime to p. By (h), this implies that |xn − xn′ |p = p−r, where r is the
smallest integer such that cr,n − cr,n′ 6= 0. This implies in turn that n′ < r, that is, that
ci,n = ci,n′ for m ≤ i ≤ n′.

We now define integers ci, i ≥ m, by ci = c0,i if i ≤ 0 and ci = ci,i if i ≥ 0. By the
previous paragraph, ci = ci,n if 0 ≤ i ≤ n. For every n ≥ 0, let yn =

∑n
i=m cip

i. Then

xn − yn =
∑
i≥m

(ci,n − ci)pi =
∑
i≥n+1

(ci,n − ci)pi,

so |xn − yn|p ≤ p−n−1 by (h). Hence the sequence (yn)n≥0 also converges to x, and this
shows that x =

∑
i≥m cip

i.

Let’s show uniqueness. Suppose that we have two sequences of integers (cn)n≥m, (dn)n≥m
such that x =

∑
n≥m cnp

n =
∑

n≥m dnp
n and cn, dn ∈ {0, . . . , p − 1} for every n. Then

0 =
∑

n≥m(cn − dn)pn. Also, for every n, cn − dn is in {1 − p, . . . , p − 1}, so it is 0 or
prime to p. If we had a n such that cn− dn 6= 0, then this would imply |0|p 6= 0 by (h), and
this is impossible. So cn = dn for every n.

(j). The fact that B is a subring follows from (b) (and the fact that | − x|p = |x|p, which is
obvious on the definition), and we have seen in the proof of (b) that Z ⊂ B. Also, B is a
closed ball, so it is closed in Qp, and so it contains the closure of Z.

Let x ∈ B. By (i), we can write x =
∑

n≥0 cnp
n, with cn ∈ {0, . . . , p − 1}. This means

that x is the limit of the sequence of integers (
∑n

i=0 cip
i)n≥0, hence that x is in the closure

of Z in Qp.

(k). We show that u is well-defined. Let x ∈ B, and let (xn)n≥0, (x′n)n≥0 be two sequences as
in the statement. Let n ≥ 0. Then |xn − x′n|p ≤ max(|xn − x|p, |x− x′n|p) ≤ p−n, which
means that pn divides xn − x′n, and so xn and x′n have the same image in Z/pnZ. This
proves that u(x) is well-defined.

The fact that u is a morphism of rings follows immediately from the definition of the ring
operations on Qp and the fact that reduction modulo pn is a morphism of rings from Z to
Z/pnZ for every n.

We show that u is injective. Let x, y ∈ B such that u(x) = u(y), and choose sequences
(xn)n≥0, (yn)n≥0 converging to x, y and satisfying the conditions of the statement. Then,
for every n ≥ 0, we have xn = yn mod pn, so pn divides xn − yn, i.e., |xn − yn|p ≤ p−n.
Going to the limit as n→ +∞, we get |x− y|p = 0. But we have seen in (b) that the only
element of Qp with p-adic norm 0 is 0, so x = y.

We show that u is surjective. Let (xn + pnZ)n≥0 be an element of Zp. For every n ≥ 0,
we choose a representative in {0, . . . , pn − 1} for xn + pnZ, and we denote it by xn. We
also write xn in base p as xn =

∑n−1
i=0 ci,np

i, with 0 ≤ ci,n ≤ p− 1. Let m ≥ n. We know
that xm = xn mod pn, so ci,m = ci,n for 0 ≤ i ≤ n. We define a sequence (ci)i≥0 by
ci = ci,0 = ci,1 = . . . = ci,i, and we set x =

∑
i≥0 cip

i ∈ Qp. Then x ∈ B by (c), and it is
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easy to check that (xn)n≥0 is a Cauchy sequence of integers converging to x and satisfying
the conditions of the statement. Hence u(x) = (xn + pnZ)n≥0.

We show that u is continuous. Every open set in Zp is a union of open sets of the form
Zp ∩ ((

∏
n≥m+1 Z/pnZ) × {(xm, . . . , x0)}), with m ≥ 0 and xi ∈ Z/piZ for 0 ≤ i ≤ m.

So it suffices to show that the inverse image of a set of that form is open in B. Write
A = (

∏
n≥m+1 Z/pnZ) × {(xm, . . . , x0)}. Choose x ∈ Z such that x = xm mod pm.

Then we have x = xn mod pn for 0 ≤ n ≤ m (because xn = xm mod pn). We will
show that y ∈ B is in u−1(A) if and only if |x− y|p < p−m+1, which shows that u−1(A) is
open. First note that, as the values of |.|p are always 0 or integer powers of p, the condition
that |x − y|p < p−m+1 is equivalent to |x − y|p ≤ p−m. 13 Let y ∈ B, and let (yn)n≥0 a
Cauchy sequence converging to y as in the definition of u. Suppose that |x − y|p ≤ p−m.
Then, for n ∈ {0, . . . ,m}, we have |yn − x|p ≤ max(|yn − y|p, |y − x|p) ≤ p−n, hence
yn = x = xn mod pn. So u(y) ∈ A. Conversely, suppose that u(y) ∈ A. Then
ym = xm = x mod pm, so |ym − x|p ≤ p−m. As |y − ym|p ≤ p−m, this implies that
|x− y|p ≤ p−m.

Finally, we show that u is open. As u is bijctive, it suffices to show that the image of
an open ball is open. We have more or less already done this : let x ∈ B, let r ∈ R>0,
and let A′ be the open ball of center x and radius r. If m is the smallest integer such that
p−m < r, then A′ is also the closed ball of center x and radius p−m (because |.|p has values
in {0} ∪ pZ). Let y be an integer such that |x− y|p < p−m. Then the second identity of (a)
implies that, for z ∈ Qp, we have |x − z|p ≤ p−m if and only if |y − z|p ≤ p−m, which
means that we can replace x by y in the definition of A′. Then we have already seen above
that u(A′) = (

∏
n≥m+1 Z/pnZ)× {(xm, . . . , x0)}, where xn = y + pnZ for 0 ≤ n ≤ m.

(l). The proof that GLn(Qp) is a topological group is the same as in I.5.1.2(b) (the finite-
dimensional case). It is also open in Mn(Qp), because it is the inverse image by the con-
tinuous function det of the open subset Q×p of Qp. So to show that GLn(Qp) is locally
compact, it suffices to show that Mn(Qp) is locally compact, which will follow if we know
that Qp is locally compact. But for every x ∈ Qp, the closed ball of radius 1 centered at
x, which is x+ Zp, is a compact neighborhood of x : it is compact because Zp is compact
and translation by x is continuous (by definition of the metric), and it is open because it is
equal to the open ball of center x and radius p.

(m). Remember that GLn(Zp) is the group of invertible elements of Mn(Zp), so we have

GLn(Zp) = {A ∈ GLn(Qp) | A and A−1 ∈Mn(Zp)}.

In other words, GLn(Zp) is the inverse image by the continuous map
GLn(Qp)→ Mn(Qp)×Mn(Qp), A 7−→ (A,A−1) of the open subset Mn(Zp)×Mn(Zp)
of Mn(Qp) ×Mn(Qp), so it is open in GLn(Qp). As Mn(Zp) is compact (because Zp is),
to show that GLn(Zp) is compact, it suffices to show that it is closed in Mn(Zp). As it is
the inverse image of Z×p by the continuous map det : Mn(Zp) → Zp, it suffices to show

13So, in Qp, every open ball is a closed ball and vice versa.
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that Z×p is closed in Zp. But Z×p = {x ∈ Zp||x|p = 1} (which implies that it is closed).
Indeed, let x ∈ Zp. If x has an inverse in Zp, then |x−1|p = |x|−1

p ≤ 1, so |x|p ≥ 1, hence
|x|p = 1. Conversely, if |x|p = 1, then |x−1|p = 1, so x−1 ∈ Zp.

�

I.5.2 Van Dantzig’s theorem

14

Exercise I.5.2.1. In this problem, X is a compact Hausdorff totally disconnected topological
space. (Remember that “totally disconnected” means that the only nonempty connected subsets
of X are the singletons.)

Let x ∈ X , and let A be the intersection of all the open and closed subsets of X containing x.
Show that A = {x}. (Hint : This is equivalent to showing that A is connected. And remember
also that disjoint closed sets can be separated by open sets in any compact Hausdorff space.)

Solution. Note that A is closed in X . Suppose that we have A = A1 ∪ A2, with A1 and A2

closed in X and disjoint and x ∈ A1. As any compact Hausdorff space is normal, we can find
open subsets U1 ⊃ A1 and U2 ⊃ A2 of X such that U1 ∩ U2 = ∅. Let’s find a closed and open
neighborhood V of x such that V ∩∂U2 = ∅. For every y ∈ ∂U2, as y 6∈ A, we can find a closed
and open neighborhood Vy of x such that y 6∈ Vy. Note that the X − Vy, y ∈ ∂U2, form a family
of open subsets of X covering ∂U2; as ∂U2 is compact, this family has a finite subfamily that
still covers ∂U2, say (X − Vy1 , . . . , X − Vyn). Let V = Vy1 ∩ . . . ∩ Vyn; then V is still open and
closed, x ∈ V and V ∩ ∂U2 = ∅. The last property implies that B := V − U2 is also equal to
V − U2, so it still open and closed. Also, we have x ∈ B (because x 6∈ U2), and A2 ∩ B = ∅.
But A must be contained in B by definition, so A2 = ∅. This proves that A is connected, hence
a singleton, hence equal to {x}.

�

Exercise I.5.2.2. In this problem, G is a locally compact totally disconnected topological group.

(a). Show that the unit of G has a compact open neighborhood K.

(b). Show that there exists an open subgroup G′ of G contained in K. (Hint : Any open subset
of G will generate an open subgroup. Choose your open subset wisely.)

(c). Show that the compact open subgroups of G form a basis of neighborhoods of 1 in G.

(d). Let G be the group GLn(Qp) of exercise I.5.1.4. Find a basis of neighborhoods of 1 in G
that is composed of compact open subgroups.

14From Terry Tao’s blog.
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Solution.

(a). Let V be a compact neighborhood of 1. Then ∂V is also compact and doesn’t contain 1.
By problem I.5.2.1, for every y ∈ ∂V , there exists an open and closed neighborhood By

of 1 such that By ∩ ∂V = ∅. As ∂V ⊂
⋃
y∈∂V (X − By) and the X − By are open, there

exist y1, . . . , yn ∈ ∂V such that ∂V ∩ B = ∅, with B =
⋂n
i=1Byi . Note that B is still

open and closed, and that 1 ∈ B. Also, as ∂V ∩B = ∅, we have B ∩ V = B ∩ V̊ , and so
K := B ∩ V is open and compact (because it is closed in V ) and contains 1.

(b). Let U be an open symmetric neighborhood of 1 such that UK ⊂ K, and let G′ be the
subgroup of G generated by U . Let’s show that G′ is an open compact subgroup of G
and that G′ ⊂ K. First we show that G′ is open. Let g ∈ G′; then gU ⊂ G′ and gU is
open in G, so G′ contains a neighborhood of G. As every open subgroup of a topological
group is also closed, we also get that G′ is closed. So, to show that is compact, it suffices
to show that it is contained in K. Note that, as U is symmetric and contains 1, we have
G′ =

⋃
n≥1 U

n. As U ⊂ K (because 1 ∈ K) and UK ⊂ K, an easy induction shows that
Un ⊂ K for every n ≥ 1. So G′ ⊂ K.

(c). The argument in the solution of question (a) actually shows that every compact neighbor-
hood of 1 contains an open compact neighborhood of 1, and then question (b) implies that
it also contains a compact open subgroup of G. Hence, as G is locally compact, every
neighborhood of 1 in G contains a compact open subgroup of G.

(d). Let’s choose a norm on Mn(Qp) that induces the product topology. For example, the norm
‖.‖ defined by

‖(aij)1≤i,j≤n − (bij)1≤i,j≤n‖ = sup
1≤i,j≤n

|aij − bij|p

works. For every integer m ≥ 1, let Km = In + pmMn(Zp). With our choice of norm, this
is just the open ball of center In and radius p−m+1 in Mn(Qp) (and also the closed ball of
center In and radius p−m). In particular, the sets Km, for m ≥ 1, form a family of open
neighborhoods of In inMn(Qp), and hence the setsKm form >> 0 form a family of open
neighborhoods of In in GLn(Qp) (because GLn(Qp) is open in Mn(Qp), as the preimage
by the continuous map det of the open subset Q×p of Qp).

Note also that Km is homeomorphic to Mn(Zp) ' Zn2

p (by the map In + pmX 7−→ X), so
it is also compact.

At this point, we have our basis of neighborhoods consisting of compact open subgroups.
We can actually be more precise and show that Km ⊂ GLn(Qp) for every m ≥ 1 (and
not just for m big enough), which just means that K1 ⊂ GLn(Qp). In fact, we even have
K1 ⊂ GLn(Zp). Indeed, it is clear that K1 ⊂ Mn(Zp). Moreover, if X ∈ K1, then it is
easy to see that det(X) ∈ 1 + pZp ⊂ Qp, which implies that | det(X)|p = 1 (by question
I.5.1.4(a)), hence that det(X)−1 is also in Zp, i.e., that det(X) ∈ Z×p .

�
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I.5.3 Examples of Haar measures

Exercise I.5.3.1. Let G be a topological group. Suppose that we have a homeomorphism of G
with an open subset of some RN (not necessarily compatible with any groups structures), such
that left translations onG are given by affine maps. That is, if we identifyGwith its image in RN

(as a topological space only !), then, for every x ∈ G, there is a N ×N matrix A(x) ∈ MN(R)
and an element b(x) ∈ RN such that, for every y ∈ G, we have xy = A(x)y + b(x).

Show that | detA(x)|−1dx is a left Haar measure on G, where dx denotes the Lebesgue mea-
sure on RN . (Hint : The change-of-variable formula. Also, start by proving that x uniquely
determines A(x) and b(x), and that x 7−→ A(x) is a morphism of groups from G to GLN(R).)

Solution. Let x ∈ G. Suppose that we have A,A′ ∈ MN(R) and b, b′ ∈ RN such that, for every
y ∈ G, xy = Ay + b = A′y + b′. Then (A − A′)y = b′ − b for every y ∈ G. But the set of
solutions the equation (A−A′)y = b′ − b is an affine subspace of RN (i.e. a translate of a linear
subspace), so it has empty interior unless it is equal to RN . As G is open in RN , this means
that we must have (A − A′)y = b′ − b for every y ∈ RN . The only way this is possible is if
Ker(A − A′) = RN , hence A = A′, and then we also have b = b′. So x determines A(x) and
b(x).

We prove that A(x) is invertible for every x ∈ G. Indeed, if A(x) is not invertible, then the
image of the map G → G, y 7−→ xy is contained in b(x) + Im(A(x)), which is the translate
by b(x) of a proper linear subspace of RN , and hence it has empty interior. But this image must
be equal to G, hence be an open subset of RN , so we get a contradiction, and so A(x) must be
invertible.

We prove that x 7−→ A(x) is a morphism of groups. Let x1, x2 ∈ G. For every y ∈ G, we
have

A(x1x2)y + b(x1x2) = x1x2y = A(x1)A(x2)y + A(x1)b(x2) + b(x1).

By the first paragraph, this implies that A(x1x2) = A(x1)A(x2) and
b(x1x2) = A(x1)b(x2) + b(x1).

Now remember that the change of variable formula implies that, if U is a measurable subset of
RN , ifA ∈ GLN(R) and b ∈ RN , and if V is the image of U by the transformation y 7−→ Ay+b,
then we have, for every f ∈ L1(V ),∫

V

f(v)dv = | detA|
∫
U

f(Ay + b)dy.

Applying this to U = V = G, A = A(y) and b = b(y) for some y ∈ G, we get, for every
f ∈ L1(G), ∫

G

f(x)dx = | detA(y)|
∫
G

f(yx)dx.
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Let f ∈ Cc(G). Then the function x 7−→ | detA(x)|−1f(x) is also in Cc(G), so we can apply
the previous paragraph to it. We get, for every y ∈ G,∫

G

f(yx)| detA(yx)|−1dx = | detA(y)|−1

∫
G

f(x)| detA(x)|−1dx.

Using the fact that det(A(xy)) = det(A(x)) det(A(y)), we can divide both sides by
| det(A(y))|−1, and we get∫

G

f(yx)| detA(x)|−1dx =

∫
G

f(x)| detA(x)|−1dx,

which is the desired result.

�

Exercise I.5.3.2. In this problem, dx will always be the Lebesgue measure on R.

(a). Show that dx
|x| is a Haar measure on the multiplicative group R×.

(b). Show that dxdy
x2+y2 is a Haar measure on the multiplicative group C×, with coordinates

z = x+ iy.

(c). Let dT be the Lebesgue measure on Mn(R). Show that | detT |−ndT is a left and right
Haar measure on GLn(R).

(d). Let G = {
(
x y
0 z

)
|x, z ∈ R×, y ∈ R}. Show that dxdydz

x2|z| is a left Haar measure on G. Is it

a right Haar measure ?

Solution. Of course, we will use the previous exercise to solve every question.

(a). The obvious inclusion R× ⊂ R makes R× an open subset of R. Let x ∈ R×. Then, for
every y ∈ R×, we have xy = A(x)y + b(x) with A(x) = x ∈ GL1(R) and b(x) = 0. So
the result follows from the fact that det(A(x)) = x.

(b). We embed C× into R2 by the map z 7−→ (Re(z), Im(z)). This makes C× into an open
subset of R2. Let z = x + iy ∈ C×, with x, y ∈ R. Then left translation by z on C× is

given by left multiplication by the 2× 2 matrix A(z) =

(
x −y
y x

)
(this is just the formula

(x + iy)(a + ib) = (xa − yb) + i(ya + xb)). So the result follows from the fact that
det(A(z)) = x2 + y2.

(c). The group GLn(R) is an open subset of Mn(R) ' Rn2 (because it is given by the equation
det(x) 6= 0). Let x ∈ GLn(R). Then left translation by x on Mn(R) is a linear transforma-
tion, and we need to calculate its determinant. Note that Mn(R) = Rn ⊕ . . .⊕ Rn, where
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we have n summands, correponding to the n columns of a n × n matrix. Left multiplica-
tion by x preserves this decomposition, and the determinant of its action on each summand
is the determinant of the usual action of x on Rn,i.e., det(x). So the determinant of left
translation by x on Mn(R) is det(x)n.

To see that | det(T )|−ndT is also a right Haar measure, we use the obvious analogue of
the previous problem with left translations replaced by right translations, and we see as
above that the determinant of the action of x ∈ GLn(R) by right translation on Mn(R) is
det(x)n.

(d). We embedG as a open subset of R3 by sending
(
x y
0 z

)
to (x, y, z). Let g =

(
x y
0 z

)
∈ G.

Using the fact that (
x y
0 z

)(
a b
0 c

)
=

(
xa xb+ yc
0 zc

)
,

we see that we are in the situation of the previous problem, with

A(g) =

x 0 0
0 x y
0 0 z


and b(g) = 0. So det(A(g)) = x2z, and we get the result.

As in (c), using the analogue previous problem for right translations, we see that the action
of g on G by right translation is linear and given by the matrixx 0 0

y z 0
0 0 z

 ,

whose determinant is xz2. So dxdydz
|x|z2 is a right Haar measure on G. It is not of the form

cdxdydz
x2|z| with c a constant, hence dxdydz

x2|z| cannot be a right Haar measure.

�

Exercise I.5.3.3. Consider the group G = (Z/2Z)N.

(a). Show that there exists a Haar measure µ on G such that µ(G) = 1.

(b). Show that every open subset of G is a countable union of set of the form
U = V × (Z/2Z)N≥n+1 , with n ∈ N and V ⊂ (Z/2Z){0,...,n}, and that we have
µ(U) = |V |

2n+1 .

(c). Consider the map u : G → [0, 1] sending (xn)n∈N ∈ G to
∑

n≥0 xn2−n−1. (We identify
Z/2Z with {0, 1} in the defintion of u.) Show that u is measurable and maps µ to Lebesgue
measure λ on [0, 1]. That is, show that, if B ⊂ [0, 1] is a Borel set, then u−1(B) is a
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Borel set and λ(B) = µ(u−1(B)). (Hint : Show that the half-open intervals of the form
[j2−k, (j+1)2−k] generate the Borel σ-algebra on [0, 1], and calculate their inverse images
by u.)

Solution.

(a). Let µ be a left Haar measure on G. As G is commutative, µ is also a right Haar measure.
Also, by I.5.1.3(b), the group G is compact, so µ(G) < +∞, and, after multiplying µ by
µ(G)−1, we may assume that µ(G) = 1.

(b). By definition of the product topology, every open subset of G is a union of sets U of the
form V × (Z/2Z)N−I , with I ⊂ N finite and V ⊂ (Z/2Z)I . As every finite subset of
N is included in a set of the form {0, 1, . . . , n}, we may assume that I = {0, 1, . . . , n}
for some n ∈ N. We still need to show that we can the union to be countable. Suppose
that we have an open set Ω of G of the form

⋃
i∈I Ui, with Ui = Vi × (Z/2Z)N≥ni+1 and

Vi ⊂ (Z/2Z){0,...,ni}. For every n ∈ N, let In = {i ∈ I|ni = n}. Then⋃
i∈In

Ui = Vn × (Z/2Z)N≥n+1 ,

with
Vn =

⋃
i∈In

Vi ⊂ (Z/2Z){0,...,n}.

Hence Ω =
⋃
n∈N Vn × (Z/2Z)N≥n+1 .

Now we calculate µ(U), for U = V × (Z/2Z)N≥n+1 , with V ⊂ (Z/2Z){0,...,n}. We write
W = (Z/2Z)N≥n+1 . If v, v′ ∈ (Z/2Z){0,...,n}, then {v} ×W = (v′ − v) + {v′} ×W , so
µ({v} ×W ) = µ({v′} ×W ). As G =

∐
v∈(Z/2Z){0,...,n}{v} ×W , this implies that, for

every v ∈ (Z/2Z){0,...,n},

1 = µ(G) = |(Z/2Z){0,...,n}|µ({v} ×W ),

hence µ({v}) = 1
2n+1 . On the other hand, we have U =

∐
v∈V {v} × W , so we get

µ(U) = |V |
2n+1 .

(c). Write Ij,k = [j2−k, (j + 1)2−k]. We first show that the Ij,k, for k ≥ 0 and 0 ≤ j ≤ 2k − 1,
generate the Borel σ-algebra on [0, 1]. Every open subset of [0, 1] is a countable union of
open intervals (a, b) with 0 ≤ a < b ≤ 1, and optionally of one or both of the half-open
intervals [0, b), 0 < b ≤ 1, and (a, 1], 0 ≤ a < 1. So we just need to check that any of
these can be written as a countable union of Ij,k’s.

Suppose that 0 ≤ a < b ≤ 1. If b − a > 2−k, and if i = 1 + b2kac and i′ = −1 + d2kbe
(where b.c and d.e are the floor and ceiling functions), then 0 < i2−k − a ≤ 2−k and
0 < b− i′2−k ≤ 2−k. This implies that

(a, b) =
⋃

k>− log2(b−a)

−2+d2kbe⋃
j=1+b2kac

Ij,k
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(where log2 is the base 2 logarithm). Similarly, if 0 < b ≤ 1 and 0 ≤ a < 1, then

[0, b) =
⋃

k>− log2(b)

−2+d2kbe⋃
j=0

Ij,k

and

(a, 1] =
⋃

k>− log2(1−a)

2k−1⋃
j=1+b2kac

Ij,k.

This proves the statement about the Borel σ-algebra of [0, 1]. To finish the problem, we just
need to prove that, for all k ≤ 0 and all j ∈ {0, . . . , 2k − 1}, the inverse image u−1(Ij,k) is
a Borel set in G and µ(u−1(Ij,k)) = 2−k. So we calculate these inverse images.

First note that, if x ∈ [0, 1], then u−1(x) is a singleton unless x is of the form j2−k for
0 < j < 2k; in that last case, x as second expression in base 2, where all the coefficients
are 1 after a certain rank.

Now let k ≥ 0 and j ∈ {0, 1, . . . , 2k − 1}. If k = 0, then j = 0 and Ij,k = [0, 1], so
u−1(Ij,k) = G and µ(G) = λ([0, 1]) = 1 by the choice of µ. Suppose that k ≥ 1. As
0 ≤ j ≤ 2k − 1, we can write j in base 2 as j =

∑k−1
i=0 ak−1−i2

i, with the ai in {0, 1}. If
0 < j, we also write j − 1 =

∑k−1
i=0 bk−1−i2

i, with the bi in {0, 1}. If j + 1 < 2k, we also
write j + 1 =

∑k−1
i=0 ck−1−i2

i, with the ci in {0, 1}. Then we have

j2−k =
k−1∑
i=0

ai2
−(i+1),

j2−k =
k−1∑
i=0

bi2
−(i+1) +

+∞∑
i=k

2−i if j > 0

and

(j + 1)2−k =
k−1∑
i=0

ci2
−(i+1) if j + 1 < 2k,

so u−1(Ij,k) = X ∪ Y , where

Y =
(
{(a0, . . . , ak−1)} × (Z/2Z)N≥k

)
and

X =


{(b0, . . . , bk−1, 1, 1, . . .), (c0, . . . , ck−1)} if 0 < j < 2k − 1
{(b0, . . . , bk−1, 1, 1, . . .)} if j = 2k − 1
{(c0, . . . , ck−1)} if j = 0.

As X is closed and Y is open, this is a Borel subset of G. We also know by question (b)
that µ(Y ) = 2−k = λ(Ij,k), so it remains to show that µ(X) = 0. That is, we want to show

61



I Representations of topological groups

that singletons in have volume 0 in G. As all singletons are translates of each others, it
suffices to treat the case of {0}. This follows from the fact that

{0} ⊂ ({0}){0,1,...,n} × (Z/2Z)N≥n+1

for every n ≥ 0, because the right-hand side has volume 2−(n+1) by question (b).

�

Exercise I.5.3.4. For x ∈ Qp and r ∈ R, write B(x, r) = {y ∈ Qp||x − y|p ≤ r} (the closed
ball of center x and radius r). Let λ be the Haar measure on Qp such that λ(Zp) = 1.

(a). If x ∈ Qp and m ∈ Z, show that λ(B(x, pm)) = pm.

(b). For every Borel set X ⊂ Qp, show that

λ(X) = inf{
∑
i≥0

pmi |∃x0, x1, . . . ∈ Qp with X ⊂
⋃
i≥0

B(xi, p
mi)}.

Solution.

(a). First we note that, if x, y ∈ Qp, we have B(x, pm) = B(y, pm) + x − y, so
λ(B(x, pm)) = λ(B(y, pm)). Note also that

B(0, pm) = {x ∈ Qp||x|p ≤ pm} = {x ∈ Qp||pmx|p ≤ 1} = p−mZp

for every m ∈ Z. So, for every x ∈ Qp and evey m ∈ Z, we have

B(x, pm) = x+ p−mZp.

Also, by question (i) of problem I.5.1.4, we have

Zp =

p−1∐
i=0

(i+ pZp).

Multiplying by p−m gives

B(0, pm) =

p−1∐
i=0

B(p−mi, pm−1),

hence λ(B(0, pm)) = pλ(B(0, pm−1)). As λ(B(0, 1)) = λ(Zp) = 1 by hypothesis, the
result follows by an induction on |m|.
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(b). First, by question (f) of problem I.5.1.4, the balls B(x, r) form a base of (open !) sets for
the topology of Qp, so every open subset of Qp is a union of balls B(x, r). As Q is dense
in Qp and countable, every open subset of Qp is a countable union of balls B(x, r) (and
we can take the x in Q, but it doesn’t matter). Also, note that, by question (b) of problem
I.5.1.4, if y ∈ B(x, r), then B(y, r) = B(x, r). Hence, if two closed balls of Qp intersect,
then one of them must contain the other. This implies that every open subset of Qp is a
countable disjoint union of balls B(x, r). The result now follows immediately from (a)
and from outer regularity of λ.

�

Exercise I.5.3.5. Let G be a locally compact group, and let H be a closed subgroup of G. We
write π for the quotient map fromG toG/H . We denote by ∆G (resp. ∆H) the modular function
of G (resp. H), and we assume that ∆G|H = ∆H . We fix left Haar measures µG and µH on G
and H .

(a). Show that, for every compact subset K ′ of G/H , there exists a compact subset K of G
such π(K) = K ′.

(b). Let f ∈ L1(G). Show that the function G → C, x 7−→
∫
H
f(xh)dµH(h) is invariant by

right translations by elements of H . Hence it defines a function G/H → C, that we will
denote by fH .

(c). If f ∈ Cc(G), show that fH ∈ Cc(G/H).

(d). Show that the map Cc(G) → Cc(G/H), f 7−→ fH is surjective. (Hint : You may use the
fact that, for every compact subset K of G, there exists a function ϕ ∈ C +

c (G) such that
ϕ(x) > 0 for every x ∈ K.)

(e). If f ∈ Cc(G) is such that fH = 0, show that
∫
G
f(x)dµG(x) = 0. (Hint : use a function in

Cc(G/H) that is equal to 1 on π(supp(f)), and proposition I.2.12.)

(f). Show that there exists a unique regular Borel measure µG/H on G/H that is invariant
by left translations by elements of G and such that, for every f ∈ Cc(G), we have∫
G
f(x)dµG(x) =

∫
G/H

fH(y)dµG/H(y).

(g). If P is a closed subgroup of G such that π induces a homeomorphism P
∼→ G/H , show

that the inverse image of µG/H by this homeomorphism is a left Haar measure on P .

(h). If P is a closed subgroup of G such that the map P × H → G, (p, h) 7−→ ph is a
homeomorphism, and if dµP is a left Haar measure on P , show that the linear functional
Cc(G)→ C, f 7−→

∫
H

∫
P
f(ph)dµP (p)dµH(h) defines a left Haar measure on G.

Solution.

(a). Let V be a compact neighborhood of 1 in G/H . Then π(V ) is a compact neighborhood of
π(1) inG/H . We haveK ′ ⊂

⋃
x∈π−1(K′) π(xV ). AsK ′ is compact, we can find x1, . . . , xn
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such that K ′ ⊂
⋃n
i=1 π(xiV ). Let K = π−1(K ′) ∩ (

⋃n
i=1 xiV ). Then K is a closed subset

of the compact set
⋃n
i=1 xiV , hence it is compact, and we have π(K) = K ′.

(b). Let x ∈ H . Then, for every g ∈ G, we have∫
H

f(gxh)dµH(h) =

∫
H

f(gh)dµH(h)

by the left invariance of µH .

(c). We need to show that fH is continuous and that it has compact support.

Fix a symmetric compact neighborhood V0 of 1, and note that A := supp f ∪ V0(supp f)
is compact. Let ε > 0. As f is left uniformly continuous, there exists a neighborhood
V ⊂ V0 of 1 such that, for every x ∈ G and every y ∈ V , we have |f(yx) − f(x)| ≤ ε.
Then, for every x ∈ G and every y ∈ V , we have

|fH(π(yx))− fH(x)| = |
∫
H

(f(yxh)− f(xh))dµH(h)| ≤ εµH(x−1A ∩H),

because f(yxh) = f(xh) = 0 unless y ∈ (x−1 supp f) ∪ (x−1y−1 supp f) ⊂ x−1A. As
x−1A ∩ H is compact, it has finite measure, and the calculation above implies that fH is
continuous at the point π(x).

Now we show that fH has compact support. By definition of fH , we have fH(π(x)) = 0
if x 6∈ KH . So the support of fH is contained in π(KH) = π(K), hence it is compact.

(d). Let g ∈ Cc(G/H), and let K ′ be its support. By question (a), there exists a compact subset
K of G such that π(K) = K ′. Let ϕ ∈ C +

c (G) be such that ϕ(x) > 0 for every x ∈ K.
We show that ϕH(y) > 0 for every y ∈ K ′. Let y ∈ K ′, write y = π(x) with x ∈ K.
As ϕ(x) > 0 and ϕ is continuous, we can find an open neighborhood V of 1 in G and a
c ∈ R>0 such that ϕ(x′) ≥ c for every x′ ∈ xV . In particular,

ϕH(y) =

∫
H

ϕ(xh)dµH(h) ≥
∫
H∩V

ϕ(xh)dµH(h) ≥ c · µH(U ∩H) > 0

(as U ∩H is a nonempty open subset of H , we have µH(U ∩H) > 0).

We define a function F : G→ C in the following way :

F (x) =

{
g(π(x))
ϕH(π(x))

if ϕH(π(x)) > 0

0 otherwise.

Note that F is continuous on the open subsets U1 = {x ∈ G|ϕH(π(x)) > 0} and
U2 = G − supp(g ◦ π) (on the second subset, it is identically zero). As U1 ⊃ π−1(K ′)
and π−1(K ′) = supp(g ◦ π), we have U1 ∪ U2 = G, the function F is continuous on G.
Finally, we take f = Fϕ. Then f ∈ Cc(G), and we just need to show that fH = g.
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Let x ∈ G. If ϕH(π(x)) = 0, then f(xh) = 0 for every h ∈ H , so fH(π(x)) = 0. We
have seen that ϕH takes positive values on K ′ = supp(g), so we also have x 6∈ supp(g),
i.e., g(x) = 0 = fH(x). Now assume that ϕH(π(x)) > 0. Note that the function H → C,
h 7−→ F (xh) is constant. So

fH(π(x)) = F (x)

∫
H

ϕ(xh)dµH(h) = g(π(x))
ϕH(π(x))

ϕH(π(x)) = g(π(x)).

Finally, note that f ∈ C +
c (G) if g ∈ C +

c (G/H), and that we also proved along the way
that fH ∈ C +

c (G/H) if f ∈ C +
c (G) (we proved this for ϕ).

(e). Let ψ ∈ Cc(G/H) be such that ψ(y) = 1 for every y ∈ π(supp f). By question (d), there
exists ϕ ∈ Cc(G) such that ϕH = ψ. We have∫

G

f(x)dµG(x) =

∫
G

f(x)ϕH(π(x))dµG(x)

=

∫
G×H

f(x)ϕ(xh)dµG(x)dµH(h)

=

∫
H

(

∫
G

f(x)ϕ(xh)dµG(x))dµH(h)

=

∫
H

(∆G(h)−1

∫
G

f(xh−1)ϕ(x)dµG(x))dµH(h)

=

∫
G

ϕ(x)(

∫
H

∆H(h)−1f(xh−1)dµH(h))dµG(x)

=

∫
G

ϕ(x)(

∫
H

f(xh)dµH(h))dµG(x) (by proposition I.2.12)

= 0 (because fH = 0).

(f). By question (e), the positive linear function Cc(G) → C, f 7−→
∫
G
fdµG factors through

the linear map Cc(G)→ Cc(G/H), f 7−→ fH . By question (d) (and the remark at the end
of its solution), it defines a positive linear functional Cc(G/H) → C. By the Riesz repre-
sentation theorem, this comes from a regular Borel measure µG/H on G/H . Unravelling
the definition, we get, for every f ∈ Cc(G),∫

G

fdµG =

∫
G/H

fHdµG/H .

By the left invariance of µG and question (d), we have, if f ∈ Cc(G/H) and x ∈ G,∫
G/H

f(xy)dµG/H(y) =

∫
G/H

f(y)dµG/H .

Using the uniqueness part of the Riesz representation theorem (as we did in class), we see
that µG/H(xE) = µG/H(E) for every Borel subset E of G/H .
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(g). Let ν be the inverse image of µG/H by the homeomorphism α : P
∼→ G/H . It is a regular

Borel measure because α is a homeomorphism. Also, note that α(xy) = xα(y) for every
x ∈ P (this is obvious on the definition of α). As µG/H is invariant by left translations by
elements of P , so is ν.

(h). The hypothesis implies that π induces a homeomorphism P
∼→ G/H , hence we get a left

Haar measure ν on P as in question (g). By the uniqueness of left Haar measures, we have
µP = cν for some c ∈ R>0. Hence, for every f ∈ Cc(G),∫

H

∫
P

f(ph)dµP (p)dµH(h) = c

∫
P

(

∫
H

f(ph)dµH(h))dν(p) =

c

∫
G/H

fH(y)dµG/H(y) = c

∫
G

f(x)dµG(x).

So the functional f 7−→
∫
H

∫
P
f(ph)dµP (p)dµH(h) is positive and corresponds to the left

Haar measure cµG on G.

�

Exercise I.5.3.6. Let G be a locally compact group. Let A and N be two closed subgroups of
G such that A×N → G, (a, n) 7−→ an is a homeomorphism and that A normalizes N (i.e. for
every a ∈ A and n ∈ N , we have ana−1 ∈ N ).

(a). If µA and µN are left Haar measures on A and N , show that the linear functional
Cc(G)→ C, f 7−→

∫
A

∫
N
f(an)dµA(a)dµN(n) defines a left Haar measure on G.

(b). Let a ∈ A. Show that there exists α(a) ∈ R>0 such that, for every f ∈ Cc(N), we have∫
N

f(ana−1)dµN(n) = α(a)

∫
N

f(n)dµN(n).

(c). If ∆G, ∆A and ∆N are the modular functions of G, A and N respectively, show that
∆G(an) = α(a)∆A(a)∆N(n) if a ∈ A and n ∈ N .

Solution.

(a). The setup is very similar to that of problem I.5.3.5 (with for example N playing the role
of H), with the difference that we don’t make any assumption on the modular functions.
Still, the results questions (a)-(d) of problem I.5.3.5 stay true, since their proof doesn’t
use the assumption on the modular functions. In particular, we get a surjective linear
transformation f 7−→ fN from Cc(G) to Cc(G/N) ' Cc(A), and it sends C +

c (G) onto
C +
c (A). The linear functions of the statement sends f ∈ Cc(G) to

∫
A
fN(a)dµA(a), so it

is positive, and the Riesz representation theorem says that there is a unique regular Borel
measure µG on G such that, for every f ∈ Cc(G), we have∫

G

fdµG =

∫
A

∫
N

f(an)dµA(a)dµN(n).
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As µA is a left Haar measure on A, the formula above implies that
∫
G
LafdµG =

∫
G
fdµG

for every f ∈ Cc(G) and every a ∈ A. We show that µG is left invariant by N . Let x ∈ N
and f ∈ Cc(G). Then we have∫
G

LxfdµG =

∫
A

∫
N

f(xan)dµA(a)dµN(n) =

∫
A

(

∫
N

f(a(a−1xa)n)dµN(n))dµA(a)

=

∫
A

(

∫
N

f(an)dµN(n))dµA(a) because a−1xa ∈ N and µN is left invariant

=

∫
G

fdµG.

As G = AN , this implies that
∫
G
LxgdµG =

∫
G
fdµG for every x ∈ G and every

f ∈ Cc(G). By proposition I.2.6, µG is a left Haar measure on G.

(b). Note that the map N → N , n 7−→ a−1na is a homeomorphism. Hence the formula
E 7−→ µN(a−1Ea) defines a regular Borel measure on N , which we denote by ν. If E is
a Borel subset and n ∈ N , then

ν(nE) = µ(a−1nEa) = µ((a−1na)a−1Ea) = µ(a−1Ea) = ν(E).

Hence ν is a left Haar measure on N , and so there exists α(a) ∈ R>0 such that
ν = α(a)µN . Now, if E is Borel subset of N and f = 11E , the function n 7−→ f(ana−1) is
the characteristic function of a−1Ea, so∫

N

f(ana−1)dµN(n) = µ(a−1Ea) = α(a)µ(E) = α(a)

∫
N

fdµN .

This extends in the usual way to all the functions f ∈ L1(N), and in particular to
f ∈ Cc(N).

(c). Let a ∈ A and n ∈ N , and fix f ∈ C +
c (G). Then we have

∆G(an)−1

∫
G

fdµG =

∫
G

Ran(f)dµG =

∫
A

∫
N

f(bman)dµA(b)dµN(m)

=

∫
A

(

∫
N

f(ba(a−1ma)n)dµN(m))dµA(b)

= α(a)−1

∫
A

(

∫
N

f(bamn)dµN(m))dµA(b) by question (b)

= α(a)−1∆N(n)−1

∫
A

(

∫
N

f(bam)dµN(m))dµA(b) by definition of ∆N

= α(a)−1∆(n)−1

∫
N

(

∫
A

f(bam)dµA(b))dµN(m)

= α(a)−1∆N(n)−1∆A(a)−1

∫
N

(

∫
A

f(bm)dµA(b))dµN(m) by definition of ∆A

α(a)−1∆N(n)−1∆A(a)−1

∫
G

fdµG.
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As
∫
G
fdµG > 0, this implies that ∆G(an) = α(a)∆A(a)∆N(n).

�

Exercise I.5.3.7. Let G = SLn(R), H = SO(n), and let P ⊂ G be the subgroup of upper
triangular matrices with positive entries on the diagonal (and determinant 1).

(a). Show that the map P × H → G, (p, h) 7−→ ph is a homeomorphism. (Hint : Gram-
Schmidt.)

(b). Give a formula for a left Haar measure on P similar to the formula in question I.5.3.2(d).

(c). Calculate the modular function of P .

(d). Show that G is unimodular. (There are several ways to do this.)

(e). If n = 2, show that SO(n) ' S1 (the circle group), and give a left Haar measure on G.

Solution.

(a). In this problem, we denote the usual Euclidian inner product on Rn by 〈., .〉, and the asso-
ciated norm by ‖.‖.

We denote the map P × H → G of the statement by α. This map is continuous because
SLn(R) is a topological group. We first show that it is injective. Suppose that we have
p, p′ ∈ P and h, h′ ∈ H such that ph = p′h′. Then p−1p′ = h(h′)−1 ∈ P ∩H is a special
orthogonal matrix that is upper triangular with positive entries on the diagonal. Such a
matrix has to be the identity. Indeed, let (v1, . . . , vn) be its columns, and let (e1, . . . , en)
be the canonical basis of Rn. We want to show that (v1, . . . , vn) = (e1, . . . , en). As v1

is a norm 1 vector and a positive multiple of e1, we must have v1 = e1. As the vectors
v2, . . . , vn are orthogonal to v1, their first entries are all 0. So v2 is a positive multiple of
e2; as v2 is norm 1, we must have v2 = e2. Now the vectors v3, . . . , vn are orthogonal to
v2, so their second entries are zero, so v3 is a positive multiple of e3 etc.

Now remember the Gram-Schmidt orthonormalization process. If (v1, . . . , vn) is a basis
of Rn, it produces an orthogonal basis (w1, . . . , wn) and an orthonormal basis (u1, . . . , un)
in the following way :

• w1 = v1 and u1 = 1
‖w1‖w1;

• For 1 ≤ k ≤ n− 1, uk+1 = 1
‖wk+1‖

wk+1, where wk+1 = vk+1 −
∑k

i=1
〈wi,vk+1〉
〈wi,wi〉 wi.

In particular, if A (resp. B, resp. C) is the matrix with columns (v1, . . . , vn) (resp.
(w1, . . . , wn), resp. (u1, . . . , un)), then we have B = AN and C = AND, where N
is an upper triangular matrix with ones on the diagonal and D is the diagonal matrix with
diagonal entries (‖w1‖−1, . . . , ‖wn‖−1). Note also that the entries of N and of D are
continuous functions of v1, . . . , vn, hence also the entries of B and C, and that C is an
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orthogonal matrix. If x ∈ SLn(R), applying this process to the columns of x, we get an
orthogonal matrix h and a matrix p ∈ P , both depending continuously on x, such that
h = xp, i.e. x = hp−1. Also, det(h) = det(xp) = det(p) > 0, so h is actually in SO(n).
As g 7−→ g−1 is a continuous function on GLn(R) (hence on its subgroup P ), we have
constructed a continuous map β : G → P × H such that α ◦ β = idG. In particular, the
map α is surjective, so it si bijective. Then its inverse must be β, and we know that β is
continuous. So α is a homeomorphism.

(b). Note that P is an open subset of the R-vector space V of upper triangular matrices in
Mn(R). Moreover, for every p ∈ P , left translation by p on P is the restriction of the
linear endomorphism Tp : V → V , x 7−→ px. So we can apply problem I.5.3.1 to define a
Haar measure on P as | det(Tp)|−1dV (p), where dV is Lebesgue measure on V .

We still need to calculate det(Tp) for p ∈ P . Let p ∈ P , and let a1, . . . , an be
its diagonal entries. Let (e1, . . . , en) be the canonical basis of Rn as before, and let
Vi = Span(e1, . . . , ei) ⊂ Rn for 1 ≤ i ≤ n. Note that the action of p ∈ GLn(R) preserves
the subspace V1, . . . , Vn, and that ther determinant of the endormophism of Vi induced by
p is a1 . . . ai. By decomposing V using the columns of the matrices (as in the solution of
I.5.3.2(c)), we get an isomorphism V ' V1 ⊕ V2 ⊕ . . . ⊕ Vn such that the endomorphism
Tp corresponds to the action of p on each Vi. So we get

det(Tp) =
n∏
i=1

i∏
r=1

ar = an1a
n−2
2 . . . a2

n−1an =
n∏
i=1

an+1−i
i .

(c). We will use problem I.5.3.6, with G = P , N the group of unipotent upper triangular
matrices (i.e. of upper triangular matrices with ones on the diagonal) and A the group
of diagonal matrices with positive diagonal entries. Let α : A × N → P be the map
defined by α(a, n) = an. Let’s show that α is a homeomorphism. The map α is obviously
continuous, and it is injective because N ∩ A = {1}. Let x ∈ P , and let a ∈ A be the
matrix with the same diagonal entries as x. Then n := a−1x is in N , and α(a, n) = x.
Hence α is bijective. Moreover, the matrix a depends continuously on x, hence so does n,
so the inverse of α is continuous, and finally α is a homeomorphism.

We want to apply question I.5.3.6(c). For this, we need to calculate the modular functions
of A and N and the function α : A→ R>0.

First, as A is commutative, we have ∆A = 1.

ForN , there are several ways to proceed. For example, you may notice thatN is obviously
homeomorphic (as a topological space only) to the R-vector space W of upper triangular
matrices in Mn(R) with zeroes on the diagonal. (Just forget the diagonal terms of the
matrices.) Moreover, for n ∈ N , left translation by n on N corresponds to the linear
endomorphism Un of W given by Un(X) = nX , for X ∈ W . Note that W is a subspace
of the space V of the previous question, and that Un is the restriction of Tn. So we can use
the same method as in the previous question to calculate det(Un), and we get det(Un) = 1.
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Hence Lebesgue measure onW is a left Haar measure onN . We can redo everything using
right translations instead of left translations, and we get that Lebesgue measure on W is
also a right Haar measure on N . This means that N is unimodular, so ∆N = 1.

Finally, we need to calculate the function α. Remember that it is defined by∫
N

f(ana−1)dn = α(a)

∫
N

f(n)dn

for every f ∈ Cc(N), where dn is Lebesgue measure on W (which we have just seen is
a Haar measure on N ). Note that ca : X 7−→ aXa−1 is a linear endomorphism of W ,
so we can calculate

∫
N
f(ana−1)dn using the change of variables formula once we know

det(ca). We get det(ca)
∫
N
f(ana−1)dn =

∫
N
f(n)dn, hence α(a) = det(ca)

−1. But is is
easy to see that, if the diagonal entries of a are (a1, . . . , an), then

det(ca) = an−1
1 an−3

2 . . . a1−n
n =

n∏
i=1

an−2i+1
i .

Hence finally, for p ∈ P ,

∆P (p) = a1−n
1 a3−n

2 . . . an−1
n =

n∏
i=1

a2i−n−1
i ,

where a1, . . . , an are the diagonal entries of p.

(d). If you know (or know how to prove) that SLn(R) is equal to its commutator subgroup,
then this isn easy. Here is another way : Let GLn(R)+ be the group of n × n ma-
trices with positive determinant. This is an open subgroup of GLn(R) (it’s the inverse
image of R>0 by the continuous group morphism det : GLn(R) → R×), so, if µ is a
Haar measure on GLn(R) (remember that GLn(R) is unimodular by question I.5.3.2(c)),
its restriction to GLn(R)+ is a nonzero regular Borel measure, and it is obviously a left
and right Haar measure on GLn(R)+. Now note that we have an isomorphism of topo-
logical groups R>0 × SLn(R) → GLn(R)+, (λ, x) 7−→ λx (whose inverse is given by
x 7−→ (det(x)1/n, det(x)−1/nx)), so we can apply problem I.5.3.6 with G = GLn(R)+,
A = R>0In and N = SLn(R). As A and N commute, we have α = 1. We know that A is
unimodular because it is commutative, and we have just seen that GLn(R)+ is unimodular,
hence I.5.3.6(c) implies that SLn(R) is also unimodular.

(e). It is well-known that the group of rotations in R2 (i.e. SO(2)) is isomorphic to the circle

group S1. The isomorphism sends e2iπθ ∈ S1 to the matrix
(

cos θ sin θ
− sin θ cos θ

)
. Also, we

have seen in class that we can define a Haar measure on S1 by the linear functional sending
f ∈ Cc(S

1) to
∫ 1

0
f(e2iπθ)dθ, where dθ is Lebesgue measure on R.

The point of this, of course, is that exercise I.5.3.5 now allows you to define a Haar measure
on SL2(R). To treat the case of SLn(R), we need a Haar measure on SO(n). An example
of such a measure is given in problem I.5.3.9
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�

Exercise I.5.3.8. (Remember problems I.5.1.4, I.5.3.1, I.5.3.2 and I.5.3.4). We denote by dx a
Haar measure on the additive group Qp. We also denote by dx (resp. dA) the product measure on
Qn
p (resp. Mn(Qp) ' Qn2

p ); note that it is a Haar measure for the corresponding additive group.

(a). Show that, for every f ∈ L1(Qp) and every a ∈ Q×p , b ∈ Qp, we have∫
Qp
f(x)dx = |a|p

∫
Qp
f(ax+ b)dx.

(b). Let n ≥ 1. Show that, if f ∈ L1(Qn
p ), A ∈ GLn(Qp) and b ∈ Qn

p , we have∫
Qnp
f(x)dx = | det(A)|p

∫
Qnp
f(Ax+ b)dx.

(c). Show that | det(A)|−np dA is a left and right Haar measure on GLn(Qp).

(d). Let B be the group of upper triangular matrices in GLn(Qp). Find a left Haar measure on
B and calculate the modular function of B.

Solution.

(a). First, using the invariance by translation of dx, we see that∫
Qp
f(ax+ b)dx =

∫
Qp
f(ax)dx

for every f ∈ L1(Qp) and a, b ∈ Qp.

Let a ∈ Q×p . We use the notation of problem I.5.3.4. If x ∈ Qp and m ∈ Z, then

aB(x, pm) = {ay with |x− y|p ≤ pm} = {y ∈ Qp||ax− y|p ≤ |a|ppm} = B(ax, |a|ppm),

and so, by I.5.3.4(a), vol(aB(x, pm)) = |a|p vol(B(x, pm)). Using question (b) of the
same problem, we get vol(aE) = |a|p vol(E) for every Borel subset E of Qp. Suppose
that f = 11E , with E a Borel subset of Qp. Then∫

Qp
f(ax)dx = vol(a−1E) = |a|−1

p

∫
Qp
f(x)dx,

so we get the desired result for this function f . The result now follows for every
f ∈ L1(Qp) by linearity and continuity of the integral.

71



I Representations of topological groups

(b). Using the translation invariance of dx as in question (a), we see that it suffices to prove the
result in the case b = 0. Let A ∈ GLn(QP ). First note that A = A1A2 and if we know the
result for A1 and A2, then we know it for A; indeed, for every f ∈ L1(Qn

p ), we’ll have∫
Qnp
f(x)dx = | det(A1)|p

∫
Qnp
f(A1x)dx =

| det(A1)|p| det(A2)|p
∫
Qnp
f(A1(A2x))dx = | det(A)|p

∫
Qnp
f(Ax)dx.

The Gauss algorithm (for solving systems of linear equations) says that we can make A
upper triangular by elementary row operations (with correspond to multiplying on the left
by a lower triangular matrix) and permutations of rows (with correspond to multiplying
on the left by a permutation matrix). So, by the observation above, it suffices to prove the
result for upper and lower triangular matrices and for permutation matrices.

Suppose first that A is a permutation matrix. So there exists a permutation σ ∈ Sn such
that, for every x = (x1 . . . , xn) ∈ Qn

p , Ax = (xσ(1), . . . , xσ(n)). As dx is the prod-
uct of identical measures on the n factors Qp of Qn

p , we have, for every f ∈ L1(Qp),∫
Qnp
f(Ax)dx =

∫
Qnp
f(x)dx. The result now follows from the fact that det(A) = ±+ 1.

Suppose that A is upper triangular, and write A = (aij)1,≤i,j≤n. Let f ∈ L1(Qp). Then∫
Qnp
f(A(x1, . . . , xn)) =∫

Qp
. . .

∫
Qp
f(a11x1 + . . .+a1nxn, . . . , an−1,n−1xn−1 +an−1,nxn, annxn)dxndxn−1 . . . dx1.

Using question (a), we see that this last integral is equal to

|a11|−1
p . . . |an−1,n−1|−1

p |ann|−1
p

∫
Qnp
f(x)dx = | det(A)|−1

p

∫
Qnp
f(x)dx.

The case of lower triangular matrices is similar (just put the dxi reverse order).

(c). Once we have the change of variables formula of question (b), we can replace R by Qp

in problems I.5.3.1 and I.5.3.2 and all the results will stay true, with exactly the same
proofs. (Except I.5.3.2(b), which doesn’t make sense for Qp.) In particular, we get that
| det(A)|−np dA is a left and right Haar measure on GLn(Qp).

(d). Again, we can just apply the proofs of questions (b) and (c) of problem I.5.3.7 (and the
analogue for Qp of problem I.5.3.1) to get the result. Assuming that there is no sign mistake
in problem I.5.3.7, a left Haar measure onB is

∏n
i=1 |aii|i−n−1

p dA, where dA is the product
measure on the Qp-vector space V ' Qn(n+1)/2

p of upper triangular matrices and the aij
are the entries of the matrix. And the modular function of B is given by

∆(A) =
n∏
i=1

|aii|2i−n−1
p .

72



I.5 Exercises

�

Exercise I.5.3.9. 15 The goal of this problem is to give a formula for a Haar measure on SO(n).
(We could do something similar for the unitary group U(n).)

(a). For X ∈ Mn(R), we set Φ(X) = (In −X)(In + X)−1. Show that this is well-defined if
−1 is not an eigenvalue ofX , and that we have Φ(Φ(X)) = X whenever this makes sense.

(b). We denote by An the R-vector space of n×n antisymmetric matrices (i.e. of X ∈Mn(R)
such that XT = −X) and by U the set of elements of SO(n) that don’t have −1 as
an eigenvalue. Show that U is an open dense subset of SO(n), and that Φ induces a
homeomorphism An

∼→ U .

(c). Let X ∈ An. Show that there exist open dense subsets V and W of An such that the
formula Φ(LXY ) = Φ(X)Φ(Y ) defines a diffeomorphism LX : V

∼→ W , and that 0 ∈ V .

(d). Let dX be Lebesgue measure on An. For every X ∈ An and every Y ∈ An on which LX
is defined, we denote by L′X(Y ) the differential at Y of LX . It is a linear transformation
from An to An such that, for every H ∈ An,

LX(Y + tH) = LX(Y ) + tL′X(Y )(H) + o(t).

Fix X ∈ An. We want to compute det(L′X(0)). Remember that L′X(0) is a linear endo-
morphism of An, and note that An⊗R C is the space of antisymmetric matrices in Mn(C).

(i) Show that det(L′X(0)) is well-defined and nonzero.

(ii) Show that we have
L′X(0)(H) = (In −X)H(In +X),

for every H ∈ An.

(iii) Show that X has a basis of (complex) eigenvectors (v1, . . . , vn) such that the corre-
sponding eigenvalues are of the form iλ1, . . . , iλn, with λ1, . . . , λn ∈ R.

(iv) For j, k ∈ {1, . . . , n}, we set Yjk = vjv
T
k − vkvTj . Show that Yjk ∈ An⊗RC, and that

it is an eigenvector for L′X(0), with corresponding eigenvalue (1− iλj)(1− iλk).

(v) Show that (Yjk)1≤j<k≤n is a basis of An ⊗R C.

(vi) Show that det(L′X(0)) = det(In − iX)n−1.

(e). Show that the linear functional sending f ∈ Cc(SO(n)) to∫
An

f(Φ(X))
1

| detL′X(0)|
dX

defines a left Haar measure on SO(n). (Hint : Note that (LX ◦ LY )(0) = LX(Y ), and use
the chain rule.)

15Somewhat incomplete proof here.
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Solution.

(a). If X ∈ Mn(R), then −1 is not an eigenvalue of X if and only if In + X is invertible, i.e.
if and only if the formula defining Φ(X) makes sense. So the set of definition of Φ is the
open set defined by the equation det(In + X) 6= 0. Note also that In − X and In + X
commute, so In −X and (In +X)−1 commute (if the second is defined), so we also have
Φ(X) = (In +X)−1(In −X).

Let X ∈Mn(R) such that Φ(X) is defined. Then we have

In + Φ(X) = ((In +X) + (In −X))(In +X)−1 = 2(In +X)−1

and
In − Φ(X) = ((In +X)− (In −X))(In +X)−1 = 2X(In +X)−1.

In particular, In + Φ(X) is invertible, so Φ(Φ(X)) makes sense, and we have

Φ(Φ(X)) = (In − Φ(X))(In + Φ(X))−1 = 2X(In +X)−1(2(In +X)−1)−1 = X.

(b). Let g ∈ SO(n). Then we can find P ∈ GLn(R) such that

PgP−1 =


r1 0 . . . 0
0 r2 0 0
... 0

. . . 0
0 . . . 0 rm

 ,

where :

- if n is even, then m = n/2 and r1, . . . , rm are 2 × 2 matrices of the form(
cos θi sin θi
− sin θi cos θi

)
, with θi ∈ [0, 2π);

- if n is odd, then m = (n+ 1)/2, the matrix rm is the 1× 1 matrix 1 and r1, . . . , rm−1

are 2× 2 matrices of the form
(

cos θi sin θi
− sin θi cos θi

)
, with θi ∈ [0, 2π).

In both cases, −1 is an eigenvalue of g if and only if one at least one of the θi is equal to
π. So, by varying the θi, we can find a sequence of elements of SO(n) that converge to g
and don’t have −1 as an eigenvalue. This proves that U is dense in SO(n).

Next, as antisymmetric matrices have only imaginary eigenvalues, the function Φ is defined
on An. Note also that it is clear on the definition of Φ that Φ is continuous on its open set
of definition. By the second part of question (a), Φ is injective and, to show that Φ is
a homeomorphism from An to U , it suffices to show that is a bijection from An to U
(because then its inverse will be Φ). So we just need to show that Φ(An) = U . Using
again the fact that Φ(Φ(X)) = X whenever this makes sense, we see that it suffices to
prove that Φ(An) ⊂ U and Φ(U) ⊂ An.
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LetX ∈ An. ThenXT = −X , so Φ(X)T = (In+XT )−1(In−XT ) = (In−X)−1(In+X),
and hence Φ(X)TΦ(X) = In, which means that Φ(X) ∈ O(n). As Φ is continuous and
An is connected, Φ(An) is connected. But In = Φ(0) ∈ Φ(An), so Φ(An) is contained in
SO(n).

Let X ∈ SO(n) such that −1 is not an eigenvalue of X . Then XT = X−1, so

Φ(X)T = (In−XT )(In+XT )−1 = (In−X−1)(In+X−1)−1 = (X−In)(X+In)−1 = −Φ(X).

So we have Φ(U) ⊂ An.

(c). Fix X ∈ An. Note that the formula Φ(LXY ) = Φ(X)Φ(Y ) can also be written
LXY = Φ(Φ(X)Φ(Y )), by (a).

For Y ∈ An, Φ(X)Φ(Y ) has animage by Φ (which will automatically be in An by (b)) if
and only if Φ(Y ) ∈ Φ(X)−1U . So we can take V = Φ(U ∩ (Φ(X)−1U)); this is dense in
An because U ∩ (Φ(X)−1U) is dense in SO(n) by (b). Then the image of V by the map
LX : Y 7−→ Φ(Φ(X)Φ(Y )) is W := Φ((Φ(X)U) ∩ U).

The map LX : V → W is continuous and surjective. In fact, as Φ is infinitely differentiable
(it is given by rational functions in the entries of its arguments, by the formula saying that
A−1 is det(A)−1 times the transpose of its cofactor matrix, for every A ∈ GLn(R)), the
map LX is also infinitely differentiable.

Let X ′ = Φ(Φ(X)−1) ∈ An. Then we get as above a continuous and surjective map
LX′ : W → V , defined by the formula LX′(Y ) = Φ(Φ(X)−1Φ(Y )). The maps LX and
LX′ are inverses of each other, and in particular they are both diffeomorphisms.

Finally, if Y = 0, then Φ(Y ) = In. So Φ(Y ) ∈ U , and we also have Φ(Y ) ∈ Φ(X)−1U ,
because Φ(X)Φ(Y ) = Φ(X) ∈ U . This shows that 0 ∈ V .

(d). (i) Let X ∈ An. As LX is defined at the point 0, the differential L′X(0) makes sense;
also, as LX is a diffeomorphism, det(L′X(0)) 6= 0.

(ii) Note that, for Y ∈ An,

(In+X+Y )−1 = (In+X)−1(In+(In+X)−1Y ) = (In+X)−1(In−Y (In+X)−1+o(Y )),

hence

Φ(X + Y ) = (In −X − Y )(In +X + Y )−1

= ((In −X)− Y )(In +X)−1(In − Y (In +X)−1 + o(Y ))

= Φ(X)− Φ(X)Y (In +X)−1 − Y (In +X)−1 + o(Y ).

In particular (taking X = 0), we have

Φ(Y ) = In − 2Y + o(Y ).

So
Φ(X)Φ(Y ) = Φ(X)− 2Φ(X)Y + o(Y ),
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and
LX(Y ) = Φ(Φ(X)Φ(Y )) = Φ(Φ(X)− 2Φ(X)Y + o(Y )) =

Φ(Φ(X))−Φ(Φ(X))(−2Φ(X)Y )(In+Φ(X))−1−(−2Φ(X)Y )(In+Φ(X))−1+o(Y ).

Using Φ(Φ(X)) = X and In + Φ(X) = 2(In +X)−1 (see (a)), we can simplify this
last expression to

X +XΦ(X)Y (In +X)−1 + Φ(X)Y (In +X) + o(Y ) = X + (In +X)Φ(X)Y (In + Y ) + o(Y )

= X + (In −X)Y (In +X) + o(Y ).

But then the conclusion that L′X(0)(Y ) = (In −X)Y (In +X) follows immediately
from the definition of the differential.

(iii) As X is antisymmetric and has real entries, it is normal, so the spectral theorem says
that X is diagonalizable in an orthonormal basis of Cn; in other words, there exists
a unita matrix P such that PXP−1 is diagonal. We have already used the fact that
the eigenvalues of X are imaginary, but it is easy to recheck it quickly : we have
X∗ = −X and P ∗ = P−1, and (PXP−1)∗ = (P ∗)−1X∗P ∗ = −PXP−1. As
PXP−1 is diagonal, this means that its diagonal entries (which are the eigenvalues
of X) are all imaginary.

(iv) It follows directly from the definition of Yjk that Y T
jk = −Yjk, so Yjk ∈ An ⊗R C.

Furthermore, by (ii), we have

L′X(0)(Yij) = (In −X)Yij(In +X)

= (In −X)(vjv
T
k )(In −XT )− (In −X)(vkv

T
j )(In −XT )

= (1− iλj)(vjvTk )(1− iλk)− (1− iλk)(vkvTj )(1− iλj
= (1− iλj)(1− iλk)Yij.

(v) As (v1, . . . , vn) is a basis of Cn, the matrices vjvTk , for 1 ≤ j, k ≤ n, form a basis
of Mn(C). So the matrices Yjk = (vjv

T
k ) − (vjv

T
k )T , for 1 ≤ j, k ≤ n, generate

An ⊗R C. Note that Yjj = 0 and Ykj = −Yjk, so An ⊗R C is actually spanned by
the matrices Yjk, for 1 ≤ j < k ≤ n. As there are n(n − 1)/2 such matrices and
dimC(An ⊗R C) = dimR(An) = n(n− 1)/2, they form a basis of An ⊗R C.

(vi) By (iv) and (v), we have

det(L′X(0)) =
∏

1≤j<k≤n

(1− iλj)(1− iλk) =
n∏
r=1

(1− iλr)n−1

(because each 1− iλr appears n− 1 times in the first big product : (n− r) times as
the first factor (1− iλj), and (r− 1) times as the second factor (1− iλk)). To get the
result, we just need to note that the eigenvalues of In − iX are 1− iλ1, . . . , 1− iλn,
so that

det(In −X) =
n∏
r=1

(1− iλr).
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(e). Let us denote this functional by Λ. First, by question (e), the function X 7−→ 1
| det(L′X(0))|

is defined everywhere on An and continuous, so the integral defining Λ makes sense.

We need to check that Λ is positive and invariant by left translations. We first check the
positivity. Let f ∈ C +

c (SO(n)). Then we can find ε > 0 and a nonempty open subset Ω of
SO(n) such that f|Ω ≥ ε. As U is open dense in SO(n), its intersection with Ω is open and
nonempty, so Φ(U ∩ Ω) is open and nonempty in An, and we have

Λ(f) ≥ ε

∫
Φ(U∩Ω)

1

| det(L′X(0))|
dX > 0

(because the function X 7−→ 1
|det(L′X(0))| is continuous and positive on Φ(U ∩ Ω)).

Now we check the left invariance. Fix f ∈ Cc(SO(n)). Let g ∈ U . Then
Λ(Lgf) =

∫
An
f(g−1Φ(Y )) 1

| det(L′Y (0))|dY . Choose X,X ′ ∈ An such that Φ(X) = g−1

and Φ(X ′) = g. Then

Λ(Lgf) =

∫
An

f(Φ(X)Φ(Y ))
1

| det(L′Y (0))|
dY

=

∫
V

f(Φ(X)Φ(Y ))
1

| det(L′Y (0))|
dY (because vol(An − V ) = 0)

=

∫
V

f(Φ(LXY ))
1

| det(L′Y (0))|
dY.

Now note that, if Y ∈ V , then so does LY (0) = Y , so LX(Y ) = LX ◦ LY (0) = LLXY (0)
makes sense, and we have by the chain rule

L′LXY (0) = L′X(Y ) ◦ L′Y (0),

hence in particular
1

| det(L′Y (0))|
=
| det(L′X(Y ))|
| det(L′LXY (0))|

.

This implies that

Λg(f) =

∫
V

f(Φ(LXY ))
| det(L′X(Y ))|
| det(L′LXY (0))|

dY.

Using the substitution Z = LXY , we see that this is equal to∫
W

f(Φ(Z))
1

| det(L′Z(0))|
dZ.

As vol(AN −W ) = 0, the last integral is equal to
∫
An
f(Φ(Z)) 1

| det(L′Z(0))|dZ, i.e. to Λ(f).

So we have shown that the function SO(n) → C, g 7−→ Λ(Lgf) is constant on the
open dense subset U . As this function is continuous (it is the composition of the con-
tinuous function SO(n) → Cc(SO(n)), g 7−→ Lgf and of the continuous linear func-
tion Λ : Cc(SO(n)) → C), it is constant on the whole SO(n), which means that
Λ(Lgf) = Λ(f) for every g ∈ SO(n).
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Exercise I.5.3.10. Let G = SU(2).

(a). Show that every element of G is of the form
(
a −b
b a

)
, with a, b ∈ C and |a|2 + |b|2 = 1.

If we identify C and R2 in the usual way, the previous question gives a homeomorphism α
between SU(2) and S3 (the unit sphere in R4).

(a). If g ∈ SU(2), show that left translation by g on SU(2) corresponds by α to the restriction
to S3 of the action of an element of SO(4) on R4 (i.e. there exists A ∈ SO(4) such that,
for every h ∈ SU(2), we have gh = Aα(h)).

(b). Let µ be the usual spherical measure on S3; that is, if λ is Lebesgue measure on R4, we
have by definition, for every Borel subset E of S3,

µ(E) = 2
π2λ({tx, t ∈ [0, 1], x ∈ E})

(note that the volume of the unit ball in R4 is π2

2
).

Show that the inverse image by α of µ is a left and right Haar measure on SU(2).

(c). We use the following (hyperspherical) coordinates on S3 : if (x1, x2, x3, x4) ∈ S3, we
write 

x1 = cos θ
x2 = sin θ cosψ
x3 = sin θ sinψ cosφ
x4 = sin θ sinψ sinφ

with 0 ≤ θ ≤ π, 0 ≤ ψ ≤ π and 0 ≤ φ ≤ 2π. Show that, for every f ∈ Cc(S
3), we have∫

S3 fdµ =

1

2π2

∫ π

0

∫ π

0

∫ 2π

0

f(cos θ, sin θ cosψ, sin θ sinψ cosφ, sin θ sinψ sinφ) sin2 θ sinψdθdψdφ.

(Feel free to use a computer to calculate any big determinants.)

Solution.

(a). It is clear that every matrix as in the statement is in SU(2). Let’s show the converse. Let

A =

(
a c
b d

)
∈ M2(C). Then A ∈ U(2) if and only if A∗A = I2, which means that the

two column vectors of A are orthogonal and norm 1 for the usual Hermitian inner product
on C2. As the orthogonal of a line in C2 is one-dimensional, it implies that there exists

λ ∈ C× such that
(
c
d

)
= λ

(
−b
a

)
. The condition on the norm of the columns gives
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aa + bb = λλ(aa + bb) = 1, and the condition that det(A) = 1 gives λ(aa + bb) = 1. So
we get λ = 1, as desired.

(b). Let V be the space of matrices of the form
(
a −b
b a

)
, with a, b ∈ C. Then α extends to

a C-linear isomorphism from V to C2, hence to a R-linear isomorphism from V to R4,

sending
(
a −b
b a

)
to (Re(a), Im(a),Re(b), Im(b)). If A ∈ SU(2), then the action by left

multiplication of A on V is the usual action of A on C2, so it corresponds to a linear
automorphism of R4 which preserves the usual Euclidian norm, i.e. is in O(4). Also, the
determinant of this action is just det(A) = 1, so the corresponding automorphism of R4 is
in SO(4).

(c). First, note that µ is a regular Borel measure on S3 (a subset E of S3 is a Borel subset
if and only {tx, t ∈ [0, 1], x ∈ E} is a Borel subset of R4, it is compact if and only if
{tx, t ∈ [0, 1], x ∈ E} is compact and openif and only if {tx, t ∈ (0, 1], x ∈ E} (which
has the same measure as {tx, t ∈ [0, 1], x ∈ E}) is open).

By the change of variables formula in R4, the measure µ is invariant by the action of SO(4)
on S3. By question (b), its inverse image by α is invariant by left translations on SU(2),
hence a left Haar measure. But the group SU(2) is compact, so every left Haar measure is
also a right Haar measure.

(d). Let B4 be the closed unit ball in R4. Let f ∈ Cc(S
3). We define a function g ∈ L1(B4) by

g(r cos θ, r sin θ cosψ, r sin θ sinψ cosφ, r sin θ sinψ sinφ) =

f(cos θ, sin θ cosψ, sin θ sinψ cosφ, sin θ sinψ sinφ)

for 0 ≤ r ≤ 1. (Note : g might not be well-defined at 0, but it doesn’t matter because {0}
has volume 0.) Then, by definition of µ, we have

∫
S3 fdµ = 2

π2

∫
B4 gdλ. We can calculate

this last integral using the change of variables formula (and avoiding the set where this
change of variables is not bijective, which is of volume 0 anyway). If β is the map sending
(r, θ, ϕ, ψ) to (r cos θ, r sin θ cosψ, r sin θ sinψ cosφ, r sin θ sinψ sinφ), then we have

Dβ(r, θ, ϕ, ψ) = r3(sin θ)2 sinψ,

so
∫
B4 gdλ is equal to∫ 1

0

∫ π

0

∫ π

0

∫ 2π

0

f(cos θ, sin θ cosψ, sin θ sinψ cosφ, sin θ sinψ sinφ)r3 sin2 θ sinψdrdθdψdφ =

1

4

∫ π

0

∫ π

0

∫ 2π

0

f(cos θ, sin θ cosψ, sin θ sinψ cosφ, sin θ sinψ sinφ) sin2 θ sinψdθdψdφ.

We get the result by multiplying by 2
π2 .

�
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I.5.4 The dual of a locally compact abelian group

Exercise I.5.4.1. Let G be an abelian topological group. We write Ĝ for the set of continuous
group morphisms G→ S1.

As the product of two continuous morphisms from G is S1 is also a continuous morphism
from G to S1 (because S1 is commutative), the set Ĝ has a natural group structure. We put the
topology of compact convergence on Ĝ; that is, if χ ∈ Ĝ, then a basis of neighborhoods of χ is
given by {ψ ∈ Ĝ| supx∈K |χ(x)− ψ(x)| < c}, for all compact subsets K of G and all c > 0.

(a). Show that Ĝ is a topological group. This is called the dual group of G.

(b). Suppose that G = R.

(i) Let ρ : G → GLn(C) be a continuous group morphism. Show that there exists a
unique A ∈ Mn(C) such that, for every t ∈ R, ρ(t) = exp(tA). (There are several
ways to do this. One way is to notice that, if the conclusion is true, then c′(0) must
exist and be equal to A, and to work backwards from there.)

(ii) Show that the image of ρ is contained in U(n) if and only if A∗ = −A.

(iii) Show that the map R→ Ĝ sending x ∈ R to the group morphismG→ S1, t 7−→ eixt

is an isomorphism of topological groups (i.e. a group isomorphism that is also a
homeomorphism).

(c). Show that there is an isomorphism of topological groups Ŝ1 ' Z that sends idS1 to 1.

(d). What is the topological group Ẑ ?

(e). Suppose that G = Qp (cf. exercise I.5.1.4). We define a map χ1 : Qp → S1 in the
following way : If x ∈ Qp, we can write x =

∑+∞
n=−∞ cnp

n, with 0 ≤ cn ≤ p − 1 and
cn = 0 for n small enough, and this uniquely determines the cn (see question I.5.1.4(i)).
We set

χ1(x) = exp

(
2πi

−1∑
n=−∞

cnp
n

)
.

(i) Show that χ1 : Qp → S1 is a continuous group morphism and that Ker(χ1) = Zp.

(ii) For every y ∈ Qp, we define χy : Qp → S1 by χy(x) = χ(xy). Show that this is also
a continuous group morphism, and find its kernel.

(iii) Let χ ∈ Q̂p. Show that there exists k ∈ Z such that χ = 1 on {x ∈ Qp||x|p ≤ p−k}.

(iv) Let χ ∈ Q̂p such that χ(1) = 1 and χ(p−1) 6= 1. Show that there exists a sequence of
integers (cr)r≥0 such that 1 ≤ c0 ≤ p− 1 and 0 ≤ cr ≤ p− 1 for r ≥ 1 and that, for
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every k ∈ Z≥1,

χ(p−k) = exp

(
2πi

k∑
r=1

ck−rp
−r

)
.

(v) Let χ ∈ Q̂p such that χ(1) = 1 and χ(p−1) 6= 1. Show that there exists y ∈ Qp such
that |y|p = 1 and χ = χy.

(vi) Show that the map Qp → Q̂p, y 7−→ χy is an isomorphism of topological groups.

(vii) Show that χy|Zp = χy′|Zp if and only y − y′ ∈ Zp, and that the map y 7−→ χy induces
an isomorphism of topological groups Qp/Zp

∼→ Ẑp, where Qp/Zp has the discrete
topology.

Solution.

(a). We need to check the group operations of Ĝ are continuous. Let’s start with mul-
tiplication. Let χ1, χ2 ∈ Ĝ, and choose a neighborhood U of χ1χ2 of the form
{ψ ∈ Ĝ| supx∈K |χ(x) − ψ(x)| < c}, with K ⊂ G compact and c > 0. We need to
find neighborhoods U1 of χ1 and U2 of χ2 such that U1U2 ⊂ U . Take

Ui = {ψ ∈ Ĝ| sup
x∈K
|χi(x)− ψ(x)| < c/2}

for i = 1, 2. Let ψ1 ∈ U1 and ψ2 ∈ U2. Then, if x ∈ K, we have

|(ψ1ψ2)(x)− (χ1χ2)(x)| = |ψ1(x)(ψ2(x)− χ2(x)) + χ2(x)(ψ1(x)− χ1(x))|
≤ |ψ1(x)||ψ2(x)− χ2(x)|+ |χ2(x)||ψ1(x)− χ1(x)|
= |ψ2(x)− χ2(x)|+ |ψ1(x)− χ1(x)| (because ψ1 and χ2 are unitary)
< c.

So ψ1ψ2 ∈ U .

The proof for inversion is similar. Let χ ∈ Ĝ, and choose a neighborhood U of
χ−1 of the form {ψ ∈ Ĝ| supx∈K |χ−1(x) − ψ(x)| < c}, with K ⊂ G compact
and c > 0. We need to find a neighborhood V of χ such that V −1 ⊂ U . Take
V = {ψ ∈ Ĝ| supx∈K |χ(x) − ψ(x)| < c}. Let ψ ∈ V . Then, for every x ∈ K, we
have

|ψ−1(x)− χ−1(x)| = |ψ−1(x)||χ−1||χ(x)− ψ(x)| = |χ(x)− ψ(x)| < c.

So ψ−1 ∈ U .

(b). (i) Choose a norm ‖.‖ on Mn(C). As GLn(C) is open in Mn(C), we can choose a
nonempty open ball B center of In such that B ⊂ GLn(C). We only care about the
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fact that B is a convex subset of Mn(C). As ρ is continuous and ρ(0) = In, we can
find c > 0 such that ρ([0, c]) ⊂ B. Then∫ 1

0

ρ(cx)dx = c

∫ c

0

ρ(x)dx ∈ B,

so X :=
∫ c

0
ρ(x)dx ∈ GLn(C). For every t ∈ R, we have

Xρ(t) =

∫ c

0

ρ(x+ t)dx =

∫ t+c

t

ρ(x)dx.

In particular, ρ is continuously differentiable, and

ρ′(t) = X−1(ρ(t+ c)− ρ(t)) = X−1(ρ(c)− In)ρ(t).

The only solution of this differential equation satisfying the initial condition
ρ(0) = In is ρ(t) = exp(tA), with A = X−1(ρ(c) − In). Finally, the matrix is
uniquely determined by ρ, because we must have A = ρ′(0).

(ii) If A∗ = −A, then, for every t ∈ R,

ρ(t)ρ(t)∗ = exp(tA) exp(tA∗) = exp(t(A+ A∗)) = exp(0) = In

(we use the fact that tA and tA∗ commute to get the equality
exp(tA) exp(tA∗) = exp(tA+ tA∗)), so ρ(t) ∈ U(n).

Conversely, suppose that ρ(R) ⊂ U(n). Note that A = limt→0
1
t
(ρ(t) − In), so

A∗ = limt→0
1
t
(ρ(t)∗ − In). As

ρ(t)∗ − In = ρ(t)−1 − In = −ρ(t)−1(ρ(t)− In)

and ρ(t)−1 → In as t→ 0, this implies that A∗ = −A.

(iii) Let’s denote by α the map R→ Ĝ of the statement.

We have seen in (i) and (ii) that every continuous group morphism ρ : R → S1 is of
the form ρ(t) = ezt, for a unique z ∈ C such that z = −z; that last condition means
that z = ix for some x ∈ R. This means that α is bijective. It is also easy to see that
α is a morphism of groups, so we just need to show that α is a homeomorphism.

We first show that α is continuous. Let x ∈ R, and consider a neighborhood U of
α(x) of the form {ρ ∈ Ĝ|∀t ∈ K, |α(x)(t)− ρ(t)| < c}, where K ⊂ R is a compact
subset and c > 0. Then, for every y, t ∈ R, we have

|α(x)(t)−α(y)(t)|2 = |eixt−eiyt|2 = |1−eit(x−y)|2 = (1−cos(t(x−y)))2+(sin(t(x−y)))2.

Choose ε > 0 such that, for every t ∈ K and z ∈ (−ε, ε), we have
(1− cos(tz))2 + (sin(tz))2 < c2. Then, if |x− y| < ε, we have α(y) ∈ U .
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Now we show that α is open. Let x ∈ R, and choose a neighborhood V of x of the
form (x− ε, x + ε), with ε (these form a basis of neighborhoods). We want to show
that α(V ) contains a neighborhood of α(x). Choose δ > 0 such that the functions
t 7−→ sin(t) and t 7−→ 1− cos(t) are both increasing on [0, 2δε], and let

U = {ρ ∈ Ĝ|∀t ∈ K, |α(x)(t)− ρ(t)| < c},

where K = [−δ, δ] and c =
(
supt∈[0,εδ/2](1− cos(t))2 + (sin(t))2

)1/2 (note that this
is also the sup on [−εδ/2, εδ/2], because the function we are bounding is even). Let
y ∈ R such that |x − y| ≥ ε. We want to show that α(y) 6∈ U . We can find t ∈ K
such that εδ ≤ t(x− y) ≤ 2εδ. Then we have

|α(x)(t)− α(y)(t)| =
(
(1− cos(t(x− y)))2 + (sin(t(x− y)))2

)1/2
> c,

by the choice of δ and c. So α(y) 6∈ U .

(c). Note that we have an isomorphism of topological groups R/2πZ ∼→ S1 given by t 7−→ eit.
So we get an isomorphism of groups

Ŝ1 ' {ρ ∈ R̂|ρ(2πZ) = {1}} ' {x ∈ R|∀t ∈ 2πZ, eixt = 1} = Z

(where the second isomorphism comes from question (b)). It remains to show that this is
an isomorphism of topological groups, i.e. that Ŝ1 is discrete. If you have read ahead, you
know that this is a particular case of question I.5.4.2(e) (and I don’t know a simpler proof
in the case of S1).

(d). As Z is discrete, a continuous group morphism from Z to S1 is just a group morphism
from Z to S1. As Z is the free abelian group generated by 1 ∈ Z, the map ρ 7−→ ρ(1) is
an isomorphism between the set of group morphisms Z → S1 and S1. So, as a group, Ẑ
is isomorphic to S1. Let’s denote this isomorphism by β : S1 → Ẑ (so β sends z ∈ S1

to the morphism Z → S1, n 7−→ zn). If we show that β is continuous, then it will
automatically be a homeomorphism because S1 is compact. But the compact subsets of Z
are its finite subsets, so the continuity of β follows immediately from the continuity of the
maps S1 → S1, z 7−→ zn.

(e). (i) Let x, x′ ∈ Qp, and write x =
∑+∞

n=−∞ cnp
n x′ =

∑+∞
n=−∞ c

′
np

n (with the same
conditions on the cn and c′n as in the statement). Then, by I.5.1.4(h), we have, for
every N ∈ Z, |x − x′|p ≤ p−N if cn = c′n for every n ≤ N − 1. In particular,
χ1(x) = χ1(x′) if |x − x′|p ≤ 1, so χ1 is continuous and sends every x ∈ Zp to
1 = χ1(0).

We still need to show that χ1 is a morphism of groups. Let G′ be the subgroup of Qp

whose elements are the x ∈ Qp that can be writte x =
∑+∞

n=−∞ anp
n, with an ∈ Z

and an = 0 for |n| big enough. This is a dense subgroup (because
∑+∞

n=−∞ cnp
n is

the limit as N → +∞ of
∑N

n=−∞ cnp
n), and it is contained in Q. As we know that

83



I Representations of topological groups

χ1 is continuous, it suffices to prove that χ1(x + y) = χ1(x)χ1(y) x, y ∈ G′. But
note that, if x ∈ G′, then χ1(x) = exp(2πix), where we see x as an element of Q.
This implies the result.

Finally, we have to show that Ker(χ1) = Zp. We have already seen that
Zp ⊂ Ker(χ1). Conversely, let x ∈ Qp, and write x =

∑+∞
n=−∞ cnp

n as above.
Suppose that x 6∈ Zp, then there exists m < 0 such that cm 6= 0. Choose such a m.
We have

p−m ≤ cmp
−m <

−1∑
n=−∞

cnp
n ≤ (p− 1)

∑
r≥1

p−r = 1

(the second inequality is strict because the cn are 0 for n small enough). So∑−1
n=−∞ cnp

n ∈ (0, 1), and χ1(x) = exp(2πi
∑−1

n=−∞ cnp
n) 6= 1.

(ii) The map χy is a continuous group morphism because it is the composition of the
continuous group morphisms χ1 and my : Qp → Qp, x 7−→ xy. An element x ∈ Qp

is in the kernel of χy if and only xy ∈ Ker(χ1) = Zp. So, if y = 0, we have
Ker(χy) = Qp, and if y 6= 0, we have

Ker(χy) = y−1Zp = |y|pZp = {x ∈ Qp||x|p ≤ |y|−1
p }.

(iii) Choose a neighborhood U of 1 in C× such that the only subgroup of C× contained
in U is the trivial group. (See 3(b).) Then χ−1(U ∩ S1) is a neighborhood of 1 in
Qp, so there exists k ∈ Z such that χ−1(U ∩ S1) ⊃ {x ∈ Qp||x|p ≤ pk}. But as
{x ∈ Qp||x|p ≤ pk} is a subgroup of Qp, its image by χ is a subgroup of S1 contained
in U , hence is equal to {1}.

(iv) Write, for every integer r ≥ 0, zr = χ(p−r). Then zr ∈ S1 and, for every r ≥ 0, we
have

zpr+1 = χ(p−r−1)p = χ(p−r) = zr.

We will construct the integers cr by induction on r ≥ 0. Note first that z1 6= 1 = z0

by hypothesis, so we can find c0 ∈ {1, . . . , p − 1} such that z1 = exp(2πic0p
−1).

Suppose that we have found c0, . . . , cr−1 (with r ≥ 1) such that, for 1 ≤ s ≤ r, we
have

χ(p−s) = zs = exp(2πi
s∑

k=1

cs−kp
−k).

We have to find cr ∈ {0, . . . , p− 1} such that

zr+1 = exp(2πi
r+1∑
k=1

cr+1−kp
−k) = exp(2πip−(r+1)

r∑
s=0

csp
s).

As zpr+1 = zr, we have(
zr+1 exp(2πip−r−1

r−1∑
s=0

csp
s)

)p

= 1,

84



I.5 Exercises

so there exists cr ∈ {0, . . . , p− 1} such that

zr+1 exp(2πip−r−1

r−1∑
s=0

csp
s) = exp(2πip−1cr),

i.e.

zr+1 = exp(2πip−(r+1)

r∑
s=0

csp
s).

(v) Let (cr)r≥0 be as in (iv), and set y =
∑+∞

r=0 crp
r. As c0 ∈ {1, . . . , p − 1}, we have

|y|p = 1. Also, for every r ≥ 1, we have

χ(p−r) = exp(2πip−(r+1)

−1∑
k=−r

cr+kp
k) = χ1(p−ry) = χy(1),

because

p−ry =
∑
s≥0

csp
r−s =

+∞∑
n=−r

cr+np
n.

On the other hand, if r ≥ 0, then

χ(pr) = χ(1)p
r

= 1 = χy(p
r).

As χ and χy are continuous morphisms of groups, and as the family (pr)r∈Z generates
a dense subgroup of Qp, this implies that χ = χy.

(vi) Let us denote the map Qp → Q̂p, y 7−→ χy by α. It is easy to see that α is a morphism
of groups (this follows immediately from the fact that χ1 is a morphism of groups and
the distributivity of multiplication on Qp.)

We first show that Ker(α) = {0}. Let y ∈ Qp−{0}. Then we have y =
∑+∞

n=m cnp
n

with m ∈ Z, 0 ≤ cn ≤ p− 1 and cm ≥ 1. So

p−m−1y = cmp
−1 +

∑
n≥0

cn+m+1p
n,

and χy(p−m−1) = exp(2πip−1cm) 6= 1. This shows that y 6∈ Ker(α).

Now we show that α is surjective. Let χ ∈ Q̂p. If χ = 1, then χ = χ0, so we assume
that χ 6= 1. By (iii), there exists k ∈ Z such that χ = 1 on {x ∈ Qp||x|p ≤ p−k}.
Choose k minimal for this property (this is possible because otherwise χ would be 1
on all of Qp, which contradicts our hypothesis that χ 6= 1). Then there exists a ∈ Qp

such that |a|p = p−k+1 and χ(a) 6= 1. Define ψ ∈ Q̂p by ψ(x) = χ(pax). Then
ψ(p−1) = χ(a) 6= 1 and ψ(1) = χ(pa) = 1 (because |pa|p = p−k). By (v), there
exists y ∈ Zp such that ψ = χy. In other words, for every x ∈ Qp,

χ(x) = ψ(p−1a−1x) = χ1(p−1a−1yx),
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i.e. χ = α(p−1a−1y).

We show that α is continuous. Let y ∈ Qp, and choose a neighborhood U of α(y) of
the form

U = {χ ∈ Q̂p|∀x ∈ K, |χ(x)− χy(x)| < c},
where K is a compact subset of Qp and c > 0. We are looking for a neighborhood V
of y in Qp such that α(V ) ⊂ U .

As Qp =
⋃
k∈Z p

kZp, we may assume that K = pNZp for some N ∈ Z. We know
that χ1 is constant on the cosets of Zp in Qp, so, if x ∈ pNZp, then χx is constant on
the cosets of p−NZp in Qp. Hence, if y′ ∈ y+p−NZp, then, for every x ∈ K = pNZp,

|χy′(x)− χy(x)| = |χx(y′)− χx(y)| = 0 < c.

In other words, α(y + p−NZp) ⊂ U .

Finally, we show that α is open. Let y ∈ Qp, and let V be a neighborhood of y. We
may assume that V is of the form y + pNZp = {y′ ∈ Qp||y′ − y|p ≤ p−N} for some
N ∈ Z. We want to show that α(V ) contains a neighborhood of α(y). As α is a
morphism of groups, we may assume that y = 0. Let

U = {χ ∈ Q̂p|∀x ∈ p−NZp, |χ(x)− χy(x)| < c},

where c = min1≤r≤p−1 |1 − e2πirp−1|, and let’s show that α(pNZp) ⊃ U . Let
y′ 6∈ pNZp, we want to show that χy′ 6∈ U . We write y′ =

∑+∞
n=m cnp

n with
cn ∈ {0, . . . , p − 1} for every n ≥ m and cm ≥ 1. Then the hypothesis on y′

says that m < N . Let x = p−m−1. Then x ∈ p−NZp, and

χy′(x) = χ1(xy′) = exp(2πip−1cm),

so |χy′(x)− 1| ≥ c and χy′ 6∈ U .

(vii) As the map y 7−→ χy is a morphism of groups, the first statement is equiv-
alent to the fact that χy|Zp = 1 if and only if y ∈ Zp. We know that
Ker(χ1) = Zp, so Ker(χy) ⊃ Zp for every y ∈ Zp. Conversely, let y ∈ Qp − Zp.
Then |y|p > 1, so |y|p ≥ p, so |py|p ≥ 1, and p−1y−1 ∈ Zp. As
χy(p

−1y−1) = χ1(p−1) = exp(2πip−1) 6= 1, Ker(χy) 6⊃ Zp.

So the map y 7−→ χy induces an injective morphism of groups from Qp/Zp to Ẑp.
We know (or will soon know) that Ẑp is discrete by I.5.4.2(e), so it just remains to
show that every element of Ẑp is of the form χy|Zp for some y ∈ Qp.

Let χ ∈ Ẑp. As in (iii), we can find k ∈ N such that Ker(χ) ⊃ pkZp. Let z = χ(1).
Then zpk = χ(pk) = 1, so we can find c ∈ {0, . . . , pk − 1} such that z = e2πicp−k .
Write c =

∑k−1
r=0 crp

r, with cr ∈ {0, . . . , p− 1}. Then

χ(1) = exp(2πi
k−1∑
r=0

crp
r−k) = exp(2πi

−1∑
n=−k

ck+np
n).
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Let y =
∑−1

n=−k ck+np
n. Then χ(1) = χy(1). As χy|Zp and χ are continuous

group morphisms on Zp, and as 1 generates a dense subgroup of Zp, this implies
that χ = χy|Zp .

�

Exercise I.5.4.2. We use the notation of the previous exercise, and we suppose that G is an
abelian locally compact group and fix a Haar measure µ on G.

Remember that we have an isomorphism L∞(G) → L1(G)∨ := Hom(L1(G),C) sending
f ∈ L∞(G) to the bounded operator g 7−→

∫
G
fgdµ on L1(G). (This does not use the fact

that G is an abelian group.) So we can consider the weak* topology (or topology of pointwise
convergence) on L∞(G) : for f ∈ L∞(G), a basis of neighborhoods of f is given by the sets
Ug1,...,gn,c = {f ′ ∈ L∞(G)||

∫
G

(f − f ′)gidµ| < c, 1 ≤ i ≤ n}, for n ∈ Z≥1, g1, . . . , gn ∈ L1(G)
and c > 0.

(a). Show that Ĝ ⊂ L∞(G), and that the topology of Ĝ is induced by the weak* topology of
L∞(G). 16

(b). Show that the subset Ĝ ∪ {0} of L∞(G) is closed for the weak* topology. (Hint : Identify
it to the set of representations of the Banach ∗-algebra L1(G) on C.)

(c). Show that Ĝ is a locally compact topological group. (Hint : Alaoglu’s theorem.)

(d). If G is discrete, show that Ĝ is compact.

(e). If G is compact, show that Ĝ is discrete.

Solution.

(a). An element of Ĝ is a continuous function from G to S1, hence a continuous bounded
function on Ĝ, hence an element of L∞(G). Now we have to show that the two topologies
on Ĝ coincide.

Let χ ∈ Ĝ. First, let f1, . . . , fn ∈ L1(G), and let c > 0. This defines a weak* open
neighborhood

U = {ψ ∈ Ĝ|∀i ∈ {1, . . . , n}, |
∫
G

χfidµ−
∫
G

ψfidµ| < c}

of χ. We want to find an open neighborhood V of χ for the topology of compact con-
vergence such that V ⊂ U . Let ε > 0. Choose a compact subset K of G such that∫
G−K |fi|dµ < ε for every i ∈ {1, . . . , n} (this is possible by inner regularity of µ). Let

V = {ψ ∈ Ĝ|∀x ∈ K, |χ(x)− ψ(x)| < ε}.
16Hard question.
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Then, if ψ ∈ V and i ∈ {1, . . . , n}, we have

|
∫
G

χfidµ−
∫
G

ψfidµ| ≤
∫
K

|fi(x)||χ(x)− ψ(x)|dµ(x) +

∫
G−K
|fi(x)||χ(x)− ψ(x)|dx

≤ ε

∫
K

|fi(x)|dµ(x) + 2

∫
G−K
|fi(x)|dµ(x)

≤ ε(‖fi‖1 + 2)

So, if we take ε small enough, we’ll get V ⊂ U .

Now we prove the converse. Let χ ∈ Ĝ, let K be a compact subset of G and let c > 0. We
consider the neighborhood

V = {ψ ∈ Ĝ|∀x ∈ K, |χ(x)− ψ(x)| < ε}

of χ in the topology of compact convergence. We have to find a weak* neighborhood
included in it. Let η > 0 (to be fiddled with later), and choose a compact neighborhood A
of 1 such that, for every y ∈ A, we have |χ(y) − 1| < η. Let f = 11A; this is in L1(G)
because A is compact. Note that, for every x ∈ G,

|µ(A)χ(x)− f ∗ χ(x)| =
∣∣∣∣∫
A

(χ(x)− χ(y−1x))dy

∣∣∣∣
≤
∫
A

|1− χ(y)|dy

≤ ηµ(A).

Now we try to find a weak* neighborhood of χ in Ĝwhose elements ψ will satisfy a similar
inequality, but for x ∈ K. Note that, if ψ ∈ Ĝ and x ∈ G, then

f ∗ ψ(x) =

∫
A

χ(y−1x)dy

= χ(x)

∫
A

χ(y)dy

=

∫
G

ψ(y−1)f(xy)dy

=

∫
G

ψ(y)Lx−1f(y)dy

(we use that G is commutative and that ψ is a morphism of groups from G to S1). Now re-
member that the map G → L1(G), x 7−→ Lx−1f is continuous (proposition I.3.1.13).
As K is compact, we can find x1, . . . , xn such that, for every x ∈ K, there exists
i ∈ {1, . . . , n} with ‖Lx−1f − Lx−1

i
f‖1 < ηµ(A). Consider the following weak* neigh-

borhood of χ :

U = {ψ ∈ Ĝ|∀x ∈ {1, x−1
1 , . . . , x−1

n },
∣∣∣∣∫
G

χ(y)Lxf(y)dy −
∫
G

ψ(y)Lxf(y)dy

∣∣∣∣ < ηµ(A)}.
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Let ψ ∈ U . First, we have, for every x ∈ G,

|µ(A)ψ(x)− f ∗ ψ(x)| =
∣∣∣∣∫
A

(ψ(x)− ψ(y−1x)dy

∣∣∣∣
=

∣∣∣∣∫
A

(1− ψ(y))dy

∣∣∣∣
≤
∣∣∣∣∫
A

(1− χ(y))dy

∣∣∣∣+

∣∣∣∣∫
A

(χ(y)− ψ(y))dy

∣∣∣∣
≤ 2ηµ(A).

Second, we want to bound |f∗χ(x)−f∗ψ(x)| for x ∈ K. So fix x ∈ K. Let i ∈ {1, . . . , n}
be such that ‖Lx−1f − Lx−1

i
f‖1 ≤ ηµ(A). Then :

|f ∗ χ(x)− f ∗ ψ(x)| =
∣∣∣∣∫
G

(χ(y)− ψ(y))Lx−1f(y)dy

∣∣∣∣
≤
∣∣∣∣∫
G

(χ(y)− ψ(y))Lx−1
i
f(y)dy

∣∣∣∣
+

∣∣∣∣∫
G

(χ(y)− ψ(y))(Lx−1
i
f(y)− Lx−1f(y))dy

∣∣∣∣
< ηµ(A) + 2

∫
G

|Lx−1
i
f(y)− Lx−1f(y)|dy

≤ 3ηµ(A).

Putting everything together, we get, for x ∈ K,

|µ(A)χ(x)− µ(A)ψ(x)| < 6ηµ(A),

i.e. |χ(x)− ψ(x)| < 6η. Choosing η at the beginning such that 6η ≤ c, we get U ⊂ V , as
desired.

(b). We have seen in class that Ĝ ⊂ L∞(G) ' L1(G)∨ is the set of nondegenerate repre-
sentations of the Banach ∗-algebra L1(G). Let π : L1(G) → C be a representation of
L1(G) on C, and assume that it is not nondegenerate. Then there exists v ∈ C − {0}
such that π(f)v = 0 for every f ∈ L1(G). But this implies that π = 0. So we see that
Ĝ ∪ {0} ⊂ L∞(G) is indeed the set of representation of L1(G) on C. But the conditions
saying that a bounded linear functional Λ : L1(G) → C is a representation are all closed
conditions in the weak* topology (because they all assert that the values of Λ at some
points of L1(G) are equal), so the set of representations of L1(G) is a weak* closed subset
of L∞(G).

(c). Alaoglu’s theorem17 says that the closed unit ball of L∞(G) (for the operator norm coming
from ‖.‖1, which is just ‖.‖∞) is compact Hausdorff for the weak* topology. But Ĝ∪{0} is

17ref ?
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clearly included in this closed unit ball (this is easy even if we don’t know that the operator
norm is ‖.‖∞), so is compact Hausdorff for the weak* topology. Hence its open subset Ĝ
is locally compact for the weak* topology, and we have seen in (i) that the weak* topology
on Ĝ is equal to the topology of compact convergence, so we are done.

(d). Consider the map α : Ĝ → (S1)G sending χ to the family (χ(x))x∈G. This is obviously
injective. AsG is discrete, its compact subsets are exactly its finite subsets, so the topology
of compact convergence is exactly the topology induced by the product topology on (S1)G.
Also, by Tychonoff’s theorem, (S1)G is compact Hausdorff. So, to get the result, we only
need to show that the image of α is closed in (S1)G. But the image of α is the intersection
of the subsets

{(ax)x∈G ∈ (S1)G|ax0ay0 = ax0y0}

for all x0, y0 ∈ G, and each of these subsets is closed, so Im(α) is closed.

(e). Suppose that G is compact. Then the topology of Ĝ is the topology of uniform conver-
gence (induced by the norm ‖.‖∞). To show that Ĝ is discrete, it suffices to show that its
subset {1} is open (because Ĝ is a topological group). Let c > 0 be such that the only
subgroup of C× included in {z ∈ C×||1 − z| < c} is the trivial group (see 3(b)). Let
U = {χ ∈ Ĝ|‖χ− 1‖∞ < c}. This is an open neighborhood of 1 in Ĝ. On the other hand,
if χ ∈ U , we have χ(G) ⊂ {z ∈ C×||1−z| < c}; as χ(G) is a subgroup of C×, this means
that χ(G) = {1}, i.e. χ = 1, and so U = {1}.

�

I.5.5 Representations

IfG is a group, we say that a representation (π, V ) ofG is faithful if π : G→ GL(V ) is injective.

Exercise I.5.5.1. Let G = SU(2). The group G acts on C2 via the inclusion G ⊂ GL2(C), and
we just denote this action by (g, (z1, z2)) 7−→ g(z1, z2). (This is called the standard representa-
tion of G.)

For every integer n ≥ 0, let Vn be the space of polynomials P ∈ C[t1, t2] that are homogeneous
of degree n (i.e. P (t1, t2) =

∑n
r=0 art

r
1t
n−r
2 , with a0, . . . , an ∈ C).

(a). If P ∈ Vn and g ∈ G, show that the function C2 → C, (z1, z2) 7−→ P (g−1(z1, z2)) is still
given by a polynomial in Vn, and that this defines a continuous representation of G on Vn.

(b). Show that the representation Vn of G is irreducible for every n ≥ 0.

(c). For which values of n is the representation Vn faithful ?

Remark. We will see later (see problem IV.9.1) that every irreducible unitary representation of
SU(2) is isomorphic to one of the Vn.
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Solution.

(a). First take P = tr1t
n−r
2 , with 0 ≤ r ≤ n. Let x =

(
a b
c d

)
∈ SU(2). As det(x) = 1, we

have x−1 =

(
d −b
−c a

)
. So

P (x−1(z1, z2)) = (dz1 − bz2)r(−cz1 + az2)n−r.

This is still a homogeneous polynomial of degree n in z1 and z2, let’s call it P ◦x−1. Also,
it is clear on the formula above that the map G→ Vn, x 7−→ P ◦ x−1 is continuous (which
means that the coefficients of P ◦ x−1 are continuous functions of the entries of the matrix
x).

As the monomials tr1t
n−r
2 , 0 ≤ r ≤ n, generate Vn, the previous paragraph implies that, for

every P ∈ Vn and every x ∈ SU(2), the function C2 → C, (z1, z2) 7−→ P (x−1(z1, z2)) is
still given by an element of Vn, that we will denote by P ◦x−1; it also implies that the map
G→ Vn, x 7−→ P ◦ x−1 is continuous.

For every x ∈ G, the map Vn → Vn, P 7−→ P ◦ x−1 is clearly C-linear in P . (In fact,
we have already used that fact.) We also have P ◦ (xy)−1 = (P ◦ y−1) ◦ x−1 for every
P ∈ Vn and all x, y ∈ G. So it follows from proposition I.3.5.1 that the mapG×Vn → Vn,
(x, P ) 7−→ P ◦ x−1 is continuous, i.e. defines a continuous representation of G on Vn.

(b). Let W be a G-invariant subspace of V . Let P =
∑n

r=0 crt
r
1t
n−r
2 ∈ W . We show that, for

every r ∈ {0, . . . , n} such that cr 6= 0, we have tr1t
n−r
2 ∈ W . We prove this by induction on

the number of nonzero coefficents of P . If P has 0 or 1 nonzero coefficients, we are done.
Suppose that P has at least 2 nonzero coefficients. Fix r ∈ {0, . . . , n} such that cr 6= 0.
It suffices to find another element Q of W such that the coefficient of tr1t

n−r
2 is nonzero,

and such that Q has fewer nonzero coefficients than P ; then we can apply the induction

hypothesis to Q. Pick s ∈ {0, . . . , n} − {r} such that cs 6= 0. Consider xa =

(
a 0
0 a

)
,

with a ∈ S1. Then xa ∈ SU(2), and

P ◦ x−1
a =

n∑
i=0

aian−icit
i
1t
n−i
2 =

n∑
i=0

an−2icit
i
1t
n−i
2 .

Choose a, a′ ∈ S1 such that an−2scs − (a′)n−2scs = 0 and an−2rcr − (a′)n−2rcr 6= 0. Then
Q := P ◦ x−1

a − P ◦ x−1
a′ ∈ W − {0} has the desired properties.

Now suppose thatW 6= 0. By the previous paragraph, we can find r ∈ {0, . . . , n} such that

P := tt1t
n−r
2 ∈ W . Let x =

(
a b

−b a

)
, with a, b ∈ C and |a|2 + |b|2 = 1. Then x ∈ SU(2)

and P ◦x−1 = (at1− bt2)r(bt1 + at2)n−r ∈ W . If we write P ◦x−1 =
∑n

i=0 cit
i
1t
n−i
2 , then

ci =

min(i,r)∑
j=max(0,i−n+r)

(−1)r−j
(
r

j

)(
n− r
i− j

)
ajan−r+j−ibr−jb

i−j
.
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If we take a = 1√
1+t2

and b = t√
1+t2

with t ∈ [−1, 1], then each ci is the quotient of
a nonzero polynomial in t by (1 + t2)n/2, so there are only finitely many values of t for
which ci = 0. Hence we can choose x ∈ SU(2) such that P ◦ x−1 has all its coefficients
nonzero. By the first paragraph, this implies that every monomial ti1t

n−i
2 , 0 ≤ i ≤ n, is in

W . So W = Vn.

(c). Let’s write πn for the map SU(2) → GL(Vn). If n = 0, then Vn is the triv-
ial representation of SU(2), so Ker(πn) = SU(2). Suppose that n ≥ 1, and let

x =

(
a b

−b a

)
∈ Ker(πn). In particular, if P = tn1 , we must have P ◦ x−1 = P . As

P ◦ x−1 =
∑n

i=0(−1)n−i
(
n
i

)
aibn−iti1t

n−i
2 , this implies that an = 1 and aibn−1 = 0 for

0 ≤ i ≤ n − 1. In particular, a 6= 0, so we must have b = 0. Then a ∈ S1, and, for every
r ∈ {0, . . . , n}, (tr1t

n−r
2 ) ◦ x−1 = an−2rtr1t

n−r
2 , hence an−2r = 1. If n is odd, this implies

that a = 1, so x = I2 is the only element of Ker(πn). If n is even, this only implies that
a = ±1, so x = ±I2. In fact, if n is even and nonzero, it is easy to check that −I2 acts
trivially on Vn, so Ker(πn) = {±I2}.

So to answer the question, the representation Vn is faithful if and only if n is odd.

�

Exercise I.5.5.2. Let (π, V ) be a finite-dimensional unitary representation of G := SL2(R). We
want to show that V is trivial (i.e. π(x) = idV for every x ∈ G).

(a). Consider the morphism of groups α : R→ G sending t ∈ R to the matrix
(

1 t
0 1

)
.

Show that there exist a basis B of V and y1, . . . , yn ∈ R, where n = dimV , such
that, for every t ∈ R, the endormophism π(α(t)) is diagonal in B with diagonal entries
eity1 , . . . , eityn .

(b). Show that π(α(t)) = idV for every t ∈ R. (Hint : If u ∈ R× and x =

(
u 0
0 u−1

)
, consider

the action of xα(t)x−1 on V .)

(c). Show that π(x) = idV for every x ∈ G.

(d). If n ≥ 3, show that every finite-dimensional unitary representation of SLn(R) is trivial.

Solution.

(a). The subgroup π(α(R)) of GL(V ) is commutative, and all its elements are diagonaliz-
able (because they are all unitary), so we can find a basis B = (v1, . . . , vn) of V in
which all the elements of π(α(R)) are diagonal, and even an orthonormal basis if we
want. (If you don’t like simultaneously diagonalizing an infinite subset of GL(V ), just
choose A1, . . . , Am ∈ π(α(R)) that generate Span(π(α(R))) and simultanesouly diago-
nalize them.)

92



I.5 Exercises

For every j ∈ {1, . . . , n}, the subspace Cvj is stable by the action of α(R) ⊂ G (by the
choice of the basis), so we get a 1-dimensional representation of R on Cvj , and we know
by I.5.4.1(b) that such a representation is of the form t 7−→ eityjvj , for a yj ∈ C.

(b). We have xα(t)x−1 = α(u2t), so π(xα(t)x−1) is diagonal in the basis
B with diagonal entries eiu

2ty1 , . . . , eiu
2tyn . On the other hand, we have

Tr(π(xα(t)x−1)) = Tr(π(x)π(α(t))π(x)−1) = Tr(π(α(t)), hence, for every t ∈ R and
every u ∈ R×,

n∑
j=1

eityj =
n∑
j=1

eiu
2tyj .

Suppose that we know that the subset R̂ of L∞(R) is linearly independent. Then the
equality tells us that, for every u ∈ R×, the sets {y1, . . . , yn} and {u2y1, . . . , u

2yn} are
equal. This is only possible if y1 = . . . = yn = 0, which in turn implies that α(t) acts
trivially on V for every t ∈ R.

Now let’s show the statement about R̂. Let y1, . . . , ym ∈ R be pairwise distinct and
c1, . . . , cm ∈ C be such that

∑m
j=1 cje

ityj = 0 for every t ∈ R. We want to show that
c1 = . . . = cm = 0. Let r ∈ R. Taking t = 0, r, . . . , r(m − 1), and using the calculation
of the Vandermonde determinant, we see that we must have eiry1 = . . . = eirym . As this is
true for every r ∈ R, it implies that y1 = . . . = ym (for example by taking the derivative
with respect to r of the previous equalities and then evaluating at r = 0). So m = 1, and
then the fact that c1e

ity1 = 0 for every t ∈ R implies that c1 = 0.

(c). If x ∈ SL2(R) is a transvection (aka shear) matrix, then we have x = yα(t)y−1 for some
t ∈ R and some y ∈ SL2(R), so π(x) = π(y)π(α(t))π(y)1 = π(y)π(y)−1 = idV by (b).
As SL2(R) is generated by transvection matrices, this implies that π(x) = idV for every
x ∈ SL2(R).

(d). Let π : SLn(R)→ GL(V ) be a finite-dimensional unitary representation. Let x ∈ SLn(R)
be a transvection matrix. We could imitate (a) and (b) to prove that π(x) = idV , but we
can also do the following thing : Choose a basis (v1, . . . , vn) of Rn in which the matrix of

the linear endomorphism of Rn corresponding to x is


1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

0 . . . 0
. . . 0

0 . . . 1

. Consider

the subset G of SLn(R) composed of the elements whose matrix in (v1, . . . , vn) is of the

form


a b 0 . . . 0
c d 0 . . . 0
0 0 1 . . . 0

0 . . . 0
. . . 0

0 . . . 1

, with a, b, c, d ∈ R and ad− bc = 1. Then G is a subgroup,

and it is isomorphic to SL2(R). As π|G is a unitary representation of G on V , we have
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G ⊂ Ker(π) by (c). In particular, π(x) = idV .

Now we use the fact that SLn(R) is generated by transvections matrices to conclude that
π(x) = idV for every x ∈ SLn(R).

�

Exercise I.5.5.3. (a). Let G be a compact subgroup of GLn(C). Show that there exists
x ∈ GLn(C) such that xGx−1 ⊂ U(n).

(b). Put your favorite norm on Mn(C) (they are all equivalent anyway). Show that
there exists c > 0 such that the only subgroup of GLn(C) included in the ball
{x ∈ GLn(C)‖‖x− In‖ < c} is the trivial group.

(c). Show that, for every continuous representation of GLn(Qp) on a finite-dimensional C-
vector space, there exists an integer m ≥ 0 such that the subgroup In + pmMn(Zp) of
GLn(Qp) acts trivially.

(d). Show that, if (π, V ) is an irreducible unitary representation of GLn(Zp), then there exists
m ≥ 1 such that π(In + pmMn(Zp)) = {1}.

(e). More generally, show that, if G is a profinite group (i.e. a projective limit of finite discrete
groups, see problem I.5.1.3), then G has a faithful irreducible unitary representation only
if G is finite.

Solution.

(a). Consider the representation ρ of G on Cn given by the inclusion G ⊂ GLn(C). We know
by theorem I.3.2.8 that there exists a Hermitian inner product on Cn for which this repre-
sentation is unitary. Let A be the matrix of this Hermitian inner product in the canonical
basis of Cn. Then A is a Hermitian positive matrix, so we can write it A = B∗B with
B ∈ GLn(C). (This is an easy consequence of the spectral theorem. As A is Hermitian,
we have a unitary matrix P and a diagonal matrix D such that A = P ∗DP . As A is pos-
itive, the diagonal entries of D are positive real numbers, so we can write D = C2 with
C another diagonal matrix with positive diagonal entries. Take B = P ∗CP , then B is
Hermitian positive and A = B2 = B∗B.)

The fact that ρ is unitary for A means that X∗AX = A for every X ∈ G. As A = B∗B,
this is equivalent to (BXB−1)∗(BXB−1) = In. So BGB−1 ⊂ U(n).

(b). Let G be a subgroup of GLn(C) contained in a ball of the form
{x ∈ GLn(C)‖‖x − In‖ < c}. Then the closed subgroup G is contained in the
closed ball {x ∈ GLn(C)‖‖x− In‖ ≤ c}, so it is compact, so it is contained in a subgroup
of the form PU(n)P−1 by question (a). In particular, every element of G is diagonalizable
and has all its eigenvalues of modulus 1.

Fix any norm on Cn, and consider the corresponding operator norm ‖.‖ on Mn(C). We
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will use this norm. Note that, if X ∈ Mn(C) and if λ is an eigenvalue of X , then we have
a norm 1 vector v ∈ Cn such that Xv = λv, hence ‖X‖ ≥ |λ|. Now let’s show that every
subgroup of GLn(C) included in the open ball B := {x ∈ GLn(C)‖‖x − In‖ <

√
2}

is trivial. Let G be such a subgroup, and let X ∈ G. Let λ1, . . . , λn be the eigenvalues
of X . We just saw that |λ1| = . . . = |λn| = 1. Suppose that we have a r ∈ {1, . . . , n}
such that λr is not equal to 1, then we can write λr = eiθ with −π/2 < θ < π/2,
because |λr − 1| ≤ ‖X − In‖ <

√
2; but then, if we choose an integer m ≥ 1 such that

π/2 ≤ m|θ| ≤ π, we’ll have ‖Xm− In‖ ≥ |λmr − 1| ≥
√

2, which contradicts the fact that
Xm ∈ G. So we must have λ1 = . . . = λn = 1, which means that X = In.

(c). We have seen in the solution of I.5.2.2(d) thatKm := In+pmMn(Zp) is indeed a subgroup
of GLn(Qp). We have also put a norm onMn(Qp) such thatKm is the open ball with center
In and radius p−m+1.

Let ρ : GLn(Qp) → GL(V ) be a continuous representation of GLn(Qp) on a finite-
dimensional vector space V . By proposition I.3.5.1, the morphism ρ is continuous. Let U
be an open neighborhood of idV in GL(V ) such that the only subgroup of GL(V ) contained
in U is {1} (this exists by question (b)). Then ρ−1(U) is an open neighborhood of In in
GLn(Qp), so it contains Km for m >> 0. But Km is a subgroup of GLn(Qp), so ρ(Km)
is a subgroup of GL(V ), so ρ(Km) = {1} as soon as ρ(Km) ⊂ U .

(d). By I.5.1.4(m), the group GLn(Zp) is compact. Hence, by problem I.5.5.9, the space V is
finite-dimensional. Now the proof of the statement is exactly as in I.5.5.3(c).

(e). We know that G is compact Hausdorff by problem I.5.1.3 (note that finite discrete groups
are comact Hausdorff). So, by problem I.5.5.9, every irreducible unitary representation of
G is finite-dimensional.

Suppose that we know that G is totally disconnected. Let (π, V ) be a continuous finite-
dimensional representation of G. By I.5.2.2(c), the compact open subgroups of G form
a basis of neighborhoods of 1. By I.5.5.3(b), we can find a neighborhood U of idv in
GL(V ) such that the only subgroup of GL(V ) contained in U is {idV }. So, if we choose
a compact open subgroup K of G such that π(K) ⊂ U , we must have K ⊂ Ker(π).
Hence Ker(π) =

⋃
x∈Ker(π) xK is an open subgroup of G, and so the group G/Ker(π) is

discrete. As it is also compact, it is a finite group. This shows that G cannot have a faithful
irreducible unitary representation unless it is finite.

So it remains to show that G is totally disconnected, i.e. that the only nonempty connected
subsets of G are the singletons. Take a projective system ((Gi)i∈I , (uij : Gi → Gj)i≥j) of
finite groups such that G = lim←−i∈I Gi. Let C ⊂ G be a nonempty connected subset. Then
the image of G in each Gi is connected nonempty, hence a singleton {gi}. This implies
that the only element of C is the family (gi)i∈I ∈

∏
i∈I Gi (this family is automatically in

the projective limit).

�
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Remark. It is not true that a finite group always has a faithful irreducible unitary representation.
For example, ifG is a finite abelian group, then every irreducible unitary representation ofG is 1-
dimensional by Schur’s lemma. Take G = Z/2Z×Z/2Z, and let π : G→ C be a 1-dimensional
representation. As (1.0) and (0, 1) are of order 2 in G, we must have π(1, 0), π(0, 1) ∈ {±1}. If
we want π to be faithful, we need to have π(1, 0) = π(0, 1) = −1, but then π(1, 1) = (−1)2 = 1,
so π cannot be faithful. (More generally, a finite abelian group has a faithful 1-dimensional
representation if and only if it is cyclic.)

Exercise I.5.5.4. The goal of this exercise is to define the Lie algebra of a closed subgroup G
of GLn(C), and to show that the matrix exponential induces a homeomorphism between the Lie
algebra and the group in a neighborhood of their identities.

Consider the function exp : Mn(C) → Mn(C) defined by exp(X) =
∑

n≥0
1
n!
Xn; we also

write eX for exp(X). You may assume the basic properties of this function, i.e. that the series
defining it converges absolutely, that it is infinitely derivable, and that we can calculate its deriva-
tives term by term in the sum. You may also assume that exp(A+B) = exp(A) exp(B) for any
A,B ∈ Mn(C) such that AB = BA; in particular, exp(X) ∈ GLn(C) for every X ∈ Mn(C),
and exp(X)−1 = exp(−X).

We also fix a closed subgroup G of GLn(C).

(a). Calculate the differential of exp at the point 0 ∈ Mn(C). (Remember that this is a linear
operator from Mn(C) to itself.)

(b). Show that exp induces a diffeomorphism from a neighborhood of 0 in Mn(C) to a neigh-
borhood of 1 in GLn(C).

(c). Let L = {X ∈ Mn(C)|∀t ∈ R, exp(tX) ∈ G}. Show that L is a
R-linear subspace of Mn(C). (Hint : For all X, Y ∈ Mn(C), show that
exp(X + Y ) = limk→+∞(exp( 1

k
X) exp( 1

k
Y ))k.) 18

(d). If G = U(n), show that L = {X ∈Mn(C)|X∗ = −X}.

(e). If G = SO(n), show that L = {X ∈Mn(C)|XT = −X}.

(f). Assume again that G is any closed subgroup of GLn(C). The goal of this question is
to show the following statement : (*) There exists a neighborhood U of 0 in L such that
exp(U) is a neighborhood of 1 inG and that exp induces a homeomorphism U

∼→ exp(U).

(i) Let L′ be a R-linear subspace of Mn(C) such that Mn(C) = L⊕L′, and consider the
function ϕ : Mn(C)→ GLn(C) defined by ϕ(A+ B) = eAeB, for every A ∈ L and
every B ∈ L′. Show that there exist neighborhoods U0 of 0 in L, V of 0 in L′ and W
of 1 in GLn(C) such that ϕ induces a diffeomorphism U0 × V

∼→ W .

(ii) Suppose that (*) is not true. Show that there exists a decreasing sequence

18This L is called the Lie algebra of G. It is also easy to prove that it stable by the commutator bracket
[X,Y ] = XY − Y X .
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U0 ⊃ U1 ⊃ . . . of neighborhoods of 0 in L, a sequence (Ak)k≥0 of elements of L
and a sequence (Bk)k≥0 of elements of L′ such that :

- for every k ≥ 0, we have Ak ∈ Uk;

- for every k ≥ 0, we have Bk 6= 0;

- for every k ≥ 0, we have ϕ(Ak +Bk) ∈ G;

- the limit of the sequence (Bk)k≥0 is 0;

- for every neighborhood U of 0 in L, we have Uk ⊂ U for k big enough.

(iii) Show that the sequence ( 1
‖Bk‖

Bk)k≥0 has a convergent subsequence, and that the limit
B of this subsequence is not 0.

(iv) For every t ∈ R, show that b t
‖Bk‖
c‖Bk‖ → t as k → +∞. (Where, for every c ∈ R,

we write bcc for the biggest integer that is ≤ c.)

(v) Show that B ∈ L.

(g). Let (ρ, V ) be a continuous finite-dimensional representation of G. For every X ∈ L, show
that there exists a unique element u(X) ∈ End(V ) such that ρ(etX) = etu(X) for every
t ∈ R. Show also that the function u : L→ End(V ) is R-linear. 19

Solution.

(a). Let d exp0 be the differential of exp at the point 0. By definition of the differential, for
every H ∈Mn(C), we have

d exp0(H) = lim
t→0

1

t
(etH − e0) = lim

t→0

1

t
(etH − In) =

d

dt
etH
∣∣∣
t=0
.

But we have
d

dt
etH =

∑
n≥0

1

n!

d

dt
(tH)n = H exp(tH) = exp(tH)H,

so d exp0(H) = H . Finally, we get d exp0 = idMn(C).

(b). As GLn(C) is open inMn(C), neighborhoods of 1 in GLn(C) are the same as small enough
neighborhoods of 1 in Mn(C). So the result follows from the fact that d exp0 is invertible
and from the inversion function theorem.

(c). Let’s first prove the hint. Let U be a neighborhood of 0 inMn(C) and V be a neighborhood
of 1 in GLn(C) such that exp is a diffeomorphism from U to V . We write log : V → U
for its inverse. As exp(H) = 1 +H + o(H) as H → 0, we have log(1 +H) = H + o(H)
as H → 0.

19The function u : L → End(V ) is called the differential of ρ at 0. With a little more effort, you can show that it
preserves commutator brackets.
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Let X, Y ∈Mn(C). Then exp( 1
k
X) = 1 + 1

k
X+O( 1

k2 ) and exp( 1
k
X) = 1 + 1

k
X+O( 1

k2 ),
so exp( 1

k
X) exp( 1

k
Y ) = 1 + 1

k
(X + Y ) + O( 1

k2 ). If k is big enough, we have
exp( 1

k
X) exp( 1

k
Y ) ∈ V , and log(exp( 1

k
X) exp( 1

k
Y )) = 1

k
(X + Y ) + o( 1

k
). So finally

(exp( 1
k
X) exp( 1

k
Y ))k = exp(k log(exp( 1

k
X) exp( 1

k
Y ))) = exp(X+Y+o(1))→ exp(X+Y )

as k → +∞.

The set L is stable by scalar multiplication by definition. Let X, Y ∈ L. Then
c(t) := etXetY ∈ G for every t ∈ R. As G is closed in GLn(C), this implies that, for
every t ∈ R,

exp(t(X + Y )) = lim
k→+∞

(exp( t
k
X) exp( t

k
Y ))k ∈ G.

So X + Y ∈ L.

(d). Let X ∈ Mn(C) such that X = −X∗. Then, for every t ∈ R, we have tX = −(tX)∗ (in
particular, tX and tX∗ commute), hence

etX(etX)∗ = etXetX
∗

= etX+tX∗ = e0 = In,

i.e., etX ∈ U(n). So X ∈ L.

Conversely, let X ∈ L. Then, for every t ∈ R, we have etXetX∗ = In. Deriving this
expression (and using the expression for the derivative from the proof of (a)) gives

0 = XetXetX
∗

+ etXetX
∗
X∗ = X +X∗.

(e). This is exactly the same proof as in (d), replacing “∗” by “T ”.

(f). (i) By the inverse function theorem, it suffices to prove that the differential of ϕ at
0 ∈ Mn(C) is invertible. If A ∈ L and B ∈ L′, we have, by definition of the
differential

dϕ0(A+B) = lim
t→0

1

t
(ϕ(tA+ tB)− ϕ(0)) = lim

t→0

1

t
(etAetB − 1) = A+B

(by the calculation in (a)), so dϕ0 = idMn(C), and this is certainly invertible.

(ii) Choose a sequence of neighborhoods U0 ⊃ U1 ⊃ . . . (resp. V = V0 ⊃ V1 ⊃ . . .)
of 0 in L (resp. L′) such that every neighborhood U (resp. V ′) of 0 in L contains
Uk (resp. Vk) for k big enough. (For example, we could take balls with radii tending
to 0 in L and in L′.) For every k ≥ 0, the function ϕ is a diffeomorphism from
Uk×Vk to ϕ(Uk×Vk), and in particular ϕ(Uk×Vk)∩G is a neighborhood of 1 in G,
containing exp(Uk). If (*) is not true, them ϕ(Uk × V )∩G strictly contains exp(Uk)
for every k, so we can find Ak ∈ Uk and Bk ∈ Vk such that ϕ(Ak + Bk) ∈ G and
ϕ(Ak +Bk) 6∈ exp(Uk), i.e. Bk 6= 0. Also, we have Bk → 0 as k → +∞ because of
the condition on the neighborhoods Vk.
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(iii) The sequence ( 1
‖Bk‖

Bk)k≥0 is a sequence of elements of the unit ball of L′, and this
unit ball is compact, so it has a convergent subsequence, whose limit is still in the
unit ball (and in particular nonzero).

(iv) For every k ≥ 0, we have

0 ≤ t

‖Bk‖
− b t

‖Bk‖
c < 1,

hence
0 ≤ t− b t

‖Bk‖
c‖Bk‖ < ‖Bk‖.

As Bk → 0, we have ‖Bk‖ → 0, which implies that

b t

‖Bk‖
c‖Bk‖ → t.

(v) After passing to a subsequence, we may assume that B = limk→+∞
1
‖Bk‖

Bk. We
must show that etB ∈ G for every t ∈ R. Let t ∈ R. By question (iv) and the
definition of B, we have

etB = lim
k→+∞

exp
(
b t
‖Bk‖
c‖Bk‖ 1

‖Bk‖
Bk

)
= exp

(
b t
‖Bk‖
cBk

)
.

But, for every k ≥ 0, we have ϕ(Ak + Bk) = eAkeBk ∈ G and eAk ∈ G be-
cause Ak ∈ L, so eBk ∈ G; as N := b t

‖Bk‖
c is an integer, this implies that

eNB = (eB)N ∈ G. Finally, as G is closed in GLn(C), we deduce that etB ∈ G.

(g). Let X ∈ L. Consider the map R → GL(V ), t 7−→ ρ(etX). This a continuous mor-
phism of groups, hence, by I.5.4.1(b)(i), there exists a unique u(X) ∈ End(V ) such that
ρ(etX) = exp(tu(X)) for every t ∈ R.

Let X, Y ∈ L and a ∈ R. For every t ∈ R, we have

etu(aX) = ρ(etaX) = etau(X).

Taking derivatives at t = 0, we get u(aX) = au(X). Now consider c : R → GL(V ),
t 7−→ ρ(etX)ρ(etY )ρ(e−t(X+Y )). We have c(t) = etu(X)etu(Y )e−tu(X+Y ), so c is C∞ and
c′(0) = u(X) + u(Y )− u(X + Y ). On the other hand, using the fact that c is C∞, we can
prove as in (c) that, for every t ∈ R, we have

lim
k→+∞

c( t
k
)k = etc

′(0).

So we just need to prove that this limit is equal to idV for every t ∈ R. An easy calculation
with infinitesimals shows that (if t is fixed)

e
t
k
Xe

t
k
Y e−

t
k

(X+Y ) = In +O( 1
k2 ),
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so
(e

t
k
Xe

t
k
Y e−

t
k

(X+Y ))k = In +O( 1
k
),

and
c( t
k
) = ρ((e

t
k
Xe

t
k
Y e−

t
k

(X+Y ))k) −−−−→
k→+∞

ρ(In) = idV .

�

We will now see how to find discrete groups that have no faithful finite-dimensional represen-
tations at all, over any field.

Let Γ be a (discrete) group. We say that Γ is residually finite if, for every x ∈ Γ − {1}, there
exists a normal subgroup ∆ of Γ such that Γ/∆ is finite (we say that ∆ is of finite index in Γ)
and that the image of x in Γ/∆ is not trivial.

The goal of the following two exercises is to prove that, if k is a field and Γ ⊂ GLn(k) is a
finitely generated subgroup, then Γ is residually finite. 20 21

Exercise I.5.5.5. Let R be a finitely generated Z-algebra that is also a domain. We fix an integer
n ≥ 1. For every ideal I of R, we set

Γ(I) = Ker(GLn(R)→ GLn(R/I)).

(a). Show that R is a field if and only if R is finite.

(b). If m is a maximal ideal of R, show that Γ(m) is a normal subgroup of finite index in
GLn(R).

(c). Show that the intersection of all the maximal ideals of R is 0. (Hint : We may assume that
R is not a field. If a ∈ R − {0}, show that the localization R[1/a] is not a field, take a
maximal ideal in R[1/a], and intersect it with R.)

(d). Show that GLn(R) is residually finite.

Solution.

(a). It’s a classical fact that a finite integral domain has to be a field. Here is the proof. Suppose
that R is finite, and let a ∈ R − {0}. Then multiplication by a is an additive map from R
to itself, and its kernel is {0} (because R is an integral domain), so it is injective; as R is
finite, it is also surjective, which means that there exists b ∈ R such that ab = 1, i.e. that
a ∈ R×.

20In fact, we can use similar ideas to show that, if char(k) = 0, such a Γ has to be virtually residually p-finite (i.e.
it has a finite index subgroup Γ′ such that, for every x ∈ Γ′ − {1}, there exists a finite index normal subgroup
∆ 63 x of Γ′ such that Γ′/∆ is a p-group) for almost every prime number p, but the only proof I know uses the
Noether normalization theorem.

21Add a reference !
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The converse follows from two classical results of commutative algebra (see for example
exercises 4.30 and 4.32 of Eisenbud’s [9]) :

- If K ⊂ L is a field extension such that L is finitely generated as a K-algebra, then L
is a finite-dimensional K-vector space (Zariski’s lemma).

- If R is a Noetherian ring, S is a finitely generated R-algebra and T ⊂ S is a R-
subalgebra such that S is a finite T -algebra (i.e. finitely generated as a T -module),
then T is a finitely generated R-algebra (Artin-Tate).

Indeed, if R is a field, consider its prime field k. Then R is a finitely generated k-algebra,
hence a finite dimension k-vector space by Zariski’s lemma, which implies that k is a
finitely generated Z-algebra by the second result. Note that k is either Q or one of the
finite fields Fp. But Q is not a finitely generated Z-algebra (if x1, . . . , xn ∈ Q − {0}, and
if P is the (finite) set of prime numbers that divide the denominator of one of the xi, then
the prime numbers dividing the denominator of a nonzero element of the Z-subalgebra
generated by x1, . . . , xn has to also be in P , so this Z-subalgebra cannot be equal to Q).
So k is a finite field; as R is a finite-dimensional k-vector space, it is also a finite field.

For completeness, let’s give a proof of the part of the commutative algebra results that we
actually need. Suppose that we know the following :
(*) Let L/K be a field extension such that :

- there exists u ∈ L such that L = K(u) (i.e. L is generated by u as a field);

- L is a finitely generated Z-algebra,

the extension is finite and K is also a finitely generated Z-algebra.

Then we can prove in the same way that, if R is a field, it has to be finite. (Just choose
elements x1, . . . , xn ∈ R generatingR over its prime field k and apply (*) to the extensions
k(x1, . . . , xi−1) ⊂ k(x1, . . . , xi) to show that k is a finitely generated Z-algebra. The end
of the proof is as before.)

We now prove (*). Let x1, . . . , xn ∈ L× generating L as a Z-algebra. Assume that u is
transcendental over K; then L is isomorphic to the field of rational fractions of K. Write
xi = Pi

Qi
, with Pi, Qi ∈ K[u]. As (1 + u

∏n
i=1Qi)

−1 = L = Z[a1, . . . , an], we can write

(1 + u
n∏
i=1

Qi)
−1 =

R

Qd1
1 . . . Qdn

n

,

with R ∈ K[u] coprime to all the Qi and d1, . . . , dn ∈ Z≥0. We get
Qd1

1 . . . Qdn
n = R(1+u

∏n
i=1Qi), which contradicts the fact thatR is coprime to all theQi.

So u is algebraic over K. Let Xd+a1X
d−1 + . . .+ad ∈ K[X] be the minimal polynomial

of u over K. For every i ∈ {1, . . . , n}, write xi =
∑d−1

j=0 biju
j , with bij ∈ K. Let A be

the Z-algebra of K generated by a1, . . . , ad and by the bij , and let’s show that A = K. Let
y ∈ K. Then y can be written as a polynomial in x1, . . . , xd with coefficients in Z, so it is
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also a polynomial in uwith coefficients inA, which can be taken of degree≤ d−1 (we can
use the relation ud = −a1u

d−1− . . .− ad to replace any terms of degree ≥ d with terms of
lower degree). In other words, we can write y =

∑d−1
i=0 ciu

i, with c0, . . . , cd−1 ∈ A. As the
family (1, u, . . . , ud−1) is linearly independent over K, we must have c1 = . . . = cd−1 = 0
and y = c0 ∈ A.

(b). First, the group Γ(I) is a normal subgroup of GLn(R) for any ideal, because it is the kernel
of a morphism of groups. Suppose that m is a maximal ideal. Then R/m is a finite field
by (a). As GLn(R)/Γ(m) injects into GLn(R/m), this implies that Γ(m) has finite index
in GLn(R).

(c). If R is a field, then (0) is a maximal ideal of R and we are done. Suppose that R is
not a field; in particular, by (a), it is not finite. Let a ∈ R − {0}. The localization
R[1/a] := R[X]/(aX − 1) is a finitely generated Z-algebra because R is, so it can only
be a field if it is finite, by (a). But the obvious map R → R[1/a] is injective because a is
not a divisor of 0 (remember that R is an integral domain), and R is infinite, so R[1/a] is
also infinite, hence it is not a field. Let m′ be a maximal ideal of R[1/a], and let m be its
inverse image in R. Then the map R/m → R[1/a]/m′ is injective (because R → R[1/a]
is), and R[1/a]/m′ is finite because it is a field (by (a)), so R/m is finite and an integral
domain, so it is a field (by (a) again !), and m is a maximal ideal of R. Note also that, as
a is invertible in R[1/a], it cannot be in m′, and so it cannot be in m. So we have found a
maximal ideal of R that doesn’t contain a.

(d). Let x = (xij)1≤i,j≤n ∈ GLn(R) such that x 6= In. Choose i, j ∈ {1, . . . , n} such that
xij 6= 0 and i 6= j, or such that xij 6= 1 and i = j. By (c), we can find a maximal ideal
m of R such that xij 6∈ m if i 6= j, and such that xij − 1 6∈ m if i = j. In other words,
the image of x in GLn(R)/Γ(m) is not the unit element. As Γ(m) is a normal subgroup of
GLn(R) of finite index by (b), we are done.

�

Exercise I.5.5.6. Let k be a field, and let Γ be a finitely generated subgroup of GLn(k).

(a). Show that there exists a finitely generated Z-subalgebra R of k such that Γ ⊂ GLn(R).

(b). Show that Γ is residually finite.

Solution.

(a). Let γ1, . . . , γn be generators of Γ, and let R be the Z-subalgebra of k generated by the
entries of the γi and of their inverses; this is a finitely generated Z-algebra by definition.
As each element of Γ is a product of the elements γ±1

i , we have Γ ⊂ GLn(R).

(b). This follows immediately from I.5.5.5(d) : If γ ∈ Γ − {1}, choose a normal subgroup of
finite index ∆ of GLn(R) such that the image of γ in GLn(R)/∆ is not trivial. Then Γ∩∆
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is a normal subgroup of Γ, and Γ/(Γ ∩ ∆) injects into GLn(R)/∆, so Γ ∩ ∆ is of finite
index in Γ and the image of γ in Γ/(Γ ∩∆) is not trivial.

�

Of course, the result of the previous exercise would not be very interesting if we could not
give any example of a finitely generated non residually finite group. We do that in the next two
exercises.

Exercise I.5.5.7. Let Γ be the quotient of the free group on the generators a and b by the relation
a−1b2a = b3. In this problem, we will assume that b1 := a−1ba and b do not commute in Γ, and
deduce that Γ is not residually finite.

Let u : Γ→ Γ′ be a morphism of groups, with Γ′ finite.

(a). Let n be the order of u(a) in Γ′. Show that the order of u(b) divides 3n − 2n.

(b). Show that there exists an integer N ≥ 0 such that u(b1) = u(b2
1)N . (Note that the order of

u(b) is prime to both 2 and 3.)

(c). Show that u(b1) and u(b) commute.

(d). Show that Γ is not residually finite.

Solution.

(a). We first prove that, for every r ∈ Z≥0, we have b2r = arb3ra−r. The case r = 0 is obvious,
and the case r = 1 is the relation defining Γ. Let r ≥ 1, suppose the result know for r, and
let’s prove it for r + 1. We have

b2r+1

= (b2)2r = (ab3a−1)2r = (ab2ra−1)3 = (ar+1b3ra−(r+1))3 = ar+1b3r+1

a−(r+1).

Applying to r = n gives b2n = anb3na−n, hence u(b)3n−2n = 1, so the order of u(b)
divides 3n − 2n.

(b). Note that the order of u(b) is odd, because it divides the odd number 3n − 2n. So there
exists N ≥ 1 such that u(b)2N = u(b). As b1 = a−1ba, we have br1 = a−1bra for every
r ≥ 0, so u(b1)2N = u(b1), as desired.

(c). We have b2
1 = b3 by the relation defining, so u(b1) = u(b)3N by (b). This implies that u(b)

and u(b1) commute.

(d). Let c = b−1
1 b−1b1b ∈ Γ. Then we have assumed that c 6= 1, but question (c) shows that, for

every normal subgroup of finite index ∆ of Γ, the image of c in Γ/∆ is trivial. So Γ is not
residually finite.

�

103



I Representations of topological groups

Exercise I.5.5.8. Let Γ be the quotient of the free group on the generators a and b by the relation
a−1b2a = b3. The goal of this problem is to show that b1 := a−1ba and b do not commute in Γ,
i.e. that b1bb

−1
1 b−1 is not trivial in Γ. 22

Let F be the free group on the generators a and b. Remember that elements of F are re-
duced words in the letters a, a−1, b, b−1. (A reduced words is a word that contains no redun-
dant pair aa−1, a−1a, bb−1 or b−1b.) We write an element of F as an1bm1 . . . anrbmr , with
n1,m1, . . . , nr,mr ∈ Z and m1, n2,m2, . . . , nr−1,mr−1, nr 6= 0.

Let Ω be the set of reduced words of the form br1as1 . . . brmasmbr, with :

(i) m ∈ Z≥0 and ri, si, r ∈ Z;

(ii) si 6= 0 for every i ∈ {1, . . . ,m};

(iii) ri 6= 0 for every i ∈ {2, . . . ,m};

(iv) for every i ∈ {1, . . . ,m}, if si > 0, then 0 ≤ ri ≤ 1;

(v) for every i ∈ {1, . . . ,m}, if si < 0, then 0 ≤ ri ≤ 2.

By definition of Γ, we have a surjective group morphism F → Γ, that we will denote by ϕ.

(a). Show that ϕ(Ω) = Γ.

(b). For every w ∈ Ω and every s ∈ {a, a−1, b, b−1}, find a word w′ ∈ Ω such that
ϕ(w′) = ϕ(ws). We will denote this w′ by w · s in what follows.

(c). For every w ∈ Ω and every s ∈ {a, a−1, b, b−1}, show that (w · s) · s−1 = w.

(d). Show that (w, s) 7−→ w · s extends to a right action of Γ on Ω.

(e). Show that ϕ induces a bijection Ω
∼→ Γ.

(f). Show that b1bb
−1
1 b−1 6= 1 in Γ.

Solution.

(a). By definition of the free group, we can write every element w of F as a reduced word
br1as1 . . . brmasmbr satisfying conditions (i), (ii) and (iii). We define N(w) to be the max
of all si > 0 such that ri 6∈ {0, 1}; so if w satisfies condition (iv), we have N(w) = 0. We
define M(w) to be the max of all |si|, for si < 0 such that ri 6∈ {0, 1, 2}; so if w satisfies
condition (v), we have M(w) = 0. We prove by induction on N(w) + M(w) that there
exists w0 ∈ Ω such that ϕ(w) = ϕ(w0). If N(w) +M(w) = 0, then w satisfies conditions
(iv) and (v), so it is in Ω and the conclusion is obvious.

Suppose that N(w) + M(w) > 0. If N(w) > 0, choose i ∈ {1, . . . ,m} such that si > 0
and ri 6∈ {0, 1}. Note that the relation defining Γ says that ϕ(b2a) = ϕ(ab3), hence also

22The easiest way to show this would to find a finite-dimensional representation of Γ on which b1bb−11 b acts non-
trivially, but we can’t. Still, some variant of this idea will work.
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that ϕ(b−2a) = ϕ(ab−3), which implies that ϕ(b2ka) = ϕ(ab3k) for every k ∈ Z. Write
ri = 2k + l with k ∈ Z and l ∈ {0, 1}, and let

w′ = br1as1 . . . bri−1asi−1blab3kasi−1bri+1asi+1 . . . brmasmbr.

Then ϕ(w) = ϕ(w′) by the observation above, and N(w′) < N(w), M(w′) = M(w).
Similarly, if M(w) > 0, choose i ∈ {1, . . . ,m} such that si < 0 and ri 6∈ {0, 1, 2}. For
k ∈ Z, the equality ϕ(b2ka) = ϕ(ab3k) can also be written ϕ(a−1b2k) = ϕ(b3ka−1). Write
ri = 3k + l with k ∈ Z and l ∈ {0, 1, 2}, and let

w′ = br1as1 . . . bri−1asi−1bla−1b2kasi+1bri+1asi+1 . . . brmasmbr.

Then ϕ(w) = ϕ(w′) by the observation above, and N(w′) = N(w), M(w′) < M(w). As
one of N(w) or M(w) has to be > 0, we can always find w′ ∈ F such that ϕ(w′) = ϕ(w)
and N(w′) +M(w′) < N(w) +M(w). Applying the induction hypothesis to w′ gives the
result.

(b). Let w = br1as1 . . . brmasmbr ∈ Ω; we assume that conditions (i)-(v) are satisfied. If s = b
(resp. s = b−1), then w′ = br1as1 . . . brmasmbr+1 (resp. w′ = br1as1 . . . brmasmbr−1)
works. If s = a, write r = 2k + l with k ∈ Z and l ∈ {0, 1} and take
w′ = br1as1 . . . brmasmblab3k. If s = a−1, write r = 3k + l with k ∈ Z and l ∈ {0, 1, 2}
and take w′ = br1as1 . . . brmasmbla−1b2k.

(c). The conclusion is obvious if s ∈ {b, b−1}. Suppose that s = a and write r = 2k + l with
k ∈ Z and l ∈ {0, 1}. Then w · a = br1as1 . . . brmasmblab3k, so

(w · a) · a−1 = br1as1 . . . brmasmblaa−1b2k = w.

If s = a−1, write r = 3k + l with k ∈ Z and l ∈ {0, 1, 2}. Then
w · a = br1as1 . . . brmasmbla−1b2k, so

(w · a−1) · a = br1as1 . . . brmasmbla−1ab3k = w.

(d). By (c), (w, s) 7−→ w · s extends to a right action of F on Ω. To prove that this fac-
tors through a right action of Γ on Ω, it suffices to show that b−3a−1b2a acts trivially.
Let w = br1as1 . . . brmasmbr ∈ Ω; we assume that conditions (i)-(v) are satisfied. Write
r = 3k + l, with k ∈ Z and l ∈ {0, 1, 2}. Then

w · b−3 = br1as1 . . . brmasmbr−3 = br1as1 . . . brmasmbl+3(k−1),

so
w · (b−3a−1) = br1as1 . . . brmasmbla−1b2(k−1),

hence
w · (b−3a−1b2) = br1as1 . . . brmasmbla−1b2k,

and finally

w · (b−3a−1b2a) = br1as1 . . . brmasmbla−1ab3k = br1as1 . . . brmasmbl+3k = w.
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(e). We already know that ϕ(Ω) = Γ by (a), so we just need to show that ϕ|Ω is injective.
By the explicit formulas for the action given in the proof of (b), if w ∈ Ω, then we have
1 · w = w. As 1 · w only depends on ϕ(w) by (d), this shows that ϕ(w) determines w.

(f). By (e), we just need to show that the unique preimage of ϕ(b1bb
−1
1 b−1) in Ω is not trivial.

We have seen in the proof of (a) an algorithm to transform a reduced word into an element
of Ω having the same image by ϕ. Applying it to b1bb

−1
1 b−1 = a−1baba−1b−1ab−1, we get

a−1baba−1bab−4 6= 1 (modulo easy-to-make mistakes), so we are done.

�

Exercise I.5.5.9. The goal of this problem it to prove I.3.2.13, i.e. the fact that every irreducible
unitary representation of a compact group is finite-dimensional.

Let G be a compact group, let dx be the normalized Haar measure on G, and let (π, V ) be a
nonzero unitary representation of G. Fix u ∈ V − {0}, and define T : V → V by

T (v) =

∫
G

〈v, π(x)(u)〉π(x)(u)dx.

(a). Show that T is well-defined and that T ∈ End(V ).

(b). Show that T is G-equivariant.

(c). Show that 〈T (v), v〉 ≥ 0 for every v ∈ V .

(d). Show that T 6= 0.

(e). Show that T is in the closure (for ‖.‖op) of {T ′ ∈ End(V )| dimC(Im(T ′)) < +∞}; in
other words, T is in the closure of the space of endomorphisms of finite rank. (Hint :
G→ V , x 7−→ π(x)(u) is uniformly continuous.)

(f). Let B be the closed unit ball in V . Show that T (B) is compact. (In other words, the
operator T is a compact operator. Problem I.5.6.5 can help shorten the proof.)

(g). If V is an irreducible representation of V , show that V is finite-dimensional.

Solution.

(a). We must show that the integral defining T (v) converges for every v ∈ V . Let v ∈ V .
Then the function G → V , 〈v, π(x)(u)〉π(x)(u) is continuous (because x 7−→ π(x)(u) is
continuous); asG is compact, the integral exists by problem I.5.6.3, and moreover we have

‖T (v)‖ ≤
∫
G

|〈v, π(x)(u)〉|‖π(x)(u)‖dx ≤ ‖v‖‖u‖2.

The function T : V → V is C-linear (because addition and multiplication by a scalar
are continuous on V , so they commute with the integral by I.5.6.1(b)), and the inequality
above shows that T is bounded and that ‖T‖op ≤ ‖u‖2.
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(b). Let v ∈ V and x ∈ G.

T (π(x)(v)) =

∫
G

〈π(x)(v), π(y)(u)〉π(y)(u)dy

=

∫
G

〈v, π(x)∗π(y)(u)〉π(y)(u)dy

=

∫
G

〈v, π(x−1y)(u)〉π(y)(u)dy

=

∫
G

〈v, π(y)(u)〉π(x)π(y)(u)dy

(by left invariance of the Haar measure for the last equality). As π(x) : V → V is
continuous and linear, I.5.6.1(b) implies that the last line is equal to

π(x)

(∫
G

〈v, π(y)(u)〉π(y)(u)dy

)
= π(x)(T (v)),

which is what we wanted.

(c). Let v ∈ V . As 〈v, .〉 is continuous and linear on V , we have

〈T (v), v〉 =

∫
G

〈π(x)(u), v〉〈v, π(x)(u)〉dx

=

∫
G

|〈v, π(x)(u)〉|2dx

≥ 0.

(d). Take v = u. As 〈u, π(x)(u)〉 = ‖u‖2 > 0 and x 7−→ 〈u, π(x)(u)〉 is a continuous
function from G to C, there exists ε > 0 and an open neighborhood U of 1 in G such that
|〈u, π(x)(u)〉|2 ≥ ε for x ∈ U . Then, by the calculation in the proof of (c), we have

〈T (u), u〉 =

∫
G

|〈u, π(x)(u)〉|2dx ≥ εµ(U) > 0.

So T 6= 0.

(e). Let ε > 0. As G is compact, the continuous function G→ C, x 7−→ π(x)(u) is uniformly
continuous, so there exists a neighborhood U of 1 such that, for x ∈ G and y ∈ xU , we
have ‖π(x)(u) − π(y)(u)‖ ≤ ε. As G is compact and the family (xU)x∈G covers G, we
can x1, . . . , xn ∈ G such that G =

⋃n
i=1 xiU . Choose Borel subsets E1, . . . , En of X such

that xi ∈ Ei ⊂ xiU for every i ∈ {1, . . . , n} and X = E1 t . . . t En (as sets). If x ∈ Ei
and v ∈ V , then we have

‖〈v, π(x)(u)〉π(x)(u)− 〈v, π(xi)(u)〉π(xi)(u)‖

≤ ‖〈v, (π(x)− π(xi))(u)〉π(x)(u)‖+ ‖〈v, π(xi)(u)〉(π(x)− π(xi)))(u)‖
≤ ‖v‖ε‖u‖+ ‖v‖‖u‖ε = 2ε‖v‖‖u‖.
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Define U ∈ End(V ) by

T (v) =
n∑
i=1

µ(Ei)〈v, π(xi)(u)〉π(xi)(u) =
n∑
i=1

∫
Ei

〈v, π(xi)(u)〉π(xi)(u)dx.

This operator U has finite rank, because its image is contained
Span(π(x1)(u), . . . , π(xn)(u)). Also, by the calculation above (and exercise I.5.6.2), for
every v ∈ V , we have

‖T (v)− U(v)‖ ≤
n∑
i=1

∣∣∣∣∫
Ei

〈v, π(x)(u)〉π(x)(u)dx−
∫
Ei

〈v, π(xi)(u)〉π(xi)(u)dx

∣∣∣∣
≤

n∑
i=1

µ(Ei)2ε‖v‖‖u‖

= 2ε‖v‖‖u‖.

So ‖T − U‖op ≤ 2ε‖u‖. As ε > 0 was arbitrary, this shows that T is a limit of operators
of finite rank.

(f). By I.5.6.5(e), it suffices to show that T (B) is totally bounded. Let U be a neighborhoof of
0, which we may assume to be an open ball of radius ε > 0. We must find x1, . . . , xn ∈ B
such that every point of T (B) is at distance < ε from one of the T (xi).

By (e), we know that T is a limit of operators of finite rank, so we can find U ∈ End(V )
of finite rank such that ‖T − U‖op ≤ ε/4. As U has finite rank, U(B) is a closed bounded
subset of the finite-dimensional space Im(U), so it is compact. In particular, we can
find x1, . . . , xn ∈ B such that, for every y ∈ B, there exists i ∈ {1, . . . , n} such that
‖U(y)− U(xi)‖ < ε/2.

Now let y ∈ B, and choose i ∈ {1, . . . , n} such that ‖U(y)− U(xi)‖ < ε/2. Then

‖T (y)− T (xi)‖ ≤ ‖T (y)− U(y)‖+ ‖U(y)− U(xi)‖+ ‖U(xi)− T (xi)‖
< ‖y‖ε/4 + ε/2 + ‖xi‖ε/4
≤ ε.

(Remember that y, xi are in the closed unit ball of V .)

(g). Now we put everything together. Suppose that V is an irreducible unitary representation
of G. Then the operator T ∈ End(V ) that we constructed is G-equivariant, so, by Schur’s
lemma, there exists λ ∈ C such that T = λidV . As T 6= 0, λ 6= 0. So T (λB) is the closed
unit ball in V . Part (f) says that this is compact, which, by Riesz’s lemma, implies that V
is finite-dimensional.

�
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I.5.6 Vector-valued integrals and Minkowski’s inequality

Note : You are allowed to use without proof the following results :

• The Hahn-Banach theorem.

• The fact that every continuous linear functional on a Hilbert space V is of the form 〈., v〉,
with v ∈ V .

• Hölder’s inequality.

• The fact that, if (X,µ) is a measure space, and if 1 ≤ p < +∞ and 1 < q ≤ +∞ are such
that p−1+q−1 = 1, then the mapLp(X,µ)→ Hom(Lq(X,µ),C), f 7−→ (g 7−→

∫
X
fgdµ)

is an isomorphism that preserves the norm (Lp norm on the left, operator norm on the right).
23

Exercise I.5.6.1. Let (X,µ) be a measure space and V be a Banach space. We write V ∨ for
Hom(V,C). We say that a function f : X → V is weakly integrable if, for every T ∈ V ∨, the
function T ◦ f : X → C is in L1(X,µ). If f is weakly integrable and if there exists an element
v of V such that T (v) =

∫
X
T ◦ f(x)dµ(x) for every T ∈ V ∨, we say that v is the integral of f

on X and write v =
∫
X
f(x)dµ(x) =

∫
X
fdµ.

(a). Show that the integral of f is unique if it exists.

(b). Let W be another Banach space and u ∈ Hom(V,W ). If f : X → V is weakly integrable
and has an integral v, show that u ◦ f : X → W is weakly integrable and has an integral,
which is equal to u(v).

(c). Give an example of a weakly intergrable function that doesn’t have an integral.

Solution.

(a). By the Hahn-Banach theorem, for every v ∈ V , there exists T ∈ Hom(V,C) such that
T (v) = ‖v‖ and ‖T‖op ≤ 1. In particular, an element v of V is zero if and only if
T (v) = 0 for every T ∈ Hom(V,C), or, in other words, two elements v, w ∈ V are equal
if and only if T (v) = T (w) for every T ∈ Hom(V,C). This implies that the integral of f
is unique if it exists.

(b). We first show that u ◦ f is weakly integrable. Let T ∈ Hom(W,C). Then
T ◦ u ∈ Hom(V,C), so the function T ◦ u ◦ f : X → C is integrable.

Now suppose that f has an integral v. Then, for every T ∈ Hom(W,C), we have
T ◦ Hom(V,C), so

∫
X
T ◦ u ◦ fdµ = T ◦ u(v). This means that u(v) is the integral

of u ◦ f .

23Technical note : This is not true in general for p = 1, q = +∞ if µ is not σ-finite, but it can be salvaged for a
regular Borel measure on a locally compact Hausdorff space by slightly modifying the definition of L∞. You
can ignore this.
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(c). Let X = N with the counting measure µ, and

V = c0(N) := {(xn)n≥0 ∈ CN| lim
n→+∞

xn = 0}.

We will use the fact that `1(N) is the continuous dual of c0(N), via the map
`1(N) × c0(N) → C, ((xn), (yn)) 7−→

∑
n≥0 xnyn, and that the continuous dual of `1(N)

is `∞(N) (by a similar map). The map from c0(N) into its bidual is the usual embedding
c0(N) ⊂ `∞(N).

We define f : X → V by f(n) = 11{n}. Then, for every (xn)n≥0 ∈ `1(N), if
T : c0(N)→ C is the corresponding linear functional, we have∫

X

T (f(x))dµ(x) =
∑
n≥0

xn,

which converges because (xn)n≥0 is in `1(N). Hence f is weakly integrable. But f does not
have an integral (at least in c0(N)), because the continuous linear functional it defines on
`1(N) is representable by an element of `∞(N) which is not in c0(N) (the constant sequence
1). As evaluating on points of `1(N) separates the elements of `∞(N), there cannot be any
element of c0(N) giving the same linear functional on `1(N).

�

Exercise I.5.6.2. In this problem, X is a locally compact Hausdorff space and µ is a regular
Borel measure on X . Let V be a Banach space, and let f : X → V be a continuous function
with compact support.

(a). Show that f is weakly integrable.

(b). If µ(supp f) = 0, show that
∫
X
fdµ exists and is equal 0.

The goal of this problem is to show that:

(i) f has an integral v;

(ii) ‖v‖ ≤
∫
X
‖f(x)‖dµ(x);

(iii) if µ(supp f) 6= 0, then µ(supp f)−1v is in the closure of the convex hull of f(X).

By question (b), we may (and will) assume that µ(supp f) 6= 0.

(a). Show that we may assume that X = supp f (in particular, X is compact) and that
µ(X) = 1.

From now on, we assume that X is compact and that µ(X) = 1.

(a). Let T1, . . . , Tn : V → R be bounded R-linear functionals (we see V as a R-vector space in
the obvious way), and define a1, . . . , an ∈ R by ai =

∫
X
Ti ◦ fdµ. Show that (a1, . . . , an)

is in the convex hull of the compact subset ((T1, . . . , Tn) ◦ f)(X) of Rn. (Hint : What
happens if it is not ?)
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Let K be the closure of the convex hull of f(X). This is a compact subset of V by prob-
lem I.5.6.7. For every finite subset Ω of HomR(V,R) (the space of bounded R-linear function-
als from V to R), we denote by IΩ the set of v ∈ K such that, for every T ∈ Ω, we have
T (v) =

∫
X
T ◦ fdµ.

(a). Show that IΩ is compact for every Ω ⊂ HomR(V,R).

(b). Show that IΩ is nonempty if Ω is finite.

(c). Show that the integral of f exists and is in K.

(d). Show that :

‖
∫
X

fdµ‖ ≤
∫
X

‖f(x)‖dµ(x).

(Hint : Hahn-Banach.)

Solution.

(a). Let T ∈ Hom(V,C). Then T ◦ f : X → C is a continuous, and its support is contained in
supp(f), hence compact. Hence T ◦ f is integrable.

(b). Suppose that µ(supp f) = 0. If T ∈ Hom(V,C), then T ◦ f : X → C is continuous and
µ(supp(T ◦ f)) = 0, so

∫
X
T ◦ f(f)dµ = 0. This shows that 0 is the integral of f .

(c). Suppose that we know the conclusion if X = supp f and µ(X) = 1. Let f : X → V
be continuous with compact support. We have already seen that we may assume
µ(supp f) 6= 0, so let’s do that. Let X ′ = supp f , and consider the measure µ′ on X ′

that is µ(supp f)−1 times the restriction of µ. By our assumption,
∫
X′
f|X′dµ

′ exists, let’s
call it v, we have ‖v‖ ≤

∫
X′
‖f(x)‖dµ′(x) and v is in the closure of the convex hull of

f(X ′).

Let’s show that w := µ(supp f)v is the integral of f . Note that µ(supp f)−1w is in the
convex hull of f(X ′) = f(X) and that

‖w‖ ≤ µ(supp f)

∫
X′
|f(x′)|dµ′(x) =

∫
X

|f(x)|dµ(x),

so this proves the conclusion for f .

Let T ∈ Hom(V,C). Then supp(T ◦ f) ⊂ X ′, so∫
X

T ◦ f(x)dµ(x) = µ(supp f)

∫
X′
T ◦ f(x)dµ′(x) = w.

So w =
∫
X
fdµ.

(d). Let L = ((T1, . . . , Tn) ◦ f)(X). Suppose that (a1, . . . , an) is not in the convex hull of L.
Then, by the hyperplane separation theorem, there exists a linear functional λ : Rn → R
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and c > 0 such that λ(a1, . . . , an) ≥ c+ λ(v), for every v ∈ L. Let λ1, . . . , λn ∈ R be the
images by λ of the vectors of the canonical basis of Rn. Then we have, for every x ∈ X ,

n∑
i=1

λiai = λ(a1, . . . , an) ≥ c+ λ ◦ (T1, . . . , Tn) ◦ f(x) = c+
n∑
i=1

λiTi(f(x)).

Taking the integral over X (and using µ(X) = 1) gives
n∑
i=1

λiai ≥ c+
n∑
i=1

λi

∫
X

Ti ◦ f(x)dµ(x) = c+
n∑
i=1

λiai,

a contradiction.

(e). For every T ∈ HomR(V,R), the set of v ∈ K such that T (v) =
∫
X
T ◦ fdµ is a closed

subset of K. As the set IΩ is an intersection of sets of this form, it is also a closed subset
of K, hence compact because K is compact.

(f). If Ω is finite, write Ω = {T1, . . . , Tn} and TΩ = (T1, . . . , Tn) : V → Rn. We have
seen in question (d) that a :=

∫
X
TΩ(f(x))dµ(x) is in the convex hull of TΩ(f(X)),

so there exists v ∈ V such that v is in the convex hull of f(X) (hence in K) and
TΩ(v) = a =

∫
V
TΩ(f(x))dµ(x). The second condition says exactly that v ∈ IΩ.

(g). The subsets (I{T})T∈HomR(V,R) of K have the finite intersection property by question (f).
As K is compact, this implies that ∩T∈HomR(V,R)I{T} is nonempty. Choose a vector v in it.
Let T ∈ Hom(V,C). As Re(T ) and Im(T ) are in HomR(V,R), we have

T (v) = Re(T (v)) + i Im(T (v))

=

∫
X

Re(T (f(x)))dµ(x) + i

∫
X

Im(T (f(x)))dµ(x)

=

∫
X

T (f(x))dµ(x),

so v =
∫
X
fdµ. Also, v ∈ K because all the I{T} are contained in K by definition.

(h). By the Hahn-Banach theorem, there exists T ∈ Hom(V,C) such that T (v) = ‖v‖ and
‖T‖op ≤ 1. Then

‖v‖ = |T (v)| = |
∫
X

T (f(x))dµ(x)| ≤
∫
X

|T (f(x))|dµ(x) ≤
∫
X

‖f(x)‖dµ(x).

�

Exercise I.5.6.3. In this problem, X is a locally compact Hausdorff space and µ is a regular
Borel measure on X . Let V be a Banach space, let f : X → C be a function in L1(X,µ), and
let G : X → V be a bounded continuous function.

The goal of this problem is to show that :
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(i) the function fG : X → V has an integral v;

(ii) ‖v‖ ≤ (supx∈X ‖G(x)‖)
(∫

X
|f(x)|dµ(x)

)
;

(iii) v ∈ Span(G(X)).

(a). Show that fG is weakly integrable.

(b). Let (fn)n≥0 be a sequence of functions of Cc(X) that converges to f in L1(X,µ). Show
that

∫
fnGdµ exists for each n ≥ 0, and that (

∫
X
fnGdµ)n≥0 is a Cauchy sequence.

(c). Prove assertions (i), (ii) and (iii) above.

Solution.

(a). Let T ∈ Hom(V,C). Then, for every x ∈ X ,

|T (f(x)G(x))| ≤ |f(x)||T (G(x))| ≤ |f(x)|‖T‖op‖G(x)‖ ≤ |f(x)|‖T‖op sup
y∈X
‖G(y)‖.

As supy∈X ‖G(y)‖ < +∞ and f ∈ L1(X,mu), the function T ◦ (fG) is integrable. So
fG is weakly integrable.

(b). For every h ∈ Cc(X), the function hG : X → V is continuous and has support contained
in supp(h), hence compact. By problem I.5.6.2, this function is integrable, and we have

‖
∫
X

(hG)(x)dµ(x)‖ ≤
∫
X

|h(x)|‖G(x)‖dµ(x) ≤ sup
y∈X
‖G(y)‖‖h‖1.

Applying this to fn shows that fnG is integrable, and applying it to fn − fm shows that

‖
∫
X

(fnG)dµ(x)−
∫
X

(fmG)dµ‖ ≤ sup
y∈X
‖G(y)‖‖fn − fm‖1 −−−−−→

n,m→+∞
0

because (fn)n≥0 converges in L1(X,µ).

(c). As V is complete, the Cauchy sequence (
∫
X

(fnG)dµ) has a limit in V , that we’ll call v.
For every T ∈ Hom(V,C), we have

T (v) = lim
n→+∞

T

(∫
X

(fnG)dµ

)
= lim

n→+∞

∫
X

T (fn(x)G(x))dµ(x).

As in (a), we have

‖
∫
X

T (fn(x)G(x))dµ(x)−
∫
X

T (f(x)G(x))dµ(x)‖ ≤ sup
y∈X
‖G(y)‖‖T‖op‖fn − f‖1,

so this converges to 0 as n→ +∞, and we get

T (v) =

∫
X

T (f(x)G(x))dµ(x).
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This shows that x is the integral of fG.

Moreover, by problem I.5.6.2,
∫
X

(fnG)dµ is in the closure of the span G(X) for every
n ≥ 0. As v is the limit of these vectors, it is also in the close of Span(G(X)).

Finally, to show the bound on ‖v‖, we could use the Hahn-Banach theorem and the prop-
erty characterising v as in question I.5.6.2(h), or use the fact that

‖
∫
X

(fnG)dµ‖ ≤
∫
X

|fn(x)|‖G(x)‖dµ(x) ≤ sup
x∈X
‖G(x)|‖fn‖1

for every n ≥ 0 and that this sequence of integrals converges to v.

�

Exercise I.5.6.4. Let G be a locally compact group, µ be a left Haar measure on G, and
L1(G) = L1(G, µ). Let f, g ∈ L1(G).

(a). Show that the function G → L1(G), y 7−→ f(y)Lyg is weakly integrable and has an
integral.

(b). Show that

f ∗ g =

∫
G

f(y)Lygdµ(y).

Solution.

(a). Note that the function G → L1(G), y 7−→ Lyg is continuous and that
supy∈G ‖Lyg‖1 = ‖g‖1 < +∞. So the conclusion follows from problem I.5.6.3.

(b). Let F =
∫
G
f(y)Lygdµ(y) ∈ L1(G). By definition of the intergral, for every h ∈ L∞(G),

we have∫
G

h(x)F (x)dµ(x) =

∫
G×G

h(x)f(y)g(y−1x)dµ(y)dµ(x) =

∫
G

h(x)(f ∗ g)(x)dµ(x).

As L∞(G) is the continuous dual of L1(G), we have f ∗ g = F by question I.5.6.1(a).

�

Exercise I.5.6.5. Let V be a normed vector space. A subset A is V is called totally bounded if,
for every neighborhood U of 0 in V , there is a finite set F such that A ⊂ F + U .

(a). Show that the convex hull of a finite subset of V is compact.

(b). Show that every compact subset of V is totally bounded.

(c). If A ⊂ V is totally bounded, show that A is totally bounded.
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(d). If A is a totally bounded subset of V , show that its convex hull is totally bounded. (Hint :
Open balls are convex.)

(e). If V is complete and A is totally bounded, show that A is compact.

(f). If V is complete and K ⊂ V is compact, show that the closure of the convex hull of K is
compact.

Solution.

(a). Let F be a finite subset subset of V . Then its convex hull is contained in Span(F ), which
is finite-dimensional. In a finite-dimensional vector space, the convex hull of any compact
set is compact, so the convex hull of the finite set F is compact.

(b). Let K be compact subset of V , and let U be a neighborhood of 0 in V . We may assume
that U is open. Then K ⊂

⋃
x∈K(x + U). As K is compact, there exists a finite subset F

of K such that K ⊂
⋃
x∈F (x+ U) = F + U .

(c). Let A ⊂ V be a totally bounded subset, and let U be a neighborhood of 0 in V . We may
assume that U is an open ball centered at 0 and of positive radius, say c. Let U ′ be the open
ball centered at 0 of radius c/2. As A is totally bounded, there exists a finite set F such
that A ⊂ F +U ′. As F is finite, the set F +U ′ is closed, so it contains A. But U ⊃ U ′, so
A ⊂ F + U .

(d). Let U be a neighborhood of 0 in V . Choose a convex open neighborhood U ′ of 0 (a ball
for example) such that U ′ + U ′ ⊂ U , and let F be a finite set such that A ⊂ F + U ′. Let
K be the convex hull of F , then A ⊂ K + U ′. As K and U ′ are convex, so is K + U ′, so
the convex hull of A is contained in K + U ′. On the other hand, the set K is compact by
question (a), hence totally bounded by question (b), so there exists a finite set F ′ such that
K ⊂ F ′ + U ′, hence K + U ′ ⊂ F ′ + U ′ + U ′ ⊂ F ′ + U . So we have found a finite set F ′

such that the convex hull of A is contained in F ′ + U .

(e). Write K = A. For every x ∈ V and c > 0, let B(x, c) be the closed ball of radius c center
at x.

Let (Ui)i∈I be a family of open subsets of K such that K ⊂
⋃
i∈I Ui, and assume that no

finite subfamily of (Ui)i∈I covers K. We know that K is totally bounded by question (c).
We will construct by induction on n a decreasing sequence (Kn)n≥1 of nonempty closed
subsets of K such that Kn is contained in a ball of radius 1/n and Kn cannot be covered
by a finite subfamily of (Ui)i∈I .

First, as K is totally bounded, there exists a finite set F such that
K ⊂ F + B(0, 1) =

⋃
x∈F B(x, 1). We choose x ∈ F such that K ∩ B(x, 1) is

nonempty and cannot be covered by a finite number of the Ui, and take K1 = K ∩B(x, 1).

Now suppose that we have constructed K1, . . . , Kn, with n ≥ 1. Then, as Kn is totally
bounded (as a subset of K), there exists a finite set F such that Kn ⊂ F +B(0, (n+1)−1).
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Again, as Kn cannot be covered by a finite number of the Ui, there must exist x ∈ F such
that Kn ∩ B(x, (n + 1)−1) is nonempty and can also not be covered by a finite number of
the Ui, and we take Kn+1 = Kn ∩B(x, (n+ 1)−1).

Choose xn ∈ Kn for every n ≥ 1. By the condition that Kn is contained in a ball of radius
1/n, the sequence (xn)n≥0 is a Cauchy sequence. As V is complete, (xn)n≥1 has a limit,
say x. As x ∈ K, there exists i ∈ I such that Ui. But then B(x, c) ⊂ Ui for c > 0 small
enough, so Kn ⊂ Ui for n big enough, which contradicts the properties of Kn.

(f). By question (d), the convex hull of K is totally bounded, so its closure is compact by
question (e).

�

Exercise I.5.6.6. Let G be a locally compact group, let dx be a left Haar measure on G, and
let UCB(G) be the subspace of L∞(G) composed of the left uniformly continuous bounded
functions on G.

Let f ∈ L1(G) and ϕ ∈ L∞(G).

(a). Show that f ∗ ϕ exists and is left uniformly continuous and bounded.

(b). If ϕ ∈ UCB(G), show that the integral
∫
G
f(y)Lyϕdy exists and is equal to f ∗ ϕ.

Solution.

(a). Let x ∈ G. Then the integral defining f ∗ ϕ(x) is∫
G

f(y)ϕ(y−1x)dµ(y),

which converges because |f(y)ϕ(y−1x)| ≤ ‖ϕ‖∞|f(y)| for every y ∈ G. This also shows
that

|f ∗ ϕ(x)| ≤ ‖ϕ‖∞‖f‖1

for every x ∈ G, so f ∗ ϕ is bounded and

‖f ∗ ϕ‖∞ ≤ ‖ϕ‖∞‖f‖1,

Now we show that f ∗ ϕ is left uniformly continuous. Let x ∈ G. By proposition I.4.1.3,
we have Lx(f ∗ ϕ) = (Lxf) ∗ ϕ, so

‖Lx(f ∗ ϕ)− f ∗ ϕ‖∞ = ‖(Lxf − f) ∗ ϕ‖∞ ≤ ‖Lxf − f‖1‖ϕ‖∞.

By proposition I.3.1.13, this tends to 0 as x tends to 1 in G, which exactly means that f ∗ϕ
is left uniformly continuous.
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(b). Suppose that ϕ ∈ UCB(G). Then the map G→ UCB(G), y 7−→ Lyϕ is continuous (see
remark I.1.13), so the integral

∫
G
f(y)Lyϕdµ(y) exists in UCB(G) by problem I.5.6.3.

Let h =
∫
G
f(y)Lyϕdµ(y).

For every g ∈ L1(G), the map ψ 7−→
∫
G
gψdµ is a continuous linear functional on

UCB(G). So, by definition of the integral, we have∫
G

ghdµ =

∫
G×G

h(x)f(y)ϕ(y−1x)dµ(x)dµ(y) =

∫
G

g(f ∗ ϕ)dµ.

As the linear functionals defined by the elements of L1(G) separate points on L∞(G), this
implies that h = f ∗ ϕ.

�

Exercise I.5.6.7 (Minkowski’s inequality). Let (X,µ) and (Y, ν) be measure spaces, which we
will take σ-finite to simplify. 24 Let p ∈ (1,+∞). 25 Let ϕ : X × Y → C be a measurable
function. We assume that ∫

Y

(∫
X

|ϕ(x, y)|pdµ(x)

)1/p

dν(y) <∞.

(a). Show that the function ϕ(., y) is in Lp(X,µ) for almost every y ∈ Y .

(b). Let Y ′ be a measurable subset of Y such that ν(Y − Y ′) = 0 and ϕ(., y) ∈ Lp(X,µ) for
every y ∈ Y ′. Show that the function Y ′ → Lp(X,µ), y 7−→ ϕ(., y) is weakly integrable.

(c). Show that the integral h ∈ Lp(X,µ) of the function of (b) exists, and that we have

h(x) =

∫
Y

ϕ(x, y)dν(y)

for almost all x ∈ X .

(d). Show Minkowski’s inequality :(∫
X

∣∣∣∣∫
Y

ϕ(x, y)dν(y)

∣∣∣∣p dµ(x)

)1/p

≤
∫
Y

(∫
X

|ϕ(x, y)|pdµ(x)

)1/p

dν(y).

Solution.

(a). The function y 7−→
(∫

X
|ϕ(x, y)|pdµ(x)

)1/p is integrable by hypothesis, so it must take
finite values for almost all y ∈ Y , which means that

∫
X
|ϕ(x, y)|pdµ(x) < +∞ for almost

every y ∈ Y .
24There is a way to extend the results to not necessarily σ-compact locally compact groups with their Haar measures.
25Minkowski’s inequality is still true for p = 1, but it follows immediately from the Fubini-Torelli theorem in that

case.
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(b). Let q ∈ (1,+∞) be such that 1
p

+ 1
q
. We want to check that, for every f ∈ Lq(X,µ),

the integral
∫
Y ′

∫
X
f(x)ϕ(x, y)dµ(x)dµ(y) converges. Let f ∈q (X,µ). By Hölder’s

inequality, for every y ∈ Y ′,
∫
X
f(x)ϕ(x, y)dµ(x) converges absolutely, and∫

X

|f(x)ϕ(x, y)|dµ(x) ≤ ‖f‖q‖ϕ(., y)‖p.

As
∫
Y ′
‖ϕ(., y)‖pdν(y) converges by hypothesis, this gives the convergence of∫

Y ′

∫
X
f(x)ϕ(x, y)dµ(x)dµ(y), and even its absolute convergence.

(c). We have seen in question (b) that
∫
X

∫
Y
|f(x)ϕ(x, y)|dµ(x)dν(y) < +∞ for every

f ∈ L1(X,µ). By Fubini’s theorem, this implies that, for every f ∈ Lq(X,µ),∫
Y
|f(x)ϕ(x, y)|dν(y) = |f(x)|

∫
Y
|ϕ(x, y)|dν(y) < +∞ for almost all x ∈ X . As f

is arbitrary (and µ is σ-finite), we get that
∫
Y
|ϕ(x, y)|dν(y) < +∞ for almost all x ∈ X ,

say for x ∈ X ′ with µ(X −X ′) = 0.

We define a function h : X ′ → C by h(x) =
∫
Y
ϕ(x, y)dν(y). We want to show that this

is the integral of y 7−→ ϕ(., y). If f ∈ Lq(X,µ), we have∫
X

f(x)h(x)dµ(x) =

∫
X

f(x)ϕ(x, y)dµ(x)dµ(y),

so, using Hölder’s inequality as in question (b),∣∣∣∣∫
X

f(x)h(x)dµ(x)

∣∣∣∣ ≤ ∫
X×Y
|f(x)ϕ(x, y)|dµ(x) ≤ C‖f‖q,

where

C =

∫
Y

(∫
X

|ϕ(x, y)|p
)1/p

dν(y).

This shows that f 7−→
∫
X
f(x)h(x)dµ(x) is a bounded linear functional on Lq(X,µ), and

that its operator norm is bounded by C. As the continuous dual of Lq(X,µ) is Lp(X,µ),
we must have h ∈ Lp(X,µ) and ‖h‖p ≤ C. The first property, together with the formula
for
∫
X
f(x)h(x)dµ(x), says that h is indeed the integral of y 7−→ ϕ(., y).

(d). The second property of h proved above is exactly Minkowski’s inequality.

�
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II.1 Banach algebras

In this section, A will be a Banach algebra. (See definition I.4.1.4.) Note that the submultiplica-
tivity of the norm implies that the multiplication is a continuous map from A× A to A.

We suppose for now that A has a unit e and denote by A× the group of invertible elements of
A.

II.1.1 Spectrum of an element

Definition II.1.1.1. Let x ∈ A.

(i) The spectrum of x in A is

σ(x) = σA(x) = {λ ∈ C|λe− x 6∈ A×}.

(ii) The spectral radius of x is
ρ(x) = inf

n≥1
‖xn‖1/n.

We will see below how that ρ(x) is equal to sup{|λ|, λ ∈ σ(x)} (which justifies the name
“spectral radius”).

We start by proving some basic properties of invertible elements and the spectral radius. (Note
that point (i) does not use the completeness of A, so it stays true in any normed algebra.)

Proposition II.1.1.2. (i) If x, y ∈ A× are such that ‖x− y‖ ≤ 1
2
‖x−1‖−1, then we have

‖x−1 − y−1‖ ≤ 2‖x−1‖2‖y − x‖.

In particular, the map x 7−→ x−1 is a homeomorphism from A× onto itself.

(ii) For every x ∈ A, we have
ρ(x) = lim

n→+∞
‖xn‖1/n

(Gelfand’s formula).
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(iii) Let x ∈ A. If ρ(x) < 1 (for example if ‖x‖ < 1), then e − x ∈ A× and
(e − x)−1 =

∑
n≥0 x

n, with the convention that x0 = e. (In particular, the series con-
verges.)

(iv) The group A× is open in A.

Proof. (i) We have

‖y−1‖ − ‖x−1‖ ≤ ‖y−1 − x−1‖ = ‖y−1(x− y)x−1‖ ≤ ‖y−1‖‖x− y‖‖x−1‖ ≤ 1

2
‖y−1‖.

In particular, ‖y−1‖ ≤ 2‖x−1‖. Combining this with the inequality above gives

‖y−1 − x−1‖ ≤ ‖y−1‖‖x− y‖‖x−1‖ ≤ 2‖x−1‖2‖x− y‖,

which is the first statement. This also show that the map x 7−→ x−1 is continuous. As this
map is equal to its own inverse, it is a homeomorphism.

(ii) Let ε > 0. We want to findN ∈ Z≥1 such that ‖xn‖1/n ≤ ρ(x)+ε for n ≥ N . (We already
know that ‖xn‖1/n ≥ ρ(x) by definition of ρ(x), so this is enough to establish the result.)
By definition of ρ(x), we can findm ≥ 1 such that ‖xm‖1/m ≤ ρ(x)+ 1

2
ε. For every integer

n ≥ 1, we can write n = mq(n) + r(n), with q(n), r(n) ∈ N and 0 ≤ r(n) ≤ m− 1. Note
that

q(n)

n
=

1

m

(
1− r(n)

n

)
−−−−→
n→+∞

1

m
,

hence
‖xm‖q(n)/n‖x‖r(n)/n −−−−→

n→+∞
‖xm‖1/m.

Choose N ≥ 1 such that, for n ≥ 1, we have

‖xm‖q(n)/n‖x‖r(n)/n ≤ ‖xm‖1/m +
ε

2
≤ ρ(x)ε.

Then, if n ≥ N , we have

‖xn‖1/n = ‖xmq(n)xr(n)‖1/n ≤ ‖xm‖q(n)/n‖x‖r(n)/n ≤ ρ(x) + ε,

as desired. 1

(iii) Fix r ∈ R such that ρ(x) < r < 1. Then, by (ii), we have ‖xn‖ ≤ rn for n big enough.
For every n ∈ N, we write Sn =

∑n
k=0 x

k. Then, if m ≥ n are big enough, we have

‖Sm − Sn‖ =

∣∣∣∣∣
m∑

k=n+1

xk

∥∥∥∥∥ ≤ rn+1
∑
k≥0

rk = rn+1 1

1− r
.

1The reasoning used in this proof is sometimes called Fekete’s lemma. See https://en.wikipedia.org/
wiki/Subadditivity.
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So the sequence (Sn)n≥0 is a Cauchy sequence, and it converges because A is complete.
This means that the series

∑
n≥0 x

n converges. Moreover, for every n ≥ 0, we have

(e− x)Sn = Sn(e− x) =
n∑
k=0

xk −
n+1∑
k=1

xk = e− xn+1.

This tends to e as n→ +∞, so
∑

n≥0 x
n is the inverse of e− x.

(iv) Let x ∈ A×. If y ∈ A is such that ‖y − x‖ < ‖x−1‖−1, then we have
‖e− x−1y‖ ≤ ‖x−1‖‖x− y‖ < 1. So, by (iii), x−1y ∈ A×, hence y ∈ A×.

Theorem II.1.1.3. For every x ∈ A, the spectrum σA(x) is a nonempty compact subset of C,
and we have

ρ(x) = max{|λ|, λ ∈ σA(x)}.

This explains the name “spectral radius” for ρ(x). Note in particular that, although the spec-
trum of x depends on A (for example, if we consider a Banach subalgebra B of A containing x,
then we have σB(x) ⊃ σA(x), but this may not be an equality), the spectral radius of x does not.

Proof. Consider the map F : C→ A sending λ ∈ C to λe−x. Then F is continuous, and σA(x)
is the inverse of the closed subset A− A× of A, so σA(x) is closed in C.

Next, let λ ∈ C such that |λ| > ρ(x). Then ρ(λ−1x) < 1, so, by (iii) of proposition II.1.1.2,
we have e − λ−1x = λ−1(λe − x) ∈ A×, which immediately implies that λ 6∈ σA(x). So we
have shown that

ρ(x) ≥ sup{|λ|, λ ∈ σA(x)}.

In particular, σA(x) is a closed and bounded subset of C, so it is compact.

Let’s show that σA(x) is not empty. Let T : A→ C be a bounded linear functional, and define
f : C− σA(x)→ C by f(λ) = T ((λe− x)−1). If λ, µ ∈ C− σA(x), then

(λe−x)−1−(µe−x)−1 = (λe−x)−1((µe−x)−(λe−x))(µe−x)−1 = −(λ−µ)(λe−x)−1(µe−x)−1,

so, if λ 6= µ, we get
f(λ)− f(µ)

λ− µ
= −T ((λe− x)−1(µe− x)−1).

Using the continuity of the function y 7−→ y−1 (see (i) of proposition II.1.1.2), we get, for every
λ ∈ C− σA(x),

lim
µ→λ

f(λ)− f(µ)

λ− µ
= −T ((λe− x)−2).
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In particular, the function f is holomorphic on C − σA(x). Let’s prove that f vanishes at ∞,
i.e. that f(λ) tends to 0 when |λ| → +∞. Let λ ∈ C such that |λ| > ρ(x). Then, by (iii) of
proposition II.1.1.2,

(λe− x)−1 = λ−1(e− λ−1x)−1 =
1

λ

∑
n≥0

1

λn
xn,

so

‖(λe− x)−1‖ ≤ 1

|λ|
∑
n≥0

‖x‖n

|λ|n
=

1

|λ|
1

1− |λ|−1‖x‖
.

This tends to 0 as |λ| → +∞; as T is continuous, so does f(λ).

Now suppose that σA(x) = ∅. Then f is an entire function, and f(λ)→ 0 as |λ| → +∞. By
Liouville’s theorem, this implies that f = 0, i.e. that T ((λe − x)−1) = 0 for every λ ∈ C. But
this is true for every T ∈ Hom(A,C) and bounded linear functionals on A separate points by
the Hahn-Banach theorem, so we get that (λe − x)−1 = 0 for every λ ∈ C. This is impossible,
because (λe− x)−1 ∈ A×. So σA(x) 6= ∅.

Finally, we prove that
ρ(x) ≤ max{|λ|, λ ∈ σA(x)}.

Let r = max{|λ|, λ ∈ σA(x)}. We already know that r ≤ ρ(x). Assume that r < ρ(x), and
pick r′ such that r < r′ < ρ(x). Let T ∈ Hom(A,C) and define f : C− σA(x)→ C as before.
Then we have seen that f is holomorphic on C− σA(x) ⊃ {λ ∈ C||λ| > r}. We have also seen
that, if |λ| > ρ(x), then

(λe− x)−1 =
∑
n≥0

1

λn+1
xn,

hence

f(λ) =
∑
n≥0

T (xn)

λn+1
.

By uniqueness of the power series expansion, this is still valid for |λ| > r. In particular, the
series

∑
n≥0

T (xn)
(r′)n+1 converges, so the sequence ( T (xn)

(r′)n+1 )n≥0 converges to 0, and in particular
it is bounded. Consider the sequence (αn)n≥0 of bounded linear functionals on Hom(A,C)

defined by αn(T ) = T (xn)
(r′)n+1 . We just saw that, for every T ∈ Hom(A,C), the sequence

(αn(T ))n≥0 is bounded. By the uniform boundedness principle (theorem I.3.2.11), this implies
that the sequence (‖αn‖op)n≥0 is bounded. But note that, by the Hahn-Banch theorem, we have

‖αn‖op =
∥∥∥ xn

(r′)n+1

∥∥∥. So the sequence ( ‖x
n‖

(r′)n+1 )n≥0 is bounded. Choose a real number C bounding
it. Then we get

ρ(x) = lim
n→+∞

‖xn‖1/n ≤ lim
n→+∞

C1/n(r′)(n+1)/n = r′,

a contradiction. So r ≥ ρ(x).
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II.1.2 The Gelfand-Mazur theorem

It is a well-known fact that every finite-dimensional C-algebra that is a field is isomorphic to C.
This is the Banach algebra analogue.

Corollary II.1.2.1 (Gelfand-Mazur theorem). LetA be a Banach algebra in which every nonzero
element is invertible. Then A is isomorphic to C (i.e. A = Ce).

Proof. Let x ∈ A. By theorem II.1.1.3, σA(x) 6= ∅. Let λ ∈ σA(x), then λe−x is not invertible,
so x = λe by hypothesis.

Definition II.1.2.2. We say that a subset I of A is an ideal if it is an ideal in the usual algebraic
sense, i.e. if I is a C-subspace ofA that is stable by left and right multiplication by every element
of A. We say that I is a proper ideal of A if I is an ideal of A and I 6= A.

If I is an ideal of A, then it is easy to see that I is also an ideal.

Remember also the definition of the quotient norm.

Definition II.1.2.3. Let V be a normed vector space and W ⊂ V be a closed subspace. Then the
quotient norm on V/W is defined by

‖x+W‖ = inf
w∈W
‖v + w‖.

If V is a Banach space, then so is V/W (for the quotient norm).

Proposition II.1.2.4. (i) If I is a closed ideal of A, then A/I is a Banach algebra for the
quotient norm.

(ii) If I is a proper ideal of A, then so is its closure I .

Proof. (i) We already know that A/I is a Banach space and an algebra, so we just need to
check that its norm is submultiplicative. Let x, y ∈ A. Then

‖x+ I‖‖y + I‖ = inf
a,b∈I
‖x+ a‖‖y + b‖

≥ inf
a,b∈I
‖(x+ a)(y + b)‖

= inf
a,b∈I
‖xy + (ay + xb+ ab)‖

≥ inf
c∈I
‖xy + c‖ (because ay + xb+ ab ∈ I if a, b ∈ I)

= ‖xy + I‖.
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(ii) Consider the open ball B = {x ∈ A|‖e− x‖ < 1}. Then B ⊂ A× by proposition II.1.1.2,
so B ∩ I = ∅. As B is open, this implies that B ∩ I = ∅, so I 6= A.

Corollary II.1.2.5. Let A be a commutative unital Banach algebra. If m is a maximal ideal of
A, then m is closed, and A/m = C.

This is the Banach algebra analogue of the Nullstellensatz.

Proof. By proposition II.1.2.4, the ideal m is also proper; as m is maximal, we must have m = m,
i.e. m is closed. By the same proposition, A/m is a Banach algebra. Also, every nonzero element
of A/m is invertible because m is maximal, so A/m = C by the Gelfand-Mazur theorem.

II.2 Spectrum of a Banach algebra

In this section, A is still a Banach algebra, but we don’t assume that it has a unit.

Definition II.2.1. A multiplicative functional on A is a nonzero linear functional ϕ : A → C
such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A

The set of all multiplicative functionals on A is called the spectrum of A and denoted by
σ(A). We put the weak* topology on σ(A). In other words, if ϕ ∈ σ(A), then a basis of open
neighborhoods of ϕ is given by the sets {ψ ∈ σ(A)|∀i ∈ {1, . . . , n}, |ϕ(xi)− ψ(xi)| < ci}, for
n ∈ Z≥1, x1, . . . , xn ∈ A and c1, . . . , cn ∈ R>0.

Note that we do not assume that ϕ is continuous; in fact, this is automatically the case, as we
will see below.

Lemma II.2.2. If A is unital, then, for every ϕ ∈ σ(A), we have ϕ(e) = 1 and ϕ(A×) ⊂ C×.

Proof. Let x ∈ A be such that ϕ(x) 6= 0. Then ϕ(x) = ϕ(xe) = ϕ(x)ϕ(e), so ϕ(e) = 1. Also,
if y ∈ A×, then 1 = ϕ(e) = ϕ(y)ϕ(y−1), so ϕ(y) ∈ C×.

Definition II.2.3. Let A be a Banach algebra. Then we define a unital Banach al-
gebra Ae by taking the C-vector space A ⊕ Ce, defining the multiplication on Ae by
(x + λe)(y + µe) = (xy + λy + µx) + λµe (for x, y ∈ A and λ, µ ∈ C) and the norm by
‖x + λe‖ = ‖x‖ + |λ| (for x ∈ A and λ ∈ C). If A is a Banach ∗-algebra, we make Ae into a
Banach ∗-algebra by setting (x+ λe)∗ = x∗ + λe (for x ∈ A and λ ∈ C).

This construction is called adjoining an identity to A.
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Remark II.2.4. If A already has a unit, then Ae is not equal to A. In fact, if we denote by eA
the unit of A, then the map Ae → A × C sending x + λe to (x + λeA, λ) is an isomorphism of
C-algebras (and a homeomorphism).

Proposition II.2.5. For every ϕ ∈ σ(A), we get an element ϕ̃ ∈ σ(Ae) by setting
ϕ̃(x + λe) = ϕ(x) + λ. This defines an injective map σ(A) → σ(Ae), whose image is
σ(Ae)− {ϕ∞}, with ϕ∞ defined by ϕ∞(x+ λe) = λ.

Later, we will identify ϕ and ϕ̃ and simply write σ(Ae) = σ(A) ∪ {ϕ∞}.

Proof. The fact that ϕ̃ is a multiplicative functional follows directly from the definition of the
multiplication on Ae, and ϕ̃ obviously determines ϕ. So we just need to check the statement
about the image of σ(A)→ σ(Ae).

Let ψ ∈ σ(Ae) such that ψ 6= ϕ∞, and let ϕ = ψ|A. Then we have ψ(x + λe) = ϕ(x) + λ
for all x ∈ A and λ ∈ C; as ψ 6= ϕ∞, the linear functional ϕ : A → C cannot be zero, so ϕ is a
multiplicative functional on A, and we clearly have ψ = ϕ̃.

Corollary II.2.6. Let ϕ ∈ σ(A). Then ϕ is a bounded linear function on A, and we have
‖ϕ‖op ≤ 1, with equality if A is unital.

Proof. By proposition II.2.5, the multiplicative functional extends to a multiplicative functional
ϕ̃ on Ae. Let x ∈ A. For every λ ∈ C such that |λ| > ‖x‖, the element x− λe of Ae is invertible
by proposition II.1.1.2, so ϕ(x)− λ = ϕ̃(x− λe) 6= 0. This implies that |ϕ(x)| ≤ ‖x‖, i.e. that
ϕ is bounded and ‖ϕ‖op.

If A is unital, then ‖e‖ = 1 and ϕ(e) = 1, so ‖ϕ‖op = 1.

Theorem II.2.7. Let A be a Banach algebra.

(i) If A is unital, then the space σ(A) is compact Hausdorff.

(ii) In general, the space σ(A) is locally compact Hausdorff, and σ(Ae) is its Alexandroff
compactification (a.k.a. one-point compactification).

Remember that, if X is a Hausdorff locally compact topological space, then its Alexandroff
compactification is the space X ∪ {∞} (i.e. X with one point added), and that its open subsets
are the open subsets of X and the complements in X ∪ {∞} of compact subsets of X .

Proof. By corollary II.2.6, the spectrum σ(A) is a subset of the closed unit ball of Hom(A,C).
We know that this closed unit ball is compact Hausdorff for the weak* topology on Hom(A,C)
(this is Alaoglu’s theorem), and σ(A) ∪ {0} is closed in this topology, because it is defined by
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the closed conditions ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ A. So σ(A) ∪ {0} is compact (for the
weak* topology), and its open subset σ(A) is locally compact. If A is unital, then σ(A) is closed
in σ(A) ∪ {0} because it is cut out by the condition ϕ(e) = 1, so σ(A) is compact.

Now we show the last statement of (ii). If ϕ ∈ σ(A) (resp. σ(Ae)), x ∈ A and c > 0, we set

U(ϕ, x, c) = {ψ ∈ σ(A)||ϕ(x)− ψ(x)| < c}

(resp. Ũ(ϕ, x, c) = {ψ ∈ σ(Ae)||ϕ(x)− ψ(x)| < c}).

These form a basis for the topology of σ(A) (resp. σ(Ae)).

If ϕ ∈ σ(A), x ∈ A and c > 0, we have

Ũ(ϕ̃, x, c) =

{
U(ϕ, x, c) ∪ {ϕ∞} if |ϕ(x)| < c
U(ϕ, x, c) otherwise.

For the neighborhoods of ϕ∞, we get that, if x ∈ A and c > 0, then

Ũ(ϕ∞, x, c) = {ϕ∞} ∪ {ϕ ∈ σ(A)||ϕ(x)| < c}
= σ(Ae)− {ψ ∈ σ(Ae)||ψ(x)| ≥ c}.

So the topology of σ(A) is induced by the topology of σ(Ae). Also, as {ψ ∈ σ(Ae)||ψ(x)| ≥ c}
is closed in σ(Ae), hence compact, for all x ∈ A and c > 0, the open neighborhoods of ϕ∞ in
σ(Ae) are exactly the complements of the compact subsets of σ(A). This means that σ(Ae) is
the Alexandroff compactification of σ(A).

Definition II.2.8. Let A be a Banach algebra. For every x ∈ A, the map x̂ : σ(A)→ C defined
by x̂(ϕ) = ϕ(x) is called the Gelfand transform of x.

Note that each x̂ is continuous on σ(A) by definition of the topology of σ(A). The resulting
map Γ : A → C (σ(A)), x 7−→ x̂ is called the Gelfand representation of A (or sometimes also
the Gelfand transform).

Note that Γ is a morphism of C-algebras by definition of the algebra operations on C (σ(A)).

Theorem II.2.9. (i) The map Γ maps A into C0(σ(A)), and we have ‖x̂‖∞ ≤ ‖x‖ for every
x ∈ A.

(ii) The image of Γ separates the points of σ(A).

(iii) If A is unital, then ê is the constant function 1 on σ(A).

Proof. (i) If A is unital, then σ(A) is compact, so C0(σ(A)) = C (σ(A)). In general, as
σ(Ae) is the Alexandroff compactification of σ(A), we just need to check that x̂(ϕ∞) = 0
for every x ∈ A; but this follows immediately from the definitions.
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Let x ∈ A. Then
‖x̂‖∞ = sup

ϕ∈σ(A)

|x̂(ϕ)| = sup
ϕ∈σ(A)

|ϕ(x)| ≤ ‖x‖

by corollary II.2.6.

(ii) Let ϕ, ϕ′ ∈ σ(A) such that ϕ 6= ϕ′. Then there exists x ∈ A such that ϕ(x) 6= ϕ′(x), i.e.
x̂(ϕ) 6= x̂(ϕ′).

(iii) This follows immediately from lemma II.2.2.

For a general Banach algebra (even a unital one), the spectrum can be empty (see exercise
II.5.1). But this cannot occur for commutative Banach algebras.

Theorem II.2.10. Let A be a commutative unital Banach algebra. Then the map ϕ 7−→ Ker(ϕ)
induces a bijection from σ(A) to the set of maximal ideals of A.

If you have seen another definition of the spectrum (for example in algebraic geometry), this
theorem shows how it is related to our definition.

Proof. If ϕ ∈ σ(A), then A/Ker(ϕ) ' C (note that ϕ is surjective because it is nonzero), so
Ker(ϕ) is a maximal ideal of A. This shows that the map is well-defined.

If m is a maximal ideal, then it follows from the Gelfand-Mazur theorem that A/m ' C (see
corollary II.1.2.5), so the map ϕ : A→ A/m ' C is an element of σ(A) such that Ker(ϕ) = m.
This shows that the map is surjective.

Now we need to check injectivity. Let ϕ, ψ ∈ σ(A) such that m := Ker(ϕ) = Ker(ψ). Let
x ∈ A. As A/m ' C, we can write x = λe+ y, with λ ∈ C and y ∈ m. Then we have

ϕ(x) = λ = ψ(y).

So ϕ = ψ.

Corollary II.2.11. Let A be a commutative unital Banach algebra. Then, for every x ∈ A :

(i) x ∈ A× if and only if x̂ never vanishes;

(ii) x̂(σ(A)) = σA(x);

(iii) ‖x̂‖∞ = ρ(x).

Proof. (i) If x ∈ A×, then x̂ cannot vanish, because we have x̂x̂−1 = ê = 1. Conversely,
suppose that x is not invertible. Then there exists a maximal ideal containing x, so, by
theorem II.2.10, there exists ϕ ∈ σ(A) such that 0 = ϕ(x) = x̂(ϕ).
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(ii) By (i), we have

σA(x) = {λ ∈ C|x−λe 6∈ A×} = {λ ∈ C|x̂−λ vanishes at at least one point} = x̂(σ(A)).

(iii) This follows from (ii) and from theorem II.1.1.3.

II.3 C∗-algebras and the Gelfand-Naimark theorem

Definition II.3.1. A Banach ∗-algebra A is called a C∗-algebra if we have ‖x∗x‖ = ‖x‖2 for
every x ∈ A.

Remark II.3.2. Everybody calls this a C∗-algebra, except Bourbaki who says “stellar algebra”
(“algèbre stellaire”).

Lemma II.3.3. If A is a C∗-algebra, then ‖x‖ = ‖x∗‖ for every x ∈ A.

.

Proof. Let x ∈ A− {0}. Then

‖x‖2 = ‖x∗x‖ ≤ ‖x∗‖‖x‖,

so ‖x‖ ≤ ‖x∗‖. Applying this to x∗ and using that (x∗)∗ = x gives ‖x∗‖ ≤ ‖x‖.

Example II.3.4. Most of the examples of example I.4.2.2 are actually C∗-algebras.

(a) C is a C∗-algebra because, for every λ ∈ C, we have |λλ| = |λ|2.

(b) Let G be a locally compact group. Then L1(G) is not a C∗-algebra in general, though it
does satisfy the conclusion of lemma II.3.3. 2

(c) Let X be a locally compact Haudorff space. Then C0(X) is a C∗-algebra, because, for
every f ∈ C0(X), we have

‖f ∗f‖∞ = sup
x∈X
|f(x)f(x)| = sup

x∈X
|f(x)|2 = ‖f‖2

∞.

(d) Let V be a Hilbert space. Then End(V ) is a C∗-algebra. Indeed, let T ∈ End(V ). We
want to prove that ‖T ∗T‖op = ‖T‖2

op. First note that

‖T ∗‖op = sup
v,w∈V, ‖v‖=‖w‖=1

|〈T ∗(v), w〉| = sup
v,w∈V, ‖v‖=‖w‖=1

|〈v, T (w)〉| = ‖T‖op,

2There is a way to modify the norm on L1(G) to make the completion for the new norm a C∗-algebra, but we
won’t need this here.
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so ‖T ∗T‖op ≤ ‖T ∗‖op‖T‖op = ‖T‖2
op. On the other hand,

‖T ∗T‖op = sup
v∈V, ‖v‖=1

‖T ∗T (v)‖ ≥ sup
v∈V, ‖v‖=1

|〈T ∗T (v), v〉| = sup
v∈V, ‖v‖=1

|〈T (v), T (v)〉| = ‖T‖2
op.

Proposition II.3.5. Let A be a C∗-algebra. Then the Gelfand representation Γ : A→ C0(σ(A))
is a ∗-homomorphism.

Remark II.3.6. The proposition says that everybody multiplicative functional on A is a ∗-
homomorphism. A Banach ∗-algebra satisfying this condition is called symmetric. Every C∗-
algebra is symmetric, but the converse is not true. (For example, if G is a locally compact
commutative group, then L1(G) is symmetric, see exercise II.5.4.)

Proof. By adjoining an identity to A, we may reduce to the case where A is unital. (See exercise
II.5.6 for the correct choice of norm on Ae. Note that changing the norm on Ae does not affect
σ(Ae), because the definition of the spectrum does not involve the norm.)

Let x ∈ A and ϕ ∈ σ(A). We want to prove that ϕ(x∗) = x̂∗(ϕ) = x̂(ϕ) = ϕ(x). Write
ϕ(x) = a+ ib and ϕ(x∗) = c+ id, with a, b, c, d ∈ R.

Suppose that b+ d 6= 0. Let

y =
1

b+ d
(x+ x∗ − (a+ c)e) ∈ A.

Note that y = y∗, and that

ϕ(y) =
1

b+ d
(a+ ib+ c+ id− (a+ c)) = i,

so, for every t ∈ R, we have ϕ(y + ite) = (1 + t)i, hence

|1 + t| = |ϕ(y + ite)| ≤ ‖y + ite‖

(by corollary II.2.6). Using the defining property of C∗-algebras and the fact that y = y∗ gives,
for every t ∈ R,

(1 + t)2 ≤ ‖y+ ite‖2 = ‖(y+ ite)(y+ ite)∗‖ = ‖(y+ ite)(y− ite)‖ = ‖y2 + t2e‖ ≤ ‖y2‖+ t2,

i.e. 1 + 2t ≤ ‖y‖2. But this implies that ‖y‖ is infinite, which is not possible. So b + d = 0, i.e.
d = −b.

Applying the same reasoning to ix and (ix)∗ = −ix∗ (and nothing that ϕ(ix) = −b + ia and
ϕ((ix∗)) = d− ic) gives a− c = 0, i.e. a = c. This finishes the proof that ϕ(x∗) = ϕ(x).

Proposition II.3.7. Let A be a commutative unital C∗-algebra. Then, for every x ∈ A, we have
‖x‖ = ρ(x).
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Proof. If x ∈ A is such that x = x∗, then ‖x‖2 = ‖x∗x‖ = ‖x2‖, so ‖x2n‖ = ‖x‖2n for every
n ∈ N.

Now let x be any element of A. Then (xx∗)∗ = xx∗, so the first part applies to xx∗. Also, for
every n ∈ N, (xx∗)n = xn(x∗)n (because A is commutative). So, if n ≥ 0,

‖x‖2n+1

= ‖xx∗‖2n = ‖(xx∗)2n‖ = ‖x2n(x∗)2n‖ = ‖x2n‖2.

This implies that
ρ(x) = lim

x→+∞
‖x2n‖2−n = ‖x‖.

Definition II.3.8. If A is a Banach ∗-algebra, an element x of A is called normal if xx∗ = x∗x.

Corollary II.3.9. Let A be a unital C∗-algebra, and let x ∈ A be a normal element of A. Then
ρ(x) = ‖x‖.

In particular, if V is a Hilbert space and T ∈ End(V ) is normal, then ‖T‖op = ρ(T ).

Proof. Indeed, as x commutes with x∗, the closure of the smallest unital C-algebra A′ of A
containing x and x∗ is a commutative C∗-algebra, and ρ(x) and ‖x‖ don’t change when we see
x as an element of A′.

Theorem II.3.10 (Gelfand-Naimark theorem). Let A be a commutative unital C∗-algebra. Then
the Gelfand representation Γ : A→ C (σ(A)) is an isometric ∗-isomorphism.

Proof. We know that Γ is a ∗-homomorphism by proposition II.3.5, and that it is an isometry by
corollary II.2.11(iii) and proposition II.3.7. In particular, Γ is injective. So it just remains to show
that it is surjective. As Γ is an isometry andA is complete, the image Γ(A) is closed in C (σ(A));
but it separates points by theorem II.2.9(ii) and contains the constant functions because Γ(e) = 1,
so it is equal to C (σ(A)) by the Stone-Weierstrass theorem.

It is easy to see that the Gelfand-Naimark theorem implies the following result (but we won’t
need it).

Corollary II.3.11. Let A be a commutative C∗-algebra. Then the Gelfand representation
Γ : A→ C0(σ(A)) is an isometric ∗-isomorphism.
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II.4 The spectral theorem

Theorem II.4.1. Let V a Hilbert space, and let T ∈ End(V ) be normal. We denote by AT the
closure of the unital subalgebra of End(V ) generated by T and T ∗; it is commutative because T
and T ∗ commute.

Then there exists an isometric ∗-isomorphism Φ : C (σ(T ))
∼→ AT such that, if ι is the injection

of σ(T ) into C, we have Φ(ι) = T .

Note that we just write σ(T ) for σEnd(T )(T ) (this is the usual spectrum of T ).

This theorem doesn’t look a lot like the spectral theorem of finite-dimensional linear algebra.
See exercise II.5.2 for a way to pass between the two.

Proof. Let A = AT . First we will prove the result with σA(T ) instead of σ(T ), then we’ll show
that σ(T ) = σA(T ). Note that we automatically have σ(T ) ⊂ σA(T ) (because, if λidV − T is
not invertible in End(T ), then it certainly won’t be invertible in a subalgebra).

Consider the Gelfand transform of T (seen as an element of A), this is a continuous map
T̂ : σ(A) → C. Let’s show that T̂ is injective. Consider ϕ1, ϕ2 ∈ σ(A), i.e. two multiplicative
functionals on A, such that T̂ (ϕ1) = T̂ (ϕ2), i.e. ϕ1(T ) = ϕ2(T ). We have seen that the Gelfand
representation is a ∗-homomorphism, so we have

T̂ ∗(ϕ1) = T̂ (ϕ1) = T̂ (ϕ2) = T̂ ∗(ϕ2),

i.e. ϕ1(T ∗) = ϕ2(T ∗). The multiplicative functionals ϕ1 and ϕ2 are equal on e, T and T ∗, and
they are continuous, so they are equal on all of A, which is what we wanted.

Now remember that σ(A) is compact Hausdorff, because A is unital. So T̂ induces a homeo-
morphism from σ(A) to its image in C, which is σA(T ) by corollary II.2.11. Hence composing
with T̂ gives an isometric ∗-isomorphism Ψ : C (σA(T ))

∼→ C (σ(A)).

Remember that we also have the Gelfand representation of A, which is an isometric ∗-
isomorphism Γ : A

∼→ C (σ(A)). So we get an isometric ∗-isomorphism Φ : C (σA(T ))
∼→ A by

setting Φ = Γ−1 ◦Ψ.

Let’s show that Φ(ι) = T . As Γ : A → C (σ(A)) is an isomorphism, it suffices to check that
T̂ = Φ̂(ι), i.e. that T̂ = Ψ(ι). Let ϕ ∈ σ(A). We have Ψ(ι)(ϕ) = ι(T̂ (ϕ)) = T̂ (ϕ), as desired.

Finally, we show that the inclusion σ(T ) ⊂ σA(T ) is an equality. Let λ ∈ σA(T ), and suppose
that λ 6∈ σ(T ). Let ε > 0, and choose f ∈ C (σA(T )) such that ‖f‖∞ = 1, f(λ) = 1 and
f(µ) = 0 if |λ − µ| ≥ ε > 0. Let U = Φ(f) ∈ A, then ‖U‖op = ‖f‖∞ = 1. Note that
Φ(1) = idV (where 1 is the constant function with value 1), because Φ is an isomorphism of
algebras. So T − λidV = Φ(ι − λ), and (T − λidV ) ◦ U = Φ((ι − λ)f). As Φ is an isometry,
this implies that

‖(T − λidV ) ◦ U‖op = ‖(ι− λ)f‖∞ ≤ ε
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(because f is bounded by 1, and f(µ) = 0 if |λ− µ| ≥ ε). On the other hand, as λ 6∈ σ(T ), the
operator T − λidV is invertible in End(V ), so we get

1 = ‖f‖∞ = ‖U‖op = ‖(T − λidV )−1(T − λidV )U‖op ≤ ε‖(T − λidV )−1‖op.

This is true for every ε > 0, so it implies that 1 = 0, which is a contradiction.

Corollary II.4.2. Let V be a Hilbert space and T ∈ End(V ) be normal. Then the following
conditions are equivalent :

(i) σ(T ) is a singleton;

(ii) T ∈ CidV ;

(iii) AT = CidV .

Proof.

(i)⇒(ii) If σ(T ) = {λ}, then ι is λ times the unit of C (σ(T )), so T = Φ(ι) = λidV .

(ii)⇒(iii) If T ∈ CidV , then CidV is a closed unital subalgebra of A containing T and T ∗, so it is
equal to AT .

(ii)⇒(iii) Suppose that AT = CidV . Let λ, µ ∈ σ(T ). If λ 6= µ, then we can find f1, f2 ∈ C (σ(T ))
such that f1(λ) = 1, f2(µ) = 1 and f1f2 = 0. But then Φ(f1)Φ(f2) = 0 and
Φ(f1),Φ(f2) 6= 0, which contradicts the fact that C is a domain.

Definition II.4.3. If A is a C-algebra and E ⊂ A is a subset, we set
ZA(E) = {x ∈ A|∀y ∈ E, xy = yx}. This is called the centralizer of E in A.

It is easy to see that the centralizer is always a subalgebra of A.

Corollary II.4.4. Let V be a Hilbert space, and let E be a subset of End(V ) such that E∗ = E.
Suppose that the only closed subspaces of V stable by all the elements of E are {0} and V . Then
ZEnd(V )(E) = CidV .

Proof. Let A = ZEnd(V )(E). It is a closed subalgebra of End(V ). We show that A is stable by ∗
: If T ∈ A, then, for every U ∈ E, we have U∗ ∈ E, hence

T ∗ ◦ U = (U∗ ◦ T )∗ = (T ◦ U∗)∗ = U ◦ T ∗,

so T ∗ ∈ A. In particular, the subalgebra A is generated by its normal elements; indeed, for every
T ∈ A, we have T = 1

2
((T + T ∗) + (T − T ∗)), and both T + T ∗ and T − T ∗ are normal.
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Remember that we want to show that each element of A is in CidV ; by what we just showed, it
suffices to prove it for the normal elements of A. So let T ∈ A be normal. By corollary II.4.2,
it suffices to show that the spectrum σ(T ) of T is a singleton. By the spectral theorem (theorem
II.4.1), we have an isometric ∗-isomorphism Φ : C (σ(T ))

∼→ AT , where AT is the closure
of the unital subalgebra of End(V ) generated by T and T ∗, such that Φ sends the embedding
ι : σ(T ) ↪→ C to T . Note that AT ⊂ A. Now suppose that σ(T ) is not a singleton. Then we can
find two nonzero functions f1, f2 ∈ C (σ(T )) such that f1f2 = 0, and Φ(f1),Φ(f2) are nonzero
elements of EndG(V ) such that Φ(f1)Φ(f2) = 0. Let W = Im(Φ(f2)); then W 6= {0} because
Φ(f2) is nonzero. Also, as Φ(f2) commutes with every element of E, the subspace W is stable
by all the elements of E, so W = V by hypothesis. But we also have Φ(f1)(W ) = 0 because
Φ(f1)Φ(f2) = 0, so Φ(f1) = 0, which contradicts the choice of f1, f2. So σ(T ) is a singleton,
and we are done.

II.5 Exercises

Exercise II.5.1. (a). Let V be a finite-dimensional C-vector space such that dimC(V ) ≥ 2.
Show that σ(End(V )) = ∅.

(b). Let V be an infinite-dimensional Hilbert space. Show that σ(End(V )) = ∅.

(Hint : Look at nilpotent endomorphisms.)

Solution.

(a). We may assume that V = Cn, so that End(V ) = Mn(C). Let ϕ : Mn(C) → C be a
multiplicative linear functional. We want to prove that ϕ = 0. Let (Eij)1≤i,j≤n be the
canonical basis of Mn(C) (so Eij is the matrix with all entry 0, except for a 1 at the
(i, j)-entry). Then EijEkl is equal to 0 unless j = k, and EijEjl = Eil. In particular,
if i 6= j, then E2

ij = 0, hence 0 = ϕ(E2
ij) = ϕ(Eij)

2, and ϕ(Eij) = 0. Also, for every
i ∈ {1, . . . , n}, if we choose j such that j 6= i (this is possible because n ≥ 2), then
Eii = EijEji, so ϕ(Eii) = ϕ(Eij)ϕ)Eji) = 0. To sum up, we have shown that ϕ is 0 on a
basis of Mn(C), so ϕ = 0.

(b). Let ϕ : End(V ) → C be a multiplicative linear functional. As in (a), as the key is to note
that, if T ∈ End(V ) is such that T 2 = 0, then we have ϕ(T )2 = 0, hence ϕ(T ) = 0.
Now choose two closed subspaces V1 and V2 such that V = V1 ⊕ V2 and that V1 and V2

are isomorphic. (This is possible because V is infinite-dimensional. For example, choose
a Hilbert basis (ei)i∈I of V . As I is infinite, we can find I1, I2 ⊂ I such that I = I1 t I2

and that there exists a bijection between I1 and I2. Take Vr =
⊕

i∈Ir Cei, for r = 1, 2.)

Choose isomorphisms U1 : V1
∼→ V2 and U2 : V2

∼→ V1. Let T1 ∈ End(V ) be de-

133



II Some Gelfand theory

fined by T1(v + w) = U1(v) if v ∈ V1 and w ∈ V2, and T2 ∈ End(V ) be defined by
T2(v + w) = U2(w) if v ∈ V1 and w ∈ V2. Then T 2

1 = T 2
2 = 0, so ϕ(T1) = ϕ(T2) = 0,

and also ϕ(T1 + T2) = 0. But T := T1 + T2 is an automorphism of V , so, for every
T ′ ∈ End(V ), we have T ′ = T (T−1T ′), hence ϕ(T ′) = ϕ(T )ϕ(T−1T ′) = 0.

�

Exercise II.5.2. Let V be a finite-dimensional Hilbert space. The goal of this problem is to
relate the spectral theorem of the notes (theorem II.4.1) with the usual finite-dimensional spectral
theorem (which says that a normal endomorphism of V is diagonalizable in an orthonormal
basis).

Remember that, if R is a commutative ring, we say that x ∈ R is nilpotent if there exists an
integer n ≥ 1 such that xn = 0, and we say that R is reduced if the only nilpotent element of R
is 0.

(a). Show that the usual finite-dimensional spectral theorem (as stated above) implies theorem
II.4.1 for V .

(b). Let T ∈ End(V ), and let A be the unital subalgebra of End(V ) generated by T (i.e. the
space of polynomials in T ). Show that T is diagonalizable if and only if A is reduced.

(c). LetA be a commutative unital subalgebra of End(V ). IfA is reduced, show that there exist
subspaces V1, . . . , Vr of V , uniquely determined up to ordering, such that V =

⊕r
i=1 Vi

and that

A = {T ∈ End(V )|∀i ∈ {1, . . . , r}, T (Vi) ⊂ Vi and T|Vi ∈ C · idVi}.

(d). Let A be as in question (c). Show that A is stable by the map T 7−→ T ∗ if and only the Vi
are pairwise orthogonal.

(e). Show that theorem II.4.1 implies the usual finite-dimensional spectral theorem (as stated
above).

Solution.

(a). Let T ∈ End(V ) be a normal endomorphism. By the finite-dimensional spectral the-
orem, we can find an orthonormal basis (e1, . . . , en) of V and λ1, . . . , λn ∈ C such
that T (ei) = λiei for every i ∈ {1, . . . , n}. As the basis is orthonormal, we also have
T ∗(ei) = λiei for every i ∈ {1, . . . , n}. After rearranging the ei, we may also assume that
we have 1 ≤ n0 ≤ . . . ≤ nr = n + 1 such that λi = λj if there exists s ∈ {0, . . . , r − 1}
with ns ≤ i, j ≤ ns+1 − 1 and λi 6= λj otherwise.

In particular, we may assume that V = Cn and that T is the diagonal matrix with diagonal
entries λ1, . . . , λn, with the same conditions on the λi. I claim that AT is the subalgebra
of diagonal matrices in Mn(C) with diagonal entries x1, . . . , xn satisfying : xi = xj if
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there exists s ∈ {0, . . . , r − 1} with ns ≤ i, j ≤ ns+1 − 1. First, this does define a
subalgebra of Mn(C). It is also clear that every matrix in AT is of this form, because AT
is generated (as an algebra) by In, T and T ∗, and all three of these matrices satisfy the
condition defining AT . Finally, let X ∈ AT , and let x1, . . . , xn be its diagonal entries. By
Lagrange interpolation, there exists a polynomial P ∈ C[t] such that P (λns) = xns for
s ∈ {0, . . . , r − 1}, and then P (T ) is the diagonal matrix with entries x1, . . . , xn, i.e. X .

(b). Let P ∈ C[t] be the minimal polynomial of T . Then C[t] → Mn(C), f(t) 7−→ f(T ) is
a morphism of C-algebra with image A and kernel the ideal generated by P , by definition
of the minimal polynomial. So A ' C[t]/(P ). If we write P (t) =

∏r
i=(t − ai)

ni with
a1, . . . , ar ∈ C pairwise distinct and n1, . . . , nr ≥ 1, then, by the Chinese remainder
theorem, A '

∏n
i=1 C[t]/(t − ai)

ni . So A is reduced if and only if all the ni are equal
to 1, i.e., if and only if P has only simple roots, which is equivalent to the fact that T is
diagonalizable.

(c). if T ∈ A, then the unital subalgebra of End(V ) generated by T is contained in A, and
in particular it is reduced; by question (b), this implies that T is diagonalizable. As A
by a finite number of elements (because it is a finite-dimensional C-vector space), and
these are diagonalizable and commute with each other, we can find a basis (e1, . . . , en)
in which every element of A is diagonal. For i ∈ {1, . . . , n}, define ϕi : A → C by
T (ei) = ϕi(T )ei, for T ∈ A. Then ϕ1, . . . , ϕn are multiplicative functionals on A. After
reordering the ei, we may assume that we have 1 ≤ n0 ≤ . . . ≤ nr = n + 1 such that
ϕi = ϕj if there exists s ∈ {0, . . . , r−1}with ns ≤ i, j ≤ ns+1−1 and ϕi 6= ϕj otherwise.

Note that all the ϕi are nonzero (because they send In to 1), so they are surjective. I claim
that ϕn0 , ϕn1 . . . , ϕnr−1 are linearly independent (as function A → C). This is a classical
result, but let’s prove it quickly. Suppose that it is not true, and choose a nontrivial relation
of linear dependence

∑r−1
i=0 aiϕni = 0, with ai ∈ C, such that the number of nonzero ai

is minimal. There are at least two nonzero ai, so, up to reordering, we may assume that
a0, a1 6= 0. Choose x0 ∈ A such that ϕn1(x0) 6= ϕn1(x0). Then, for every x ∈ A,

0 = ϕn0(x0)
r−1∑
i=0

aiϕni(x)−
r−1∑
i=0

aiϕni(x0x) =
r−1∑
i=1

ai(ϕn0(x0)− ϕni(x0))ϕni(x).

So
∑r−1

i=1 ai(ϕn0(x0) − ϕni(x0))ϕni = 0, with a1(ϕn1(x0) − ϕn1(x0)) 6= 0. So we have
another nontrivial relation of linear dependence among the ϕni , and it has fewer nonzero
coefficients than the first one, which is a contradiction.

Now that we know that ϕn0 , ϕn1 . . . , ϕnr−1 are linearly independent, we also know
that (ϕn0 , ϕn1 . . . , ϕnr−1) : A → Cr is surjective. For i ∈ {1, . . . , r}, let
Vi = Span(eni−1

, . . . , e−1+ni) ⊂ V . Then, if T is in A, T acts as a multiple of id on
each Vi, and the surjectivity of (ϕn0 , ϕn1 . . . , ϕnr−1) : A→ Cr implies that the converse is
true. (If (a1, . . . , ar) ∈ Cr, choose T ∈ A such that ϕni = ai+1 for 0 ≤ i ≤ r− 1. Then T
acts on each Vi by multiplication by ϕni+1

(T ) = ai).

Finally, let’s show that V1, . . . , Vr are uniquely determined. Let V = V ′1 ⊕ . . . ⊕ V ′s be
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another decomposition satisfying the same property. Choose a1, . . . , ar ∈ C pairwise
distinct, and let T ∈ A such that T|Vi = aiidVi for every i. Then V1, . . . , Vr are the
eigenspaces of T , and T acts by a multiple of identity on each V ′j , so we must have a
partition I1, . . . , Is of {1, . . . , r} such that V ′j =

⊕
i∈Ij Vi for every j ∈ {1, . . . , s}. But

the roles of the Vi and the V ′j are symmetric, so we have a similar property with Vi and
V ′j exchanged. This implies that r = s and that V ′1 , . . . , V

′
r are equal to V1, . . . , Vr up to

reordering.

(d). For i ∈ {1, . . . , r}, we define a linear endomorphism πi : V → V by πi(v1 . . .+vr) = vi if
vj ∈ Vj for j ∈ {1, . . . , r}. Then Im(πi) = Vi, Ker(πi) =

⊕
j 6=i Vj and π1+. . .+πr = idV .

Note that A is exactly the subalgebra {
∑r

i=1 λiπi, λ1, . . . , λr ∈ C} of End(T ).

If V1, . . . , Vr are pairwise orthogonal, then π1, . . . , πr are orthogonal projections, so they
are self-adjoint, and so A is stable by T 7−→ T ∗.

Conversely, suppose that A is stable by T 7−→ T ∗. If v ∈ V and w ∈ V ⊥1 , then

0 = 〈π1(v), w〉 = 〈v, π∗1(w)〉.

This implies that V ⊥1 ⊂ Ker(π∗1). As rk(π∗1) = rk(π1) = dim(V1), we actually have
Ker(π∗1) = V ⊥1 . But π∗1 ∈ A, so every eigenspace of π∗1 is a sum of Vi’s, so there exists
I ⊂ {1, . . . , r} such that Ker(π∗1) =

⊕
i∈I Vi. As V ⊥1 ∩ V1 = {0}, the set I cannot contain

1. But then the only way that ker(π∗1) can have dimension dim(V )−n1 is if I = {2, . . . , r}.
Finally, we have shown that

V ⊥1 = Ker(π∗1) = V2 ⊕ . . .⊕ Vr.

Repeating this procedure with the other πi’s, we see that, for every i ∈ {a, . . . , r},

V ⊥i =
⊕
j 6=i

Vj.

(e). Let T ∈ End(V ), and let Φ : C (σ(T ))
∼→ AT be as in theorem II.4.1. In particular, AT

is a commutative reduced subalgebra of End(V ) (because C (σ(T )) is reduced), and it is
stable by ∗ (by definition), so, by (c) and (d), we have a decomposition V = V1 ⊕ . . .⊕ Vr
of V into pairwise orthogonal subspaces such that every element of AT preserves this
decomposition and acts as a scalar on each Vi. If we choose an orthonormal basis for each
Vi and put these together, we’ll get an orthonormal basis on V in which each element of
AT is diagonal. Now just remember that T ∈ AT .

�

Exercise II.5.3. This problem is meant to be solved without any of the results of sections and
II.3 and II.4. 3

3Compare Nullstellensatz.
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Let X be a locally compact Hausdorff topological space. Let X be the Alexandroff compacti-
fication of X . This means that X = X ∪ {∞}, and that the open sets of X are the open subsets
and the sets of the form (X −K) ∪ {∞}, where K is a compact subset of X .

(a). Show that X is a compact Hausdorff topological space, that X is open in X , and that X is
dense in X if and only if X is not compact.

(b). Show that C (X) is isomorphic to the Banach ∗-algebra that you get by adjoining a unit to
C0(X). (Don’t forget to compare the topologies.)

(c). If X is compact, show that every proper ideal of C (X) is contained in one of the ideals
mx = {f ∈ C (X)|f(x) = 0}, x ∈ X .

(d). In general, show that the map X → σ(C0(X)), x 7−→ (ϕx : f 7−→ f(x)) is a homeomor-
phism.

Let A be a commutative Banach algebra. If I is an ideal of A, we set

V (I) = {x ∈ σ(A)|∀f ∈ A, f̂(x) = 0}.

If N is a subset of σ(A), we set

I(N) = {f ∈ A|∀x ∈ N, f̂(x) = 0}.

(a). Suppose that X is compact. Show that, for every closed ideal I of C (X) and every closed
subset N of σ(C (X)) ' X , we have

I(V (I)) = I and V (I(N)) = N.

Remark. The result is still true without the assumption that X is compact (use C0(X) every-
where).

Solution.

(a). First we show that the definition does give a topology on X . Let (Ui)i∈I be a family of
open subsets of X . Then we can write I = I ′ t I ′′, with Ui ⊂ X open and i ∈ I ′ and
Ui = X −Ki with Ki compact if i ∈ I ′′. We have

⋃
i∈I

Ui =

(⋃
i∈I′

Ui

)
∪

(
X −

⋂
i∈I′′

Ki

)
.

If I ′′ is empty, this is an open subset of X , hence an open subset of X . Otherwise, this is
the complement on the compact subset

⋂
i∈I′′ Ki −

⋃
i∈I′ Ui of X , so it is again an open

subset of X . On the other hand, we have⋂
i∈I

Ui =

(⋂
i∈I′

Ui

)
∩

(
X −

⋃
i∈I′′

Ki

)
.
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Suppose that I is finite. Then, if I ′′ = ∅, the set
⋂
i∈I Ui is the open subset

⋂
i∈I′ Ui of

X , hence it is an open subset of X . Otherwise, it is the complement of the compact subset⋃
i∈I′′ Ki −

⋂
i∈I′ Ui of X , hence it is again an open subset of X .

Let’s show that X is Hausdorff. Let x, y ∈ X such that x 6= y. We want to find disjoint
open neighborhoods of x and y. If x, y ∈ X , then there exists open subsets U and V of
X such that x ∈ U , y ∈ V and U ∩ V = ∅. These sets are still open in X , so we are
done. If one of x or y is∞, we may assume that it is x. As X is locally compact, we can
find a compact subset K of X and an open subset V of X such that y ∈ V ⊂ K. Then
U := X −K is an open subset of X containing x =∞, and we have U ∩ V = ∅.

Let’s show that X is compact. Let (Ui)i∈I be a family of open subsets of X such that
X =

⋃
i∈I Ui. Let i0 ∈ I be such that∞ ∈ Ui0 , and write K = X−Ui0 . This is a compact

subset of X , and it is covered by the open subsets Ui ∩X , i ∈ I − {i0}. So there exists a
finite subset J of I − {i0} such that K ⊂

⋃
i∈J Ui, and then we have X =

⋃
i∈J∪{i0} Ui.

The set X is open in X by definition of the topology of X .

Suppose that X is not compact. Then, if U is an open neighborhood of ∞ in X , the
compact subset X − U of X cannot be equal to X , which means that U ∩X 6= ∅. So∞
is in the closure of X in X . Conversely, suppose that X is compact. Then {∞} = X −X
is an open subset of X , so∞ is an isolated point of X .

(b). Let A be the Banach ∗-algebra that you get by adjoining a unit to C0(X). We have
A = C0(X)⊕Ce, with ‖f + λe‖ = ‖f‖∞ + |λ| and (f + λe)∗ = f + λe (for f ∈ C0(X)
and λ ∈ C).

Note that we can extend every f ∈ C0(X) to a continuous function f on X by setting
f(∞) = 0. (The condition that f is 0 at infinity exactly says that the extended function
is continuous, by definition of the topology on X .) This gives an injective C-algebra map
C0(X) → C (X). So we get a map α : A → C (X) sending f + λe to f + λ, where the
second “λ” is the constant function onX . This α is a morphism of C-algebras by definition
of the multiplication on A, and it is a ∗-homomorphism by definition of ∗ on A. Also, α is
bounded, because, if f ∈ C0(X) and λ ∈ C, we have

‖f + λ‖∞ ≤ ‖f‖∞ + |λ| = ‖f + λe‖.

Finally, note that α is surjective, because it has an inverse sending f ∈ C (X) to
(f|X − λ) + λe. By the open mapping theorem (also known as the Banach-Schauder
theorem), the inverse of α is also bounded, so α is a homeomorphism.

(c). Let I be an ideal of C (X), and suppose that I is not contained in any mx. Then, for
every x ∈ X , we can find fx ∈ I such that fx(x) 6= 0; as fx is continuous, we can also
find an open neighborhood Ux of x such that fx(y) 6= 0 for every y ∈ Ux. We have
X =

⋃
x∈X Ux and X is compact, so there exist x1, . . . , xn ∈ X such that X =

⋃n
i=1 Uxi .

Let f =
∑n

i=1 |fxi |2 =
∑n

i=1 fxifxi . Then f ∈ I because I is an ideal, and f doesn’t
vanish on X; indeed, if x ∈ X , we can find i ∈ {1, . . . , x} such that x ∈ Uxi , and then
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f(x) ≥ |fxi(x)|2 > 0. So the function g : x 7−→ f(x)−1 exists and is continuous on X ,
and we have gf = 1, which implies that 1 ∈ I , hence that I = C (X).

(d). Let’s call this map α. First we show that α is injective. If x, y ∈ X are such that x 6= y,
then there exists f ∈ C0(X) such that f(x) 6= f(y) (by Urysohn’s lemma), so ϕx 6= ϕy.

Let’s show that α is surjective. Let ϕ : C0(X)→ C be a multiplicative functional. We can
extend it to a multiplicative functional ϕ̃ on C0(X)e, and we have seen in (b) that C0(X)e
is isomorphic to C (X). Let I = Ker(ϕ̃). This is a maximal ideal of C (X), hence, by (c),
there exists x ∈ X such that I ⊂ mx, and we must have I = mx because I is maximal.
Also, note that the isomorphism C0(X)e ' C (X) constructed in (b) identities C0(X) to
m∞. Hence, as ϕ is not 0 on C0(X),w e cannot have x = ∞, so x ∈ X , and we have
Ker(ϕ) = {f ∈ C0(X)|f(x) = 0} = Ker(ϕx). As in the proof of theorem II.2.10, this
easily implies that ϕ = ϕx.

The map α is continuous by definition of the topology on σ(C0(X)). If X is compact,
this implies that α is a homeomorphism. In general, the analogue of α for the Alexandroff
compactification X of X is a homeomorphism because X is compact, and its restriction to
X is α (if we identify C0(X) to a subalgebra of C (X) as in (b)), so α is open, and we are
done.

(e). Note that, if N is a closed subset of X , then I(N) =
⋂
x∈N mx, so I(N) is an ideal of

C (X).

Let I be a closed ideal of C (X), and let N = N(I). For every x ∈ N and every f ∈ I ,
we have f(x) = 0 by definition of N(I). So I ⊂

⋂
x∈N mx = I(N). Conversely, let

f ∈
⋂
x∈N mx; we want to show that f ∈ I . By assumption, f(x) = 0 for every x ∈ N ,

so supp(f) ∩ N = ∅. For every y ∈ supp(f), choose fy ∈ I such that fy(y) 6= 0;
as fy is continuous, we can find an open subset Uy 3 y of X such that fy(z) 6= 0 for
every z ∈ Uy. We have supp(f) ⊂

⋃
y∈supp(f) Uy and supp(f) is compact, so we can find

y1, . . . , yn ∈ supp(f) such that supp(f) ⊂
⋃n
i=1 Uyi . Let g =

∑n
i=1 |fyi |2. Then g ∈ I ,

and g(y) > 0 for every y ∈ supp(f). Define a function h : X → C by

h(x) =

{
f(x)g(x)−1 if x ∈ supp(f)
0 otherwise.

Let U = {x ∈ X|g(x) 6= 0} and V = X − supp(f). Then U and V are open subsets of
X and X = U ∪ V . On U , the function h is equal to fg−1, hence continuous; on V , it is
equal to 0, hence also continuous. So h ∈ C (X), and we have f = gh by definition of h.
As g ∈ I , this shows that f ∈ I , as desired.

Now let N be a closed subset of X , and let I = I(N). For every x ∈ N and every f ∈ I ,
we have f(x) = 0 by definition of I(N), so N ⊂ V (I). Conversely, if x 6∈ N , then, by
Urysohn’s lemma, we can find f ∈ C (X) such that f|N = 0 and f(x) 6= 0. Then f ∈ I by
definition of I(N), so x 6∈ V (I).

�
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Exercise II.5.4. Consider the Banach ∗-algebra `1(Z) (i.e. L1(G) for the discrete group G = Z,
with the convolution product and the involution defined in class). We write elements of `1(Z) as
sequences a = (an)n∈Z in CZ.

(a). Show that `1(Z) is not a C∗-algebra.

(b). Show that there is a homeomorphism σ(`1(Z))
∼→ S1 such that the Gelfand transform of

a = (an)n∈Z is the function S1 → C, eiθ 7−→
∑+∞

n=−∞ ane
inθ. 4

(c). More generally, if G is a commutative locally compact group, show that the map
Ĝ → σ(L1(G)) sending χ to the morphism L1(G) → C, f 7−→

∫
G
f(x)χ(x)dx is a

homeomorphism. (Hint : What is the dual of L1(G) ?)

Solution.

(a) Let a = (an)n∈Z. Then a∗ = (a−n)n∈Z (remember that Z is unimodular, because it is
commutative (or because it is discrete)). Let b = a∗ ∗ a. We have, for every n ∈ Z,

bn =
∑
m∈Z

a∗man−m =
∑
m∈Z

a−man−m.

Take a defined by a0 = i, a1 = 1, a2 = i and an = 0 for n ∈ Z−{0, 1, 2}. Then a∗0 = −i,
a∗−1 = 1, a∗2 = −i, and a∗n = 0 if n ∈ Z−{−2,−1, 0}. So bn = 0 if n 6∈ {−2,−1, 0, 1, 2},
and we have

b−2 = a∗−2a0 = 1,

b−1 = a∗−1a0 + a∗−2a1 = i− i = 0,

b0 = a∗−2a2 + a∗−1a1 + a∗0a0 = 3,

b1 = a∗0a1 + a∗−1a2 = −i+ i = 0,

and

b2 = a∗0a2 = 1.

So |b|1 = 5 6= |a|21 = 9.

(c) Let G be a commutative locally compact group. Let ϕ ∈ σ(L1(G)). We want to show that
ϕ comes from an element χ of Ĝ. As ϕ is a continuous linear functional on L1(G), there
exists χ ∈ L∞(G) such that ϕ(f) =

∫
G
f(x)χ(x)dx for every f ∈ L1(G).

4This means that the Gelfand transform is a ∗-homomorphism, i.e. the Banach ∗-algebra L1(G) is symmetric,
even though it is not a C∗-algebra.
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For every f, g ∈ L1(G), we have

ϕ(f)

∫
G

g(y)χ(y)dy = ϕ(f)ϕ(g)

= ϕ(g ∗ f)

=

∫
G×G

g(y)f(y−1x)χ(x)dxdy

=

∫
G

g(y)ϕ(Lyf)dy.

As this is true for every g ∈ L1(G), the functions ϕ(f)χ and y 7−→ ϕ(Lyf) (both in
L∞(G) are equal almost everywhere. Hence, if we choose f ∈ L1(G) such that ϕ(f) 6= 0,
we can replace χ by y 7−→ ϕ(f)−1ϕ(Lyf). As the functions ϕ : L1(G) → C and
G → L1(G), y 7−→ Lyf are continuous (the second by proposition I.3.1.13), this new
χ is continuous. Also, we have ϕ(g)χ(y) = ϕ(Lyg) for every g ∈ L1(G) and every
y ∈ G.

Let x, y ∈ G. As Lxyf = Lx(Lyf), we have

ϕ(Lxyf) = χ(xy)ϕ(f)

= χ(x)ϕ(Lyf)

= χ(x)χ(y)ϕ(f),

so χ(xy) = χ(x)χ(y). So χ ∈ Ĝ, and we have shown that the map Ĝ→ σ(L1(G)) of the
problem is surjective. Note that this map is also injective, because a continuous function
on G is determined by the linear functional it defines on L1(G). Also, the topology on
σ(L1(G)) ⊂ L∞(G) is the weak* topology by definition, and we have seen in question
I.5.4.2(a) that this coincides with the topology on compact convergence on Ĝ, so the map
Ĝ→ σ(L1(G)) is a homeomorphism.

(b) We know that Ẑ ' S1 by I.5.4.1(d), so we get a homeomorphism S1 = Ẑ ∼→ σ(`1(Z))
by question (c). Unpacking the formulas, we see that it sends z ∈ S1 to the multiplicative
functional a = (an)n∈Z 7−→

∑
n∈Z anz

n on `1(Z), which is exactly what we wanted.

�

Exercise II.5.5. Let A be a unital C-algebra with an involutive anti-isomorphism ∗. Show that
there is at most one norm on A that makes A into a C∗-algebra.

Solution. Let ‖.‖ be a norm on A that makes A into a C∗-algebra. Let x ∈ A. Note that
(x∗x)∗ = x∗x, so x∗x is normal. By definition of a C∗-algebra and corollary II.3.9, we have

‖x‖ = ‖x∗x‖1/2 = ρ(x∗x)1/2.
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II Some Gelfand theory

But, by theorem II.1.1.3,

ρ(x∗x) = max{|λ|, λ ∈ C, x∗x− λe 6∈ A×}.

This last quantity only depends on the algebra structure of A and on ∗, and it determines ‖x‖.

�

Exercise II.5.6. Let A be a C∗-algebra. Then Ae is a Banach ∗-algebra, but it is not always
a C∗-algebra with the norm defined by ‖x + λe‖ = ‖x‖ + |λ. (See question II.5.3 (b) for an
example of this phenomenon.)

We define a new norm ‖.‖′ on Ae by :

‖x+ λe‖′ = sup{‖xy + λy‖, y ∈ A, ‖y‖ ≤ 1}.

We now suppose that A does not have a unit and that A 6= {0}.

(a). Show that ‖.‖′ is a submultiplicative norm on Ae.

(b). Show that ‖.‖′ agrees with ‖.‖ on A, that A is closed in Ae and that Ae is complete for ‖.‖′.

(c). Show that Ae is a C∗-algebra for the norm ‖.‖′.

Solution.

(a). Let x1 = y1 + λ1e, x2 = y2 + λ2e be elements of Ae (y1, y2 ∈ A and λ1, λ2 ∈ C) and
c ∈ C. Then

‖x1 + x2‖′ = sup{‖y1y + λ1y + y2y + λ2y‖, y ∈ A, ‖y‖ = 1}
≤ sup{‖y1y + λ1y‖, y ∈ A, ‖y‖ ≤ 1}+ sup{‖y2y + λ2y‖, y ∈ A, ‖y‖ ≤ 1}
= ‖x1‖′ + ‖x2‖′,

‖cx1‖ = sup{‖cy1y + cλ1y‖, y ∈ A, ‖y‖ ≤ 1}
= |c| sup{‖y1y + λ1y‖, y ∈ A, ‖y‖ ≤ 1}
= |c|‖x1‖′,

and

‖x1x2‖′ = sup{‖(y1y2 + λ2y1 + λ1y2)y + λ1λ2y‖, y ∈ A, ‖y‖ = 1}
= sup{‖y1(y2y + λ2y) + λ1(y2y + λ2y)‖, y ∈ A, ‖y‖ = 1}
≤ sup{‖y1 + λ1e‖′‖y2y + λ2y‖, y ∈ A, ‖y‖ ≤ 1}
= ‖x1‖′‖x2‖′.
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To show that ‖.‖′ is a norm on Ae, we still need to show that ‖x+ λe‖′ 6= 0 if x+ λe 6= 0.
Suppose that ‖x + λe‖′ = 0, then xy + λy = 0 for every y ∈ A such that ‖y‖ = 1, hence
for every y ∈ A. If x = 0, then λ = 0. If x 6= 0, then, taking y = x∗ (and noting that
xx∗ 6= 0 because ‖xx∗‖ = ‖x∗‖2 6= 0), we see that λ 6= 0. Let, so λ−1xy = y for every
y ∈ A, i.e. λ−1x is a left unit for A. This implies that (λ−1y)∗ is a right unit for A, so A
has a unit, contradicting our assumption. So x = 0.

(b). If x ∈ A, then we have

‖x‖′ = sup{‖xy‖, y ∈ A, ‖y‖ = 1} ≤ ‖x‖.

If x = 0, then ‖x‖′ = ‖x‖ = 0. Otherwise, we also have x∗ 6= 0; taking y = 1
‖x∗‖x

∗, we
get

‖x‖′ ≥ 1

‖x∗‖
‖xx∗‖ = ‖x∗‖ = ‖x‖.

Hence A is complete for ‖.‖′, so it is closed in Ae. In particular, the quotient map
Ae → Ae/A ' C, x+ λe 7−→ λ is continuous.

Now we show that Ae is complete for ‖.‖′. Let (xn+λne)n≥0 be a Cauchy sequence in Ae,
with xn ∈ A and λn ∈ C. By the previous paragraph, the sequence (λn)n≥0 is Cauchy, so
the sequence (xn)n≥0 in A is also Cauchy. As the two norms coincide on A, the sequence
(xn)n≥0 converges to some x ∈ A, and of course (λn)n≥0 converges to some λ ∈ C. It is
now clear (using the obvious fact that ‖z + µe‖′ ≤ ‖z‖ + |µ| for z ∈ A and µ ∈ C) that
the sequence (xn + λne)n≥0 converges to x+ λe in Ae.

(c). Finally, we show that Ae is a C∗-algebra. Let x ∈ A and λ ∈ C. We want to show that
‖(x+ λe)∗(x+ λe)‖′ = (‖x+ λe‖′)2. We may assume that x+ λe 6= 0. Let ε > 0. Then
we can find y ∈ A such that ‖y‖ = 1 and

‖xy + λy‖ ≥ ‖x+ λe‖′(1− ε).

Note that xy + λy = (x+ λe)y (in Ae). So

(1− ε)2(‖x+ λe‖′)2 ≤ ‖xy + λy‖2

= ‖(xy + λy)∗(xy + λy)‖
= ‖y∗(x+ λe)∗(x+ λe)y‖′

≤ ‖y‖2‖(x+ λe)∗(x+ λe)‖′

= ‖(x+ λe)∗(x+ λe)‖′.

As this is true for every ε, we get

‖(x+ λe)∗(x+ λe)‖′ ≥ (‖x+ λe‖′)2.

Using the submultiplicativity of the norm, we deduce that

‖x+ λe‖′ ≤ ‖(x+ λe)∗‖′.
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As ∗ is bijective on Ae, the last inequality is actually an equality, and so we also get

(‖x+ λe‖′)2 ≤ ‖(x+ λe)∗(x+ λe)‖′ ≤ (‖x+ λe‖′)2,

which finishes the proof.

�
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III The Gelfand-Raikov theorem

The goal of this chapter is to prove the Gelfand-Raikov theorem, which says that irreducible
unitary representations of locally groups separate point (i.e., if G is alocally compact group and
x ∈ G− {1}, then there exists an irreducible unitary representation of G such that π(x) 6= 1).

In this chapter, G is a locally compact group and µ (or just “dx”) is a left Haar measure on G.

III.1 L∞(G)

You can safely ignore this section and assume that all groups are σ-compact.

We will be using L∞(G) more seriously in this chapter, and we want it to be the continuous
dual of L1(G), which is not true if G is not σ-compact. So we change the definition of L∞(G)
to make it true. See section 2.3 of [11].

More generally, let X be a locally compact Hausdorff topological space and let µ be a regular
Borel measure. We say that E ⊂ X is locally Borel if, for every Borel subset F of X such that
µ(F ) < +∞, we have that E ∩ F is a Borel subset of X . If E is locally Borel, we say that E is
locally null if, for every Borel subset F of X such that µ(F ) < +∞, we have µ(E ∩ F ) = 0.
We say that an assertion about points of X is true locally almost everywhere if it is true outside
of a locally null subset. We saw that a function f : X → C is locally measurable if, for every
Borel subset A of C, the set f−1(A) is locally Borel. Now we set L∞(X) to be the space of
locally measurable functions X → C that are bounded locally almost everywhere, modulo the
equivalence relation : f ∼ g if f − g = 0 locally almost everywhere. The norm on L∞(X) is
given by

‖f‖∞ = inf{c ∈ R≥0||f(x)| locally almost everywhere}.

III.2 Functions of positive type

Definition III.2.1. A function of positive type on G is a function ϕ ∈ L∞(G) such that, for every
f ∈ L1(G), we ∫

G

(f ∗ ∗ f)(x)ϕ(x)dx ≥ 0.
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Note that f ∗ ∗ f ∈ L1(G) if f ∈ L1(G), so the integral converges.

Remark III.2.2. For every ϕ ∈ L∞(G) and every f, g ∈ L1(G), we have∫
G

(f ∗ ∗ g)(x)ϕ(x)dx =

∫
G×G

f ∗(y)g(y−1x)ϕ(x)dxdy

=

∫
G×G

∆(y)−1f(y−1)g(y−1x)ϕ(x)dxdy

=

∫
G×G

f(y)g(yx)ϕ(x)dxdy

=

∫
G×G

f(y)g(x)ϕ(y−1x)dxdy.

Example III.2.3. (1) 0 is a function of positive type.

(2) If ϕ : G → S1 ⊂ C is a 1-dimensional representation (i.e. ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ G), then it is a function of positive type. Indeed, for every f ∈ L1(G), we have by
remark III.2.2 ∫

G

(f ∗ ∗ f)(x)ϕ(x)dx =

∫
G×G

f(y)f(yx)ϕ(y−1x)dxdy

=

∫
G×G

f(y)f(x)ϕ(y)ϕ(x)dxdy

=

∣∣∣∣∫
G

ϕ(x)f(x)dx

∣∣∣∣2 ≥ 0.

We will generalize the second example in point (ii) of the following proposition.

Proposition III.2.4. (i) If ϕ : G→ C is a function of positive type, then so is ϕ.

(ii) If (π, V ) is a unitary representation of G and v ∈ V , then ϕ : G→ C, x 7−→ 〈π(x)(v), v〉
is a continuous function of positive type.

(iii) Let f ∈ L2(G), and define f̃ : G→ C by f̃(x) = f(x−1). Then f ∗ f̃ makes sense, it is in
L∞(G), and it is a function of positive type.

Proof. (i) Let f ∈ L1(G). Then, by remark III.2.2,∫
G

(f ∗ ∗ f)ϕdµ =

∫
G×G

f(y)f(yx)ϕ(x)dxdy

=

∫
G×G

f(y)f(yx)ϕ(x)dxdy

=

∫
(f
∗ ∗ f)ϕdµ ≥ 0.
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(ii) The function ϕ is continuous because G → V , x 7−→ π(x)(v) is continuous. Let’s show
that it is of positive type. Note that, for all x, y ∈ G, we have

ϕ(y−1x) = 〈π(y−1x)(v), v〉 = 〈π(x)(v), π(y)(v)〉.

Let f ∈ L1(G). Then, by remark III.2.2,∫
(f ∗ ∗ f)ϕdµ =

∫
G×G

f(x)f(y)ϕ(y−1x)dxdy

=

∫
G×G
〈f(x)π(x)(v), f(y)π(y)(v)〉dxdy

= 〈π(f)(v), π(f)(v)〉 ≥ 0.

(iii) Let x ∈ G. Then the integral defining f ∗ f̃(x) is∫
G

f(y)f(x−1y)dy.

This integral converges, because both f and Lxf : y 7−→ f(x−1y) are in L2(G) (by left
invariance of µ). Also, by the Cauchy-Schwarz inequality, we have

|f ∗ f̃(x)| ≤ ‖f‖2‖Lxf‖2 = ‖f‖2
2.

So f ∗ f̃ ∈ L∞(G).

Let’s show that f ∗ f̃ is of positive type. Let πL be the left regular representation of G, i.e.
the unitary representation of G on L2(G) given by πL(x) = Lx. Then, for every x ∈ G,
we have

〈πL(x)(f), f〉 =

∫
G

f(x−1y)f(y)dy =

∫
G

f̃(y−1x)f(y)dy = f ∗ f̃(x).

So the result follows from (i) and (ii).

The main result of this function is that the example in (ii) above is the only one.

Theorem III.2.5. Let ϕ : G → C be a function of positive type. Then there exists a cyclic
unitary representation (π, V ) of G and a cyclic vector v for V such that ϕ(x) = 〈π(x)(v), v〉
locally almost everywhere.

Moreover, the representation π and the vector v are uniquely determined by ϕ, in the following
sense : if (π′, V ′) is another cyclic unitary representation of G and if v′ ∈ V ′ is a cyclic vector
such that ϕ(x) = 〈π′(x)(v′), v′〉 locally almost everywhere, then there exists a G-equivariant
isometry T : V → V ′ such that T (v) = v′.
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In fact, we will give a somewhat explicit construction of (π, V ) during the proof.

Before proving the theorem, let’s see some easy corollaries.

Corollary III.2.6. Let ϕ : G → C be a function of positive type. Then ϕ agrees with a con-
tinuous function locally almost everywhere, ‖ϕ‖∞ = ϕ(1) and, for every x ∈ G, we have
ϕ(x−1) = ϕ(x).

Proof. The first statement follows from (ii) of proposition III.2.4. To prove the other statements,
choose a cyclic unitary representation (π, V ) of G and v ∈ V such that ϕ(x) = 〈π(x)(v), v〉.
Then, for every x ∈ G,

|ϕ(x)| ≤ ‖π(x)(v)‖‖v‖ = ‖v‖2 = ϕ(1)

and
ϕ(x−1) = 〈π(x−1)(v), v〉 = 〈π(x)∗(v), v〉 = 〈v, π(x)(v)〉 = ϕ(x).

Now we come back to the proof of the theorem. Let ϕ : G→ C be a function of positive type.
Define a Hermitian form 〈., .〉ϕ on L1(G) by :

〈f, g〉ϕ =

∫
(g∗ ∗ f)ϕ =

∫
G×G

f(x)g(y)ϕ(y−1x)dxdy

(see remark III.2.2). In particular, we clearly have, for all f, g ∈ L1(G),

|〈f, g〉ϕ| ≤ ‖f‖1‖g‖1‖ϕ‖∞.

As ϕ is of positive type, we have 〈f, f〉ϕ ≥ 0, that is, the Hermitian form we just defined is
positive semi-definite; in particular, the Cauchy-Schwarz inequality applies to it, and it gives, for
all f, g ∈ L1(G),

|〈f, g〉ϕ|2 ≤ 〈f, f〉ϕ〈g, g〉ϕ.

Let N be the kernel (or radical) of the form 〈., .〉ϕ, that is, the orthogonal of L1(G), i.e. the
space of f ∈ L1(G) such that 〈f, g〉ϕ = 0 for every g ∈ L1(G). By the Cauchy-Schwarz inequal-
ity, we have f ∈ N if and only if 〈f, f〉ϕ = 0. Hence the form 〈., .〉ϕ defines a positive definite
Hermitian form on L1(G)/N , that we will still denote by 〈., .〉ϕ; we denote the associated norm
by ‖.‖ϕ. For every f ∈ L1(G), we have

‖f + N ‖2
ϕ ≤ ‖ϕ‖∞‖f‖2

1.

Let Vϕ be the completion of L1(G)/N for the norm ‖.‖ϕ; this is a Hilbert space.

We want to construct a unitary action ofG on Vϕ. We already have a continuous representation
of G on L1(G), using the operators Lx. This will magically give our unitary representation. Note
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III.2 Functions of positive type

first that, for every L1(G), the map G → L1(G), x 7−→ Lxf is continuous for the semi-norm
‖.‖ϕ because of the inequality ‖.‖ϕ ≤ ‖ϕ‖1/2

∞ ‖.‖1 that we just proved.

Let’s prove that 〈., .〉ϕ is invariant by the action of G. Let x ∈ G and f, g ∈ L1(G). Then

〈Lxf, Lxg〉ϕ =

∫
G×G

f(x−1y)g(x−1z)ϕ(z−1y)dydz

=

∫
G×G

f(y)g(z)ϕ((xz)−1(xy))dydz

=

∫
G×G

f(y)g(z)ϕ(z−1y)dydz = 〈f, g〉ϕ.

In particular, the radical N of the form 〈., .〉ϕ is a G-invariant subspace of L1(G), so we get
an action of G on L1(G)/N , which preserves the Hermitian inner product and is a continuous
representation by proposition I.3.1.10. We extend this action to Vϕ by continuity. This gives a
unitary representation of G on Vϕ, which we will denote by πϕ.

Let f, g ∈ L1(G). Then, by example I.4.2.7, we have

πϕ(f)(g + N ) = f ∗ g + N .

The following lemma will imply the first statement of theorem III.2.5.

Lemma III.2.7. There exists a cyclic vector v = vϕ for Vϕ such that :

(i) for f ∈ L1(G), we have πϕ(f)(v) = f + N ;

(ii) we have ϕ(x) = 〈πϕ(x)(v), v〉ϕ locally almost everywhere on G.

Proof. By the calculation of πϕ(f)(g + N ) for f, g ∈ L1(G) (see above), we see that v would
be the image in L1(G)/N of a unit element for ∗ (i.e. a Dirac measure at 1 ∈ G), if such a unit
element existed. In general, it doesn’t, but we can approximate it, and hope that we will get a
Cauchy sequence in L1(G)/N .

So let (ψU)U∈U be an approximate identity (see definition I.4.1.7). Note that (ψ∗U)U∈U is also
an approximate identity, so, by proposition I.4.1.9, we have ψ∗U ∗ f −−−−→

U→{1}
f in L1(G) for every

f ∈ L1(G). So, for every f ∈ L1(G), we have

〈f, ψU〉ϕ =

∫
(ψ∗U ∗ f)ϕdµ −−−−→

U→{1}

∫
fϕdµ.

Hence f 7−→
∫
G
fϕdµ is a bounded (for ‖.‖1 and ‖.‖ϕ) linear functional on L1(G) whose kernel

contains N . We can descend this bounded linear functional to L1(G)/N and extend it to Vϕ by
continuity, and we get a bounded linear functional on Vϕ, which must be of the form 〈., v〉ϕ for
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III The Gelfand-Raikov theorem

some v ∈ Vϕ (uniquely determined), because Vϕ is a Hilbert space. By definition of v, we have,
for every f ∈ L1(G),

〈f + N , v〉ϕ =

∫
G

fϕdµ,

and this determines v because the image of L1(G) is dense in Vϕ.

Now we prove properties (i) and (ii). Let f, g ∈ L1(G). Then

〈g, f〉ϕ =

∫
G

(f ∗ ∗ g)ϕdµ

=

∫
G×G

g(x)f(y)ϕ(y−1x)dxdy

=

∫
G×G

g(yx)f(y)ϕ(x)dxdy

=

∫
G×G

f(y)Ly−1g(x)ϕ(x)dxdy

=

∫
G

f(y)〈πϕ(y−1)(g + N ), v〉ϕdx

=

∫
G

〈g + N , f(y)πϕ(y)(v)〉ϕdx

= 〈g + N , πϕ(f)(v)〉ϕ.

As this is true for every g ∈ L1(G) and as the image of L1(G) is dense in Vϕ, we get
πϕ(f)(v) = f + N . In particular, the span of {πϕ(f)(v), f ∈ L1(G)} is dense in Vϕ, so v
is a cyclic vector (by (iii) of theorem I.4.2.6).

Also, for f ∈ L1(G), by what we have just seen :∫
G

f(x)〈πϕ(x)(v), v〉ϕdx = 〈
∫
G

f(x)πϕ(x)(v)dx, v〉ϕ

= 〈πϕ(f)(v), v〉ϕ
= 〈f + N , v〉ϕ

=

∫
G

f(x)ϕ(x)dx.

As this is true for every f ∈ L1(G), it implies that ϕ(x) = 〈πϕ(x)(v), v〉ϕ locally almost every-
where.

To finish the proof of theorem III.2.5, we just need to establish the following lemma.

Lemma III.2.8. Let (π, V ) and (π, V ′) be two cyclic unitary representations of G and v ∈ V ,
v′ ∈ V ′ be two cyclic vectors such that, for every x ∈ G, we have

〈π(x)(v), v〉 = 〈π′(x)(v′), v′〉.
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III.3 Functions of positive type and irreducible representations

Then there exists a G-equivariant isometry T : V → V ′ such that T (v) = v′.

Proof. Of course, we want to define T : V → V ′ by the formula T (π(x)(v)) = π′(x)(v′), for
every x ∈ G. We need to make sense of this. Let W = Span{π(x)(v), x ∈ G}. By the
assumption that v is cyclic, the subspace W is dense in V . Let’s check that the formula above
defines an isometry T : W → V ′. Let x1, . . . , xn ∈ G amd λ1, . . . , λn ∈ C. Then∥∥∥∥∥

n∑
i=1

λiπ(xi)(v)

∥∥∥∥∥
2

=
n∑
i=1

n∑
j=1

λiλj〈π(x−1
j xi)(v), v〉

=
n∑
i=1

n∑
j=1

λiλj〈π′(x−1
j xi)(v

′), v′〉

=

∥∥∥∥∥
n∑
i=1

λiπ
′(xi)(v

′)

∥∥∥∥∥
2

.

In particular, if
∑n

i=1 λiπ(xi)(v) = 0, then we also have
∑n

i=1 λiπ
′(xi)(v

′) = 0. So we can
define T : W → V ′ by T (

∑n
i=1 λiπ(xi)(v)) =

∑n
i=1 λiπ

′(xi)(v
′), and then the calculation

above shows that T is an isometry. Hence T is continuous, and so we can extend to a continuous
linear operator T : V → V ′, which is still an isometry, hence injective and with closed image.
Also, if x ∈ G and w ∈ W , then we have T (π(x)(w)) = π′(x)(T (w)) by definition of T . As
T is continuous and W is dense in V , this stays true for every w ∈ W ; in other words, T is
G-equivariant. Finally, T (v) = v′ by definition of T , so the image of T is dense in V ′, hence
equal to V ′.

III.3 Functions of positive type and irreducible
representations

We have seen that cyclic unitary representations of G (together with a fixed cyclic vector) are
parametrized by functions of positive type. The next natural question is “which functions of
positive type correspond to the irreducible representations ?”

Definition III.3.1. We denote by P(G) or P the set of continuous functions of positive type
on G. This is a convex cone in Cb(G). 1

Let
P1 = {ϕ ∈P|‖ϕ‖∞ = 1} = {ϕ ∈P|ϕ(1) = 1}

and
P0 = {ϕ ∈P|‖ϕ‖∞ ≤ 1} = {ϕ ∈P|ϕ(1) ≤ 1}.

1“Cone” means that it is stable by multiplication by elements of R≥0.
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III The Gelfand-Raikov theorem

(Remember that, by corollary III.2.6, we have ‖ϕ‖∞ = ϕ(1) for every ϕ ∈P .)

Then P1 and P0 are convex subsets of Cb(G). We denote by E (P1) and E (P0) their sets of
extremal points.

Theorem III.3.2. Let ϕ ∈ P1. Then the unitary representation (Vϕ, πϕ) constructed in the
previous section is irreducible if and only if ϕ ∈ E (P1).

Remark III.3.3. If ϕ ∈ P and c ∈ R>0, then we have 〈., .〉cϕ = c〈., .〉ϕ, so Vcϕ = Vϕ, πcϕ = πϕ
and vcϕ = vϕ. (But the identity of Vϕ is not an isometry, because we are using two different
inner products, i.e. 〈., .〉ϕ and 〈., .〉cϕ). As each nonzero ϕ ∈P is a of the form cϕ′ for a unique
ϕ′ ∈ P1 (we have c = ϕ(1)), the theorem does answer the question at the beginning of the
section.

Remark III.3.4. If G is commutative, the theorem says that Ĝ = E (P1).

Proof. In this proof, we will denote the inner form and norm of V = Vϕ by 〈., .〉 and ‖.‖, and we
will write π = πϕ. (Unless this introduces confusion.)

We first suppose that π is not irreducible. Let 0 6= W ( V be a closed G-invariant subspace.
As π is unitary, W⊥ is also G-invariant, and we have V = W ⊕W⊥. Let v ∈ V be the cyclic
vector of lemma III.2.7. As v is cyclic, it cannot be contained in W or in W⊥ (otherwise we
would have W = V or W⊥ = V ). So we can write v = v1 + v2, with v1 ∈ W , v2 ∈ W⊥,
and v1, v2 6= 0. Define ϕ1, ϕ2 : G → C by ϕi(x) = 〈π(x)(vi), vi〉. Then ϕ1, ϕ2 ∈ P by (ii)
of proposition III.2.4, and we have ϕ = ϕ1 + ϕ2. Let c1 = ‖v1‖2 and c2 = ‖v2‖2; we have
c1 + c2 = ‖v‖2 = ϕ(1) = 1 by the Pythagorean theorem, so c1, c2 ∈ (0, 1). Let ψi = 1

ci
ϕi, for

i = 1, 2. Then ϕ = c1ψ1 + c2ψ2, and ψ1, ψ2 ∈ P1 (because ψ1(1) = ψ2(1) = 1). To conclude
that ϕ is not an extremal point of P1, we still need to prove that ψ1 6= ψ2, i.e. that ϕ2 is not of
the form cϕ1 for c ∈ R>0.

Let c ∈ R>0. Choose ε > 0 such that ε < c‖v1‖2
‖v2‖+c‖v1‖ , i.e. such that ε‖v2‖ < c‖v1‖2 − εc‖v1‖.

As v is a cyclic vector for V , we can find x1, . . . , xn ∈ G and a1, . . . , an ∈ C such that

∥∥∥∥∥
n∑
i=1

aiπ(xi)(v)− v1

∥∥∥∥∥ < ε.

As v = v1 + v2 with v1 ∈ W and v2 ∈ W⊥, and as both W and W⊥ are stable by the action of
G, we have, for x ∈ G,

〈π(x)(v), v1〉 = 〈π(x)(v1) + π(x)(v2), v1〉 = 〈π(x)(v1), v1〉.
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Hence ∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v1), v1〉 − 〈v1, v1〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v), v1〉 − 〈v1, v1〉

∣∣∣∣∣
=

∣∣∣∣∣〈
n∑
i=1

aiπ(xi)(v)− v1, v1〉〉

∣∣∣∣∣
< ε‖v1‖,

which implies that

‖v1‖2 − ε‖v1‖ <

∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v1), v1〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

aiϕ1(xi)

∣∣∣∣∣ .
On the other hand (using the fact that 〈π(x)(v), v2〉 = 〈π(x)(v2), v2〉 for every x ∈ G), we have∣∣∣∣∣

n∑
i=1

ai〈π(xi)(v2), v2〉

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ai〈π(xi)(v), v2〉 − 〈v1, v2〉

∣∣∣∣∣
=

∣∣∣∣∣〈
n∑
i=1

aiπ(xi)(v)− v1, v2〉

∣∣∣∣∣
≤

∥∥∥∥∥
n∑
i=1

aiπ(xi)(v)− v1

∥∥∥∥∥ ‖v2‖

< ε‖v2‖
< c‖v1‖2 − εc‖v1‖

< c

∣∣∣∣∣
n∑
i=1

aiϕ1(xi)

∣∣∣∣∣
i.e. ∣∣∣∣∣

n∑
i=1

aiϕ2(xi)

∣∣∣∣∣ < c

∣∣∣∣∣
n∑
i=1

aiϕ1(xi)

∣∣∣∣∣ .
So we cannot have ϕ2 = cϕ1. As c was arbitrary, this finishes the proof that ψ1 6= ψ2, hence that
ϕ is not an extremal point of P1.

Conversely, we want to show that ϕ is extremal in P1 if πϕ is irreducible. Suppose that
ϕ = ϕ1 + ϕ2, with ϕ1, ϕ2 ∈P . For every f ∈ L1(G), we have

〈f, f〉ϕ1 = 〈f, f〉ϕ − 〈f, f〉ϕ2 ≤ 〈f, f〉ϕ.

In particular, the kernel of 〈., 〉ϕ is contained in the kernel of 〈., .〉ϕ1 , so the identity of L1(G)
extends to a continuous surjective map T : Vϕ → Vϕ1 , and that map is G-equivariant because the
action of G on both Vϕ and Vϕ1 comes from its action on L1(G) by left translations. Also, as vϕ
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III The Gelfand-Raikov theorem

(resp. vϕ1) is just the limit in Vϕ (resp. Vϕ1) of the image of an approximate identity, the operator
T sends vϕ to vϕ1 . As KerT is a G-invariant subspace of Vϕ, so is (KerT )⊥, so T defines a
G-equivariant isomorphism (KerT )⊥

∼→ Vϕ1 , so Vϕ1 is isomorphic to a subrepresentation of Vϕ.

Now suppose that πϕ is irreducible. Then T ∗T ∈ End(Vϕ) is G-equivariant, so it is equal to
cidVϕ for some c ∈ C by Schur’s lemma (theorem I.3.4.1). As T (vϕ) = vϕ1 , for every x ∈ G, we
have

ϕ1(x) = 〈πϕ1(x)(vϕ1), vϕ1〉ϕ1

= 〈πϕ1(x)(T (vϕ)), T (vϕ)〉ϕ1

= 〈T (πϕ(x)(vϕ)), T (vϕ)〉ϕ1

= 〈T ∗T (πϕ(x)(vϕ)), vϕ〉ϕ
= cϕ(x).

As ϕ1 and ϕ are of positive type, we must have c ∈ R≥0. We see similarly that ϕ2 must be in
R≥0ϕ. So ϕ is extremal.

III.4 The convex set P1

We have seen in the previous two sections that irreducible unitary representations of G are
parametrized by extremal points of P1. Remember that we are trying to show that there enough
irreducible unitary representations to separate points on G. So we want to show that P1 has a
lot of extremal points. A natural ideal is to use the Krein-Milman theorem (theorem B.5.2, that
says that a compact convex set is the closed convex hull of its extremal points), but P1 is not
compact in general. However, the set P0 is convex and weak* compact and closely related to
P1; this will be enough to extend the conclusion of the Krein-Milman theorem to P1.

Remember that P is a subset of L∞(G). We identify L∞(G) with the continu-
ous dual of L1(G) and consider the weak* topology on it and on its subsets P , P0

and P1. For f ∈ L∞(G), a basis of neighborhoods of f is given by the sets
Ug1,...,gn,c = {f ′ ∈ L∞(G)||

∫
G

(f − f ′)gidµ| < c, 1 ≤ i ≤ n}, for n ∈ Z≥1, g1, . . . , gn ∈ L1(G)
and c > 0. The second main result of this section is that the weak* topology coincides with the
topology of compact convergence on P1.

Theorem III.4.1. The convex hull of E (P1) is dense in P1 for the weak* topology.

Lemma III.4.2. We have E (P0) = E (P1) ∪ {0}.

Proof. First we show that every point of E (P1) ∪ {0} is extremal in P0. Let ϕ1, ϕ2 ∈ P0

and c1, c2 ∈ (0, 1) such that c1 + c2 = 1. If c1ϕ1 + c2ϕ2 = 0, then 0 = c1ϕ1(1) + c2ϕ2(1),
so ϕ1(1) = ϕ2(1) = 0, so ‖ϕ1‖∞ = ‖ϕ2‖∞ = 0, i.e. ϕ1 = ϕ2 = 0. This shows that 0 is
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extremal. Suppose that ϕ := c1ϕ1 + c2ϕ2 ∈ E (P1). Then 1 = ϕ(1) = c1ϕ(1) + ϕ2(1), so
ϕ1(1) = ϕ2(1) = 1, so ϕ1, ϕ2 ∈P1; as ϕ is extremal in P1, this implies that ϕ1 = ϕ2. So ϕ is
also extremal in P0.

Now we show that every extremal point of P0 is in E (P1) ∪ {0}. Let
ϕ ∈ P0 − (E (P1) ∪ {0}). If ϕ ∈ P1, it is not extremal. If ϕ 6∈ P1, then 0 < ϕ(1) < 1,
so ϕ = (1 − c)0 + c 1

ϕ(1)
ϕ, with c = ϕ(1) ∈ (0, 1) and 1

ϕ(1)
ϕ ∈ P0; this shows that ϕ is not

extremal.

Proof of the theorem. Note that the conditions defining P in L∞(G) are weak* closed condi-
tions, so P is a weak* closed subset of L∞(G). As P0 is the intersection of P with the closed
unit ball of L∞(G), it is weak* closed in this closed unit ball, hence weak* compact by the
Banach-Alaoglu theorem (theorem B.4.1). As P0 is also convex, the Krein-Milman theorem
(theorem B.5.2) says that the convex hull of E (P0) is weak* dense in P0. Also, the lemma
above says that E (P0) = E (P1) ∪ {0}.

Let ϕ ∈ P1, and let U be a weak* neighborhood of ϕ of the form
{ψ ∈ P1||

∫
G

(ϕ − ψ)gidµ| < c, 1 ≤ i ≤ n}, with n ∈ Z≥1, g1, . . . , gn ∈ L1(G) and c > 0.
We want to find a point of U that is in the convex hull of E (P1). Choose ε > 0 (we will see
later how small it needs to be). By the first paragraph and the fact that closed balls in L∞(G) are
weak* closed (a consequence of the Hahn-Banach theorem), we can find ψ in the convex hull of
E (P1)∪{0} such that, for every i ∈ {1, . . . , n}, we have |

∫
G

(ϕ−ψ)gidµ| < c/2 and such that
‖ψ‖∞ ≥ 1− ε. Write ψ = c1ψ1 + . . .+ crψr, with c1, . . . , cr ∈ [0, 1], ψ1, . . . , ψr ∈ E (P1) and
c1 + . . .+ cr ≤ 1. Let a = 1

‖ψ‖∞ . Then aψ = (ac1)ψ1 + . . .+ (acr)ψr and ac1 + . . .+ acr = 1,
so aψ is in the convex hull of E (P1). Let’s show that aψ ∈ U . If i ∈ {1, . . . , n}, we have∣∣∣∣∫

G

(ϕ− aψ)gidµ

∣∣∣∣ ≤ ∣∣∣∣∫
G

(ϕ− ψ)gidµ

∣∣∣∣ ∣∣∣∣∫
G

(ψ − aψ)gidµ

∣∣∣∣
< c/2 + |1− a|

∣∣∣∣∫
G

ψgidµ

∣∣∣∣
< c/2 + ε

(
c/2 +

∣∣∣∣∫
G

ϕgidµ

∣∣∣∣) .
So, if we choose ε small enough so that ε

(
c/2 +

∣∣∫
G
ϕgidµ

∣∣) < c/2 for every 1 ∈ {1, . . . , n},
the function aψ will be in U .

As P is a subspace of the space C (G), we can also consider the topology of compact conver-
gence on P , that is, of convergence on compact subsets of G. If ϕ ∈ P , a basis of neighbor-
hoods of ϕ for this topology is given by {ψ ∈ P| supx∈K |ϕ(x) − ψ(x)| < c}, for all compact
subsets K of G and all c > 0.
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Theorem III.4.3. (Raikov) On the subset P1 of P , the topology of compact convergence and
the weak* topology coincide.

Remark III.4.4. This theorem generalizes question (a) of exercise I.5.4.2. (See remark III.3.4.)

Note that the theorem is not true for P0. For example, ifG = R, then the topology of compact
convergence and the weak* topology do not coincide on Ĝ ∪ {0}. For example, consider the
elements χy : x 7−→ eixy of Ĝ. I claim that the family (χy)y∈R converges weakly to 0 when
|y| → +∞. (Obviously, it does not converge to 0 for the topology of compact convergence;
in fact, it has no limit in this topology.) Remember the this statement means that, for every
f ∈ L1(R), we have

lim
|y|→+∞

∫
R
f(x)eixydx = 0.

Suppose first that f is the characteristic function of a compact interval [a, b]. Then∫
R
f(x)eixydy =

1

y
(eiby − eiay) −−−−−→

|y|→+∞
0.

So, if f is a (finite) linear combination of characteristic functions of compact intervals, the con-
clusion still holds. Now let f be any element of L1(R), and let ε > 0. We can find a linear
combination g of characteristic functions of compact intervals g such that ‖f − g‖1 ≤ ε. By
what we just saw, we can also find A ∈ R such that |

∫
R g(x)eixydy| ≤ ε for |x| ≥ A. Then, if

|y| ≥ A, we have∣∣∣∣∫
R
f(x)eixydx

∣∣∣∣ ≤ ∣∣∣∣∫
R
g(x)eixydx

∣∣∣∣+

∣∣∣∣∫
R
(f(x)− g(x))eixydx

∣∣∣∣
≤ ε+

∫
R
|f(x)− g(x)|dx

≤ 2ε.

So
∫
R f(x)eixydx converges to 0 as |y| → +∞.

Corollary III.4.5. The convex hull of E (P1) is dense in P1 for the topology of compact con-
vergence.

Proof of the theorem. We first show that the topology of compact convergence on P1 is finer
than the weak* topology (this is the easier part). Let ϕ ∈ P1. Let f ∈ L1(G) and c > 0,
and let U = {ψ ∈ P1|

∣∣∫
G
f(ϕ− ψ)dµ

∣∣ < c}. We want to find a neighborhood of ϕ in the
topology of compact convergence that is contained in U . Let K ⊂ G be a compact subset such
that

∫
G\K |f |dµ < c/3, and let V = {ψ ∈ P1| supx∈K |ϕ(x) − ψ(x)| ≤ c

3‖f‖1+1
}. Then, if
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ψ ∈ V , we have ∣∣∣∣∫
G

f(ϕ− ψ)dµ

∣∣∣∣ ≤ ∣∣∣∣∫
K

f(ϕ− ψ)dµ

∣∣∣∣+

∣∣∣∣∫
G\K

f(ϕ− ψ)dµ

∣∣∣∣
≤ ‖f‖1 sup

x∈K
|ϕ(x)− ψ(x)|+ 2

∫
G\K
|f |dµ

< c

so ψ ∈ U (on the second line, we use the fact that ‖ϕ‖∞ = ‖ψ‖∞ = 1).

Now let’s prove the hard direction, i.e. the fact that the weak* topology on
P1 is finer than the topology of compact convergence. Let ϕ ∈ P1, and let
V = {ψ ∈ P1| supx∈K |ϕ(x) − ψ(x)| < c}, with K ⊂ G compact and c > 0. Let δ > 0

be such that δ + 4
√
δ < c. Let Q be a compact neighborhood of 1 in G such that

sup
x∈Q
|ϕ(x)− 1| ≤ δ.

(Such a Q exists because ϕ is continuous and ϕ(1) = 1.) As Q contains an open set, we have
µ(Q) 6= 0. Let f = 1

µ(Q)
11Q. By the first lemma below (applied to V = L1(G) and B = P1)

and the fact that G → L1(G), x 7−→ Lx−1f is continuous (hence {Lx−1f, x ∈ K} ⊂ L1(G)
is compact), we can find a weak* neighborhood U1 of ϕ in P1 such that, for every x ∈ K and
every ψ ∈ U1, we have ∣∣∣∣∫

G

(ϕ− ψ)Lx−1f

∣∣∣∣ ≤ δ.

Then, for every x ∈ K and every ψ ∈ U1, we have

|f ∗ ϕ(x)− f ∗ ψ(x)| =
∣∣∣∣∫
G

f(xy)(ϕ(y−1)− ψ(y−1))dy

∣∣∣∣
=

∣∣∣∣∫
G

Lx−1f(y)(ϕ(y)− ψ(y))dy

∣∣∣∣ (see corollary III.2.6)

≤ δ.

Let U2 = {ψ ∈ P1|
∣∣∫
G

(ϕ− ψ)fdµ
∣∣ < δ}. (This is a weak* neighborhood of ϕ.) Let

ψ ∈ U1 ∩ U2. Then ∣∣∣∣∫
G

(1− ψ)fdµ

∣∣∣∣ ≤ ∣∣∣∣∫
G

(1− ϕ)fdµ

∣∣∣∣+

∣∣∣∣∫
G

(ϕ− ψ)fdµ

∣∣∣∣
≤ 1

µ(Q)

∣∣∣∣∫
Q

(1− ϕ(x))dx

∣∣∣∣+ δ

≤ sup
x∈Q
|1− ϕ(x)|+ δ

≤ 2δ.
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On the other hand, for every x ∈ G, we have

|f ∗ ψ(x)− ψ(x)| =
∣∣∣∣ 1

µ(Q)

∫
G

11Q(y)ψ(y−1x)dy − 1

µ(Q)

∫
Q

ψ(x)dy

∣∣∣∣
=

1

µ(Q)

∣∣∣∣∫
Q

(ψ(y−1x)− ψ(x))dy

∣∣∣∣
≤ 1

µ(Q)

∫
Q

|ψ(y−1x)− ψ(x)|dy

≤ 1

µ(Q)

∫
Q

√
2(1− Re(ψ(y)))dy (see the second lemma below)

≤
√

2

µ(Q)

(∫
Q

(1− Re(ψ(y)))dy

)1/2(∫
Q

dy

)1/2

(Cauchy-Schwarz)

≤
√

2√
µ(Q)

∣∣∣∣∫
Q

(1− ψ(y))dy

∣∣∣∣1/2
=
√

2

∣∣∣∣∫
G

(1− ψ)fdµ

∣∣∣∣1/2
As ψ ∈ U2, the previous calculation shows that this is ≤ 2

√
δ. Note that this also applies

to ψ = ϕ, because of course ϕ is in U1 ∩ U2. Putting all these bounds together, we get, is
ψ ∈ U1 ∩ U2 and x ∈ K,

|ψ(x)− ϕ(x)| ≤ |ψ(x)− f ∗ ψ(x)|+ |f ∗ ψ(x)− f ∗ ϕ(x)|+ |f ∗ ϕ(x)− ϕ(x)|
≤ δ + 4

√
δ

< c.

So U1 ∩ U2 ⊂ V , and we are done.

Lemma III.4.6. Let V be a Banach space, and let B be a norm-bounded subset of Hom(V,C).
Then the topology of compact convergence (i.e. of uniform convergence on compact subsets of
V ) and the weak* topology coincide on B.

Proof. We want to compare the topology of pointwise convergence on V (i.e. the weak* topol-
ogy) and the topology of compact convergence on V . The second one is finer than the first one
on all of Hom(V,C), so we just need to show that the first one is finer than the second on B.

Let T0 ∈ B, let K ⊂ V be compact and let c > 0. We want to find a weak* neighborhood
of T0 in B contained in {T ∈ B| supx∈K |T (x) − T0(x)| < c}. Let M = supT∈B ‖T‖op (this
is finite because B is bounded). Let x1, . . . , xn ∈ K such that K is contained in the union of
the open balls centered at the xi with radius c

3M
. Let T ∈ B be such that |(T − T0)(xi)| < c/3
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for i = 1, . . . , n (this defines a weak* neighborhood of T ). For every x ∈ K, there exists
i ∈ {1, . . . , n} such that ‖x− xi‖ < c

3M
, and then we have

|T (x)− T0(x)| ≤ |T (x− xi)|+ |(T − T0)(xi)|+ |T0(x− xi)|
≤ ‖T‖op‖x− xi‖+ c/3 + ‖T0‖op‖x− xi‖

< c/3 + 2M
c

3M
= c.

So T ∈ U .

Lemma III.4.7. Let ϕ ∈P1. Then, for all x, y ∈ G, we have

|ϕ(x)− ϕ(y)|2 ≤ 2− 2 Re(ϕ(yx−1)).

Proof. By theorem III.2.5, we can find a unitary representation (π, V ) of G and v ∈ V such that
ϕ(x) = 〈π(x)(v), v〉 for every x ∈ G. Also, as ϕ(1) = 1, we have ‖v‖ = 1. So, for all x, y ∈ G,
we have

|ϕ(x)− ϕ(y)|2 = |〈(π(x)− π(y))(v), v〉|
= |〈v, (π(x−1)− π(y−1))(v)〉|2

≤ ‖(π(x−1)− π(y−1))(v)‖2

= ‖π(x−1)(v)‖2 + ‖π(x−1)(v)‖2 − 2 Re(〈π(x−1)(v), π(y−1)(v)〉)
= 2− 2 Re(〈π(x−1)(v), π(y−1)(v)〉)
= 2− 2 Re(〈π(yx−1)(v), v〉)
= 2− 2 Re(ϕ(yx−1)).

III.5 The Gelfand-Raikov theorem

Theorem III.5.1. (Gelfand-Raikov) Let G be a locally compact group. Then, for all x, y ∈ G
such that x 6= y, there exists an irreducible unitary representation π of G such that π(x) 6= π(y).

More precisely, there exists an irreducible unitary representation (π, V ) of G and a vector
v ∈ V such that 〈π(x)(v), v〉 6= 〈π(y)(v), v〉.

Proof. Let x, y ∈ G. Suppose that 〈π(x)(v), v〉 = 〈π(y)(v), v〉 for every irreducible unitary
representation (π, V ) of G and every v ∈ V . By theorem III.3.2, this implies that ϕ(x) = ϕ(y)
for every ϕ ∈ E (P1), hence for every ϕ ∈ P1 by corollary III.4.5 (and the fat that {x, y} is a
compact subset of G), hence for every ϕ ∈P because P = R≥0 ·P1.
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III The Gelfand-Raikov theorem

Let πL be the left regular representation of G, i.e. the representation of G on L2(G) defined
by πL(z)(f) = Lzf for z ∈ G and f ∈ L2(G). This is a unitary representation of G, so, by
the first paragraph and by proposition III.2.4, we have 〈πL(x)(f), f〉 = 〈πL(y)(f), f〉 for every
f ∈ L2(G). Let f1, f2 ∈ L2(G). Then

〈πL(x)(f1 + f2), f1 + f2〉 = 〈πL(x)(f1), f1〉+ 〈πL(f2), f2〉+ 〈πL(x)(f1), f2〉+ 〈πL(x)(f2), f1〉
and

〈πL(x)(f1+if2), f1+if2〉 = 〈πL(x)(f1), f1〉+〈πL(f2), f2〉−i〈πL(x)(f1), f2〉+i〈πL(x)(f2), f1〉,
so

2〈πL(x)(f1), f2〉 = 〈πL(x)(f1 + f2), f1 + f2〉+ i〈πL(x)(f1 + if2), f1 + if2〉
− (1 + i)(〈πL(x)(f1), f1〉+ 〈πL(x)(f2), f2〉).

We have a similar identity for πL(y), and this shows that

〈πL(x)(f1), f2〉 = 〈πL(y)(f1), f2〉.
Now note that

〈πL(x)(f1), f2〉 =

∫
G

Lxf1(z)f2(z)dz

=

∫
G

f1(x−1z)f2(z)dz

=

∫
G

f2(z)f̃1(z−1x)dz

= f2 ∗ f̃1(x)

(remember that f̃1 ∈ L2(G) is defined by f̃1(z) = f1(z−1)), so f2 ∗ f̃1(x) = f2 ∗ f̃1(y). This
calculation also shows that f2 ∗ f̃1 makes sense and is continuous.

As f 7−→ f̃ is an involution on L2(G), we deduce that f1 ∗ f2(x) = f1 ∗ f2(y) for all
f1, f2 ∈ L2(G), and in particular for all f1, f2 ∈ Cc(G). Let f ∈ Cc(G), and let (ψU)U∈U

be an approximate identity. We have ψU ∈ Cc(G) for every U ∈ U , and ψU ∗ f −−−−→
U→{1}

f for

‖.‖∞ by proposition I.4.1.9 (and the fact that f is uniformly continuous, which is proposition
I.1.12). As ψU ∗ f(x) = ψU ∗ f(y) for every U ∈ U , this implies that f(x) = f(y). But then
we must have x = y (by Urysohn’s lemma).

III.6 Exercises

Let G be a topological group and (π, V ) be a unitary representation of G. A matrix coefficient of
π is a function G→ C of the form x 7−→ 〈π(x)(v), w〉, with v, w ∈ V . Note that these functions
are all continuous.
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Remember also that, if G is locally compact (and µ is a left Haar measure on G), then
the left regular representation πL is the representation of G on L2(G) := L2(G, µ) given by
πL(x)(f) = Lxf , for x ∈ G and f ∈ L2(G). In this section, we’ll just call πL the regular
representation of G.

III.6.1 The regular representation

Exercise III.6.1.1. Let G be a discrete group, and let ϕ = 11{1}.

(a). (1) Show that ϕ is a function of positive type on G.

(b). (2) Show that Vϕ is equivalent to the regular representation of G.

Solution.

(a). The counting measure µ is a left Haar measure on G, so we use this measure. For every
f ∈ L1(G), we have

∫
G
fϕdµ = f(1). So∫

G

(f ∗ ∗ f)ϕdµ = (f ∗ ∗ f)(1) =
∑
y∈G

f(y−1)f(y−1) ∈ R≥0.

(b). For all f, g ∈ L1(G), we have

〈f, g〉ϕ =

∫
G

(g∗ ∗ f)ϕdµ

= (g∗ ∗ f)(1)

=
∑
y∈G

g(y−1)f(y−1)

= 〈f, g〉L2(G).

So the kernel of 〈., .〉ϕ is equal to {0}, and the Hilbert space Vϕ is the completion of L1(G)
for the norm ‖.‖2, that is, L2(G). The action of G on Vϕ is the extension by continuity of
its action by left translations on L1(G), so we get the action of G by left translations on
L2(G).

�

Exercise III.6.1.2. Let G be a locally compact group.

(a). If f, g ∈ Cc(G), show that f ∗ g ∈ Cc(G).

(b). Show that every matrix coefficient of the regular representation of G vanishes at∞.
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III The Gelfand-Raikov theorem

(c). Suppose that G is not compact. If (π, V ) is a finite-dimensional unitary representation of
G, show that it has a matrix coefficient that does not vanish at∞.

(d). If G is not compact, show that its regular representation has no finite-dimensional subrep-
resentation. 2

Solution.

(a). First, we know that f ∗ g exists, because f and g are in L1(G). If x, x′ ∈ G, then

|f ∗ g(x)− f ∗ g(x′)| =
∣∣∣∣∫
G

f(y)(g(y−1x)− g(y−1x′))dy

∣∣∣∣
≤ ‖f‖1 suppy∈supp(f) |g(y−1x)− g(y−1x′)|.

As g is right uniformly continuous (see proposition I.1.12), this tends to 0 as x′ tends to x,
so f ∗ g is continuous.

Let x ∈ G such that f ∗ g(x) 6= 0. We have

f ∗ g(x) =

∫
G

f(y)g(y−1x)dy,

so there exists y ∈ supp(f) such that y−1x ∈ supp(g). In other words,
x ∈ supp(f) supp(g). As both supp(f) and supp(g) are compact, their product
supp(f) supp(g) is also compact, so f ∗ g has compact support.

(b). Remember that, if f ∈ L2(G), we define f̃ : G→ C by f̃(x) = f(x−1).

Every matrix coefficient of the left regular representation of G is of the form

x 7−→ 〈Lx−1f, g〉L2(G),

with f, g ∈ L2(G). We have (see proposition III.2.4(iii))

〈Lx−1f, g〉L2(G) =

∫
G

f(x−1y)g(y)dy

=

∫
G

f̃(y−1x)g(y)dy

= g ∗ f̃(x).

Moreover, if f ′, g′ ∈ L2(G), then we have (using the Cauchy-Schwarz inequality)

|〈Lx−1f, g〉L2(G) − 〈Lx−1f ′, g〉L2(G)| ≤
∫
G

|g(y)||f(x−1y − f ′(x−1y)|dy

≤ ‖g‖2‖Lx−1(f − f ′)‖2

= ‖g‖2‖f − f ′‖2

2Compare with Peter-Weyl.
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and

|〈Lx−1f, g〉L2(G) − 〈Lx−1f, g′〉L2(G)| ≤
∫
G

|g(y)− g′(y)||f(x−1y|dy

≤ ‖g − g′‖2‖Lx−1f‖2

= ‖g − g′‖2‖f ′‖2.

Suppose that f, g ∈ Cc(G). Then g, f̃ ∈ Cc(G), so, by question (a), g ∗ f̃ ∈ Cc(G), and in
particular this function vanishes at∞.

In the general case, let ε > 0 and let f ′, g′ ∈ Cc(G) such that ‖f − f ′‖2 ≤ ε and
‖g − g′‖2 ≤ ε. Then, by the two inequality above, we have, for every x ∈ G,

|g ∗ f̃(x)− g′ ∗ f̃
′
(x)| ≤ ε(‖f‖2 + ‖g‖2).

But we have just seen that g′ ∗ f̃
′
has compact support, so there exists a compact subset K

of G such that, for every x 6∈ K¡ we have

|g ∗ f̃(x)| ≤ ε(‖f‖2 + ‖g‖2).

This shows that the matrix coefficient g ∗ f̃ vanishes at∞.

(c). Let (e1, . . . , en) be an orthonormal basis of V . For every i ∈ {1, . . . , n}, let fi be the
matrix coefficient x 7−→ 〈π(x)(e1), ei〉. Then we have, for every x ∈ G,

n∑
i=1

|fi(x)|2 =
n∑
i=1

|〈π(x)(e1), ei〉|2 = ‖π(x)(e1)‖2 = 1.

This shows that at least one of the fi does not vanish at∞.

(d). This follows directly from (c) and (d).

�

III.6.2 Weak containment

Let G be a topological group and (π, V ) be a unitary representation of G. We say that the
functions G→ C, x 7−→ 〈π(x)(v), w〉 (with v, w ∈ V ) is a diagonal matrix coefficient if v = w;
a diagonal matrix coefficient is a function of positive type by proposition III.2.4, and we call it a
function of positive type associated to π. We say that a function of positive type is normalized if
it is of the form x 7−→ 〈π(x)(v), v〉 with ‖v‖ = 1. We denote by P(π) the set of functions of
positive type associated to π.
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We will see soon 3 that, if G is compact, then the regular representation of G contains all the
irreducible representations of G (which are all finite-dimensional); in fact, it is the closure of the
direct sum of all its irreducible subrepresentations. On the other hand, if G is abelian, then its
regular representation is the direct integral of all the irreducible representations of G (which are
all 1-dimensional), even though it does not contain any of them if G is not compact. We will not
rigorously define direct integrals here, but we will introduce a weaker definition of containment,
for which irreducible representations of an abelian locally compact group are contained in the
regular representation, and start studying it.

Let (π, V ) and (π′, V ′) be unitary representations of G. We say that π is weakly contained in
π′, and write π ≺ π′, if P(π) is contained in the closure of the set of finite sums of elements of
P(π′) for the topology of convergence on compact subsets of G. In other words, π ≺ π′ if, for
every v ∈ V , for every K ⊂ G compact and every c > 0, there exist v′1, . . . , v

′
n ∈ V ′ such that

sup
x∈K
|〈π(x)(v), v〉 −

n∑
i=1

〈π′(x)(v′i), v
′
i〉| < c.

Exercise III.6.2.1. Let (π1, V1), (π2, V2) be unitary representations of G.

(a). Show that the algebraic tensor product V1 ⊗C V2 has a Hermitian inner product, uniquely
determined by 〈v1 ⊗ v2, w1 ⊗ w2〉 = 〈v1, w1〉〈v2, w2〉.

(b). We denote the completion of V1 ⊗C V2 for this inner form by V1⊗̂CV2. Show that the
formula (x, v1 ⊗ v2) 7−→ π1(x)(v1) ⊗ π2(x)(v2) defines a unitary representation of G on
V1⊗̂CV2. (This is called the tensor product representation and usually denoted by π1⊗π2.)

(c). If V1 and V2 are finite-dimensional, show that, for every x ∈ G, we have

Tr(π1 ⊗ π2(x)) = Tr(π1(x))Tr(π2(x)).

Solution.

(a). As pure tensors span V1 ⊗C V2, there is at most one sesquilinear form B on V1 ⊗C V2 such
that B(v1 ⊗ v2, w1 ⊗ w2) = 〈v1, w1〉〈v2, w2〉. Let’s show that such a form exists. Let
w1 ∈ V1 and w2 ∈ V2. Then the map on V1 × V2 → C, (v1, v2) 7−→ 〈v1, w1〉〈v2, w2〉
is a bilinear form, hence it corresponds to a unique linear form on V1 ⊗C V2, say Bw1,w2 .
Next, the map on V1 × V2 sending (w1, w2) to the antilinear form v 7−→ Bw1,w2(v) is
bilinear, so it corresponds to a unique linear functional T on V1 ⊗C V2. Finally, the map
B : (V1 ⊗C V2)× (V1 ⊗C V2)→ C sending (v, w) to T (w)(v) is linear in v and antilinear
in w, so it is a sesquilinear form, and it sends pure tensors where we want by definition.

Now we show that B is Hermitian, i.e. that B(w, v) = B(v, w) for all v, w ∈ V1 ⊗C V2.
As B is sesquilinear, it suffices to check this property for v and w pure tensors, but then it
follows immediately from the analogous property of the inner products of V1 and V2.

3Add ref.
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Finally, we show thatB is definite positive. Let v ∈ V1⊗CV2, and write v =
∑n

i=1 v1,i⊗v2,i,
v1,i ∈ V1 and v2,i ∈ V2. Then v is in V ′1 ⊗C V

′
2 , where V ′1 = Span(v1,1, . . . , v1,n) and

V ′2 = Span(v2,1, . . . , v2,n). So we may replace V1 and V2 by V ′1 and V ′2 , and so may
assume that V1 and V2 are finite-dimensional. If this is the case, let (e1, . . . , er) (resp.
(e′1, . . . , e

′
s)) be an orthonormal basis of V1 (resp. V2). Then (ei ⊗ e′j)1≤i≤r,1≤j≤s is a basis

of V1 ⊗C V2, and it is clear from the definition of the Hermitian form B on V1 ⊗C V2 that
it is an orthonormal basis for B . But the existence of an orthonomal basis forces the form
to be positive definite (if v =

∑r
i=1

∑s
j=1 aijei ⊗ e′j , then B(v, v) =

∑
i,j |aij|2).

(b). First note that, if v1 ∈ V1 and v2 ∈ V2, then we have ‖v1 ⊗ v2‖ = ‖v1‖‖v2‖.

Let x ∈ G. Then the map V1 × V2 → V1 ⊗C V2 sending (v1, v2) to π1(x)(v1)⊗ π2(x)(v2)
is bilinear, so it induces a C-linear map π1 ⊗ π2(x) from V1 ⊗C V2 to itself. We show that
this map is an isometry (hence continuous). Let (ei)i∈I (resp. (fj)j∈J ) be a Hilbert basis
of V1 (resp. V2). If v1 ∈ V1 and v2 ∈ V2, we can write v1 =

∑
i∈I aiei and v2 =

∑
j∈J bjfj ,

and then, by the remark above, the series
∑

i,j aibiei⊗ fj converges to v1⊗ v2 in V1⊗C V2.
As every element of V1 ⊗C V2 is a finite sum of elements of the form v1 ⊗ v2, this
proves that every element v of V1 ⊗C V2 can be written as the limit of a convergent series∑

i∈I,j∈J aibjei⊗fj , with ai, bj ∈ C. Then π1⊗π2(x)(v) =
∑

i,j aibjπ1(x)(ei)⊗π2(x)(fj).
As the families (ei ⊗ fj) and (π1(x)(ei)⊗ π2(x)(fj)) are both orthogonal in V1 ⊗C V2, we
get ‖v‖2 =

∑
i,j |ai|2|bj|2 = ‖π1 ⊗ π2(x)(v)‖2.

As the map π1⊗π2(x) is continuous, it extends to a continuous endormophism of V1⊗̂CV2,
which is also an isometry and will still be denoted by π1 ⊗ π2(x).

If y is another element ofG, the endomorphisms π1⊗π2(xy) and (π1⊗π2(x))◦(π1⊗π2(y))
of V1⊗̂CV2 are equal on pure tensors, hence they are equal because pure tensors generate a
dense subspace of V1⊗̂CV2.

To check that this defines a unitary representation of G on V1⊗̂CV2, we still need to check
that, for every v ∈ V1⊗̂CV2, the map G → V1⊗̂CV2, x 7−→ π1 ⊗ π2(x)(v) is continuous.
This is true for v a pure tensor : if v = v1 ⊗ v2, then, for x, y ∈ G, we have

‖(π1 ⊗ π2(x)− π1 ⊗ π2(y))(v)‖ ≤ ‖π1(x)(v1)⊗ (π2(x)− π2(y))(v2)‖
+ ‖(π1(x)− π1(y))(v1)⊗ π2(y)(v2)‖
= ‖v1‖‖(π2(x)− π2(y))(v2)‖+ ‖(π1(x)− π1(y))(v1)‖‖v2‖,

which implies the result. So it is still true for a finite sum of pure tensors, and then a
standard shows that it is true for every element of V1⊗̂CV2.

(c). Let (e1, . . . , en) (resp. (f1, . . . , fj)) be an orthonormal basis of V1 (resp. V2). Then
(ei ⊗ fj)1≤i≤n,1≤j≤m is an orthonormal basis of V1 ⊗C V2. Let x ∈ G. Then

Tr(π1(x)) =
n∑
i=1

〈π1(x)(ei), ei〉
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and

Tr(π2(x)) =
m∑
j=1

〈π2(x)(fj), fj〉,

so

Tr(π1 ⊗ π2(x)) =
n∑
i=1

m∑
j=1

〈π1 ⊗ π2(x)(ei ⊗ fj), ei ⊗ fj〉

=

(
n∑
i=1

〈π1(x)(ei), ei〉

)(
m∑
j=1

〈π2(x)(fj), fj〉

)
= Tr(π1(x))Tr(π2(x)).

�

Exercise III.6.2.2. Let V be a locally convex topological C-vector space,K be a compact convex
subset of V , and F ⊂ K be such that K is the closure of the convex hull of F . Show that every
extremal point of K is in the closure of F . (This is known as Milman’s theorem.)

Solution. If 0 ∈ X is an open convex subset of V , then we haveX ⊂ 2X . Indeed, if p : V → R≥0

be the gauge of X (see lemma B.3.8), then X = {v ∈ V |p(v) < 1}, so

X ⊂ {v ∈ V |p(v) ≤ 1} ⊂ {v ∈ V |p(v) < 2} = 2X.

Let v be an extremal of K, and suppose that v 6∈ F . Then we can find a convex neighborhood
X of 0 in V such that X = −X and (v + X) ∩ F = ∅. Replacing X by 1

2
X , we may assume

that we have (v +X) ∩ F = ∅.

As F is compact (as a closed subset of K), we can find x1, . . . , xn ∈ F such that
F ⊂

⋃n
i=1(xi + X). For every i ∈ {1, . . . , n}, let Ki be the closure of the convex hull of

F ∩ (xi +X); this is a compact convex subset of V (it is compact because it is closed in K). As
K is the closure of the convex hull of F , we have K ⊃ K1 ∪ . . .∪Kn, so K contains the convex
hull L of K1 ∪ . . . ∪Kn. Let’s show that K = L. As L ⊃ F and L is convex, it suffices to show
that L is compact. Let

S = {(x1, . . . , xn) ∈ [0, 1]n|x1 + . . .+ xn = 1},

and consider the function
f : S ×K1 × . . .×Kn → L

sending ((x1, . . . , xn), v1, . . . , vn) to
∑m

i=1 xivi. This map is continuous, so its image is compact.
If we show that this image is convex, then it will equal to L by definition of L, and we will be
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done. So let a = ((x1, . . . , xn), v1, . . . , vn) and a′ = ((x′1, . . . , x
′
n), v′1, . . . , v

′
n) be elements of

S ×K1 × . . . . . . Kn and t ∈ [0, 1]. Then

tf(a) + (1− t)f(a′) =
n∑
i=1

(txivi + (1− t)x′iv′i)

Let i ∈ {1, . . . , n}. If txi + (1 − t)xi 6= 0, we set yi = txi + (1 − t)xi and
wi = 1

yi
(txivi + (1− t)x′iv′i). Otherwise, we set wi = vi and yi = 0. Then we have wi ∈ Ki for

every i because Ki is convex, yi ≥ 0 for every i, and
n∑
i=1

yi = t

n∑
i=1

xi + (1− t)
n∑
i=1

x′i = 1.

So
tf(a) + (1− t)f(a′) = f((y1 . . . , yn), w1, . . . , wn)

is in the image of f , and we are done.

Now we derive a contradiction. As K = L, we can write v =
∑n

i=1 tivi, with (t1, . . . , tn) ∈ S
and vi ∈ Ki for every i. As v is extremal in K, there exists i ∈ {1, . . . , n} such that v = vi. But
then v ∈ Ki ⊂ (xi+X) (becauseKi is contained in the closure of the convex hull of xi+X , and
this is xi+X becauseX is convex). As xi ∈ F andX = −X , this implies that xi ∈ (v+V )∩F ,
contradicting the choice of X .

�

Exercise III.6.2.3. Let (π, V ) and (π′, V ′) be unitary representations of G. Let C ⊂ V such that
Span(π(x)(v), x ∈ G, v ∈ C) is dense in V .4 Suppose that every function x 7−→ 〈π(x)(v), v〉,
for v ∈ C, is in the closure of the set of finite sums of elements of P(π′) (still for the topology
of convergence on compact subsets of G). The goal of this problem is to show that this implies
π ≺ π′.

Let X be the set of v ∈ V such that x 7−→ 〈π(x)(v), v〉 is in the closure of the set of finite
sums of elements of P(π′) (for the same topology as above).

(a). Show that X is stable by all the π(x), x ∈ G, and under scalar multiplication.

(b). If v ∈ X and x1, x2 ∈ G, show that π(x1)(v) + π(x2)(v) ∈ X .

(c). Show that X is closed in V .

(d). If v ∈ X , show that the smallest closed G-invariant subspace of V containing v is con-
tained in X .

(e). Let v1, v2 ∈ X , and let W1 (resp. W2) be the smallest closed G-invariant subspace of V
containing v1 (resp. v2). Let W = W1 +W2, and denote by T : W → W⊥

1 the orthogonal
projection, where we take the orthogonal complement of W1 in W .

4For example, if V is cyclic, C could just contain a cyclic vector for V .
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(i) Show that T is G-equivariant and that T (W2) is dense in W⊥
1 .

(ii) Show that W⊥
1 ⊂ X .

(iii) Show that v1 + v2 ∈ X . (Hint : Use T (v1 + v2) and (v1 + v2)− T (v1 + v2).)

(f). Show that π ≺ π′.

Solution.

(a). For every v ∈ V (resp. v ∈ V ′), we write ϕv for the matrix coefficient x 7−→ 〈π(x)(v), v〉
(resp. x 7−→ 〈π′(x)(v), v〉). We also write

∑
P(π′) for the set of finite sums of elements

of P(π′).

Let v ∈ X , let y ∈ G and let λ ∈ C. We want to show that π(y)(v) and λv are in
X , that is, that ϕπ(y)(v) and ϕλv are in

∑
P(π′). If λ = 0, the conclusion is obvious

for λv (note that 0 is a matrix coefficient of every representation of G), so we may as-
sume that λ 6= 0. Let K be a compact subset of G ε > 0. Choose v′1, . . . , v

′
n such that

supx∈K∪y−1Ky |ϕv(x)−
∑n

i=1 ϕv′i(x)| ≤ min(ε, |λ|−2ε). Then, for every x ∈ K, we have

|ϕπ(y)v(x)−
n∑
i=1

ϕπ′(y)(v′i)
(x)| = |〈π(xy)(v), π(y)(v)〉 −

n∑
i=1

〈π′(xy)(v′i), π
′(y)(v′i)〉|

= |〈π(y−1xy)(v), v〉 −
n∑
i=1

〈π′(y−1xy)(v′i), v
′
i〉|

= |ϕv(y−1xy)−
n∑
i=1

ϕv′i(y
−1xy)|

≤ ε

and

|ϕλv(x)−
n∑
i=1

ϕλv′i(x)| = |λ|2|ϕv(x)−
n∑
i=1

ϕv′i(x)| ≤ ε.

So ϕπ(y)(v) and ϕλv are in the closure of P(π′).

(b). Let v ∈ X and let x1, x2 ∈ G. For every y ∈ G, we have

ϕπ(x1)(v)+π(x2)(v)(y) = 〈π(y)(π(x1)(v) + π(x2)(v)), π(x1)(v) + π(x2)(v)〉
= 〈π(x−1

1 yx1)(v), v〉+ 〈π(x−1
2 yx1)(v), v〉+ 〈π(x−1

1 yx2)(v), v〉
+ 〈π(x−1

2 yx2)(v), v〉.

In other words,

ϕπ(x1)(v)+π(x2)(v) =
2∑

i,j=1

LxiRxjϕv.
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Let K be a compact subset of G and let ε > 0. Choose v′1, . . . , v
′
n ∈ V ′ such that

sup
x∈

⋃2
i,j=1 x

−1
i Kxj

|ϕv(x)−
n∑
i=1

ϕv′i(x)| ≤ ε.

Then, by the calculation above (and its analogue for the functions ϕv′i), we have, for every
x ∈ K,

|ϕπ(x1)(v)+π(x2)(v)(x)−
n∑
i=1

ϕπ(x1)(vi)+π(x2)(vi)(x)| ≤ ε.

This shows that ϕπ(x1)(v)+π(x2)(v) is in the closure of P(π′), that is, that
π(x1)(v) + π(x2)(v) ∈ X .

(c). It suffices to show that the map V →P(π), v 7−→ ϕv is continuous if we use the topology
of compact convergence on P(π). Let v, v′ ∈ V . Then, for every x ∈ G,

|ϕv(x)− ϕv′(x)| = |〈π(x)(v), v〉 − 〈π(x)(v′), v′〉
≤ |〈π(x)(v − v′), v〉|+ |〈π(x)(v′), v − v′〉|
≤ ‖v − v′‖‖v‖+ ‖v′‖‖v − v′‖.

So the map v 7−→ ϕv is continuous even for the topology on P(π) given by ‖.‖∞.

(d). Let v ∈ X . By (a) and (b), for every n ≥ 1 and all λ1, . . . , λn ∈ C and x1, . . . , xn, we
have

∑n
i=1 λiπ(xi)(v) ∈ X . So the smallest G-invariant subspace of V containing v (i.e.∑

x∈G π(x)(Cv)) is contained in X . The conclusion now follows from (c).

(e). (i) As W1 is G-invariant, the operator T is G-equivariant by lemma I.3.4.3. As
W = W1 +W2, the image of W1 + W2 by T is dense in Im(T ) = W⊥

1 . As
Ker(T ) = W1, we have T (W1 +W2) = T (W2), so T (W2) is dense in W⊥

1 .

(ii) As W = W1 ⊕W⊥
1 , we deduce that T (W⊥

1 ∩W2) = W⊥
1 ∩W2 is dense in W⊥

1 . As
W2 ⊂ X , question (c) implies that W⊥

1 ⊂ X .

(iii) We set v = T (v1 + v2) and w = v1 + v2 − v. Then v ∈ W⊥
1 ⊂ X and

w ∈ Ker(T ) = W1 ⊂ X , so v, w ∈ X . On other hand, for every x ∈ G, we
have

ϕv1+v2(x) = 〈π(x)(v1 + v2), v1 + v2〉
= π(x)(v + w), v + w〉
= ϕv(x) + ϕw(x).

As P(π′) is stable by sums, this implies that v1 + v2 ∈ X .

(f). By (a), (c) and (e), the set X is closed G-invariant subspace of V , so it is equal to V by the
hypothesis on C. This means that π ≺ π′.

�

169



III The Gelfand-Raikov theorem

Exercise III.6.2.4. Let (π, V ) and (π′, V ′) be two unitary representations of G such that π ≺ π′.
Let C be the closure in the weak* topology on L∞(G) of the convex hull of the set of normalized
functions of positive type associated to π′.

(a). Show that every normalized function of positive type associated to π is in C.

(b). If π is irreducible, show that every normalized function of positive type associated to π is
a limit in the topology of convergence on compact subsets of G of normalized functions of
positive type associated to π′. (Hint : problem III.6.2.2.)

(c). If π is the trivial representation of G, show that, for every compact subset K of G and
every c > 0, there exists v′ ∈ V ′ such that ‖v′‖ = 1 and that

sup
x∈K
‖π′(x)(v′)− v′‖ < c.

(d). Conversely, suppose that, for every compact subset K of G and every c > 0, there exists
v′ ∈ V ′ such that ‖v′‖ = 1 and that

sup
x∈K
‖π′(x)(v′)− v′‖ < c.

Show that the trivial representation is weakly contained in π′.

Solution.

(a). Let ϕ be a normalized function of positive type associated to π. Let f ∈ L1(G) and ε > 0.
We want to find a convex combination ψ of normalized functions of positive type associ-
ated to π′ such that

∣∣∫
G
f(ϕ− ψ)dµ

∣∣ ≤ ε. Pick δ > 0; we will see later how small it needs
to be. Let K 3 1 be a compact subset of G such that

∫
G−K |f |dµ ≤ δ. As π ≺ π′, we can

find v1, . . . , vn ∈ V ′ such that supx∈K |ϕ(x)−
∑n

i=1 ϕvi(x)| ≤ δ. In particular, evaluating
at 1, we get |1−

∑n
i=1 ‖vi‖2| ≤ δ. Let ci = ‖v‖2

i , c = c1 + . . .+ cn, ϕi = 1
ci
ϕvi = ϕ 1

‖vi‖
ϕvi

and ψ = 1
c

∑n
i=1 ϕvi = 1

c

∑n
i=1 ciϕi. Then ϕ1, . . . , ϕn are normalized functions of pos-

itive type associated to π′, and ψ is a convex combination of ϕ1, . . . , ϕn. In particular,
‖ψ‖∞ ≤ 1 = ‖ϕ‖∞.

For every x ∈ K, we have

|ϕ(x)− ψ(x)| ≤ |ϕ(x)−
n∑
i=1

ϕvi(x)|+ |1− c||ψ(x)|

≤ 2δ.

So∣∣∣∣∫
G

f(ϕ− ψ)dµ

∣∣∣∣ ≤ sup
x∈K
|ϕ(x)− ψ(x)|

∫
K

|f |dµ+ sup
x∈G−K

|ϕ(x)− ψ(x)|
∫
G−K
|f |dµ

≤ 2δ‖f‖1 + 2δ.

We can make this ≤ ε by taking δ small enough.
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(b). Let F be the set of normalized functions of positive type associated to π′, and let K be
the weak* closure of its convex hull. Then F is contained in the convex set P1 of all
normalized functions of positive type on G, so K ⊂ P1. Let ϕ be a normalized function
of positive type associated to π. By question (a), we have ϕ ∈ K. By theorem III.3.2,
the function ϕ is extremal in P1, hence also in K. By problem III.6.2.2, this implies that
ϕ is in the closure of F in the weak* topology. But F and ϕ are in P1, and the weak*
topology on P1 coincides with the topology of convergence on compact subsets of G (by
Raikov’s theorem, i.e. theorem III.4.3), so ϕ is also in the closure of F in the topology of
convergence on compact subsets of G.

(c). As π is the trivial representation, the only normalized function of positive type associated
to π is the constant function 1. By question (c), there exists v′ ∈ V ′ such that ‖v′‖ = 1 and

sup
x∈K
|1− 〈π′(x)(v′), v′〉| ≤ c2/3.

Let x ∈ G. Then

‖π′(x)(v′)−v′‖2 = ‖π′(x)(v′)‖2+‖v′‖2−2 Re(〈π′(x)(v′), v′〉) ≤ 2|1−〈π′(x)(v′), v′〉| ≤ 2c2/3,

so
sup
x∈K
‖π′(x)(v′)− v′‖ < c.

(d). Let π be the trivial representation of G. Then P(π) is the set of nonnegative constant
functions, so, to show that π ≺ π′, it suffices to show that the constant function 1 is a limit
of finite sums of functions of P(π′) (in the topology of convergence on compact subsets
of G). Let K be a compact subset of G and c > 0. Choose v′ ∈ V ′ such that ‖v′‖ = 1 and
supx∈K ‖π′(x)(v′) − v′‖ < c, and define ϕ′ by ϕ′(x) = 〈π′(x)(v′), v′〉. Then, for every
x ∈ K, we have

|1− ϕ′(x)| = |〈v′, v′〉 − 〈π′(x)(v′), v′〉| = |〈v′ − π′(x)(v′), v′〉| ≤ ‖v′ − π′(x)(v′)‖ < c.

�

Exercise III.6.2.5. Let G be a finitely generated discrete group, and let S be a finite set of
generators for G. Show that the trivial representation of G is weakly contained in the regular
representation of G if and only, for every ε > 0, there exists f ∈ L2(G) such that

sup
x∈S
‖Lxf − f‖2 < ε‖f‖2.

Solution. We use the criterion of III.6.2.4(c) and (d), that says that the trivial representation of
G is weakly contained in the regular representation if and only if, for every compact (i.e. finite)
subset K of G and every ε > 0, there exists f ∈ L2(G) such that ‖f‖2 = 1 and

sup
x∈K
‖Lxf − f‖2 < ε.
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First, as S is finite, we see immediately that, if the trivial representation is contained in the regular
representation, then the condition of the statement is satisfied.

Conversely, suppose that the condition of the statement is satisfied. Let K be a finite subset of
G, and let ε > 0. Let T = S ∪ S−1 ∪ {1}. We have G =

⋃
n≥1 T

n because S generates G, and
this is an increasing union. As K is finite, there exists n ≥ 1 such that T n. By assumption, we
can find f ∈ L2(G) such that ‖f‖2 = 1 and

sup
x∈S
‖Lxf − f‖2 ≤ 1

n
ε.

We want to show that
sup
x∈K
‖Lxf − f‖2 ≤ ε.

It suffices to show it for supx∈Tn . Let x ∈ T n, and write x = x1 . . . xn, with x1, . . . , xn ∈ T . We
show by induction on i ∈ {1, . . . , n} that ‖Lx1...xif − f‖2 ≤ i

n
ε. If i = 1, we want to show that

‖Lx1f − f‖2 ≤ 1
n
ε. This is true by the choice of f if x1 ∈ S, it is obvious if x1 = 1, and, if

x1 ∈ S−1, it follows from the fact that

‖Lx1f − f‖2 = ‖f − Lx−1
1
f‖2.

Now suppose the result known for i ∈ {1, . . . , n− 1}, and let’s prove it for i+ 1. We have

‖Lx1...xi+1
f − f‖2 ≤ ‖Lx1...xi(Lxi+1

f − f)‖2 + ‖Lx1...xif − f‖2

= ‖Lxi+1
f − f‖2 + ‖Lx1...xif − f‖2

≤ i
n
ε+ 1

n
ε = i+1

n
ε.

�

Exercise III.6.2.6. Let G = Z. Show that the trivial representation of G is weakly contained in
the regular representation of G.

Solution. We apply the result of problem III.6.2.5, with S = {1}. So, for every ε > 0, we
must find f ∈ L2(Z) such that ‖f‖2 = 1 and ‖L1f − f‖2 ≤ ε. The first condition says
that

∑
n∈Z |f(n)|2 = 1, and the second condition that

∑
n∈Z |f(n − 1) − f(n)|2 ≤ ε2. Let

N ∈ Z≥0, and consider the function gN = 11[0,N ] ∈ L2(Z). Then ‖gN‖2
2 = N + 1, and∑

n∈Z |g(n− 1)− g(n)|2 = 2. So, if fN = 1√
N+1

, we have ‖f‖2 = 1 and ‖L1f − f‖2 =
√

2√
N+1

.
Taking N big enough, we see that fN has the desired properties.

�

Exercise III.6.2.7. Let G = R.

(a). Show that the trivial representation of G is weakly contained in the regular representation
of G.
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(b). Show that every irreducible unitary representation of G is weakly contained in the regular
representation of G. 5 6

Solution.

(a). If a, b ∈ R are such that a < b, let f = (b − a)−1/211[a,b]. Then f ∈ L2(R) and we have
‖f‖2 = 1. Moreover, for every t ∈ R, we have Ltf = (b− a)−1/211[a+t,b+t], so

‖Ltf − f‖2
2 ≤

2|t|
b− a

.

Let K be a compact subset of R, and let ε > 0. If we choose a, b ∈ R such that
b−a ≥ 2ε−2 supt∈K |t|, then the construction above gives a f ∈ L2(R) such that ‖f‖2 = 1
and supx∈K ‖Ltf − f‖2 ≤ ε. By 6(d), the trivial representation of R is contained in its
regular representation.

(b). As R is abelian, every irreducible unitary representation is 1-dimensional by Schur’s
lemma (theorem I.3.4.1). Let χ : R → S1 be such a representation. Let K be a com-
pact subset of R and ε > 0. By (a), there exists f ∈ L2(R) such that ‖f‖2 = 1 and
supt∈K ‖Ltf − f‖2 ≤ ε. Let g = χf . Then, for every t ∈ R, we have

〈Ltg, g〉L2(R) =

∫
R
g(x− t)g(x)dx = χ(t)〈Ltf, f〉L2(R),

hence

|χ(t)− 〈Ltg, g〉L2(R)| = |1− 〈Ltf, f〉L2(R)| = |〈f − Ltf, f〉L2(R)| ≤ ‖Ltf − f‖2.

So
sup
t∈K
|χ(t)− 〈Ltg, g〉L2(R)| ≤ ε.

This implies the desired result by III.6.2.4(d).

�

Exercise III.6.2.8. Let G be the free (nonabelian) group on two generators, with the discrete
topology. Show that the trivial representation of G is not weakly contained in the regular repre-
sentation of G.

7

Solution. Let a, b ∈ G be the two generators of G, and let S = {1, a, b, a−1, b−1}. We have
G =

⋃
n≥1 S

n, and this is an increasing union. Suppose that the trivial representation of G is

5We will see later that this is true for every abelian locally compact group.
6Where ?
7Should be in the next section.
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weakly contained in the regular representation. Then, by III.6.2.4(c), for every n ≥ 1, there
exists fn ∈ L2(G) such that ‖fn‖2 = 1 and

sup
x∈Sn
‖Lxfn − fn‖2 ≤ 1

n
.

Let gn = |fn|2. Then gn ∈ L1(G), ‖gn‖1 = 1, and, for every x ∈ Sn, the Cauchy-Schwarz
inequality gives

‖Lxgn − gn‖1 ≤ ‖Lxfn − fn‖2‖Lxfn + fn‖2 ≤
2

n
.

For every n ≥ 1, we define a continuous linear functional Λn on L∞(G) by
Λn(ϕ) =

∑
x∈G gn(x)ϕ(x). Then ‖Λn‖op = ‖gn‖1 = 1, so, by the Banach-Alaoglu the-

orem, there is a subsequence (Λnk)k≥0 of (Λn)n≥1 that converges for the weak* topology on
Hom(L∞(G),C). Let Λ be its limit. Let ϕ ∈ L∞(G). We have

Λ(ϕ) = lim
k→+∞

Λnk(ϕ).

Let y ∈ G. There exists n ≥ 1 such that y−1 ∈ Sn. Then, if k is such that nk ≥ n, we have

|Λnk(Lyϕ)− Λnk(ϕ)| = |
∑
x∈G

Ly−1gnk(x)ϕ(x)−
∑
x∈G

gnk(x)ϕ(x)|

≤ ‖Ly−1gnk − gnk‖1‖ϕ‖∞

≤ 2

nk
‖ϕ‖∞.

Taking the limit as k → +∞, we see that Λ(Lyϕ) = Λ(ϕ). As, note that Λ(1) = 1, and that
Λ(ϕ) ≥ 0 if ϕ takes nonnegative values.

Remember that every element of G can be written in a unique way as a reduced word in a, b,
a−1 and b−1. Let A be the set of elements of G whose reduced expression begins with a nonzero
power of a. The, for every x ∈ G, if x 6∈ A, we have a−1x ∈ A and then x ∈ aA. In other words,
G = A ∪ aA, so 11A + 11aA − 11G takes nonnegative values, hence

Λ(11A) =
1

2
(Λ(11A) + Λ(11aA)) ≥ 1

2
Λ(11G) =

1

2
.

On the other hand, the group G is the disjoint union of the subset bnA, n ∈ Z, so we have in
particular

1 = Λ(11G) ≥ Λ(11A) + Λ(11bA) + Λ(11b2A) = 3Λ(11A),

that is, Λ(11A) ≤ 1
3
. So we get a contradiction.

�

Exercise III.6.2.9. If π1, π2, π
′
1, π

′
2 are unitary representations of G such that π1 ≺ π′1 and

π′2 ≺ π2, show that π1 ⊗ π2 ≺ π′1 ⊗ π′2.
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Solution. We use the same notation ϕv for functions of positive type as in the solution of problem
III.6.2.3. For i = 1, 2, we denote by Vi (resp. V ′i ) the space of πi (resp. π′i).

If v1 ∈ V1 and v2 ∈ V2, then, by definition of the inner product on V1 ⊗C V2, we have
ϕv1⊗v2 = ϕv1ϕv2 . There is similar result for pure tensors in V ′1⊗CV

′
2 . So ϕv1⊗v2 is in P(π′1 ⊗ π′2).

As P(π′1 ⊗ π′2) is stable by finite sums, and as every element of V1 ⊗C V2 can be written as
a finite sum of an orthogonal family of pure tensors (see the proof of 1(a)), this implies that
ϕv ∈P(π′1 ⊗ π′2) for every v ∈ V1⊗CV2. Finally, we have proved in 5(c) that the map v 7−→ ϕv
is continuous, and V1 ⊗C V2 is dense in V1⊗̂CV2, so ϕv ∈P(π′1 ⊗ π′2) for every v ∈ V1⊗̂CV2.

�

Exercise III.6.2.10. Suppose that G is discrete. For every x ∈ G, we denote by δx ∈ L2(G) the
characteristic function of {x}.

Let (π, V ) be a unitary representation of G, and let (π0, V ) be the trivial representation of G
on V (i.e. π0(x) = idV for every x ∈ G).

(a). Show that the formula v ⊗ f 7−→
∑

x∈G f(x)(π(x)−1(v)) ⊗ δx gives a well-defined and
continuous C-linear transformation from V ⊗̂CL

2(G) to itself.

(b). Show that the representations π ⊗ πL and π0 ⊗ πL are equivalent (remember that πL is the
left regular representation of G).

Solution.

(a). First, the map V × L2(G) → V ⊗C L
2(G), (v, f) 7−→

∑
x∈G f(x)(π(x)−1(v)) ⊗ δx is

bilinear, so it defines a linear map α : V ⊗C L
2(G) → V ⊗C L

2(G). For every v, v′ ∈ V
and f, f ′ ∈ L2(G), we have (observing that the family (vx⊗δx)x∈G is orthogonal for every
family (vx)x∈G of elements of V )

〈α(v ⊗ f), α(v′ ⊗ f ′)〉 =
∑
x∈G

f(x)f ′(x)〈π(x)−1(v), π(x)−1(v′)〉

=
∑
x∈G

f(x)f ′(x)〈v, v′〉

= 〈v ⊗ f, v′ ⊗ f ′〉.

Using the fact that every element of V ⊗C L
2(G) can be written as a finite sum or pairwise

orthogonal pure tensors (see the proof of 1(a)), this implies that ‖α(v)‖ = ‖v‖ for every
v ∈ V ⊗C L

2(G). In particular, α is continuous, so it extends to a continuous endomor-
phism of V ⊗̂CL

2(G), which is still an isometry.

(b). We still call α the endomorphism of V ⊗̂CL
2(G) constructed in (a). We show that it is a

G-equivariant map from π⊗πL to π0⊗πL. As pure tensors generates a dense subspace of
V ⊗̂CL

2(G), it suffices to check the G-equivariance on them. So let v ∈ V and f ∈ L2(G),
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and let x ∈ G. We have

α(π ⊗ πL(x)(v ⊗ f)) = α(π(x)(v)⊗ Lxf) =
∑
y∈G

f(x−1y)π(y−1x)(v)⊗ δy.

On the other hand,

π0 ⊗ πL(x)(α(v ⊗ f)) = π0 ⊗ πL(x)

(∑
y∈G

f(y)π(y)−1(v)⊗ δy

)
=
∑
y∈G

f(y)π(y)−1(v)⊗ Lxδy

=
∑
y∈G

f(y)π(y)−1(v)⊗ δxy

=
∑
y∈G

f(x−1z)π(z−1x)(v)⊗ δz

= α(π ⊗ πL(x)(v ⊗ f)).

We still need to check that α is an isomorphism of vector spaces. This follows from the
fact that is has an inverse β, given by the formula β(v ⊗ f) =

∑
x∈G f(x)π(x)(v) ⊗ δx.

(We can check as in (a) that β is well-defined and continuous, and then we can check on
pure tensors that it is the inverse of α, which is an easy verification.)

Note that the isomorphism betweem π⊗ πL and π0⊗ πL is an isometry, so these represen-
tations have the same functions of positive type.

�

Exercise III.6.2.11. Generalize the result of III.6.2.10(b) to non-discrete locally compact groups.

Solution. Let (π, V ) be a unitary representation of G. We write V0 for V with the trivial action
of G.

First we define a Hilbert spaceL2(G, V0) with a unitary action ofG. (This is also often denoted
by IndG{1}V0.) Consider the space Cc(G, V0) of continuous functions with compact support from
G to V0, with the norm ‖.‖∞ defined by ‖f‖∞ = supx∈G ‖f(x)‖. We make G act on this space
by (x, f) 7−→ Lxf , for x ∈ G and f ∈ Cc(G, V0). Looking at proposition I.1.12, we see that
its proof generalizes to functions from G to V0 and show that every element of Cc(G, V0) is left
and right uniformly continuous. In particular, for every f ∈ Cc(G, V0), the map G→ Cc(G, V0),
x 7−→ Lxf is continuous.

Now we define a Hermitian sesquilinear form on Cc(G, V0) by

〈f, g〉 =

∫
G

〈f(x), g(x)〉V0dx.
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It is easy to see that this is an inner form, and that the action of G on Cc(G, V0) preserves this
inner form and is continuous in the first variable x ∈ G for the topology on Cc(G, V0) defined
by the associated norm. We denote by L2(G, V0) the completion of Cc(G, V0) for 〈., .〉. This is a
Hilbert space, and we show as in the case V0 = C that the action of G on Cc(G, V0) extends to a
unitary action of G on L2(G, V0).

We now construct a G-equivariant isometry V ⊗̂CL
2(G) → L2(G, V0). Consider the map

V × Cc(G)→ L2(G, V0) sending (v, f) to the function x 7−→ f(x)π(x−1)(v). This is a bilinear
map, so it induces a C-linear operator α : V ⊗C Cc(G) → L2(G, V0). We check that α is G-
equivariant. It suffices to check it on pure tensors, because they generate V ⊗C Cc(G). If y ∈ G,
v ∈ V and f ∈ Cc(G), then, for every x ∈ G,

α(π(y)(v)⊗ Lyf)(y) = f(y−1x)π(xy−1v)

= Ly(α(v ⊗ f))(x).

We also check that α preserves the inner forms. As before, by bilinearity, it suffices to check it
on pure tensors. Let v, w ∈ V and f, g ∈ Cc(G). Then

〈α(v ⊗ f), α(w ⊗ g)〉 =

∫
G

〈f(x)π(x)−1(v), g(x)π(x)−1(w)〉V0dx

=

∫
G

f(x)g(x)〈v, w〉V0dx

= 〈f, g〉L2(G)〈v, w〉V0 .

This implies that α is an isometry, hence that it extends by continuity to an isometry
V ⊗̂CL

2(G) → L2(G, V0) (we use the fact that Cc(G) is dense in L2(G)), which is still G-
equivariant.

We define a G-equivariant isometry α′ : V0⊗̂CL
2(G)→ L2(G, V0) in a way similar to α, but,

for v ∈ V0 and f ∈ Cc(G), we take α′(v ⊗ f) to be the function x 7−→ f(x)v. The proof that
this does define the deisred G-equivariant isometry is the same as in the case of α.

Finally, we show that α and α′ are isomorphisms. We already know that they are injective
and have closed image because they are isometries, so we just need to show that they have dense
image.

Let (ei)i∈I be a Hilbert basis of V0. Consider the subspace W of L2(G, V0) whose elements
are continuous functions with compact support f : G → V0 such that there exists J ⊂ I finite
with f(G) ⊂ Span(ej, j ∈ J). Let’s show that W is dense in L2(G, V0). It suffices to show that
W is dense in Cc(G, V0). Let f ∈ Cc(G, V0). As f has compact support, the subset f(G) of V0

is compact. Let ε > 0. For every x ∈ K, there exists a finite subset J of I such that the closed
ball centered at x and of radius ε intersects Span(ej, j ∈ J). As K is compact, it can be covered
by a finite number of these balls, so we can find s finite subset J of I such that the distance
between x and Span(ej, j ∈ J) is ≤ ε for every x ∈ K. In other words, if πJ is the orthogonal
projection on Span(ej, j ∈ J), then ‖πJ(x) − x‖ ≤ ε for every x ∈ K. Then πJ ◦ f ∈ W , and
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‖f − πJ ◦ f‖∞ ≤ ε, so ‖f − πJ ◦ f‖2 ≤ vol(supp f)ε. This shows that W is dense in Cc(G, V0)
for both topologies on Cc(G, V0) (the one induced by ‖.‖∞ and the one induced by ‖.‖2; only the
second one is relevant here). To finish, it suffices to show that W is contained in the images of α
and α′. Let f ∈ W . We can find a finite subset J of I such that f(G) ⊂ Span(ej, j ∈ J), and then
we have f(x) =

∑
j∈J fj(x)ej , with the fj in Cc(G). (Just take coordinates in the orthonormal

basis (ej)j∈J of Span(ej, j ∈ J)). In particular, f = α′(
∑

j∈J ej ⊗ fj), so f ∈ Im(α′). This
shows that α′ is an isomorphism.

For α, we consider instead the subspace W ′ of f ∈ Cc(G, V0) such that there exists J ⊂ I
finite such that, for every x ∈ G, the vector π(x)(f(x)) is in Span(ej, j ∈ J). We show as before
that W ′ is dense in Cc(G, V0) (for both ‖.‖∞ and ‖.‖2) : Let f ∈ Cc(G, V0) and ε > 0. As f
has compact support, the subset {π(x)(f(x)), x ∈ G} of V0 is compact, so we can find a finite
subset J of I such that, for every x ∈ G, the distance between π(x)(f(x)) and Span(ej, j ∈ J)
is at most ε. Let πJ be the orthogonal projection on Span(ej, j ∈ J), and define g ∈ W ′ by
g(x) = π(x)−1 ◦ πJ ◦ π(x)(f(x)). For every x ∈ G,

‖g(x)− f(x)‖ = ‖π(x)(g(x)− f(x))‖ = ‖πJ(π(x)(f(x)))− π(x)(f(x))‖ ≤ ε,

so ‖g − f‖∞ ≤ ε and ‖g − f‖2 ≤ vol(supp f)ε. Finally, we show that W ′ is contained in the
image of α. Let f ∈ W ′, and define g ∈ Cc(G, V0) by g(x) = π(x)(f(x)). Choose a finite subset
J of I such that g(G) ⊂ Span(ej, j ∈ J), and write g =

∑
j∈J gjej , with gj ∈ Cc(G). Then, for

every x ∈ G, we have
f(x) =

∑
j∈J

gj(x)π(x)−1(ej).

In other words, we have f = α(
∑

j∈J ej ⊗ gj).

�

Exercise III.6.2.12. Show that the following are equivalent :

(i) The trivial representation of G is weakly contained in πL.

(ii) Every unitary representation of G is weakly contained in πL.

Solution. The fact that (ii) implies (i) is obvious. So let’s show that (i) implies (ii). Let (π, V )
be a unitary representation of G, let π0 be the trivial representation of G on V , and let 11 be the
trivial representation of G on C. We know that 11 ≺ πL, so, by exercises III.6.2.9 and III.6.2.10,
we have π ' π ⊗ 11 ≺ π ⊗ πL ' π0 ⊗ πL.

As in the solution of exercise III.6.2.3, for every unitary representation π′ of G, we denote
by
∑

P(π′) the set of finite sums of functions of positive type associated to π. Let’s show
that

∑
P(πL) =

∑
P(π0 ⊗ πL), which will finish the proof, because we already know that

P(π) ⊂
∑

P(π0 ⊗ πL).

As πL is a subrepresentation of π0 ⊗ πL (for every v ∈ V − {0}, the subspace Cv ⊗ L2(G)
of V ⊗̂CL

2(G) is G-invariant and equivalent to the representation πL by the map v ⊗ f 7−→ f ),
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we have P(πL) ⊂ P(π0 ⊗ πL), so
∑

P(πL) ⊂
∑

P(π0 ⊗ πL). Conversely, let (ei)i∈I be an
orthonormal basis of V , and let v ∈ V ⊗̂CL

2(G). Then we can write v =
∑

i∈I ei⊗ fi, where the
sum converges in V ⊗̂CL

2(G) (i.e.
∑

i∈I ‖fi‖2 converges). Then, for every x ∈ G, we have

〈π0 ⊗ πL(x)(v), v〉 =
∑
i∈I

〈Lxfi, fi〉L2(G),

so the function x 7−→ 〈π0 ⊗ πL(x)(v), v〉 is in
∑

P(πL).

�

III.6.3 Amenable groups

Let (X,µ) be a measure space. and let E be a closed linear subspace of L∞(X) containing
the constant functions and closed under the map ϕ 7−→ ϕ. A mean on E is a linear functional
M : E → C such that :

(i) M(11X) = 1;

(ii) if f ≥ 0 (locally) almost everywhere, then M(f) ≥ 0.

If X = G is a locally compact group, we say that a mean M on E is G-invariant if for every
f ∈ E and every x ∈ G, we have Lxf ∈ E and M(Lxf) = M(f).

The group G is called amenable is there exists a G-invariant mean on L∞(G).

Let V be a locally convex topological vector space (see definition B.3.5), let K be a convex
subset of V . We say that a map f : K → K is affine if, for all v, w ∈ K and every t ∈ [0, 1], we
have f(tv+ (1− t)w) = tf(v) + (1− t)f(w). Let G×K → K, (x, v) 7−→ x · v be a continuous
left action of G on X . We say that this action is an affine action if, for every x ∈ G, the map
K → K, v 7−→ x · v is affine.

We say that the group G has the fixed point property if every affine action of G on a nonempty
compact convex subset of a locally convex topological vector space has a fixed point.

Note : The Hahn-Banach theorem is your friend in this series of problems. Also the fact that,
if V is a topological vector space, then any weak* continuous linear functional on Hom(V,C) is
of the form Λ 7−→ Λ(v), for some v ∈ V . (See theorem 3.10 of Rudin’s [20].)

Exercise III.6.3.1. (a). If (X,µ) is a measure space and E is a subspace of L∞(X) containing
the constant functions, show that any mean M on E is automatically continuous (for the
topology given by the norm ‖.‖∞) and that ‖M‖op = 1.

We now suppose that G is a locally compact group.

(a). If G is compact, show that left invariant means on C (G) are in natural bijection with
normalized Haar measures on G.
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(b). Let L1(G)1,+ be the convex subset of f ∈ L1(G) such that f ≥ 0 almost everywhere
and ‖f‖1 = 1. We identify L1(G) to a subspace of the continuous dual of L∞(G) in
the usual way (i.e. a function f ∈ L1(G) corresponds to the continuous linear functional
ϕ 7−→

∫
G
fϕdµ on L∞(G)). Show that L1

1,+(G) is weak* dense in the set of means on
L∞(G).

(c). Let UCB(G) be the subspace of L∞(G) composed of the left uniformly continuous
bounded functions on G. For every x ∈ G, we write δx for the linear functional
C (G) → C, f 7−→ f(x). Show that the set of convex combinations of functionals δx
(that is, the set of sums

∑n
i=1 aiδxi , with x1, . . . , xn ∈ G and a1, . . . , an ∈ [0, 1] such that

a1 + . . .+ an = 1) is weak* dense in the set of means on UCB(G).

Solution.

(a). Let M be a mean on E. Let ϕ ∈ E, and suppose that ϕ(x) ∈ R for almost every x. We
have ‖ϕ‖∞11X ∈ E, because it is a multiple of the constant function 11X , and the functions
‖ϕ‖∞11X − ϕ and ‖ϕ‖∞11X + ϕ are ≥ 0 almost everywhere, so their image by M is ≥ 0,
that is, M(ϕ) ∈ R and

−‖ϕ‖∞ ≤M(ϕ) ≤ ‖ϕ‖∞,
i.e. |M(ϕ)| ≤ ‖ϕ‖∞.

Now let ϕ be any element of E. Choose c ∈ C such that |c| = 1 and M(cϕ) ∈ R. Let
ϕ1 = 1

2
(cϕ+ cϕ) and ϕ2 = 1

2i
(cϕ− cϕ). Then ϕ1, ϕ2 have real values and cϕ = ϕ1 + iϕ2.

We have
|ϕ(x)| =

√
ϕ1(x)2 + ϕ2(x)2 ≥ max(|ϕ1(x)|, |ϕ2(x)|)

for every x ∈ X , so ‖ϕ‖∞ ≥ max(‖ϕ1‖∞, ‖ϕ2‖∞). On the other hand,
M(cϕ) = M(ϕ1) + iM(ϕ2) and M(ϕ1),M(ϕ2) ∈ R, so M(ϕ2) = 0, and

|M(ϕ)| = |M(cϕ)| = |M(ϕ1)| ≤ ‖ϕ1‖∞ ≤ ‖ϕ‖∞.

This shows that M is continuous and that ‖M‖op ≤ 1. As M(11X) = 1 = ‖11X‖∞, we
have ‖M‖op = 1.

(b). This is just the Riesz representation theorem (theorem I.2.3) and proposition I.2.6.

(c). Let M be the set of means on L∞(G). It is clearly a convex subset of Hom(L∞(G),C).
By question (a), the set M is contained in the closed unit ball of Hom(L∞(G),C). Also,
as the conditions characterizing a mean are all closed for the weak* topology, the set M
is weak* closed in Hom(L∞(G),C). So M is weak* compact.

By definition of L1(G)1,+, for every f ∈ L1(G)1,+, the corresponding linear form on
L∞(G) is an element of M . Note also that L1(G)1,+ is a convex subset of L1(G),
so its image in Hom(L∞(G),C) is also convex. Let M ′ be the weak* closure of this
image. We have M ′ ⊂ M , so M ′ is convex and weak* compact. Suppose that
M ′ 6= M . Then, by the Hahn-Banach theorem (second geometric form), there exists
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M ∈ M and a weak* continuous R-linear operator Λ : Hom(L∞(G),C) → R such that
Λ(M) > supM ′∈M ′ Λ(M ′). Note that the linear operator Λ′ : M ′ 7−→ Λ(M) + 1

i
Λ(iM ′)

is weak* continuous and C-linear, so there exists ϕ ∈ L∞(G) such that Λ′(M ′) = M ′(ϕ)
for every M ′ ∈ Hom(L∞(G),C), which gives Λ(M ′) = Re(M ′(ϕ)). Then we have

ReM(ϕ) > sup
f∈L1(G)1,+

(
Re

∫
G

fϕdµ

)
.

Write ϕ = ϕ1 + iϕ2, with ϕ1 = Reϕ and ϕ2 = Imϕ. Then

M(ϕ1) > sup
f∈L1(G)1,+

∫
G

fϕ1dµ

(because M(ϕ1),M(ϕ2) ∈ R by the solution of question (a)). Let

c = inf{d ∈ R|ϕ1 ≤ d11G locally almost everywhere}.

If ϕ1 ≤ d11G locally almost everywhere, then M(ϕ1) ≤M(d11G) = d. So M(ϕ1) ≤ c. Let
δ > 0 such that M(ϕ1) − δ > supf∈L1(G)1,+

∫
G
fϕ1dµ. By definition of c, there exists a

measurable subset A of G such that µ(A) > 0 and ϕ1|A ≥ (c+ δ)11A. Let f = µ(A)−111A.
Then f ∈ L1(G)1,+ and

∫
G
ϕ1fdµ ≥ c+ δ ≥M(ϕ1) + δ, a contradiction.

(d). Let M be the set of means on UCB(G). We see as in the solution of (c) that M is a
convex and weak* compact subset of Hom(UCB(G),C). Let M ′ be the weak* closure
of the convex hull of the δx, x ∈ G; then M ′ ⊂M because each δx is in M . If M ′ 6= M ,
then, by the Hahn-Banach theorem (second geometric version), there exists an element M
of M and a continuous R-linear functional Λ : Hom(UCB(G),C)→ R such that

Λ(M) > sup
M ′∈M ′

Λ(M ′).

As in the solution of (c), we see that we can find a function ϕ ∈ UCB(G) having real
values and such that Λ(M ′) = M ′(ϕ) for every M ′ ∈M . So we have

M(ϕ) > sup
M ′∈M ′

M ′(ϕ) ≥ sup
x∈G

δx(ϕ) = sup
x∈G

ϕ(x).

Let δ > 0 be such that M(ϕ) − δ ≥ supx∈G ϕ(x). Then ϕ ≤ (M(ϕ) − δ)11G, and so
M(ϕ) ≤M(ϕ)− δ, a contradiction.

�

Exercise III.6.3.2. Let G be an amenable locally compact group. The goal of this problem is to
prove that G has the fixed point property.

So let V be a locally convex topological vector space, let K be a nonempty compact convex
subset of V , and let G×K → K, (x, v) 7−→ x · v be a continuous affine action.
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(a). Show that there exists a left invariant mean on UCB(G).

(b). Fix a point v0 ∈ K and define t : G → K by t(x) = x · v0. If M is a mean on
UCB(G), show that there exists a unique regular Borel measure µM on K such that,
for every f ∈ C (K), we have ∫

K

fdµM = M(f ◦ t).

(c). Show that the integral bM =
∫
K
vdµM(v) exists and that bM ∈ K.

(d). Let M be the set of all means on UCB(G), equipped with the weak* topology (where the
topology on UCB(G) is given by ‖.‖∞). Show that, for every continuous linear functional
Λ : V → C, the map M → K, M 7−→ Λ(bM) is continuous.

(e). If M = δx for some x ∈ G, calculate bM .

(f). Show that, for every M ∈ M and every x ∈ G, we have bM◦Lx−1 = x · bM . (Hint :
question III.6.3.1(d). Also, you may assume the fact that the formation of vector-valued
integrals commutes with continuous affine maps.) 8

(g). Show that the action of G on K has a fixed point.

Solution.

(a). Just take the restriction of a left invariant mean on L∞(G).

(b). We first show that f ◦ t ∈ UCB(G) for every f ∈ C (K), and that the linear operator
C (K) → UCB(G), f 7−→ f ◦ t is continuous. So let f ∈ C (K). Note that the function
t : G → K is continuous by assumption, so f ◦ t is continuous. Also, we clearly have
‖f ◦ t‖∞ ≤ ‖f‖∞. It remains to show that f ◦ t is left uniformly continuous. We denote
by a : G × K → K the action map. Let ε > 0. For every v ∈ K, there exists an
open neighborhood Ω of a−1(v) such that |f(x · w) − f(v)| < ε for every (x,w) ∈ Ω; as
(1, v) ∈ a−1(v), we may assume that Ω = Uv × Vv, with Uv an open neighborhood of 1 in
G and Vv an open neighborhood of v in K. As K is compact, we can find v1, . . . , vn ∈ K
such that K =

⋃n
i=1 Vvi . Let U =

⋂n
i=1 Uvi . Let x ∈ U and v ∈ K. Then there exists

i ∈ {1, . . . , n} such that v ∈ Vvi , and we have

|f(x · v)− f(v)| ≤ |f(x · v)− f(vi)|+ |f(vi)− f(1 · v)| < 2ε.

So, for every x ∈ U and every y ∈ G, we have

|f ◦ t(xy)− f ◦ t(y)| = |f(x · t(y))− f(t(y))| < 2ε.

This shows that f ◦ t is uniformly continuous.

8Virer le hint ?
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Let M be a mean on UCB(G). Composing M with the continuous linear operator
C (K) → UCB(G), f 7−→ f ◦ t, we get a mean on C (K). By the Riesz representation
theorem, there is a unique regular Borel measure µM on K such that M(f ◦ t) =

∫
K
fdµM

for every f ∈ C (K).

(c). Note that µ(K) =
∫
K

1dµK = M(11G) = 1. The function idK is a continuous function
with compact on K, so, by problem I.5.6.2, its integral bM =

∫
K
vdµM with respect to µM

exists, and µ(K)−1bM = bM is in closure of the convex hull of K, i.e. in K.

(d). By definition of the integral, for every Λ ∈ Hom(V,C) and every mean M on UCB(G),
we have

Λ(bM) =

∫
G

Λ(v)dµM = M(Λ ◦ t).

This is continuous in M for the weak* topology by the very definition of the weak* topol-
ogy.

(e). Let x ∈ G, and let M = δx. Then, for every f ∈ Cf(K), we have∫
K

fdµM = M(f ◦ t) = f(x · v0).

Taking f = idK , we get

bM =

∫
K

vdµM = x · v0.

(f). Let M be the set of means onUCB(G). FixM ∈M . Let x ∈ G, and let Λ ∈ Hom(V,C).
The map Lx−1 sends UCB(G) to itself, so M ◦ Lx−1 makes sense. For every M ∈ M ,
using the fact that the map K → K, x 7−→ x · v is continuous and affine, we get

Λ(x · bM) = Λ

(∫
K

x · vdµM
)

=

∫
K

Λ(x · v)dµM = M(Λ(x · t))

= M(Lx−1(Λ ◦ t))
= Λ(bM◦Lx−1 ).

As continuous linear functionals separate points (by the Hahn-Banach theorem), this im-
plies that x · bM = bM◦Lx−1 .

(g). Let M be an invariant mean on UCB(G) (this exists by question (a)). Then, by question
(f), the point bM ∈ K is a fixed point for the action of G.

�

Exercise III.6.3.3. Let G be a locally compact group, and suppose that G has the fixed point
property. The goal of this problem is to show that G is amenable. (You might find exercise
I.5.6.6 useful.)
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(a). Let M be the set of all means on UCB(G). Show that this is a nonempty weak* compact
convex subset of the continuous dual of UCB(G), and that the action of G on M given by
x ·M(f) = M(Lx−1f) for x ∈ G, M ∈M and f ∈ UCB(G), is continuous and affine.
(For the weak* topology on M .)

(b). Show that there exists a left invariant mean m on UCB(G). 9 10

(c). Show that, if f ∈ L1(G)1,+ and ϕ ∈ UCB(G), then m(f ∗ ϕ) = m(ϕ).

(d). Show that, if f, f ′ ∈ L1(G)1,+ and ϕ ∈ L∞(G), then m(f ∗ ϕ) = m(f ′ ∗ ϕ).

(e). Let f0 ∈ L1(G)1,+. Show that the formula ϕ 7−→ m(f0 ∗ ϕ) defines a mean m̃ on L∞(G),
and that we have m̃(f ∗ ϕ) = m̃(ϕ) for every f ∈ L1(G)1,+ and every ϕ ∈ L∞(G).

Let E =
∏

f∈L1(G)1,+
L1(G). We consider two topologies on E :

- The product of the weak* topology on L1(G) (that we get by seeing L1(G) as a subspace
of the continuous dual of L∞(G)). We will call this the weak topology on E.

- The product of the topology on L1(G) defined by the norm ‖.‖1. We will call this the
strong topology on E.

(a). Let
Σ = {(f ∗ g − g)f∈L1(G)1,+

, g ∈ L1(G)1,+} ⊂ E.

Show that the closure of Σ in the weak topology contains 0.

(b). Show that the closure of Σ in the strong topology contains 0. (Hint
: Any strongly continuous linear functional Λ on E can be written as
Λ((gf )f∈L1(G)1,+

) =
∑

f∈L1(G)1,+

∫
G
gfϕfdµ, with the ϕf in L∞(G) and ϕf = 0

for all but a finite number of f .)

(c). Let Q 3 1 be a compact subset of G, ε > 0 and f ∈ L1(G)1,+. Show that there exists
g ∈ L1(G)1,+ such that

sup
x∈Q
‖(Lxf) ∗ g − g‖1 ≤ ε.

(d). Find a function h ∈ L1(G)1,+ such that

sup
x∈Q
‖Lxh− h‖1 ≤ 2ε.

(e). Show that there exists a left invariant mean on L∞(G). (If you are uncomfortable with
nets, you may assume that G is σ-compact, i.e. a countable union of compact subsets.)

Solution.
9If G is a general topological group, it is called amenable if such a mean exists. One of the things we prove in this

problem is that, for G locally compact, this is equivalent to the other definition.
10reference
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(a). We already saw that M is a weak* compact convex subset of Hom(UCB(G),C) in the
solution of 1(d), and M is not empty because it contains all the linear functionals δx,
x ∈ G.

If x ∈ G, the morphism Λ 7−→ Λ ◦ Lx−1 from Hom(UCB(G),C) to itself is linear, and it
clearly preserves M , so its restriction to M is affine.

It remains to show that the map G ×M →M , (x,M) 7−→ M ◦ Lx−1 is continuous. As
we are using the weak* topology on M , this means that, for every ϕ ∈ UCB(G), the map
G ×M → C, (x,M) 7−→ M(Lx−1ϕ) is continuous. Fix ϕ ∈ UCB(G), and let ε > 0.
As ϕ is left uniformly continuous, there exists an open neighborhood U of 1 in G such
that, for every y ∈ U , we have ‖Ly−1ϕ− ϕ‖∞ < ε. Note that, for every y ∈ U and every
x ∈ G, we have

‖Lx−1y−1ϕ− Lx−1ϕ‖∞ = ‖Ly−1ϕ− ϕ‖∞ < ε.

Let (x,M) ∈ G ×M . Let V = {M ′ ∈ M ||M(Lx−1ϕ) −M ′(Lx−1ϕ)| < ε}. This is
weak* neighborhood of M , so Ux× V is a neighborhood of (x,M) in G×M . If y ∈ U
and M ′ ∈ V , we have

|M(Lx−1ϕ)−M ′(L(yx)−1ϕ)| ≤ |M(Lx−1ϕ)−M ′(Lx−1ϕ)|+ |M ′(Lx−1ϕ)−M ′(Lx−1y−1ϕ)|
< ε+ ‖M ′‖op‖Lx−1ϕ− Lx−1y−1ϕ‖∞
< 2ε

(using III.6.3.1(a) to see that ‖M ′‖op = 1). This shows the desired result.

(b). A left invariant mean on UCB(G) is exactly a fixed point of the action of G on M defined
by x ·M = M ◦ Lx−1 . So the existence of such a mean follows from (a) and from the fact
that G has the fixed point property.

(c). By problem I.5.6.6, we have f ∗ ϕ =
∫
G
f(y)Lyϕdy. By problem I.5.6.6, the linear

functional m on UCB(G) is continuous. Applying the definition of the integral and the
left invariance of m, we get

m(f ∗ ϕ) =

∫
G

f(y)m(Lyϕ)dy =

∫
G

f(y)m(ϕ)dy = m(ϕ)

∫
G

fdµ = m(ϕ).

(d). Let (ψU)U∈U be an approximate identity onG. Note that ψU ∈ L1(G)1,+ for everyU ∈ U .
Let ϕ ∈ L∞(G) and f, f ′ ∈ L1(G)1,+. By question I.5.6.6(a), we have ψU ∗ϕ ∈ UCB(G)
for every U ∈ U , so, by question (c), we get

m(f ∗ ψU ∗ ϕ) = m(ψU ∗ ϕ) = m(f ′ ∗ ψU ∗ ϕ).

Also, by proposition I.4.1.9, we have limU→{1} f ∗ ψU = f and limU→{1} f
′ ∗ ψU = f ′.

Taking the limit as U → {1} in the equality above (forgetting the middle term) and us-
ing the fact that the convolution product from L1(G) × L∞(G) to UCB(G) is continu-
ous in both variables (by the solution of I.5.6.6(a)) and that m is continuous, we get that
m(f ∗ ϕ) = m(f ′ ∗ ϕ).
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(e). The map m̃ is well-defined by I.5.6.6(a), and it is clearly C-linear. If ϕ = 11G, then, for
every x ∈ G,

f0 ∗ ϕ(x) =

∫
G

f0(y)dµ(y) = 1,

so m̃(ϕ) = m(11G) = 1. If ϕ ≥ 0 locally almost everywhere, then f0 ∗ ϕ ≥ 0 almost
everywhere, so m̃(ϕ) ≥ 0. This shows that m̃ is a mean on L∞(G).

Let f ∈ L1(G)1,+ and ϕ ∈ L∞(G). Then

m̃(f ∗ ϕ) = m(f ∗ f0 ∗ ϕ) and m̃(ϕ) = m(f0 ∗ ϕ).

By (d), to show that these are equal, it suffices to show that f ∗ f0 ∈ L1(G)1,+. We already
know that f ∗ f0 ∈ L1(G) by proposition I.4.1.2, and the fact that f ∗ f0 ≥ 0 almost
everywhere is clear from the formula defining f ∗ f0. Finally, we have∫

G

f ∗ f0(x)dx =

∫
G×G

f(y)f0(y−1x)dxdy =

∫
G

f(y)

(∫
G

f0(y−1x)dx

)
dy

=

∫
G

f(y)dy = 1.

(f). A piece of useful notation : for every f ∈ L1(G), we will denote by Mf the linear func-
tional ϕ 7−→

∫
G
fϕdµ on L∞(G).

We want to show the following statement : For every n ≥ 1, for all f1, . . . , fn ∈ L1(G)1,+,
if U1, . . . , Un are weak* neighborhoods of 0 in Hom(L∞(G),C), then there exists
g ∈ L1(G)1,+ such that Mfi∗g −Mg is in Ui for i ∈ {1, . . . , n}.

If f ∈ L1(G)1,+, the map cf : Λ 7−→ Λ(f ∗ (.)) from Hom(L∞(G),C) to itself is weak*
continuous (because ϕ 7−→ f ∗ ϕ is continuous on L∞(G) by I.5.6.6(a)). Moreover, if
Λ = Mg with g ∈ L1(G), then, for every ϕ ∈ L∞(G), we have

(cf ′Λ)(ϕ) =

∫
G

g(y)(f ′ ∗ ϕ)(y)dy

=

∫
G×G

g(y)∆(x)−1f(x−1)ϕ(x−1y)dxdy

=

∫
G×G

∆(x)−1f(x−1)g(xz)ϕ(z)dxdz

=

∫
G

(f ∗ g)ϕdµ (see proposition I.4.1.3),

where f ′ ∈ L1(G) is defined by f ′(x) = ∆(x)−1f(x−1). In other words, cf ′Mg = Mf∗g.

Fix n, f1, . . . , fn and U1, . . . , Un as above. Then U := U1 ∩ . . . ∩ Un is a weak* neigh-
borhood of 0 in Hom(L∞(G),C). Choose another weak* neighborhood V of 0 such that
V = −V and V + V ⊂ U .
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Then m̃+ V is a weak* neighborhood of m̃, so, by 1(c) and the previous paragraph, there
exists g ∈ L1(G)1,+ such that Mg− m̃ and all the Mfi∗g− cf ′im̃, 1 ≤ i ≤ n, are in V . Note
that cf ′im̃ = m̃ by (e), so, for 1 ≤ i ≤ n, we have

Mfi∗g −Mg = (Mfi∗g − m̃) + (m̃−Mg) ∈ V − V ⊂ Ui.

(g). Note that Σ is a convex subset of E. Let Σ be the closure of Σ for the strong topology.
If 0 6∈ Σ, then, by the Hahn-Banach theorem (second geometric version), there exists a
strongly continuous R-linear functional Λ′ : E → R such that 0 = Λ′(0) > supx∈Σ Λ′(x).
As in the solution of III.6.3.1(c) and (d), we can write Λ′ = Re Λ, for Λ : E → C a
strongly continuous C-linear functional (defined by Λ(x) = Λ′(x) + 1

i
Λ′(ix)).

Now an important remark is that, as we are using the product topology on E, the direct
sum

⊕
f∈L1(G)1,+

L1(G) is dense in E.

For every f0 ∈ L1(G)1,+, consider the linear functional Λf0 : L1(G)→ C that is the com-
position of Λ and of the inclusion of the factor indexed by f0 in

∏
f∈L1(G)1,+

L1(G) = E.
This is a continuous linear functional on L1(G), so there exists a unique ϕf0 ∈ L∞(G)
such that Λf0 is integration against ϕf0 .

Now consider an increasing family (Xn)n≥0 of subsets of L1(G)1,+ such that
L1(G)1,+ =

⋃
n≥0Xn. For every x = (gf )f∈L1(G)1,+

∈ E, the sequence ((gf )f∈Xn)n≥0

converges to x in the strong topology, so

Λ(x) = lim
n→+∞

Λ((gf )f∈Xn) = lim
n→+∞

∑
f∈Xn

∫
G

gfϕfdµ =
∑

f∈L1(G)1,+

∫
G

gfϕfdµ.

As the sum converges for any (gf ) ∈ E, we must have ϕf = 0 for all but a finite number
of f ∈ L1(G)1,+.

But then, if we consider any real number c such that 0 > c > supx∈Σ Re(Λ(x)), the set
{x ∈ E|Re(Λ(x)) ≤ c} is weakly closed in E, hence contains the weak closure of Σ,
hence contains 0 by (f), contradiction.

(h). For every x ∈ Q, let Ux be a neighborhood of x in G such that, for y ∈ Ux, we
have ‖Lyf − Lxf‖1 ≤ ε/2. (See proposition I.3.1.13). As Q is compact, we can find
x1, . . . , xn ∈ Q such that Q ⊂

⋃n
i=1 Uxi . By question (f), there exists g ∈ L1(G)1,+ such

that, for every i ∈ {1, . . . , n}, we have ‖(Lxif) ∗ g − g‖1 ≤ ε/2.

Let’s show that this g works. Let x ∈ Q. Then there exists i ∈ {1, . . . , n} such that
x ∈ Uxi , and we have

‖(Lxf) ∗ g − g‖1 ≤ ‖(Lxf) ∗ g − (Lxif) ∗ g‖1 + ‖(Lxif) ∗ g − g‖1

≤ ‖Lxf − Lxif‖1‖g‖1 + ‖(Lxif) ∗ g − g‖1

≤ ε.

(The second equality uses proposition I.4.1.2).
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(i). Let h = f ∗ g. We have h ∈ L1(G)1,+ (see the solution of question (e)), and, as 1 ∈ Q, for
every x ∈ Q,

‖Lxh− h‖1 ≤ ‖Lxh− g‖1 + ‖g − h‖1 ≤ ‖(Lxf) ∗ g − g‖1 + ‖(L1f) ∗ g − g‖1 ≤ 2ε.

(j). Suppose that G is σ-compact, and write G =⊂n≥0, where each Qn is a compact subset of
G containing 1. For every n ∈ Z≥0, we can find by (h) a function hn ∈ L1(G)1,+ such that
supx∈Qn ‖Lxhn−hn‖1 ≤ 2−n. The sequence (Mhn)n≥0 of elements of the weak* compact
subset of means on L∞(G) (we have seen in III.6.3.1(c) that this set is weak* compact) has
a convergent subsequence, so we may assume that it is convergent. Let M = limn≥0Mhn .
We show that M is left invariant. Let x ∈ G. Then x−1 ∈ Qn for n >> 0, so, for every
ϕ ∈ L∞(G),

M(Lxϕ) = lim
n→+∞

Mhn(Lxϕ)

= lim
n→+∞

∫
G

hn(y)ϕ(x−1y)dy

= lim
n→+∞

∫
G

hn(xy)ϕ(y)dy

= lim
n→+∞

∫
G

Lx−1hnϕdµ,

and

|M(Lxϕ)−M(ϕ)| = lim
n→+∞

∣∣∣∣∫
G

(Lx−1hn − hn)ϕdµ

∣∣∣∣
≤ lim

n→+∞
‖Lx−1hn − hn‖1‖ϕ‖∞

= 0,

that is, M(Lxϕ) = M(ϕ).

Assume that G is not σ-compact. Then we write G =
⋃
Q∈Q Q, where Q is a family of

compact subsets of G such that, if Q1, Q2 ∈ Q, then Q1 ∪ Q2 ∈ Q. That is, Q is a
directed set for the order relation given by inclusion. For every Q ∈ Q, we can find by (i)
a function hQ ∈ L1(G)1,+ such that supx∈Q ‖LxhQ − hQ‖1 ≤ (1 + µ(Q))−1. If G is not
compact, then µ(G) = +∞, so limQ∈Q(1 + µ(Q))−1 = 0. Let M be a weak* limit point
of (MhQ)Q∈Q, which exists because the set of means on L∞(G) is weak* compact. Then
we see exactly as above that M is left invariant.

�

Exercise III.6.3.4. Let G be a locally compact group. Remember problem III.6.2.4.

(a). IfG is amenable, show that the trivial representation is weakly contained in the left regular
representation of G. (Hint : For all a, b ∈ R≥0, we have |a− b|2 ≤ |a2 − b2|.)
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(b). If the trivial representation is weakly contained in the left regular representation ofG, show
that G is amenable. (Hint : For all a, b ∈ C, prove that ||a|2 − |b|2| ≤ |a+ b||a− b|.)

Solution.

(a). Let’s first prove the inequality in the hint. Let a, b ∈ R≥0. We may assume that a ≥ b.
Then

|a− b|2 = (a− b)2 = a2 + b2 − 2ab ≤ a2 + b2 − 2b2 = a2 − b2 = |a2 − b2|.

Suppose thatG is amenable. LetK be a compact subset ofG and let c > 0. By III.6.3.3(i),
there exists h ∈ L1(G)1,+ such that supx∈K ‖Lxh− h‖1 < c2. Let f =

√
h. Then, by the

inequality above, for every x ∈ K, we have

‖Lxf − f‖2
2 =

∫
G

|f(x−1y)− f(y)|2dy

≤
∫
G

|h(x−1y)− h(y)|dy

= ‖Lxh− h‖1

< c2,

so ‖Lxf − f‖2 < c.

By III.6.2.4(d), this implies that the trivial representation of G is weakly contained in the
regular representation.

(b). We check that the result of III.6.3.3(i) holds, i.e. that, for every compact subset Q of G
and every ε > 0, there exists h ∈ L1(G)1,+ such that supx∈Q ‖Lxh− h‖1 ≤ ε. Indeed, we
have seen in III.6.3.3(j) that this implies the existence of a left invariant mean on L∞(G).

Let Q be a compact subset of G and ε > 0. By III.6.2.4(c), there exists f ∈ L2(G) such
that ‖f‖2 = 1 and supx∈Q ‖Lxf − f‖2 ≤ ε/2. Let h = |f |2. Then ‖h‖1 = ‖f‖2

2 = 1, so
h ∈ L1(G)1,+. Note that, for all a, b ∈ C, we have |a2 − b2| ≥ ||a|2 − |b|2| by the triangle
inequality, so

|a+ b|2|a− b|2 = (a2 − b2)(a2 − b2
) = |a2 − b2|2 ≥ ||a|2 − |b|2|2.

Now, if x ∈ Q, we get

‖Lxh− h‖1 =

∫
G

||Lxf(y)|2 − |f(y)|2|dy

≤
∫
G

(|Lxf(y) + f(y)|)|Lxf(y)− f(y)|dy

≤ ‖Lxf − f‖2‖Lx + f‖2 (Cauchy-Schwarz)
≤ ε

(because ‖Lxf + f‖2 ≤ ‖Lxf‖2 + ‖f‖2 = 2‖f‖2 = 2).
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�

Exercise III.6.3.5. Let G be an abelian locally compact group. The goal of this problem is to
show that G has the fixed point property (hence is amenable).

Let V be a locally convex topological vector space, K be a nonempty compact convex subset
of V and G×K → K, (x, v) 7−→ x · v be an affine action of G on K.

For every n ∈ Z≥0 and every x ∈ G, we define a continuous affine map An(x) : K → K by

An(x)(v) =
1

n+ 1

n∑
i=0

xi · v.

Let G be the semigroup of continuous affine mapsK → K generated by all theAn(x), for n ≥ 0
and x ∈ G. (That is, the semigroup whose elements are finite compositions of morphismsAn(x),
where the semigroup operation is the composition of maps K → K.)

(a). Let v ∈
⋂
γ∈G γ(K). Show that v is a fixed point of the action of G. (Hint : For every

continuous linear functional Λ on V and every x ∈ G, show that Λ(v) = Λ(x · v).)

(b). For all γ1, . . . , γn ∈ G , show that
⋂n
i=1 γi(K) 6= ∅.

(c). Show that G has a fixed point in K.

Solution.

(a). Let x ∈ G. Let Λ be a continuous linear functional on V . As K is compact,
C := supw∈K |Λ(w)| < +∞. If n ≥ 0, we have x ∈ An(x)(K), so there exists w ∈ K
such that v = An(x)(w). As the action of G is affine, this implies that

x · v =
1

n+ 1

n∑
i=0

xi+1 · w,

so v− x · v = 1
n+1

(w− xn+1 ·w), so |Λ(v− x · v)| 2C
n+1

. As this is true for every n ≥ 0, we
have |Λ(v)−Λ(x · v)|, i.e. Λ(v) = Λ(x · v). As continuous linear functional on V separate
points, we finally get x · v = v.

(b). Note that, if x, y ∈ G and n,m ∈ Z≥0, then, for every v ∈ K,

An(x) ◦ Am(y)(v) =
1

n+ 1

n∑
i=1

xi · Am(y)(v)

=
1

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

xi · (yj · v)

=
1

(n+ 1)(m+ 1)

n∑
i=0

m∑
j=0

yj · (xi · v) (because G is commutative)

= Am(y) ◦ An(x)(v).
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This implies that the semigroup G is commutative.

Now let γ1, . . . , γn ∈ G . Then, for every i ∈ {1, . . . , n},

γi(K) ⊃ γi(γ1 ◦ . . . ◦ γi−1 ◦ . . . ◦ γn(K)) = γ1 ◦ . . . ◦ γn(K).

So
n⋂
i=1

γi(K) ⊃ γ1 ◦ . . . ◦ γn(K) 6= ∅.

(c). As K is compact and each γ ∈ G is continuous, the subset γ(K) of K is compact, hence
closed in K, for every γ ∈ G . By (b), the family (γ(K))γ∈G has the finite intersection
property. By compactness of K, we have

⋂
γ∈G γ(K) 6= ∅. By (a), any point of this

intersection is a fixed point of G on K.

�

Exercise III.6.3.6. (a). Let P(Z) be the set of subsets of Z. Show that there exists a finitely
additive left-invariant probability measure on Z, that is, a function µ : P(Z)→ R≥0 such
that :

(i) If A1, . . . , An ∈ P(Z) are such that Ai ∩ Aj = ∅ for i 6= j, then
µ(A1 ∪ . . . ∪ An) = µ(A1) + . . .+ µ(An).

(ii) µ(Z) = 1.

(iii) For every A ∈P(Z) and n ∈ Z, we have µ(n+ A) = µ(A).

(b). Is the measure of question (a) unique ? (Hint : You need a somewhat explicit way to
construct invariant means on Z. You can for example try to exploit the sequence of (non-
invariant) means Mn : L∞(Z)→ C, (xk)k∈Z 7−→ 1

2k+1

∑n
k=−n xk.)

Solution.

(a). As Z is an abelian locally compact group, it is amenable by problems III.6.3.3 and
III.6.3.5. This means that there exists a left-invariant mean M on L∞(Z). We define µ
by µ(A) = M(11A); this function does take its values in R≥0 by definition of a mean. Then
µ satisfies (i) because M is linear, it satisfies (ii) because M(1) = 1 and it satisfies (iii)
because M is left-invariant.

Conversely, note that the existence of a µ as in the statement implies the existence of an
invariant mean.

(b). No.

Let V = L∞(Z), and consider the family of linear functionals Mn : L∞(Z) → C defined
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by

Mn((xk)k∈Z) =
1

2n+ 1

n∑
k=−n

xk,

for n ∈ N. We have |Mn(x)| ≤ ‖x‖∞ for every x ∈ V , so Mn is continuous. Also, it is
clear on the definition that Mn is a mean. If a ∈ Z, then, for every x ∈ V and every n ∈ N,
we have

|Mn(Lax)−Mn(x)| ≤ 2|a|
2n+ 1

‖x‖∞.

So, if we could make the sequence (Mn)n≥0 converge in the weak* topology of
Hom(V,C), then its limit would be an invariant mean, and it would define an invariant
finitely additive probability measure as in question (a). We can always find a convergent
subsequence of (Mn)n≥0 converge in the weak* using the Banach-Alaoglu theorem, but
we would also like to show that we can get two different limits.

Consider the element x = (xn)n∈Z of V defined by xn = 0 for n ≤ 0, and xn = (−1)k if
we have 2k ≤ n ≤ 2k+1 − 1 with k ∈ Z≥0. Then, if n = 2k − 1 with k ≥ 0, we have

n∑
r=−n

xn =
k−1∑
s=0

(−1)s2s =
1− (−2)k

3
,

so

Mn(x) =
1− (−2)k

3(2k+1 − 1)
.

In particular, the sequence (M22l−1(x))l≥0 converges to −1
6
, and the sequence

(M22l+1−1(x))l≥0 converges to 1
6
.

By the Banach-Alaoglu theorem,11 the sequences (M22l−1)l≥0 (M22l+1−1)l≥0 both have
weak* limit points, say M and M ′. Both M and M ′ are left invariant means on V , but we
have M(x) = −1

6
and M ′(x) = 1

6
by the calculation above, so M 6= M ′.

�

Exercise III.6.3.7. (a). Let G be a group acting on a set X . Suppose that we have subgroups
G1, G2 of G and subsets X1, X2 of X such that :

- The sets X1 and X2 are not empty, and X1 6= X2;

- For every x ∈ G1 − {1}, we have x ·X1 ⊂ X2;

- For every x ∈ G2 − {1}, we have x ·X2 ⊂ X1;

- The cardinality of G2 is at least 3.

Show that we cannot have an equality 1 = h1 . . . hn with hi in G1 − {1} for i odd, hi in
G2 − {1} for i even and n ≥ 1.

11ref ?
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III.6 Exercises

(b). Let a1, a2 ∈ C such that |a1| ≥ 2 and |a2| ≥ 2. Define x, y ∈ SL2(C) by

x =

(
1 a1

0 1

)
and y =

(
1 0
a2 1

)
.

Show that the subgroup of SL2(C) generated by x and y is isomorphic to the free group
on two generators. (Hint : Let SL2(C) act on C2 in the usual way. Look at the subsets
{(z1, z2) ∈ C2||z1| > |z2|} and {(z1, z2) ∈ C2||z1| < |z2|}.)

(c). Let G = SL2(R) with the discrete topology. Show that G is not amenable.

Solution.

(a). If G1 = {1}, the result if obvious. So we may assume G1 6= {1}.

Suppose that we have 1 = h1 . . . hn with hi in G1 − {1} for i odd, hi in G2 − {1} for i
even and n ≥ 1.

We first assume that n is even. As |G2| ≥ 3, we can find h ∈ G2 − {1} such that h 6= hn.
Note that 1 = hh−1 = hh1 . . . (hnh

−1), with hnh−1 ∈ G2 − {1}. Let g ∈ G1 − {1}. We
also have 1 = gg−1 = ghh1 . . . (hnh

−1)g−1. So, for every x ∈ X2, we have

x = hh1 . . . hn−1(hnh
−1)(x) ∈ X1,

hence X2 ⊂ X1. On the other hand, for every y ∈ X1, we get

y = ghh1 . . . (hnh
−1)g−1(y) ∈ X2,

so X1 ⊂ X2. This contradicts the fact that X1 6= X2.

Now suppose that n is odd. Let h ∈ G2 − {1}. Then 1 = hh−1 = hh1 . . . hnh
−1. So, for

every x ∈ X2, we have

x = hh−1 = hh1 . . . hnh
−1(x) ∈ X1,

hence X2 ⊂ X1. On the other hand, for every y ∈ X1, we have

y = h1 . . . hn(y) ∈ X2,

so X1 ⊂ X2. Again, this contradicts the fact that X1 6= X2.

(b). We want to apply question (a) with X = C2, X1 = {(z1, z2) ∈ C2||z1| < |z2|},
X2 = {(z1, z2) ∈ C2||z1| > |z2|}, G1 = 〈x〉 and G2 = 〈y〉. We have to check that
these subsets and subgroups satisfy the conditions of (a).

Let g ∈ G1−{1} and (z1, z2) ∈ X1. We have g = xn, with n ∈ Z−{0}, so g =

(
1 na1

0 1

)
,

and g · (z1, z2) = (z1 + na1z2, z2). Hence

|z1 + na1z2| ≥ |n||a1||z2| − |z1| ≥ 2|z2| − |z1| > |z2|,
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III The Gelfand-Raikov theorem

that is, g·(z1, z2) ∈ X2. (We have used the fact that |n| ≥ 1.) The proof that g·(z1, z2) ∈ X1

for g ∈ G2 − {1} and (z1, z2) ∈ X2 is similar.

Let G be the subgroup of SL2(C) generated by x and y, and let F be the free group
on two generators a and b. We have a surjective morphisms of groups ϕ : F → G
sending an element an1bm1 . . . anrbmr of F (with r ≥ 0 and n1,m1, . . . , nr,mr ∈ Z) to
xn1ym1 . . . xnrymr ∈ G. We want to check that ϕ is injective. This means that its kernel is
trivial, i.e. that it sends reduced words in F to nontrivial elements of G. But this property
is exactly the conclusion of (a).

(c). Suppose that G is amenable. Then, by problem III.6.3.4, the trivial representation 11 of G
on C is contained in its regular representation πL. Let H be a subgroup of G. It follows
immediately from the definition of weak containment that the representation 11|H of H
(which is just its trivial representation) is weakly contained in πL|H . Let π be the regular
representation of H , and let’s show that πL|H is weakly contained in π. This will imply
that the trivial representation of H is contained in its regular representation.

Let (xi)i∈I be a system of representatives of the quotient H \G; we have G =
∐

i∈I Hxi.
Let ϕ be a function of positive type associated to πL|H . This means that we have f ∈ L2(G)
such that, for every x ∈ H ,

ϕ(x) = 〈Lxf, f〉L2(G).

For every i ∈ I , let fi = f|Hxi ∈ L2(G). Then the series
∑

i∈I fi converges to f in L2(G),
and, if i 6= j, then 〈Lxfi, fi〉L2(G) = 0 for every x ∈ H (because Lxfi and fj have disjoint
supports). In particular, ‖f‖2

2 =
∑

i∈I ‖fi‖2
2. So, for every x ∈ H ,

ϕ(x) =
∑
i∈I

〈Lxfi, fi〉L2(G),

and this sums converges uniformly on x ∈ H (because |〈Lxfi, fi〉L2(G)| ≤ ‖fi‖2
2).

For every i ∈ I , we define gi ∈ L2(H) by gi(y) = fi(yxi). Then
〈Lxgi, gi〉L2(H) = 〈Lxfi, fi〉L2(G) for every x ∈ H . So we have written ϕ as a limit of
finite sums of functions of positive type associated to the regular representation of H ,
which is what we wanted.

In summary, we have shown that, if G is amenable, then, for every subgroup H of G,
the trivial representation of H is contained in its regular representation (i.e. H is also
amenable). Note that we only used the fact that G is discrete so far.

Now if G = SL2(R), question (b) says that G has a subgroup H isomorphic to the free
group on two generators (just take a1, a2 ∈ R in (b)). Then the result above contradicts
problem III.6.2.8.

�
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IV The Peter-Weyl theorem

IV.1 Compact operators

Definition IV.1.1. Let V and W be Banach spaces, and let B be the closed unit ball in V . A
continuous linear operator T : V → W is called compact if T (B) is compact.

Example IV.1.2. (1) If Im(T ) is finite-dimensional (i.e. if T has finite rank), then T is com-
pact.

(2) If T is a limit of operators of finite rank, then T is compact; more generally, any limit of
compact operators is compact (see exercise I.5.5.9).

Conversely, if W is a Hilbert space, then every compact operator T : V → W is a limit of
operators of finite rank. 1

(3) The identity of V is compact if and only if V is finite-dimensional. (This is a consequence
of Riesz’s lemma, see theorem B.4.2.)

In this class, we will only need to use self-adjoint compact endormophisms of Hilbert space.
A much simpler version of the spectral theorem holds for them.

Theorem IV.1.3. Let V be a Hilbert space over C, and let T : V → V be a continuous endo-
morphism of V . Assume that T is compact and self-adjoint, and write Vλ = Ker(T − λidV ) for
every λ ∈ C.

Then :

(i) If Vλ 6= 0, then λ ∈ R.

(ii) If λ, µ ∈ C and λ 6= µ, then Vµ ⊂ V ⊥λ .

(iii) If λ ∈ C− {0}, then dimC Vλ < +∞.

(iv) {λ ∈ C|Vλ 6= 0} is finite or countable, and its only possible limit point is 0.

(v)
⊕

λ∈C Vλ is dense in V .

Proof. We prove (i). Let λ ∈ C such that Vλ 6= 0, and choose v ∈ Vλ nonzero. Then

λ‖v‖2 = 〈λv, v〉 = 〈T (v), v〉 = 〈v, T ∗(v)〉 = 〈v, T (v)〉 = λ‖v‖2.

1This is not true in general, see Enflo’s article [10] for a counterexample.
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IV The Peter-Weyl theorem

As ‖v‖ 6= 0, this implies that λ ∈ R.

We prove (ii). Let λ, µ ∈ C such that λ 6= µ, and let v ∈ Vλ and w ∈ Vµ. We want to prove
that 〈v, w〉 = 0. By (i), it suffices to treat the case where λ, µ ∈ R (otherwise v = w = 0). In
that case, we have

λ〈v, w〉 = 〈T (v), w〉 = 〈v, T (w)〉 = µ〈v, w〉 = µ〈v, w〉,

so 〈v, w〉 = 0.

Let r > 0. Let W =
⊕
|λ|≥r Vλ. We want to show that dimW < +∞, which will im-

ply (iii) and (iv). Choose a Hilbert basis (ei)i∈I of W made up of eigenvectors of T , i.e. such
that, for every i ∈ I , we have T (ei) = λiei with |λi| ≥ r. If I is infinite, then the family
(T (ei))i∈I cannot have a convergent (non-stationary) subsequence. Indeed, if we had an in-
jective map N → I , n 7−→ in, such that (T (ein))n≥0 converges to some vector v of V , then
λinein → v, so v is in the closure of Span(ein , n ≥ 0). But on the other hand, for every n ≥ 0,
〈v, ein〉 = limm→+∞〈λimeim , ein〉 = 0, so v ∈ Span(ein , n ≥ 0)⊥. This forces v = 0. But
‖v‖ = limn→+∞ ‖λinein‖ ≥ r > 0, contradiction. As T is compact, this show that I cannot be
infinite, i.e. that dim(W ) < +∞.

Let’s prove (v). Let W ′ =
⊕

λ∈C Vλ, and W = W ′⊥. We want to show that W = 0.
So suppose that W 6= 0. As T is self-adjoint and W ′ is clearly stable by T , we have
T (W ) ⊂ W . (If v ∈ W , then for every w ∈ W ′, 〈T (v), w〉 = 〈v, T (w)〉 = 0.) By defini-
tion of W , we have Ker(T|W ) = {0}, hence ‖T|W‖op > 0. Let B = {x ∈ W |‖x‖ = 1}. As
‖T|W‖op = supx∈B |〈T (x), x〉| by the lemma below, there exists a sequence (xn)n≥0 of elements
of B such that 〈T (xn), xn〉 → λ as n→ +∞, where λ = ±‖T|W‖op. Then

0 ≤ ‖T (xn)− λxn‖2 = ‖T (xn)‖2 + λ2‖xn‖2 − 2λ〈T (xn), xn〉 ≤ 2λ2 − 2λ〈T (xn), xn〉

converges to 0 as n → +∞, so T (xn) − λxn itself converges to 0. As T is compact, we
may assume that the sequence (T (xn))n≥0 has a limit in W , say w. Then T (w) − λw = 0.
By definition of W , we must have w = 0. But then T (xn) → 0, so 〈T (xn), xn〉 → 0, so
λ = 0 = ‖T|W‖op, a contradiction.

Lemma IV.1.4. Let V be a Hilbert space, and let T ∈ End(V ) be self-adjoint. Then

‖T‖op = sup
x∈V, ‖x‖=1

|〈T (x), x〉|.

Proof. Let c = supx∈V, ‖x‖=1 |〈T (x), x〉|. We have c ≤ ‖T‖op by definition of ‖T‖op. As
‖T‖op = supx,y∈V,‖x‖=‖y‖=1 |〈T (x), y〉|, to prove the other inequality, it suffices to show that
|〈T (x), y〉| ≤ c for all x, y ∈ V such that ‖x‖ = ‖y‖ = 1. Let x, y ∈ V . After mutliplying y by
a norm 1 element of C (which doesn’t change ‖y‖), we may assume that 〈T (x), y〉 ∈ R. Then

〈T (x), y〉 =
1

4
(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉),
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so
|〈T (x), y〉| ≤ c

4
(‖x+ y‖2 + ‖x− y‖2) =

c

2
(‖x‖2 + ‖y2‖)

(the last equality is the parallelogram identity). This shows the desired result.

Here are some results that are true for compact operators in greater generality (see [20] 4.16-
4.25).

Theorem IV.1.5. Let V be a Banach space, and let T ∈ End(V ) be a compact endomorphism.
We write σ(T ) for the spectrum of T in End(V ), i.e.

σ(T ) = {λ ∈ C|λidV − T 6∈ End(V )×}.

Then :

(i) For every λ 6= 0, the image of T − λidV is closed.

(ii) For every λ ∈ σ(T ) − {0}, we have Im(T − λidV ) 6= V and
dim(Ker(T − λidV )) = dim(V/ Im(T − λidV )). 2 In particular, Ker(T − λidV ) 6= {0}.

(iii) For every λ 6= 0, the increasing sequence (Ker((T − λidV )n))n≥1 stabilizes, and its limit
is finite-dimensional.

(iv) If dimC V = +∞, then 0 ∈ σ(T ).

(v) The subset σ(T )−{0} of C−{0} is discrete. In particular, for every r > 0, there are only
finitely many λ ∈ σ(T ) such that |λ| ≥ r.

In particular, if V is a Hilbert space and T is self-adjoint, then (v) of theorem IV.1.3 become

V =
⊕
λ∈σ(T )

Ker(T − λidV ).

IV.2 Semisimplicity of unitary representations of
compact groups

The goal of this section is to prove the following theorem. (Compare with proposition I.3.3.3.)

2Note that this generalizes the rank-nullity theorem.
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IV The Peter-Weyl theorem

Theorem IV.2.1. Let G be a compact group, and let V be a unitary representation of G. Then
there exists a family (Wi)i∈I of pairwise orthogonal subrepresentations of V such that each Wi

is irreducible and that
V =

⊕
i∈I

Wi.

We already saw the crucial construction in problem I.5.5.9. Let’s summarize it in a proposition.

Proposition IV.2.2. (See problem I.5.5.9.) Let G be a compact group, let dx be the normalized
Haar measure on G, and let (π, V ) be a unitary representation of G. If u ∈ V , then the formula

T (v) =

∫
G

〈v, π(x)(u)〉π(x)(u)dx

defines a continuous G-equivariant self-adjoint compact endormophism of V , and we have
T = 0 if and only if u = 0.

In fact, we even know that T is positive, i.e. that 〈T (v), v〉 ≥ 0 for every v ∈ V .

Corollary IV.2.3. Let V be a nonzero unitary representation of a compact group G. Then V
contains an irreducible representation of G.

Proof. If V is finite-dimensional, then any nonzero G-invariant subspace of V of minimal di-
mension has to be irreducible.

In the general case, choose u ∈ V − {0}, and let T ∈ End(V ) be the endomorphism of
V constructed in the proposition. By the spectral theorem for self-adjoint compact operators
(theorem IV.1.3), we have

V =
⊕
λ∈C

Ker(T − λidV ).

As T 6= 0, the closed subspace Ker(T ) of V is not equal to V . By the equality above, there exists
λ ∈ C− {0} such that W := Ker(T − λidV ) 6= 0. Then W is a nonzero closed subspace of V ,
and it is G-invariant because T is G-equivariant, and stable by T by definition. Also, the space
W is finite-dimensional by (iii) of theorem IV.1.3. So W has an irreducible subrepresentation by
the beginning of the proof, and we are done.

Proof of the theorem. By Zorn’s lemma, we can find a maximal collection (Wi)i∈I of pairwise
orthogonal irreducible subrepresentations of V . Suppose that the direct sum of the Wi is not
dense in V , then W :=

(⊕
i∈IWi

)⊥ is a nonzero closed invariant subspace of V (see lemma
I.3.2.6). By the corollary above, the representation W has an irreducible subrepresentation,
which contradicts the maximality of the family (Wi)i∈I . Hence V =

⊕
i∈IWi.
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We finish this section with a remark on two different notions of equivalence for unitary rep-
resentations. Remember that two continuous representations V1 and V2 of a topological group
G are called equivalent (or isomorphic) if there exists a continuous G-equivariant isomorphism
V1 → V2 with a continuous inverse.

Definition IV.2.4. Two unitary representations V1 and V2 of a topological group G are called
unitarily equivalent if there exists a G-equivariant isomorphism V1 → V2 that is an isometry.

Two unitarily equivalent representations are clearly equivalent.

Example IV.2.5. Let G be a locally compact group, let µ be a left Haar measure on G, and let ν
be the right Haar measure defined by ν(E) = µ(E−1).

Then the left and right regular representations of G are unitarily equivalent, by sending
f ∈ L2(G, µ) to the element x 7−→ ∆(x)−1/2f(x−1) of L2(G, ν). (See proposition I.2.12.)

Proposition IV.2.6. Suppose that V1 and V2 are irreducible unitary representations of G. Then
they are equivalent if and only if they are unitarily equivalent.

Proof. Suppose that V1 and V2 are equivalent, and let U : V1 → V2 be a G-equivariant isomor-
phism. We denote by 〈., .〉1 and 〈., .〉2 the inner products of V1 and V2. Let B : V1 × V1 → C,
(v, w) 7−→ 〈U(v), U(w)〉2. This is a Hermitian sesquilinear form on V1, and it is bounded be-
causeU is bounded. By the lemma below, there exists a self-adjoint endomorphism T ∈ End(V1)
such that, for all v, w ∈ V , we have B(v, w) = 〈T (v), w〉1. Let’s prove that T is G-equivariant.
Let v ∈ V and x ∈ G. For every w ∈ V , we have

〈T (π1(x)(v)), w〉1 = B(π1(x)(v), w)

= 〈U(π1(x)(v)), U(w)〉2
= 〈π2(x)(U(v)), U(w)〉2
= 〈U(v), π2(x−1)U(w)〉2
= 〈U(v), U(π1(x)−1(w))〉2
= B(v, π1(x−1)(w))

= 〈T (v), π1(x)−1(w)〉1
= 〈π1(x)(T (v)), w〉1,

so T (π1(x)(v)) = π1(x)(T (v)). As V1 is irreducible, Schur’s lemma (theorem I.3.4.1) implies
that T = λidV1 for some λ ∈ C. As 〈T (v), v〉1 = 〈U(v), U(v)〉2 > 0 for every nonzero v ∈ V1,
we must have λ ∈ R>0. Then λ−1/2U is an isometry, so V1 and V2 are unitarily equivalent.

Lemma IV.2.7. Let V be a Hilbert space, and letB : V×V → C be a bounded sesquilinear form
(i.e. B is C-linear in the first variable and C-antilinear in the second variable; the boundedness
conditions means that supv,w∈V, ‖v‖=‖w‖=1 |B(v, w)| < +∞).
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IV The Peter-Weyl theorem

Then there exists a unique T ∈ End(V ) such that, for all v, w ∈ V ,

B(v, w) = 〈T (v), w〉.

Moreover, T is self-adjoint if and only ifB is Hermitian (which means thatB(w, v) = B(v, w)
for all v, w ∈ V ).

Proof. The uniqueness of T is clear (it follows from the fact that V ⊥ = {0}.)

If v ∈ V , then the map V → C, w 7−→ B(v, w) is a continuous linear functional on V , so
there exists a unique T (v) ∈ V such that B(v, w) = 〈T (v), w〉 for every w ∈ V . The linearity of
T follows from the fact that B is linear in the first variable. Moreover, for every v ∈ V , we have

‖T (v)‖ = sup
w∈V, ‖w‖=1

|〈T (v), w〉| = sup
w∈V, ‖w‖=1

|B(v, w)| ≤ C‖v‖,

where
C = sup

x,y∈V, ‖x‖=‖y‖=1

|B(x, y)|.

So T is bounded.

Finally, T is self-adjoint if and only, for all v, w ∈ V , we have

B(v, w) = 〈T (v), w〉 = 〈v, T (w)〉 = B(w, v).

This proves the last statement.

Definition IV.2.8. We denote by Ĝ the set of equivalence (or unitary equivalence) classes of
irreducible unitary representations of G, and call it the unitary dual of G.

If (π, V ) ∈ Ĝ, we write dim(π) and End(π) for dim(V ) and End(π).

Note that this notation agrees with the one used in exercise I.5.4.1 for a commutative group.

IV.3 Matrix coefficients

Definition IV.3.1. Let (π, V ) be a unitary representation of a topological group G. A matrix
coefficient of (π, V ) is a function G→ C of the form x 7−→ 〈π(x)(u), v〉, where u, v ∈ V .

Note that matrix coefficients are continuous functions. We denote by Eπ or EV the subspace
of C (G) spanned by the matrix coefficients of π.

We start by proving some general results that are true for any group G.
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Proposition IV.3.2. Let (π, V ) be a unitary representation of G.

(i) The subspace Eπ of C (G) only depends on the unitary equivalence class of π, and it is
invariant by the operators Lx and Rx, for every x ∈ G.

(ii) If V is finite-dimensional, then Eπ is finite-dimensional and dim(Eπ) ≤ (dimV )2.

(iii) If V = V1⊕. . .⊕Vn with the Vi G-invariant and pairwise orthogonal, then Eπ =
∑n

i=1 EVi .

(iv) We have Eπ∗ = Eπ.

In particular, we get an action of G × G on Eπ by making (x, y) ∈ G × G act by
Lx ◦Ry = Ry ◦ Lx.

Proof. (i) The first statement is obvious. To prove the second statement, let v, w ∈ V and
x ∈ G. Then, for every y ∈ G,

〈π(x−1y)(v), w〉 = 〈π(y)(v), π(x)(w)〉

and
〈π(yx)(v), w〉 = 〈π(y)(π(x)(v)), w〉,

so the functions y 7−→ 〈π(x−1y)(v), w〉 and y 7−→ 〈π(yx)(v), w〉 are also matrix coeffi-
cients of π.

(ii) Let (e1, . . . , en) be a basis of V . For i, j ∈ {1, . . . , n}, write ϕij for the function G → C,
x 7−→ 〈π(x)(ei), ej〉. If v, w ∈ V , we can write v =

∑n
i=1 aiei and w =

∑n
j=1 bjej , and

then we have, for every x ∈ G,

〈π(x)(v), w〉 =
n∑

i,j=1

aibjϕij(x).

So the family (ϕij)1≤i,j≤n spans Eπ.

(iii) For every i ∈ {1, . . . , n}, we clearly have EVi ⊂ Eπ. So
∑n

i=1 EVi ⊂ Eπ. Conversely, let
v, w ∈ V , and write v =

∑n
i=1 vi and w =

∑n
i=1wi, with vi, wi ∈ Vi. Then, for every

x ∈ G,

〈π(x)(v), w〉 =
n∑

i,j=1

〈π(x)(vi), wj〉 =
n∑
i=1

〈π(x)(vi), wi〉.

So the function x 7−→ 〈π(x)(v), w〉 is in
∑n

i=1 EVi .

Definition IV.3.3. Let (π, V ) and (π′, V ′) be continuous representation of V . We define an action
ρ of G×G on Hom(V, V ′) by

ρ(x, y)(T ) = π′(y) ◦ T ◦ π(x)−1,

for T ∈ Hom(V, V ′) and x, y ∈ G.
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IV The Peter-Weyl theorem

Proposition IV.3.4. We have

HomG(V, V ′) = {T ∈ Hom(V, V ′)|∀x ∈ G, ρ(x, x)(T ) = T}.

Moreover, if the maps G → End(V ), x 7−→ π(x) and G → End(V ′), x 7−→ π′(x) are
continuous (for example if V and V ′ are finite-dimensional, see proposition I.3.5.1), then the
action defined above is a continuous representation of G×G on Hom(V, V ′).

Proof. The first statement is obvious. The second statement follows from the continuity of the
composition on Hom spaces, and of inversion on G.

In particular, we get actions of G × G on End(V ) and V ∗ := Hom(V,C) (using the trivial
action of G on C); the second one gives an action of G on V ∗ by restriction to the first factor (if
x ∈ G and Λ ∈ V ∗, then (x,Λ) is sent to Λ ◦ π(x)−1). This will be the default action on these
spaces.

Definition IV.3.5. Let (π, V ) and (π′, V ′) be continuous representations of V . We define an
action ρ of G×G on the algebraic tensor product V ⊗C V

′ by

ρ(x, y)(v ⊗ w) = π(x)(v)⊗ π′(y)(w),

for x, y ∈ G, v ∈ V and w ∈ V ′.

This action is well-defined because, for all x, y ∈ G, the map V × V ′ → V ⊗C V ′,
(v, w) 7−→ π(x)(v)⊗ π′(y)(w) is bilinear, hence induces a map ρ(x, y) : V ⊗C V

′ → V ⊗C V
′.

If V and V ′ are finite-dimensional, the resulting action of G × G on V ⊗C V
′ is continuous by

proposition I.3.5.1.

Note that, if we restrict the action of G× G on V ⊗C W to the first (resp. the second) factor,
we get a representation equivalent to V ⊕ dim(W ) (resp. W⊕ dim(V )).

Proposition IV.3.6. Let V,W be continuous representations of G.

(i) The map V ∗ ⊗C W → Hom(V,W ) sending Λ ⊗ w (with Λ ∈ V ∗, w ∈ W ) to the linear
operator V → W , v 7−→ Λ(v)w is well-defined and G × G-equivariant. If V and W are
finite-dimensional, it is an equivalence of continuous representations.

(ii) The map V ∗ ⊗C V → C (G) sending Λ⊗ v (with Λ ∈ V ∗, v ∈ V ) to the function G→ C,
x 7−→ Λ(π(x)(v)) is well-defined and G × G-equivariant, and its image is EV if V is
unitary.

In particular, if V is finite-dimensional and unitary, we get a surjective G×G-equivariant map
End(V )→ EV .
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Remark IV.3.7. Point (ii) suggests a way to generalize the definition of a matrix coefficients to
the non-unitary case : just define a matrix coefficient as the image of a pure tensor by the map
V ∗ ⊗C V → C (G).

Proof. In this proof, we will denote all the actions of G and G×G by a · (this should not cause
confusion, as each space has at most one action).

(i) The map is well-defined, because the map V ∗ ⊗C W → Hom(V,W ) sending (Λ, w) to
(v 7−→ Λ(v)w) is bilinear. Let’s denote it by ϕ. To check that it is G × G-equivariant,
it suffices to check it on pure tensors (because they generate V ∗ ⊗C W ). So let Λ ∈ V ∗,
w ∈ W , x, y ∈ G. For every v ∈ V , we have

ϕ((x, y) · (Λ⊗ w))(v) = ϕ((y · Λ)⊗ (x · w))(v) = Λ(y−1 · v)(x · w)

and

((x, y) · ϕ(Λ⊗ w))(v) = x · (ϕ(Λ⊗ w)(y−1 · v)) = x · (Λ(y−1·)w) = Λ(y−1 · v)(x · w).

So
ϕ(x · (Λ⊗ w)) = x · ϕ(Λ⊗ w).

Suppose that V is finite-dimensional, let (e1, . . . , en) be a basis of V , and let (e∗1, . . . , e
∗
n)

be the dual basis. Define ψ : Hom(V,W )→ V ∗ ⊗C W by sending T to
∑n

i=1 e
∗
i ⊗ T (ei).

Let’s show that ψ is the inverse of ϕ.

If j ∈ {1, . . . ,m} and w ∈ W , then

ψ(ϕ(e∗j ⊗ w)) =
n∑
i=1

e∗i ⊗ (ϕ(e∗j ⊗ w)(ei)) = e∗j ⊗ w.

As the elements e∗j ⊗ w, for j ∈ {1, . . . , n} and w ∈ W , generate V ∗ ⊗C W , this shows
that ψ ◦ ϕ = id.

Conversely, if T ∈ Hom(V,W ), then, for every v ∈ V ,

ϕ(ψ(T )) =
n∑
i=1

ϕ(e∗i ⊗ T (ei))(v) =
n∑
i=1

e∗i (v)T (ei) = T (v),

because v =
∑n

i=1 e
∗
i (v)v. So ϕ(ψ(T )) = T .

This shows that, if V is finite-dimensional, the map V ∗ ⊗C W → Hom(V,W ) is an iso-
morphism. The last statement follows immediately.

(ii) The map is well-defined because the map V ∗ × V → C (G) sending (Λ, v) to the function
x 7−→ Λ(π(x)(v)) is bilinear. Let’s denote it by α. We show that α is G×G-equivariant.
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As before, it suffices to check it on pure tensors. So let Λ ∈ V ∗, v ∈ V and x, y ∈ G. For
every z ∈ G, we have

α((x, y) ·(Λ⊗v))(z) = Λ(x−1 ·(z ·(y ·v))) = Λ((x−1zy) ·v) = ((Lx ◦Ry)(α(Λ⊗v)))(z),

hence α((x, y) · (Λ⊗ v)) = (Lx ◦Ry)(α(Λ⊗ v)).

Finally, we show that the image of α is EV if V is unitary. Let Λ ∈ V ∗. As V is a Hilbert
space, there exists a unique v ∈ V such that Λ = 〈., v〉. So, for every w ∈ V and every
x ∈ G, we have

α(Λ⊗ w)(v) = 〈π(x)(w), v〉.

This shows that α(Λ ⊗ w) is a matrix coefficient of π, and also that we get all the matrix
coefficients of π in this way.

Now we prove stronger results that are only true for compact groups. If G is a compact group,
we fix a normalized Haar measure on G, and we denote by Lp(G) the Lp space for this measure.
Note that we have C (G) ⊂ Lp(G) for every p.

Theorem IV.3.8. Let G be a compact group, and let (π, V ) be an irreducible unitary represen-
tation of G. Remember that V is finite-dimensional (by exercise I.5.5.9).

(i) (Schur orthogonality) If (π′, V ′) is another irreducible unitary representation of G that is
not equivalent to (π, V ), then Eπ and Eπ′ are orthogonal as subspaces of L2(G).

(ii) We have dim(Eπ) = (dimV )2. More precisely, if (e1, . . . , ed) is an orthonormal ba-
sis of V and if we denote by ϕij the function G → C, x 7−→ 〈π(x)(ej), ei〉, then
{
√
dϕij, 1 ≤ i, j ≤ d} is an orthonormal basis of Eπ for the L2 inner product.

(iii) The G×G-equivariant map End(V )→ Eπ defined above is an isomorphism.

Proof. Note that (iii) follows immediately from (ii), because End(V )→ Eπ is surjective and (ii)
says that dim(Eπ) = (dimV )2 = dim(End(V )).

We prove (i) and (ii). Let (π′, V ′) be an irreducible unitary representation of G, that could be
equal to (π, V ). If A ∈ Hom(V, V ′), we define Ã ∈ Hom(V, V ′) by

Ã =

∫
G

π′(x)−1 ◦ A ◦ π(x)dx

(note that there is no problem with the integral, because the representations are finite-
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dimensional). Then, for every y ∈ G, we have

Ã ◦ π(y) =

∫
G

π′(x)−1 ◦ A ◦ π(xy)dx

=

∫
G

π′(xy−1)−1 ◦ A ◦ π(x)dx (right invariance of dx)

= π′(y) ◦ Ã.

In other words, Ã is G-equivariant.

Let v ∈ V and v′ ∈ V ′, and define A ∈ Hom(V, V ′) by A(u) = 〈u, v〉v′. Then, for all u ∈ V
and u′ ∈ V , we have

〈Ã(u), u′〉 =

∫
G

〈(π′(x)−1 ◦ A ◦ π(x))(u), u′〉dx

=

∫
G

〈〈π(x)(u), v〉π′(x)−1(v′), u′〉dx

=

∫
G

〈π(x)(u), v〉〈π′(x)(u′), v′〉dx.

Suppose that π and π′ are not equivalent. Then, by Schur’s lemma, we have Ã = 0 for every
A ∈ Hom(V, V ′), and so, by the calculation above, for all u, v ∈ V and u′, v′ ∈ V ′,∫

G

〈π(x)(u), v〉〈π′(x)(u′), v′〉dx = 0.

This proves (i).

Suppose that π = π′, and use the notation of (ii). Take v = ei and v′ = ei′ with
i, i′ ∈ {1, . . . , d}, and define A as above. By Schur’s lemma again, there exists c ∈ C such
that Ã = cidV . So, taking u = ej and u′ = ej′ , we get from the calculation above that

〈ϕi,j, ϕi′,j′〉L2(G) = 〈cej, ej′〉 =

{
c if j = j′

0 otherwise.

On the other hand, we have

cd = Tr(Ã) =

∫
G

Tr(π(x)−1 ◦ A ◦ π(x))dx =

∫
G

Tr(A)dx = Tr(A).

As A is defined by A(w) = 〈w, ei〉ei′ , we have Tr(A) = 0 if i 6= i′, and Tr(A) = 1 if i = i′.
This finishes the proof that {

√
dϕij, 1 ≤ i, j ≤ d} is an orthonormal basis of Eπ.
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IV.4 The Peter-Weyl theorem

LetG be a compact group. We see L2(G) as a representation ofG×G by making (x, y) ∈ G×G
act by Lx ◦Ry = Ry ◦Lx. The restriction of this to the first (resp. second) factor is the left (resp.
rigth) regular representation of G.

Definition IV.4.1. LetG be a compact group. We denote by E the subspace of matrix coefficients
in C (G).

By theorem IV.3.8, we have E =
⊕

π∈Ĝ Eπ.

Theorem IV.4.2. If G is compact, then E is a dense subalgebra of C (G). (For the usual point-
wise multiplication and the norm ‖.‖∞.)

Proof. Let’s prove that E is stable by multiplication. Note that, by (iii) of proposition IV.3.2 and
theorem IV.2.1, for every finite-dimensional unitary representation π of G, we have Eπ ⊂ E . Let
(π, V ) and (π′, V ′) be irreducible unitary representations of G, and let v, w ∈ V and v′, w′ ∈ V ′.
Remember that we have defined an action π ⊗ π′ of G on V ⊗C V

′3 and an inner product on
V ⊗C V

′ in exercise III.6.2.1. 4 By definition of these, for every x ∈ G, we have

〈(π ⊗ π′)(x)(v ⊗ w), v′ ⊗ w′〉 = 〈π(x)(v), w〉〈π′(x)(v′), w〉.

This proves that the product of a matrix coefficient of π and a matrix coefficient of π′ is a matrix
coefficient of π ⊗ π′. By the observation above, every matrix coefficient of π ⊗ π′ is in E , and
we are done.

Now we prove that E is dense in C (G). We have shown that E is a subalgebra, it is stable
by complex conjugation by proposition IV.3.2(iv), it contains the constants (they are the matrix
coefficients of the trivial representation of G on C) and it separates points on G by the Gelfand-
Raikov theorem (theorem III.5.1). So it is dense in E by the Stone-Weierstrass theorem.

Corollary IV.4.3. For every p ∈ [1,+∞), the subspace E of Lp(G) is dense for the Lp norm.

In particular, we have a canonical G×G-equivariant isomorphism

L2(G) =
⊕

(π,V )∈Ĝ

End(V ).

The last statement is what is usually called the Peter-Weyl theorem. It implies that the left and
right regular representations of G are both isomorphic to the completion of

⊕
π∈Ĝ π

⊕ dim(π).
Remark IV.4.4. The Peter-Weyl theorem actually predates the Gelfand-Raikov theorem, and the
original proof uses the fact that the operators f ∗ . are compact on L2(G), for f ∈ L2(G).

3This is just the restriction to the diagonal of G×G of the action defined above.
4We don’t need to complete the tensor product here, because V and V ′ are finite-dimensional.
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IV.5 Characters

Definition IV.5.1. Let (π, V ) be a continuous finite-dimensional representation of a topological
group G. The character of π is the continuous map χV = χπ : G→ C, x 7−→ Tr(π(x)).

Remark IV.5.2. If (π, V ) is a finite-dimensional representation of G and (e1, . . . , en) is an or-
thonormal basis of V , then, for every x ∈ G, we have

χπ(x) =
n∑
i=1

〈π(x)(ei), ei〉.

So χπ ∈ Eπ.

Definition IV.5.3. We say that a function f : G → C is a central function or a class function if
f(xyx−1) = f(y) for all x, y ∈ G.

These functions are called central because they are central for the convolution product, as we
will see in section IV.7.

Proposition IV.5.4. Let G be a topological group, and let (π, V ) and (π′, V ′) be continuous
finite-dimensional representations of G. Then :

(i) χπ is a central function, and it only depends on the equivalence class of π.

(ii) χV⊕V ′ = χV + χV ′ .

(iii) For every x ∈ G, χV ∗(x) = χ(x−1).

(iv) For all x, y ∈ G, we have

χV⊗CV ′(x, y) = χV (x)χV ′(y) and χHom(V,V ′)(x, y) = χV (x−1)χV ′(y).

(v) If (π, V ) is unitarizable (for example if G is compact), then χV (x−1) = χV (x) for every
x ∈ G.

Proof. Point (i) just follows from the properties of the trace, i.e. the fact that Tr(AB) = Tr(BA)
for all A,B ∈Mn(C).

Put arbitrary Hermitian inner products on V and V ′. Let (e1, . . . , en) (resp. (e′1, . . . , e
′
m)) be

an orthonormal basis of V (resp. V ′). Then (e1, . . . , en, e
′
1, . . . , e

′
m) is an orthonormal basis of

V ⊕ V ′, so, for every x ∈ G,

χV⊕V ′(x) =
n∑
i=1

〈π(x)(ei), ei〉+
m∑
j=1

〈π′(x)(e′j), e
′
j〉 = χV (x) + χV ′(x).

This proves (ii).
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Let (e∗1, . . . , e
∗
n) be the dual basis of (e1, . . . , en). Let x ∈ G. Then, if A is the matrix of

π(x−1) in the basis (e1, . . . , en), the matrix of the endomorphism Λ 7−→ Λ ◦ π(x−1) in the basis
(e∗1, . . . , e

∗
n) is AT , and we have

χV ∗(x) = Tr(AT ) = Tr(A) = χV (x−1).

This proves (iii).

We prove the formula for χV⊗CV ′ . We have seen in exercise III.6.2.1 how to put an inner
product on V ⊗C V

′ for which (ei⊗ e′j)1≤i≤n,1≤j≤m is an orthonormal basis. So, for all x, y ∈ G,
we have

χV⊗CV ′(x, y) =
n∑
i=1

m∑
j=1

〈π(x)(ei)⊗ π′(y)(e′j), ei ⊗ e′j〉

=
n∑
i=1

m∑
j=1

〈π(x)(ei), ei〉〈π′(y)(e′j), e
′
j〉

= χV (x)χV ′(y).

Now the formula for χHom(V,V ′) follows from this, from (iii) and from proposition IV.3.6(i).

Finally, we prove (v). If V is unitarizable, we can choose the Hermitian inner form on V to be
invariant by G. Then, for every x ∈ G, we have

χV (x−1) =
n∑
i=1

〈π(x)−1(ei), ei〉 =
n∑
i=1

〈ei, π(x)(ei)〉 =
n∑
i=1

〈π(x)(ei), ei〉 = χV (x).

Notation IV.5.5. If (π, V ) is a representation of a topological group G (continuous or not), we
write

V G = {v ∈ V |∀x ∈ G, π(x)(v) = v}.

This is a closed G-invariant subspace of V .

Example IV.5.6. If V and W are two representations of G, then

Hom(V,W )G = HomG(V,W ).

Theorem IV.5.7. Let G be a compact group and (π, V ) be a finite-dimensional continuous rep-
resentation of G. Then ∫

G

χV (x)dx = dim(V G).
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Proof. As V is finite-dimensional, we can find a finite family (Vi)i∈I of irreducible subrepre-
sentations of V such that V =

⊕
i∈I Vi. (Cf. corollary I.3.2.9.) We have χV =

∑
i∈I χVi by

proposition IV.5.4, and V G =
⊕

i∈I V
G
i . So it suffices to prove the theorem for V irreducible.

Suppose that V is an irreducible representation of V . As V G is a G-invariant subspace of
V , we have V G = V or V G = {0}. If V G = V , then G acts trivially on V , so every linear
subspace of V is invariant by G, so we must have dimV = 1. On the other hand, we have
χV (x) = Tr(1) = 1 for every x ∈ G, so

∫
G
χV (x)dx = 1. Suppose that V is irreducible and

that V G = {0}. Let π0 be the trivial representation of G on C. Then, by theorem IV.3.8(i), the
subspaces Eπ and Eπ0 of L2(G) are orthogonal. But Eπ0 is the subspace of constant functions,
and we saw above (remark IV.5.2) that χV ∈ Eπ. So χV is orthogonal to the constant function 1,
which means exactly that

∫
G
χV (x)dx = 0.

Corollary IV.5.8. Let G be a compact group, and let (π, V ) and (σ,W ) be two continuous
finite-dimensional representations of G.

(i) We have 〈χW , χV 〉L2(G) = dimC(HomG(V,W )).

(ii) If V and W are irreducible and not equivalent, then 〈χV , χW 〉L2(G) = 0.

(iii) The representation V is irreducible if and only ‖χ‖L2(G) = 1.

Proof. (i) MakeG act on Hom(V,W ) by x ·T = ρ(x)◦T ◦π(x)−1. We know (cf. proposition
IV.3.4) that HomG(V,W ) = Hom(V,W )G. Applying the theorem to the representation
Hom(V,W ) and using points (iv) and (v) of proposition IV.5.4 to calculate the character
of this representation, we get :

dimC(HomG(V,W )) = dimC(Hom(V,W )G)

=

∫
G

χHom(V,W )(x)dx

=

∫
G

χV (x)χW (x)dx

= 〈χW , χV 〉L2(G).

(ii) This follows from (i) and from Schur’s lemma (theorem I.3.4.1), or from the fact that
χV ∈ EV , χW ∈ EW and EV and EW are orthogonal in L2(G) (see theorem IV.3.8).

(iii) If V is irreducible, then Schur’s lemma implies that EndG(V ) is 1-dimensional, so we have
‖χV ‖L2(G) = 1 by (i). Conversely, suppose that ‖χV ‖L2(G) = 1. We write V =

⊕
i∈I Vi,

where I is finite and the Vi are irreducible subrepresentations of V . By (ii), the characters
of non-isomorphic irreducible representations of G are orthogonal in L2(G), so we have

‖χV ‖2
L2(G) =

∑
W∈Ĝ

nW‖χW‖2
L2(G) =

∑
W∈Ĝ

nW ,
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where, for every W ∈ Ĝ,

nW = card({i ∈ I|Vi ' W}).

As ‖χV ‖L2(G) = 1, there is a uniqueW ∈ Ĝ such that nW 6= 0, and we must have nW = 1.
By the definition of the integers nW , this means that V ' W , so V is irreducible.

Corollary IV.5.9. Let G be a compact group. Then the family (χV )V ∈Ĝ of elements of L2(G) (or
C (G)) is linearly independent.

Proof. This follows from (ii) of the previous corollary.

Corollary IV.5.10. Let π and π′ be two continuous finite-dimensional representations of a com-
pact group G. Then π and π′ are equivalent if and only if χπ = χπ′ .

Proof. If π and π′ are equivalent, we already know that χπ = χπ′ . Conversely, suppose that
χπ = χπ′ . We decompose π and π′ as direct sums of irreducible representations :

π '
⊕
ρ∈Ĝ

ρnρ

and
π′ '

⊕
ρ∈Ĝ

ρmρ ,

with nρ,mρ ∈ Z≥0 and nρ = mρ = 0 for all but a finite number of ρ ∈ Ĝ. By corollary IV.5.8,
we have χπ =

∑
ρ∈Ĝ nρχρ and χπ′ =

∑
ρ∈Ĝmρχρ (and these are finite sums). By the linear

independence of the χρ, the equality χπ = χπ′ implies that nρ = mρ for every ρ ∈ Ĝ, which in
turn implies that π and π′ are equivalent.

IV.6 The Fourier transform

We still assume that G is a compact group.

By propositions I.4.3.4 and I.4.1.3, the space L2(G) is actually a Banach algebra for the con-
volution product. This section answers the question “how can we see the algebra structure in the
decomposition given by the Peter-Weyl theorem ?”.
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Definition IV.6.1. Let f ∈ L2(G). For every (π, V ) ∈ Ĝ, the Fourier transform of f at π is the
endomorphism

f̂(π) =

∫
G

f(x)π(x−1)dx =

∫
G

f(x)π(x)∗dx

of V .

This is clearly a C-linear endomorphism of V .

Example IV.6.2. Suppose that G = S1. Then we have seen in exercise I.5.4.1 that Ĝ ' Z,
where n ∈ Z corresponds to the representation G → C×, e2iπt 7−→ e2iπnt (with t ∈ R). So, if
f ∈ L1(G), its Fourier transform is the function f̂ : Z→ C sending n to

f̂(n) =

∫ 1

0

f(e2iπt)e−2iπntdt.

Theorem IV.6.3. (i) For every π ∈ Ĝ, the map L2(G) → End(π), f 7−→ f̂(π) is a G × G-
equivariant ∗-homomorphism from L2(G) to the opposite algebra of End(π). (Note that
L2(G) ⊂ L1(G), because G is compact. The involution of L1(G) defined in example
I.4.2.2 restricts to an involution of L2(G).)

In other words, we have, for f, g ∈ L2(G) and x ∈ G :

f̂ ∗ g(π) = ĝ(π) ◦ f̂(π),

f̂ ∗(π) = (f̂(π))∗,

L̂xf(π) = f̂(π) ◦ π(x)−1 and R̂xf(π) = π(x) ◦ f̂(π).

(Compare with (i) of theorem I.4.2.6.)

(ii) Let f ∈ L2(G). Then, for every π ∈ Ĝ, the function dim(π)Tr(f̂(π) ◦ π(.)) ∈ L2(G) is
the orthogonal projection of f on Eπ, and the series∑

π∈Ĝ

dim(π)Tr(f̂(π) ◦ π(.))

converges to f in L2(G) (Fourier inversion formula).

(iii) For every f ∈ L2(G), we have

‖f‖2
2 =

∑
π∈Ĝ

dim(π)Tr(f̂(π)∗ ◦ f̂(π))

(Parseval formula).

Example IV.6.4. Take G = S1. Then (ii) and (iii) say that, for every f ∈ L2(S1), the series∑
n∈Z f̂(n)e2iπnt converges to f in L1(S1) and that∫ 1

0

|f(e2iπt)|2dy =
∑
n∈Z

|f̂(n)|2.

211



IV The Peter-Weyl theorem

Proof. (i) We have

f̂ ∗ g(π) =

∫
G

(f ∗ g)(x)π(x−1)dx

=

∫
G×G

f(y)g(y−1x)π(x−1)dxdy

=

∫
G×G

f(y)g(x)π(x−1y−1)dxdy (change of variable x′ = y−1x)

= ĝ(π) ◦ f̂(π).

Remember that f ∗(x) = f(x−1), because ∆ = 1. So

f̂ ∗(π) =

∫
G

f(x−1)π(x)∗dx

=

∫
G

f(x)π(x−1)∗dx

= (f̂(π))∗.

Finally,

L̂xf(π) =

∫
G

f(x−1y)π(y−1)dy

=

∫
G

f(y)π(y−1x−1)dy

= f̂(π) ◦ π(x−1)

and

R̂xf(π) =

∫
G

f(yx)π(y−1)dy

=

∫
G

f(y)π(xy−1)dy

= π(x) ◦ f̂(π).

(ii) It is enough to prove the first statement (the second will follow by the Peter-Weyl theorem).
Let (π, V ) ∈ Ĝ. As in theorem IV.3.8, fix an orthonormal basis (e1, . . . , ed) of V and
denote by ϕij the function G → C, x 7−→ 〈π(x)(ej), ei〉. Then we have seen (in (ii) of
theorem IV.3.8) that {

√
dϕij, 1 ≤ i, j ≤ d} is an orthonormal basis of Eπ for the L2 inner

product. So the orthogonal projection of f on Eπ is

d
d∑

i,j=1

〈f, ϕij〉L2(G)ϕij.
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For all i, j ∈ {1, . . . , d}, we have

〈f, ϕi,j〉L2(G) =

∫
G

f(x)〈ei, π(x)(ej)〉dx

=

∫
G

f(x)〈π(x)∗(ei), ej〉dx

= 〈f̂(π)(ei), ej〉.

Let y ∈ G, and let (π̂(f)i,j) and (π(y)i,j) be the matrices of f̂(π) and π(y) in the basis
(e1, . . . , ed). Then

f̂(π)i,j = 〈f̂(π)(ej), ei〉 = 〈f, ϕj,i〉L2(G)

and
π(y)i,j = 〈π(y)(ej), ei〉 = ϕij(y),

so

Tr(f̂(π) ◦ π(y)) =
d∑

i,j=1

f̂(π)j,iπ(y)i,j =
d∑

i,j=1

〈f̂(π), ϕi,j〉L2(G)ϕi,j(y).

This gives the desired formula for the orthogonal projection of f on Eπ.

(iii) Let π ∈ Ĝ, and use the notation of the proof of (ii). Let g = dTr(f̂(π)∗ ◦ f̂(π)). It
suffices to show that ‖g‖2

2 = dTr(f̂(π)∗ ◦ f̂(π)) (because the Eπ for non-isomorphic π are
orthogonal, by theorem IV.3.8). We have

Tr(f̂(π)∗ ◦ f̂(π)) =
d∑

i,j=1

|f̂(π)i,j|2 =
d∑

i,j=1

|〈f, ϕi,j〉L2(G)|2.

On the other hand, as g = d
∑d

i,j=1〈f, ϕij〉L2(G)ϕij , we get

‖g‖2
L2(G) = d2

d∑
i,j=1

|〈f, ϕi,j〉L2(G)|2 = d · dTr(f̂(π)∗ ◦ f̂(π)).

IV.7 Characters and Fourier transforms

To finish this chapter, we relate characters and the Fourier transform, and give an explanation of
the name “central function”.

Proposition IV.7.1. Let f ∈ L2(G). Then, for every x ∈ G, we have

Tr(f̂(π) ◦ π(x)) = f ∗ χπ(x).
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By theorem IV.6.3, this says that the orthogonal projection of f in Eπ is dim(π)f ∗ χπ, so we
have

f =
∑
π∈Ĝ

dim(π)f ∗ χπ

in L2(G).

Proof. We have

Tr(f̂(π) ◦ π(x)) =

∫
G

f(y)Tr(π(y)−1π(x))dy

=

∫
G

f(y)χπ(y−1x)

= f ∗ χπ(x).

Corollary IV.7.2. For all π, π′ ∈ Ĝ, we have

χπ ∗ χπ′ =

{
dim(π)−1χπ if π ' π′

0 otherwise.

Proof. We know that χπ ∈ Eπ for every π ∈ Ĝ, that Eπ and Eπ′ are orthogonal for π 6' π′,
and the proposition says that dim(π)χπ ∗ χπ′ is the orthogonal projection of χπ on Eπ′ . This
immediately implies the formula of the corollary.

Definition IV.7.3. For 1 ≤ p < +∞, we denote by ZLp(G) the subspace of central functions in
Lp(G). We also denote by ZC (G) the subspace of central functions in C (G).

Proposition IV.7.4. The space Lp(G), 1 ≤ p < +∞ (resp. C (G)) is a Banach algebra for the
convolution product, and ZLp(G) (resp. ZC (G)) is its center.

Proof. Let p ∈ [1,+∞), and let q ∈ [1,+∞) be such that p−1 + q−1 = 1. As G is compact, the
constant function 1 is in Lq(G) and has Lq norm equal to 1, so, by Hölder’s inequality, f = f · 1
is in L1(G), and ‖f‖1 ≤ ‖f‖p. Now corollary I.4.3.2 says that, for every g ∈ Lp(G), the function
f ∗ g exists and is in Lp(G), and that we have ‖f ∗ g‖p ≤ ‖f‖1‖g‖p ≤ ‖f‖p‖g‖p. This shows
that Lp(G) is a Banach algebra for ∗.

We show that C (G) is also a Banach algebra for ∗. If f, g ∈ C (G), then f ∗ g clearly exists,
and, for every x ∈ G,

|f ∗ g(x)| ≤
∫
G

|f(y)|g(y−1)|dy ≤ ‖f‖∞‖g‖∞
∫
G

1dy = ‖f‖∞‖g‖∞.
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So ‖f ∗ g‖∞ ≤ ‖f‖∞‖g‖∞.

Finally, we show the statement about the centers. Let f ∈ Lp(G), and suppose that f∗g = g∗f
for every g ∈ Lp(G). Then, for every x ∈ G and every g ∈ Lp(G), we have∫

G

f(xy)g(y−1)dy =

∫
G

g(y)f(y−1x)dy =

∫
G

f(yx)g(y−1)dy.

This holds if and only if f(xy) = f(yx) almost everywhere on G×G. The proof for f ∈ C (G)
is the same.

Corollary IV.7.5. The family (χπ)π∈Ĝ is an orthonormal basis of ZL2(G).

Proof. We already know that the χπ are in ZL2(G) and that they are pairwise orthogonal, so it
just remains to show that a central function orthogonal to all the χπ has to 0. Let f ∈ ZL2(G).
By the lemma below, we have (dimπ)f ∗ χπ = 〈f, χπ〉L2(G)χπ for every π ∈ Ĝ, so, if f is
orthogonal to every χπ, then its projection on all the spaces Eπ is 0 by proposition IV.7.1, hence
f = 0 by theorem IV.4.2.

Lemma IV.7.6. If f ∈ ZL1(G) and π ∈ Ĝ, then (dimπ)f ∗ χπ = 〈f, χπ〉L2(G)χπ.

Proof. We know that f ∗ χπ = Tr(f̂(π) ◦ π(.)) by proposition IV.7.1. For every x ∈ G, we have

f̂(π) ◦ π(x) =

∫
G

f(y)π(y−1x)dy

=

∫
G

f(xy−1)π(y)dy

=

∫
G

f(y−1x)π(y)dy (because f is central)

=

∫
G

f(y)π(xy−1)dy

= π(x) ◦ f̂(π).

So f̂(π) ∈ End(π) is G-equivariant. By Schur’s lemma, this implies that f̂(π) = cid, with
c ∈ C. Taking the trace gives

c(dimπ) = Tr(f̂(π)) =

∫
G

f(y)Tr(π(y−1))dy = 〈f, χπ〉L2(G).

So
〈f, χπ〉L2(G)χπ = (dimπ)Tr(f̂(π) ◦ π(.)) = (dim π)f ∗ χπ.
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Remark IV.7.7. In fact, we can even show that the family (χπ)π∈Ĝ spans a dense subspace in
ZLp(G) for every p ∈ [1,+∞) and in ZC (G). (See proposition 5.25 of [11].)

Remark IV.7.8. IfG is finite, then L2(G) is the space of all functions fromG to C, and ZL2(G) is
the space of functions that are constant on the conjugacy classes of G. So the proposition above
says that |Ĝ| is equal to the number of conjugacy classes in G, and the Peter-Weyl theorem says
that |G| =

∑
π∈Ĝ(dimπ)2.

Remark IV.7.9. We have shown in particular that the Banach algebras (ZLp(G), ∗) (for
1 ≤ p < +∞) and (ZC (G), ∗) are commutative. We could ask what their spectrum is. In
fact, the answer is very simple (see theorem 5.26 of [11]) : For every π ∈ Ĝ, the formula
f 7−→ (dimπ)

∫
G
fχπdµ defines a multiplicative functional on ZLp(G) (resp. ZC (G)), and this

induces a homeomorphism from the discrete set Ĝ to the spectrum of ZLp(G) (resp. ZC (G)).

IV.8 The classical proof of the Peter-Weyl theorem

In section IV.4, we gave a proof of the Peter-Weyl theorem that uses the Gelfand-Raikov and
Stone-Weierstrass theorems. We will now explain the original proof. We fix a compact group G.
Remember that this implies that L2(G) ⊂ L1(G).

By corollary I.4.3.2, if f ∈ L1(G) and g ∈ L2(G), then the integrals defining f ∗ g and g ∗ f
converge and define functions of L2(G) such that ‖f ∗g‖2 ≤ ‖f‖1‖g‖2 and ‖g∗f‖2 ≤ ‖f‖1‖g‖2.

Definition IV.8.1. If f ∈ L1(G), we define continuous linear endomorphisms Lf and Rf of
L2(G) by Lf (g) = f ∗ g and Rf (g) = g ∗ f .

In fact, by exercise I.5.6.4 (and its obvious analogue for right multiplication), these actions
of L1(G) on L2(G) are just the extensions to the group algebra L1(G) of the left and right
regular representations of G on L2(G), as defined in theorem I.4.2.6. In particular, we have
‖Lf‖op ≤ ‖f‖1 and ‖Rf‖op ≤ ‖f‖1, which we also knew by corollary I.4.3.2.

In example I.4.2.2(b), we defined an involution ∗ on L1(G); as the modular function of G is
1, this involution sends f ∈ L1(G) to the function f ∗ defined by f ∗(x) = f(x−1). By theorem
I.4.2.6, we have (Lf )

∗ = Lf∗ and (Rf )
∗ = Rf∗ , for every f ∈ L1(G).

Theorem IV.8.2. For every f ∈ L1(G), the endomorphisms Rf and Lf of L2(G) are compact.

Remark IV.8.3. We could also show that Lf and Rf are trace class operators (with trace∫
G
f(x)dx) for f ∈ L1(G), and that they are Hilbert-Schmidt operators (with Hilbert-Schmidt

norm ‖f‖2) for f ∈ L2(G), but we will not need this.

Lemma IV.8.4. For every F ∈ L2(G×G), the formula

TF (h)(x) =

∫
G

F (x, y)h(y)dy
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defines a continuous linear operator TF : L2(G)→ L2(G), and we have ‖TF‖ ≤ ‖F‖2. 5

Proof. Let h ∈ L2(G). By Minkowski’s inequality and the Cauchy- Schwarz inequality, we have(∫
G

∣∣∣∣∫
G

F (x, y)h(y)dy

∣∣∣∣2 dx
)1/2

≤
∫
G

(∫
G

|F (x, y)|2|h(y)|2dx
)1/2

dy

≤
∫
G

|h(y)|
(∫

G

|F (x, y)|2dx
)1/2

dy

≤ ‖h‖2

(∫
G

(∫
G

|F (x, y)|2dx
)1/2×2

dy

)1/2

= ‖h‖2‖F‖2.

This proves that TF (h) is well-defined, in L2(G), and that ‖TF (h)‖2 ≤ ‖h‖2‖F‖2.

Lemma IV.8.5. If f1, f2 : G → C, define a function u(f1 ⊗ f2) : G × G → C
by (f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2). This induces a C-linear isometry
u : L2(G) ⊗C L2(G) → L2(G × G), which is injective with dense image, hence gives
an isometric isomorphism L2(G)⊗̂CL

2(G)
∼→ L2(G×G).

After we prove this lemma, we will just identify L2(G)⊗̂CL
2(G) and L2(G × G) and write

f1 ⊗ f2 instead of u(f1 ⊗ f2).

Proof. The existence of the C-linear map u follows from the properties of the tensor product. If
f1, f2, g1, g2 ∈ L2(G), then we have

〈u(f1 ⊗ f2), u(g1 ⊗ g2)〉L2(G×G) =

∫
G×G

u(f1 ⊗ f2)(x1, x2)u(g1 ⊗ g2)(x1, x2)dx1dx2

=

∫
G×G

f1(x1)f2(x2)g1(x1)g2(x2)dx1dx2

= 〈f1, g1〉L2(G)〈f2, g2〉L2(G).

This implies that u is an isometry.

Take a Hilbert basis (ei)i∈I of L2(G). Then the family (u(ei ⊗ ej))i,j∈I of L2(G × G) is
orthonormal by the calculation, and its span is the image of u. So we just need to show that a
function in L2(G×G) that is orthogonal to every u(ei ⊗ ej) is 0. Let F ∈ L2(G×G) be such a
function. Let i ∈ I , and consider the function fi : G→ C defined by fi(x) =

∫
G
F (x, y)ei(y)dy.

Then fi ∈ L2(G) by lemma IV.8.4, and fi is orthogonal to all the ej by the choice of F . As (ej)j∈I
is a Hilbert basis of L2(G), we must have fi = 0. This is true for every i ∈ I , so, using again the

5In fact, we can prove that TF is a Hilbert-Schmidt operator and that its Hilbert-Schmidt norm is equal to ‖F‖2.
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fact that (ei)i∈I is a Hilbert basis of L2(G), we see that the function F (x, .) is almost every zero
for almost every x, i.e., that F = 0 in L2(G×G).

Lemma IV.8.6. For every F ∈ L2(G×G), the operator TF : L2(G)→ L2(G) of lemma IV.8.4
is compact.

Proof. By lemma IV.8.5, there exist families of functions (gi)i∈I and (hi)i∈I in L2(G) such that
the sum

∑
i∈I gi ⊗ hi converges to F in L2(G×G).

For every finite subset J of I , let SJ =
∑

i,j∈J gi ⊗ hj ∈ L2(G×G) and TJ = TSJ . Then, for
every h ∈ L2(G), for every x ∈ G,

(TJh)(x) =
∑

(i,j)∈J2

∫
G

h(y)gi(x)hj(y)dy =
∑
i∈J

(
∑
j∈J

∫
G

h(y)hj(y)dy)gi(x).

In other words, for every h ∈ L2(G), TJh is in the finite-dimensional subspace of L2(G) spanned
by the gi, i ∈ J . Hence the operator TJ has finite rank.

To show that TF is compact, it suffices by problem 6 of problem set 5 to show that it is the
limit of the operators TJ as J becomes bigger. But this follows from lemma IV.8.4 and from the
fact that K is the limit of the SJ in L2(G×G).

Proof of theorem IV.8.2. We prove the result for Lf ; the proof for Rf is similar.

Suppose first that f ∈ L2(G). Consider the function K : G × G → C, (x, y) 7−→ f(xy−1).
Then K ∈ L2(G×G), and Lf = TK . So the result follows from lemma IV.8.6.

In general, the result follows from the fact that a limit of compact operators is compact (see
exercise I.5.5.9(f)), that L2(G) is dense in L1(G), and that f 7−→ Lf (resp. f 7−→ Rf ) is a
continuous map from L1(G) to End(L2(G)).

Remember that the subspace E of C (G) was defined in IV.4.1; this is the space of matrix
coefficients of finite-dimensional representations of G.

Proposition IV.8.7. Let f ∈ L2(G). Then the following conditions are equivalent :

(i) Span{Lxf, x ∈ G} is finite-dimensional;

(ii) Span{Rxf, x ∈ G} is finite-dimensional;

(iii) f ∈ E .
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Proof. We first prove that (i) implies (ii) and (iii). If f ∈ E , then f is a finite sum
∑

π∈Ĝ fπ, with
fπ ∈ Eπ. So it suffices to show that every element of Eπ generates a finite-dimensional subspace
of the left (resp. right) regular representation for π ∈ Ĝ; but this follows immediately from the
fact that Eπ is finite-dimensional and stable by the operators Lx (resp. Rx), x ∈ G.

We now prove that (ii) implies (i). (The proof that (iii) implies (i) is similar.) So let f ∈ L2(G),
and suppose that there exists a finite-dimensional subspace V 3 f of L2(G) that is stable by all
the Lx, x ∈ G. We will show that f is a matrix coefficient of V ∗. Let 〈., .〉V be the restriction
to V of the inner product of L2(G), let ρ : G → GL(V ) be the action of G on V , and let
Π : L2(G) → V be the orthogonal projection. Suppose that ψ ∈ C (G) has real values and is
such that ψ(x−1) = ψ(x) for every x ∈ G. In particular, ψ ∈ L2(G), so, by proposition I.4.3.4,
f ∗ ψ is continuous. For every x ∈ G, we have

f ∗ ψ(x) = Lx−1(f ∗ ψ)(1)

= (Lx−1f) ∗ ψ(1) (by proposition I.4.1.3)

=

∫
G

(Lx−1f)(y)ψ(y)dy (because ψ has real values and ψ(y−1) = ψ(y))

= 〈Lx−1f, ψ〉L2(G)

= 〈ρ(x−1)Π(f),Π(ψ)〉V (because Lx−1f ∈ V )

= 〈ρ(x)Π(ψ),Π(f)〉V .

By proposition IV.3.2(iv), f ∗ ψ is a matrix coefficient of V ∗, i.e. f ∗ ψ ∈ EV ∗ . Now we choose
an approximate identity (ψU)U∈U (definition I.4.1.7, this exists by proposition I.4.1.8). By the
calculation we just did, f ∗ ψU ∈ EV ∗ for every U ∈ U . But, by corollary I.4.3.3, f is the limit
in L2(G) of the family (f ∗ ψU)U∈U . As EV ∗ is finite-dimensional (by proposition IV.3.2(ii)), it
is a closed subspace of L2(G), so f is also in EV ∗ .

We now explain how to prove theorem IV.4.2 (that is, the fact that E is dense in C (G)) without
using the Gelfand-Raikov theorem. It suffices to prove that E is dense in L2(G). Consider the left
regular representation ofG on L2(G). By proposition IV.8.7, E contains every finite-dimensional
representation of L2(G), and in fact it is the sum of all the finite-dimensional subrepresentations
of L2(G). As L2(G) is a Hilbert space, to show that E is dense in L2(G), it suffice to show that
E ⊥ = {0}. So let f ∈ E ⊥. Choose an approximate identity (ψU)U∈U (definition I.4.1.7, this
exists by proposition I.4.1.8). If U ∈ U , then ψ∗U = ψU , so RψU is self-adjoint, and it is a com-
pact operator by theorem IV.8.2. So, by the spectral theorem for self-adjoint compact operators
(theorem IV.1.3), Ker(RψU ) is the orthogonal of the closure of the sum

⊕
λ∈C× Ker(RψU −λid),

and Ker(RψU − λid) is finite-dimensional for every λ ∈ C×. Also, RψU commutes with the
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left action of G by proposition I.4.1.3, so each space Ker(RψU − λid) is a subrepresentation of
L2(G). As f is orthogonal to every finite-dimensional subrepresentation of L2(G) by assump-
tion, this implies that f ∈ Ker(RψU ), i.e. that f ∗ ψU = 0. But f is the limit of (f ∗ ψU)U∈U in
L2(G) by corollary I.4.3.3, so we conclude that f = 0.

IV.9 Exercises

Exercise IV.9.1. Let d be a positive integer.

(a). Let T be the intersection of U(d) with the set of diagonal matrices. Show that

T =


z1 . . . 0

. . .
0 . . . zd

 , z1, . . . , zd ∈ S1

 .

(b). Show that every element of U(d) is conjugated in U(d) to an element of T .

(c). Show that every element of SU(d) is conjugated in SU(d) to an element of
T0 := T ∩ SU(d).

(d). Show that a finite-dimensional representation V of SU(d) is uniquely determined up to
equivalence by χV |T0 .

We now take d = 2. Remember the irreducible representations Vn (n ≥ 0) of SU(2) defined
in problem I.5.5.1

(a). Calculate the restriction of χVn to T0.

(b). Let (ρ, V ) be a finite-dimensional representation of SU(2). Show that there exists m ≥ 1
and nonnegative integers a0, . . . , am such that, for every z ∈ S1, we have

χV

((
z 0
0 z

))
= a0 +

m∑
i=1

ai(z
i + z−i).

(c). Show that there exist integers cn ∈ Z, n ≥ 0, such that cn = 0 for n big enough and
χV =

∑
n≥0 cnχVn .

(d). Show that the integers cn of (f) are all nonnegative.

(e). If V is irreducible, show that there exists n ≥ 0 such that V ' Vn.

Solution.
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(a). Let x =

z1 . . . 0
. . .

0 . . . zd

 ∈ Md(C), with z1, . . . , zd ∈ C. Then x is in T if and only if

xx∗ = Id. As x∗ =

z1 . . . 0
. . .

0 . . . zd

, this condition is equivalent to |z1| = . . . = |zd| = 1.

(b). Let x ∈ U(d). Then x is normal, so, by the spectral theorem, it can be diagonalized in
an orthonormal basis of Cn. This means that there exists y ∈ U(d) such that yxy−1 is
diagonal, i.e., yxy−1 ∈.

(c). Let x ∈ SU(d). By question (b), there exists y ∈ U(d) such that yxy−1 ∈ T . We have
det(yxy−1) = det(x) = 1, so yxy−1 is actually in T0. Let c = det(y) ∈ C×. We choose
c′ ∈ C such that (c′)d = c; as |c| = 1, we also have |c′| = 1. Then y′ := (c′)−1y has
determinant 1, hence is in SU(d), and y′x(y′)−1 = yxy−1.

(d). Let V,W be two finite-dimensional representations of SU(d), and suppose that χV = χW
on T0. By question (c) and the fact that χV and χW are central functions, this implies that
χV = χW on all of SU(d). But then V and W are equivalent by corollary IV.5.10.

(e). Let x =

(
x1 0
0 x2

)
∈ T0. Note that x1x2 = 1, so x2 = x−1

1 = x1. We calculate the action

of x on the basis (tk1t
n−k
2 )0≤k≤n of Vn. For 0 ≤ k ≤ n, we have

x · tl1tn−k2 = (x−1
1 t1)k(x−1

2 t2)n−k = xn−2k
1 tk1t

n−k
2 .

So

χVn(x) =
n∑
k=0

xn−2k
1 .

(f). We embed S1 in SU(1) by the continuous group morphism z 7−→
(
z 0
0 z

)
. Note that

this induces an isomorphism of topological groups S1 ∼→ T0. Then ρ|S1 is a finite-
dimensional representation of S1, so it is a finite direct sum of irreducible representations.
We know (from problem I.5.4.1) that every irreducible representation of S1 is of the form
ρm : z 7−→ zm with m ∈ Z, so there exist nonnegative integers am, m ∈ Z, that are 0
for all but a finite number of m, and such that ρ|S1 '

⊕
m∈Z ρ

am
m . In particular, for every

z ∈ S1,

χV

((
z 0
0 z−1

))
=
∑
m∈Z

amz
m.

Let y =

(
0 i
i 0

)
. Then y ∈ SU(2) and, for every z ∈ S1, we have

y

(
z 0
0 z−1

)
y−1 =

(
z−1 0
0 z

)
. As V is a representation of SU(2), the function χV is cen-
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tral on SU(2), and so χV

((
z 0
0 z−1

))
= χV

((
z−1 0
0 z

))
. This implies that a−m = am

for every m ∈ Z, so we get the desired statement.

(g). Let M be the Z-module of functions χ : S1 → Z that can be written
χ(z) = a0 +

∑
m≥1 am(zm + z−m), with a0, a1, . . . ∈ Z and am = 0 for m big enough. By

question (f), the restriction to S1 of χV is in M .

A basis of M over Z is formed by the function (χ0 = 1, χ1 = z+ z−1, χ2 = z2 + z−2
2 , . . .).

On the other hand, we have seen in question (e) that χVn =
∑

0≤k≤n
k=n mod n

χk. So the (infinite)

matrix representing (χVn)n≥0 in the basis (χn)n≥0 is upper triangular with ones on the
diagonal, which means that it can be inverted, i.e., that (χVn)n≥0 is also a basis of M over
Z. (If you don’t like that, it is also very easy from the formula expressing χVn in the basis
(χm)m≥0 to show by induction over n that (χV0 , . . . , χVn) is linearly independent and spans
the same Z-submodule as (χ0, . . . , χn).)

The conclusion of the question follows immediately from this.

(h). We know that the functions χVn are pairwise orthogonal inL2(SU(2)) (by corollary IV.5.8).
So, for every n ≥ 0,

cn = 〈χV , χVn〉L2(SU(2)).

By the same corollary, the right-hand side is also equal to dimC(HomSU(2)(V, Vn)), which
is a nonnegative integer.

(i). If V is irreducible, then, by the last formula in the proof of (h) (and Schur’s lemma), we
have cn = 0 unless V ' Vn. So, if there were no n ≥ 0 such that V ' Vn, we would have
χV = 0, hence V = 0, which is impossible.

�

Exercise IV.9.2. Let G be a compact group, and let (π, V ) be a faithful finite-dimensional con-
tinuous representation of G. (Remember that this means that π : G→ GL(V ) is injective.) The
goal of this problem is to show that, if G is finite, then every irreducible representation of G is a
direct summand of a representation of the form V ⊗n ⊗ (V ∗)⊗m (for some n,m ≥ 1), where the
notation V ⊗n means V ⊗ . . .⊗ V︸ ︷︷ ︸

n times

, and similarly for (V ∗)⊗m.

(a). Let 11 be the trivial representation of G on C. Show that it suffices to show that ev-
ery irreducible representation of G is a direct summand of a representation of the form
(V ⊕ V ∗ ⊕ 11)⊗N , for some N ≥ 1.

(b). Let W be an irreducible representation of G. Show that W is a direct summand of
(V ⊕ V ∗ ⊕ 11)⊗N if and only if

∫
G

(1 + 2 ReχV (x))NχW (x)dx 6= 0.

From now on, we assume that G is finite, we fix a finite-dimensional representation W of G,
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and we write, for every N ∈ Z≥0,

SN =
∑
x∈G

(1 + 2 ReχV (x))NχW (x).

Let d = dimV .

(c). If x 6= 1, show that (1 + 2 ReχV (x))NχW (x) = o((1 + 2d)N) as N → +∞.

(d). If W 6= 0, show that SN 6= 0 for N big enough.

Solution.

(a). Let’s show by induction on N that, for every N ∈ Z≥1, we have a G-equivariant isomor-
phism

(11⊕ V ⊕ V ∗)⊗N '
⊕
k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!m! .

This clearly implies the result of (a).

For N = 1, it follows from the fact that 11 ⊗W ' W for every representation W of G.
Suppose the result know for N , and let’s prove it for N + 1. We have

(11⊕ V ⊕ V ∗)⊗N+1 ' (11⊕ V ⊕ V ∗)⊗N ⊗ (11⊕ V ⊕ V ∗)

' (11⊕ V ⊕ V ∗)⊗
⊕
k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!m!

'
⊕
k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!m! ⊕

⊕
k,l,m≥0
k+l+m=N

(
V ⊗k+1 ⊗ (V ∗)⊗l

) N !
k!l!m!

⊕
⊕
k,l,m≥0
k+l+m=N

(
V ⊗k ⊗ (V ∗)⊗l+1

) N !
k!l!m!

'
⊕
k,l,m≥0

k+l+m=N+1

(
V ⊗k ⊗ (V ∗)⊗l

) N !
k!l!(m−1)!

+
N !

(k−1)!l!m!
+

N !
k!(l−1)!m!

'
⊕
k,l,m≥0

k+l+m=N+1

(
V ⊗k ⊗ (V ∗)⊗l

) (N+1)!
k!l!m! .

(b). By the semisimplicity of finite-dimensional representations of G (corollary I.3.2.9)
and Schur’s lemma (theorem I.3.4.1), the representation W is a direct summand of
(11 ⊕ V ⊕ V ∗)⊗N if and only if HomG((11 ⊕ V ⊕ V ∗)⊗N ,W ) 6= 0. By corollary IV.5.8,
this is the case if and only 〈χ(11⊕V⊕V ∗)⊗N , χW 〉L2(G) 6= 0. So the conclusion follows from
the fact that χ(11⊕V⊕V ∗)⊗N = (1 + χV + χV )N = (1 + 2 ReχV )N , which is an immediate
consequence of proposition IV.5.4.
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(c). As G is compact, the representation (π, V ) is unitarizable, so we can choose an isomor-
phism V ' Cd such that π(G) ⊂ U(d). Let z1, . . . , zd be the eigenvalues of π(x). As π
is faithful, we have π(x) 6= 1, so at least one the zi is not equal to 1 (we are using the fact
that π(x) is diagonalizable); so we may assume that z1 6= 1. As |z1| = 1, this implies that
−1 ≤ Re z1 < 1, so 1−2d ≤ 1+2

∑d
i=1 Re(zi) < 1+2d, and

∣∣∣1 + 2
∑d

i=1 Re zi

∣∣∣ < 1+2d.
Finally, we get

|(1 + 2 ReχV (x))NχW (x)| ≤ (dimW )

∣∣∣∣∣1 + 2
d∑
i=1

Re zi

∣∣∣∣∣
N

= o((1 + 2d)N).

(d). As G is finite, question (c) implies that∑
x∈G−{1}

(1 + 2 ReχV (x))NχW (x) = o((1 + 2d)N).

On the other hand, (1 + 2 ReχV (1))χW (1) = (dimW )(1 + 2d)N . So
Sn = (dimW )(1 + 2d)N + o((1 + 2d)N), which implies that Sn 6= 0 for N big enough.

�

Exercise IV.9.3. The goal of this problem is to generalize exercise IV.9.2 to an arbitrary compact
group G, assuming something about the Haar measure. In the next problem, we give another
approach to the same result using matrix coefficients.

Let (ρ, V ) be a faithful finite-dimensional continuous representation of G. We want to show
that any irreducible representation of G is a direct summand of some V ⊗N ⊗ (V ∗)⊗M . We fix a
normalized Haar measure µ on G.

(a). Show that there exists an isomorphism V ' Cn such that ρ induces an isomorphism (of
topological groups) between G and a closed subgroup of U(n).

From now on, we assume that G is a closed subgroup of U(n), that V = Cn and that
ρ : G → GLn(C) is the inclusion. Let (π,W ) be a continuous nonzero finite-dimensional
representation of G. Define f : U(n) → C and g : G → C by f(x) = 1 + Tr(x) + Tr(x) and
g(x) = χW (x).

As in exercise I.5.5.4, we define

L0 = {X ∈Mn(C)|∀t ∈ R, etX ∈ U(n)}

and
L = {X ∈Mn(C)|∀t ∈ R, etX ∈ G}.

Remember that we proved in problem I.5.5.4 that, if Ω is a small enough neighborhood of 0 in
L, then exp induces a homeomorphism between Ω and exp(Ω), and exp(Ω) is a neighborhood
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of 1 in G. Choose an isomorphism L0 ' Rm, and let dX be the Lebesgue measure on L0 given
by this isomorphism. We assume the following : (**) For Ω small enough, there exists c ∈ R>0

such that the inverse image by the homeomorphism exp : Ω
∼→ exp(Ω) of the Haar measure µ is

of the form h(X)dX , where h(X) = c+O(‖X‖) as X → 0.

Remark. This is always true, but we don’t have the tools to prove it. Indeed, a closed subgroup
G of GLn(C) is a Lie group, so the Haar measure is given by a left-invariant differential form ω
on G, that is, ωg is the pullback of ω1 by left translation by g. This and some effort will give the
desired asymptotic formula.

It would actually be much simpler to use the Weyl integration formula (see for example theo-
rem 7.16 of [22]) to prove all the estimates in this exercise, since the function that we integrate
are central functions. However, this requires some more theory (maximal tori in particular).

(a). Show that, for every x ∈ U(n), we have f(x) = 1 + 2
∑n

i=1 cos θi, where eiθ1 , . . . , eiθn are
the eigenvalues of x.

(b). If Ω is a neighborhood of 0 in L0, show that there exists δ > 0 such that, for every
x 6∈ exp(Ω) and every N ≥ 1, we have

|f(x)N | ≤ (1 + 2n− δ)N .

(c). If Ω is a neighborhood of 0 in L and U = exp(Ω), show that there exists δ > 0 and
C ∈ R>0 such that, for every N ≥ 1, we have∣∣∣∣∫

G−U
f(x)Ng(x)dµ(x)

∣∣∣∣ ≤ C(1 + 2n− δ)N .

(d). Show that
f(eX) = (2n+ 1)e−K(X)+O(‖X‖4)

as X → 0 in L0, where K(X) = 1
1+2n
‖X‖2 = 1

1+2n
Tr(X∗X).

(e). Show that, if Ω is a ball (of finite radius) centered at 0 in L, there exists D ∈ R>0 such that∫
Ω

e−NK(X)g(eX)dX ∼ D ·N−
1
2

dimL

as N → +∞. (Hint : Show that we have g(eX) = dimW +O(‖X‖) as X → 0 in L.)

(f). Show that there exists a neighborhood U of 1 in G and E ∈ R>0 such that∫
U

f(x)Ng(x)dµ(x) ∼ E
(2n+ 1)N

N
1
2

dimL

as N → +∞.

(g). Show that
∫
G
f(x)Ng(x)dµ(x) 6= 0 if N is big enough.
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Solution.

(a). As G is compact, the representation (ρ, V ) is unitarizable. This means that there exists an
isomorphism V ' Cn such that ρ(G) ⊂ U(n). As the representation (ρ, V ) is faithful, the
morphism ρ is injective, so ρ : G → U(n) is an injective and continuous map. As G is
compact, this map is a homeomorphism onto its image.

(b). Let D be the diagonal matrix with diagonal entries eiθ1 , . . . , eiθn . As x commutes with
x∗ = x−1, the spectral theorem implies that there exists A ∈ U(n) such that D = AxA−1.
As f is clearly a central function on U(n) (and even on GLn(C)), we have f(x) = f(D).
But f(eD) = 1 +

∑n
j=1 Re(eiθj) = 1 + 2

∑n
j=1 cos(θj).

(c). By question (b), we have, for every x ∈ U(n), f(x) ∈ R and 1 − 2n ≤ f(x) ≤ 1 + 2n.
Moreover, the equality f(x) = 1 + 2n is possible only if all te eigenvalues of x are equal
to 1, which in turn implies that x = 1, because x is diagonalizable.

By question I.5.5.4(f), we know that exp(Ω) contains an open neighborhood V of 1 in
U(n). As U(n), the continuous function f attains its supremum on U(n) − V , and this
supremum is < 1 + 2n by the previous paragraph. So supx∈U(n)−exp(Ω) |f(x)| < 1 + 2n,
and this implies the desired result.

(d). For every x ∈ G, we have |g(x)| ≤ dimW . So we can take C = vol(G−U)(dimW ) and
apply question (c).

(e). Let iθ1, . . . , iθn be the eigenvalues of X . As X commutes with X∗ = −X ,
there exists A ∈ U(n) such that AXA−1 = D, where D is the diagonal ma-
trix with diagonal entries iθ1, . . . , iθn. Then AeXA−1 = eD is the diagonal ma-
trix with diagonal entries eiθ1 , . . . , eiθn , so the eigenvalues of eX are eiθ1 , . . . , eiθn , and
f(eX) = 1 + 2

∑n
j=1 cos(θj) = 1 + 2n−

∑n
j=1 θ

2
j +O(

∑n
j=1 θ

4
j ).

We have X = A−1DA, so X∗ = −X = −A−1DA, hence X∗X = −A−1D2A, and finally
Tr(X∗X) = −Tr(D2) =

∑n
j=1 θ

2
j . So f(eX) = 1 + 2n −

∑n
j=1 θ

2
j + O(‖X‖4). On the

other hand,

(2n+1)e−K(X)+O(‖X‖4) = (2n+1)(1− 1
2n+1
‖X‖2+O(‖X‖4)) = 2n+1−

n∑
j=1

θ2
j+O(‖X‖4).

(f). We first prove the hint. By question I.5.5.4(g), there exists a R-linear map
u : L → End(W ) such that, for every X ∈ L, we have π(eX) = etu(X). As u is R-
linear, it is C∞, and so the map U : L → C, X 7−→ g(eX) = Tr(eu(X)) is also C∞. We
also have U(0) = Tr(idW ) = dimW . So we get U(X) = dimW +O(‖X‖).

Now we evaluate the integral. Doing the change of variable Y = N1/2X (and observing
that NK(X) = K(Y )), we get∫

Ω

e−NK(X)U(X)dX = N−
1
2

dimL

∫
N1/2Ω

e−K(Y )U(N−1/2Y )dY.
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It remains to show that
∫
N1/2Ω

e−K(Y )U(N−1/2Y )dY converges to a positive real number
as N → +∞. First note that, as

∫
L
e−K(Y )dY converges and as the function g is bounded

by dimW , we have∣∣∣∣∫
N1/2Ω−N1/4Ω

e−K(Y )U(N−1/2Y )dY

∣∣∣∣ ≤ ∣∣∣∣∫
L−N1/4Ω

e−K(Y )U(N−1/2Y )dY

∣∣∣∣ −−−−→N→+∞
0.

On the other hand, using the fact that U(N−1/2Y ) = dimW +O(N−1/4) for Y ∈ N1/4Ω,
we get

lim
N→+∞

∫
N1/4Ω

e−K(Y )U(N−1/2Y )dY = lim
N→+∞

(dimW )

∫
N1/4Ω

e−K(Y )dY

= (dimW )

∫
L

e−K(Y )dY.

As the function Y 7−→ e−K(Y ) takes positive real values on L, the last integral is positive
and real.

(g). If there exists a neighborhood Ω of 0 in L such that exp is a diffeomorphism from Ω to U
(which we can always assume by making U small enough), then∫

U

f(x)Ng(x)dx = (2n+ 1)N
∫

Ω

e−NK(X)+NO(‖X‖4)g(eX)h(X)dX,

with h(X) = c+O(‖X‖), c ∈ R>0. This is equal to

(2n+ 1)N

(dimL)N/2

∫
N1/2Ω

e−K(Y )+O(N−1‖Y ‖4)U(N−1/2Y )h(N−1/2Y )dY.

We can prove as in question (f) that, if we choose Ω to be a ball centered at 0 (which we
can), then the integral converges to c(dimW )

∫
L
e−K(Y )dY as N → +∞, which gives the

conclusion.

(h). By questions (d) and (f), we can decompose
∫
G
f(x)Ng(x)dx as a sum of two terms, one

of which is equivalent to a positive multiple of (2n+1)N

(dimL)N/2
and one of which is dominated by

(1+2n−δ)N , for some δ > 0. AsN tends to +∞, the second term will become negligible
with respect to the first, so the sum of the two terms cannot be 0 for N big enough.

�

Exercise IV.9.4. The goal of this exercise is also to generalize exercise IV.9.2 to a compact
group G admitting a faithful finite-dimensional representation (ρ, V ). As in the beginning
of IV.9.3, we may assume that G is a closed subgroup of U(N), that V = CN , and that
ρ : G→ U(N) ⊂ GLN(C) is the inclusion.

Remember that the algebra E ⊂ C (G) of all matrix coefficients of G was defined in IV.4.1.
As in section IV.4, we see C (G) and E as representations of G×G by making (x, y) ∈ G×G
act by Lx ◦Ry.
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For i, j ∈ {1, . . . , N}, we denote by eij : G → C the function sending x ∈ G ⊂ GLN(C) to
its (i, j)th entry.

(a). Let E ′ be the subalgebra of E generated by 1 and by the function eij and eij , for
1 ≤ i, j ≤ N . Show that E ′ is stable by the action of G×G.

(b). Show that there exists a subset A of Ĝ such that E ′ =
⊕

π∈A Eπ.

(c). Show that E ′ = E .

(d). Show that every irreducible representation of G is a direct summand of a representation of
the form V ⊗n ⊗ (V ∗)⊗m (for some n,m ≥ 1).

Solution.

(a). Let x ∈ G, and write x−1 = (aij)1≤i,j≤N . Then Lxeij =
∑N

k=1 aikekj for all
i, j ∈ {1, . . . , N}, so Lxeij ∈ E ′. The proof that E ′ is stable by the operators Ry is
similar.

(b). Remember that, by theorem IV.3.8, E =
⊕

π∈Ĝ Eπ, and, if we write π : G → GL(Vπ),
then Eπ is isomorphic to End(Vπ) as a representation of G × G. We show that the Eπ are
irreducible and mutually non isomorphic as representation of G×G. Let π, π′ ∈ Ĝ. Then,
for (x, y) ∈ G×G, we have χEπ(x, y) = χπ(y)χπ(x) by proposition IV.5.4, and similarly
for π′, so

〈χEπ , χEπ′ 〉L2(G×G) =

∫
G4

χπ(x1)χπ(x2)χπ′(x3)χπ′(x4)dx1dx2dx3dx4.

By Schur orthogonality for characters (corollary IV.5.8(ii)), this is 0 if π 6' π′, and by
corollary IV.5.8(iii), this is 1 if π ' π′. The irreducibility of Eπ follows from this and
corollary IV.5.8(iii), and the fact that Eπ 6' Eπ′ if π 6' π′ also follows.

For every π ∈ Ĝ, let Wπ be the image W of E ′ by the orthogonal projection L2(G)→ Eπ.
As E ′ is stable by the action of G × G, so is Wπ, hence W is {0} of Eπ because Eπ
is an irreducible representation of G × G. So, if A = {π ∈ Ĝ | Wπ 6= {0}}, then
E ′ =

⊕
π∈A Eπ.

(c). The subalgebra E ′ of E is stable by complex conjugation, it clearly separates points on G
and it contains the constant function 1, so it is dense in C (G) by the Stone-Weierstrass
theorem. In particular, it is dense in E . But, if A ⊂ Ĝ is the subset of (b), we have
E = E ′

⊕
π∈Ĝ\A Eπ, so the fact that E ′ is dense in E implies that A = Ĝ, i.e. that E ′ = E .

(d). Let W be an irreducible representation of G, and suppose that it is not a direct summand
of any representation of the form V ⊗n⊗ (V ∗)⊗m (for n,m ≥ 1). By IV.9.2(a), this implies
thatW is not a direct summand of any (11⊕V ⊕V ∗)⊗n, n ≥ 1, i.e., by Schur orthogonality
(theorem IV.3.8(i)), that χW is orthogonal to any matrix coefficient of a (11⊕ V ⊕ V ∗)⊗n,
for n ≥ 1. But the space of matrix coefficients of (11⊕ V ⊕ V ∗)⊗n is exactly the subspace
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of E generated by the products of at most n of the functions eij and eij , for 1 ≤ i, j ≤ N ,
so the space generated by the matrix coefficients of all these representations is E ′, which
we have just seen is equal to E . It is not possible for χW to be orthogonal to every element
of E ′, so we get the result.

�
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V Gelfand pairs

In this chapter, G will always be a locally compact group, and K a compact subgroup of G. We
fix a left Haar measure µ = µG on G and a normalized Haar measure µK on K.

V.1 Invariant and bi-invariant functions

Definition V.1.1. A function f on G is called left invariant (resp. right invariant, resp. bi-
invariant) by K if, for every x ∈ K, we have Lxf = f (resp. Rxf = f , resp. Lxf = Rxf = f ).

If F (G) is a space of functions on G (for example Cc(G)), we denote by F (K \G) (resp.
F (G/K), resp. F (K \G/K)) its subspace of left invariant (resp. right invariant, resp. bi-
invariant) functions.

Let ∆G be the modular function of G. As K is compact, we have ∆G|K = 1, so we can use
the results of exercise I.5.3.5. In particular :

Proposition V.1.2. Let f ∈ C (G), and define two functions fK : G → C and Kf : G → C by
setting

fK(x) =

∫
K

f(xk)dk

and
Kf(x) =

∫
K

f(kx)dk.

Then fK is right invariant and Kf is left invariant.

Proposition V.1.3. There exists a unique regular Borel measure µG/K (resp. µK\G) on G/K
(resp. K\G) such that, for every f ∈ Cc(G), we have∫

G

f(x)dx =

∫
G/K

fK(x)dµG/K(x)

(resp.
∫
G

f(x)dx =

∫
K\G

Kf(x)dµK\G(x)).
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Definition V.1.4. If f is a continuous function on G, we write

KfK = K(fK) = (Kf)K .

In other words, this is the continuous function on G defined by :

KfK(x) =

∫
K×K

f(kxk′)dkdk′.

Note that KfK is obviously a bi-invariant function.

Proposition V.1.5. Let f ∈ C (G). Then f is left invariant (resp. right invariant, resp. bi-
invariant) if and only if f = Kf (resp. f = fK , resp. f = KfK).

Proof. This follows immediately from proposition V.1.2 and from the fact that the measure on
K is normalized.

Lemma V.1.6. For every f ∈ Cc(G), we have∫
G

f(x)dx =

∫
G

KfK(x)dx.

Proof. We have ∫
G

KfK(x)dx =

∫
G×K2

f(kxk′)dxdkdk′ =

∫
G

f(x)dx,

because, for all k, k′ ∈ K,∫
G

f(kxk′)dx = ∆(k′)−1

∫
G

f(x)dx =

∫
G

f(x)dx

(by proposition I.2.8).

Proposition V.1.7. Let (π, V ) be a unitary representation of G, and let PK : V → V be the
orthogonal projection on V K . Then we have, for every v ∈ V ,

PK(v) =

∫
K

π(k)(v)dk.

Moreover, if f ∈ Cc(G) and v ∈ V , then π(f)(PK(v)) = π(fK)(v) and
PK(π(f)(v)) = π(Kf)(v). In particular :
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(i) If f ∈ Cc(G) and v ∈ V K , we have π(f)(v) = π(fK)(v).

(ii) If f ∈ Cc(K\G) and v ∈ V , then π(f)(v) ∈ V K .

(Remember that π : L1(G)→ End(V ) is defined in theorem I.4.2.6.)

Proof. Let v ∈ V . The existence of the integral w :=
∫
K
π(k)(v)dk follows from exercise

I.5.6.2. If x ∈ K, then we have

π(x)(w) =

∫
K

π(xk)(v)dk =

∫
K

π(k)(v)dk = w,

so w ∈ V K . Also, if w′ ∈ V K , then

〈w,w′〉 =

∫
K

〈π(k)(v), w′〉dk =

∫
K

〈v, π(k−1)(w′)〉dk =

∫
K

〈v, w′〉dk = 〈v, w′〉.

So w is the orthogonal projection of v on V K .

Now we prove the last statement. Let f ∈ Cc(G) and v ∈ V . Then :

π(fK)(v) =

∫
G

fK(x)π(x)(v)dx =

∫
G

∫
K

f(xk)π(x)(v)dxdk

=

∫
G

∫
K

f(x)π(x)π(k)−1(v)dxdk

=

∫
G

∫
K

f(x)π(x)π(k)(v)dxdk (K is unimodular)

= π(f)(PK(v)).

On the other hand :

PK(π(f)(v)) =

∫
K

∫
G

f(x)π(kx)(v)dkdx

=

∫
K

∫
G

f(k−1x)π(x)(v)dkdx

=

∫
K

∫
G

f(kx)π(x)(v)dkdx

= π(Kf)(v).

The same proof gives :

Proposition V.1.8. Let f, g ∈ Cc(G). Then
K(f ∗ g) = (Kf) ∗ g and (f ∗ g)K = f ∗ (gK).

In particular, if f and g are bi-invariant, then f ∗ g is also bi-invariant, so Cc(K\G/K) is a
subalgebra of Cc(G) for the convolution product.
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Remark V.1.9. Let Lp(K \G/K) be the subspace of bi-invariant functions in Lp(G). Then, if
1 ≤ p < +∞, if f ∈ L1(K\G/K) and g ∈ Lp(K\G/K), then their convolution product f ∗ g
is in Lp(K\G/K). This is clear on the formulas defining f ∗ g (see proposition I.4.1.3); indeed,
we have

f ∗ g(x) =

∫
G

f(y)g(y−1x)dx =

∫
G

f(xy−1)g(y)dy

(the first formula shows that f ∗ g is right invariant, and the second that f ∗ g is left invariant).

In particular, the subspace L1(K\G/K) of L1(G) is a subalgebra, and we have a similar result
for the L2 spaces if G is compact.

Remark V.1.10. All this is easier to remember if we extend the convolution product and the repre-
sentation π to the space M (G) of Radon measures on G. (See remark I.4.1.6.) We can see µK as
an element of M (G) by identifying it to the Radon measure Cc(G)→ C, f 7−→

∫
K
f(x)dµK(x).

Then we have µK ∗ µK = µK , fK = f ∗ µK , Kf = µK ∗ f and PK = π(µK), so, for example,
the last part of proposition V.1.7 just follows from the fact that π is a ∗-homomorphism.

V.2 Definition of a Gelfand pair

Definition V.2.1. We say that (G,K) is a Gelfand pair if the algebra Cc(K\G/K) is commutative
for the convolution product.

Remark V.2.2. If p ∈ [1,+∞), f ∈ Lp(K\G/K) and g ∈ Cc(G), then

‖f − KgK‖pp =

∫
G

∣∣∣∣f(x)−
∫
K×K

g(kxk′)dkdk′
∣∣∣∣p dx

=

∫
G

∣∣∣∣∫
K×K

(f(kxk′)− g(kxk′))dkdk′
∣∣∣∣p dx.

So, by Minkowski’s formula (see exercise ??), we have

‖f − KgK‖p ≤
∫
K×K

‖LkRk′f − LkRk′f‖pdkdk′ = ‖f − g‖p.

As Cc(G) is dense in Lp(G), every function of Lp(K\G/K) can be approximated by elements
of Cc(G), hence, by the calculation above, by elements of Cc(K \G/K). In other words, the
space Cc(K \G/K) is dense in Lp(K \G/K). So, in the definition of a Gelfand pair, we could
have replaced the condition “Cc(K \G/K) is commutative for the convolution product” by the
condition “L1(K\G/K) is commutative for the convolution product” (or, for G, we could have
used “L2(K\G/K) is commutative for the convolution product”).

Example V.2.3. If G is abelian, then (G, {1}) is a Gelfand pair.

Here are other examples (but we will not prove yet that they are Gelfand pairs) :
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- (SO(n + 1), SO(n)), where SO(n) is identified to a subgroup of SO(n + 1) by sending

x ∈ SO(n) to the (n+ 1)× (n+ 1) matrix
(
x 0
0 1

)
;

- (Sn+m,Sn×Sm);

- (GLn(Qp),GLn(Zp)).

Proposition V.2.4. Let (G,K) be a Gelfand pair. Then G is unimodular.

Proof. By proposition I.2.12, we have, for every f ∈ Cc(G),∫
G

f(x)dx =

∫
G

∆(x)−1f(x−1)dx.

So it suffices to prove that
∫
G
f(x)dx =

∫
G
f(x−1)dx for every f ∈ Cc(G). First note that∫

G

KfK(x)dx =

∫
G

f(x)dx

and ∫
G

KfK(x−1)dx =

∫
G

f(x−1)dx,

by lemma V.1.6. So it suffices to show that
∫
G
f(x)dx =

∫
G
f(x−1)dx for every

f ∈ Cc(K \G/K). Fix f ∈ Cc(K \G/K). We can find g ∈ Cc(K \G/K) such that g is
equal to 1 on (supp f) ∪ (supp f)−1 (because supp f = K(supp f)K). Then

f ∗ g(1) =

∫
G

f(y)g(y−1)dy =

∫
supp f

f(y)dy =

∫
G

f(y)dy

and

g ∗ f(1) =

∫
G

g(y)f(y−1)dy =

∫
(supp f)−1

f(y−1)dy =

∫
G

f(y−1)dy.

But f ∗ g = g ∗ f because (G,K) is a Gelfand pair, so this implies the desired result.

The following criterion will allow us to find more Gelfand pairs.

Proposition V.2.5. Suppose that there exists a continuous automorphism θ : G→ G such that :

(a) θ2 = idG (i.e. θ is an involution);

(b) for every x ∈ G, we have θ(x) ∈ Kx−1K.

Then (G,K) is Gelfand pair.
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Proof. Consider the linear functional Cc(G) → C, f 7−→
∫
G
f(θ(x))dx. This is a left-invariant

positive linear functional on Cc(G), so, by the uniqueness statement in theorem I.2.7, there exists
c ∈ R>0 such that, for every f ∈ Cc(G), we have∫

G

f(θ(x))dx = c

∫
G

f(x)dx.

As θ2 = idG, we must have c2 = 1, so c = 1.

Let f, g ∈ Cc(G). On the one hand, we have, for every x ∈ G,

(f ◦ θ) ∗ (g ◦ θ)(x) =

∫
G

f(θ(y))g(θ(y)−1θ(x))dy

=

∫
G

f(y)g(y−1θ(x))dy

= (f ∗ g) ◦ θ(x)

(the second equality follows from the first paragraph of this proof). On the other hand, for every
x ∈ G, we have

(g ∗ f)(x−1) =

∫
G

g(x−1y)f(y)dy =

∫
G

f ′(y−1)g′(yx)dy = (f ′ ∗ g′)(x),

where f ′(z) = f(z−1) and g′(z) = g(z−1). (We used the fact that G is unimodular to do the
change of variables y 7−→ y−1.)

Suppose that f and g are bi-invariant. Then we have f(θ(x)) = f(x−1) and g(θ(x)) = g(x−1)
by condition (b), and a similar equality for g ∗ f because g ∗ f is also bi-invariant, so, for every
x ∈ G,

(f ∗ g)(θ(x)) = ((f ◦ θ) ∗ (g ◦ θ))(x) = (f ′ ∗ g′)(x) = (g ∗ f)(x−1) = (g ∗ f)(θ(x)).

As θ is an automorphism, this implies that f ∗ g = g ∗ f .

Example V.2.6. (1) If G is abelian, then we can take θ : x 7−→ x−1, so (G,K) is a Gelfand
pair for any compact subgroup K, and in particular for K = {1}.

(2) If G is compact, then (G × G, {(x, x), x ∈ G}) is a Gelfand pair. Indeed, it suffices to
apply the proposition above with θ(x, y) = (y, x). Indeed, for every (x, y) ∈ G × G, we
have θ(x, y) = (x, x)(x−1, y−1)(y, y).

V.3 Gelfand pairs and representations

In this section, we will give two representation-theoretic criteria for (G,K) to be a Gelfand pair,
one valid in general and one for G compact.
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V.3.1 Gelfand pairs and vectors fixed by K

Theorem V.3.1.1. The couple (G,K) is a Gelfand pair if and only if, for every irreducible
unitary representation (π, V ) of G, we have dim(V K) ≤ 1.

We will need the following variant of the Gelfand-Raikov theorem.

Lemma V.3.1.2. Let f ∈ Cc(G). If f 6= 0, then there exists ϕ ∈ E (P1) (see section III.3) such
that

∫
G
f(x)ϕ(x)dx 6= 0.

Proof. Suppose that
∫
G
fϕdµ = 0 for every ϕ ∈ E (P1). By theorem III.4.1, we have∫

G
fϕdµ = 0 for every function of positive type ϕ. By theorem III.2.5, for every unitary rep-

resentation (π, V ) of G and any v ∈ V , we have 〈π(f)(v), v〉 = 0. Applying this to the left
regular representation of G, we get that, for every g ∈ L2(G), we have 〈f ∗ g, g〉L2(G) = 0.
As in the proof of theorem III.5.1, we see that this implies that 〈f ∗ g1, g2〉L2(G) = 0 for all
g1, g2 ∈ L2(G). Again as in the proof of that theorem, we see that, for all g1, g2 ∈ L2(G), we
have 〈f ∗g1, g2〉L2(G) = 〈f, g2 ∗ g̃1〉L2(G), where g̃1(x) = g1(x−1). So we get 〈f, g1 ∗g2〉L2(G) = 0
for all g1, g2 ∈ L2(G). Applying this to g1 = f and to g2 = ψU , where (ψU)U∈U is an approxi-
mate identity, we finally get 〈f, f〉L2(G) = 0, hence f = 0.

We also need the following variant of Schur’s lemma.

Lemma V.3.1.3. Let A be a commutative Banach ∗-algebra, and let u : A → End(V ) be a
representation of A on a nonzero Hilbert space V . Suppose that the only closed subspaces of V
that are fixed by all the u(x), x ∈ A are {0} and V . Then dimV = 1.

Proof. By assumption, the subset u(A) satisfies the hypothesis of corollary II.4.4, so its cen-
tralizer in End(V ) is equal to CidV . But as A is commutative, even element of u(A) is in the
centralizer in u(A), so this implies that Im(u) ⊂ CidV . In particular, every subspace of V is
invariant by all the elements of u(A), so V has no nontrivial closed subspaces, which is only
possible if dimV ≤ 1.

Lemma V.3.1.4. Let (π, V ) be a unitary representation of G. Then π(f) sends V K to itself for
every f ∈ L1(K \G/K). If moreover π is irreducible, then the only closed subspaces of V K

stable by all the π(f), f ∈ L1(K\G/K), are {0} and V K .

Proof. By proposition V.1.7, for every f ∈ Cc(K \G/K) and every v ∈ V K , we have
π(f)(v) ∈ V K . The first statement follows from the fact that Cc(K \G/K) is dense in
L1(K\G/K).
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To prove the second statement, it suffices to show that, for every v ∈ V K − {0}, the space
{π(f)(v), f ∈ Cc(K\G/K)} is dense in V K . Letw ∈ V K , and let ε > 0. As V is irreducible, the
space {π(f)(v), f ∈ L1(G)} is dense in V . As Cc(G) is dense in L1(G), there exists f ∈ Cc(G)
such that ‖π(f)(v)−w‖ ≤ ε. By proposition V.1.7 again, we have π(f)(v) = π(fK)(v), and so
π(KfK)(v) = PK(π(f)(v)), where PK is the orthogonal projection of V on V K . As w ∈ V K ,
we get ‖π(KfK)(v)− w‖ = ‖Pk(π(f)(v))− w‖ ≤ ‖π(f)(v)− w‖ ≤ ε.

Proof of theorem V.3.1.1. Suppose that (G,K) is a Gelfand pair. Let (π, V ) be an irreducible
unitary representation of G. By lemma V.3.1.4, π defines a ∗-homomorphism from L1(K\G/K)
to End(V K), and the only closed subspaces of V K stable by all the elements of L1(K \G/K)
are {0} and V K . As L1(K\G/K) is commutative, lemma V.3.1.3 implies that dim(V K) ≤ 1.

We prove the converse. Suppose that dim(V K) ≤ 1 for every irreducible unitary representa-
tion (π, V ) of G. Let f ∈ Cc(K\G/K) be nonzero. By lemma V.3.1.2, there exists ϕ ∈ E (P1)
such that

∫
G
fϕdµ 6= 0. Let (π, V ) be a cyclic unitary representation of G and v ∈ V be a cyclic

vector such that ϕ(x) = 〈π(x)(v), v〉 for every x ∈ G (see theorem III.2.5). Then we have∫
G

f(x)ϕ(x)dx =

∫
G

f(x)〈π(x)(v), v〉dx = 〈π(f)(v), v〉,

so π(f)(v) 6= 0. By theorem III.3.2, the representation (π, V ) is irreducible. By lemma V.3.1.4,
the endomorphism π(f) of V preserves V K and, by proposition V.1.7, if w is the orthogonal
projection of v on V K , then π(f)(w) = π(f)(v) 6= 0. In particular, the subspace V K of V is
nonzero, so dim(V K) = 1 by assumption. Hence End(V K) = C, which means that we have
found a ∗-homomorphism u : Cc(K\G/K)→ C (sending g to π(g)|V k) such that u(f) 6= 0.

Now let f1, f2 ∈ Cc(K \ G/K). As C is commutative, we have
u(f1 ∗ f2 − f2 ∗ f1) = u(f1)u(f2) − u(f2)u(f1) = 0 for every morphism of algebras
u : Cc(K\G/K)→ C. By the preceding paragraph, this implies that f1 ∗ f2 − f2 ∗ f1 = 0, and
we are done.

V.3.2 Gelfand pairs and multiplicity-free representations

Definition V.3.2.1. Let (π, V ) be a unitary representation of G, and suppose that we can write
V =

⊕
i∈I Vi, with the Vi closed G-invariant subspaces of V that are irreducible as representa-

tions of V .1 Then we say that (π, V ) is multiplicity-free if, for every irreducible unitary repre-
sentation W of G, the set of i ∈ I such that Vi and W are equivalent has cardinality ≤ 1.

Note that the group G acts by left translations on the homogenous space G/K, so, if x ∈ G
and f is a function on G/K, we can define Lxf by Lxf(y) = f(x−1y).

1This is always the case if G is compact, see theorem IV.2.1.
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Definition V.3.2.2. The quasiregular representation of G on L2(G/K) is the representation de-
fined by x · f = Lxf , for every x ∈ G and every f ∈ L2(G/K).

Proposition V.3.2.3. The definition above makes sense, and gives a unitary representation of G.

Proof. By definition of the measure on G/K, we have
∫
G/K

fdµG/K =
∫
G/K

LxfdµG/K for
every f ∈ Cc(G/K) and every x ∈ G. As Cc(G/K) is dense in L2(G/K), this implies that the
operators Lx preserve L2(G/K) and are isometries. By proposition I.3.1.10, it suffices to prove
that, for every f ∈ L2(G/K), the map G → L2(G/K), x 7−→ Lxf is continuous. As in the
proof of proposition I.3.1.13, it suffices to prove this for f ∈ Cc(G/K), in which case it follows
from proposition I.1.12.

Remark V.3.1. If we make G act on L2(G) by the right regular representation, then L2(G/K) is
the space of K-invariant vectors in L2(G). The quasi-regular regular representation is then the
restriction of the left regular representation to L2(G/K)

We could also define a quasiregular representation on L2(K \G) (this is the space of K-
invariant vectors in L2(G) if K acts via the left regular representation, and it gets an action of
G via the right regular representation). The representation we get is unitarily equivalent to the
quasiregular representation on L2(G/K).

Theorem V.3.2.4. Assume that G is compact. Then (G,K) is a Gelfand pair if and only if the
quasiregular representation of G on L2(G/K) is multiplicity-free.

Also, if (G,K) is a Gelfand pair, then we have a G-equivariant isomorphism

L2(G/K) '
⊕̂

(π,V )∈Ĝ
V K 6=0

V .

Proof. First observe that L2(G/K) is the space of vectors of L2(G) that are K-invariant if
K acts by the right regular representation. The Peter-Weyl theorem (corollary IV.4.3) says
that, as a representation of G × G, the space L2(G) is isomorphic to the completion of⊕

(π,V )∈Ĝ End(V ) =
⊕

(π,V )∈Ĝ V
∗ ⊗C V . So L2(G/K) is isomorphic as a representation of

G to the completion of ⊕
(π,V )∈Ĝ
V K 6=0

(V ∗)dim(V K).

Note that, for every (π, V ) ∈ Ĝ, the representation V ∗ is also irreducible; this follows for exam-
ple from (iii) of corollary IV.5.8, because χV ∗ = χV , so ‖χV ∗‖2 = ‖χV ‖2. So the representation
L2(G/K) is multiplicity-free if and only if, for every irreducible unitary representation (π, V )
of G, we have either V K = 0 or dim(V K) = 1. Hence the first statement of the theorem follows
from theorem V.3.1.1.
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We now prove the second statement. We have already seen that

L2(G/K) '
⊕̂

(π,V )∈Ĝ
V K 6=0

V ∗,

so we just need to show that, if (π, V ) is a finite-dimensional representation of G, then V K 6= 0
if and only if (V ∗)K 6= 0. Applying theorem IV.5.7 to the restrictions of the representations V
and V ∗ to K, we get

dim(V K) =

∫
K

χV (k)dk

and
dim((V ∗)K) =

∫
K

χV ∗(k)dk =

∫
K

χV (k)dk = dim(V K) = dim(V K).

V.4 Spherical functions

In this section, we assume that (G,K) is a Gelfand pair.

Definition V.4.1. Let ϕ ∈ C (K \G/K). We say that ϕ is a spherical function if the linear
functional χϕ : Cc(K \G/K) → C, f 7−→ f ∗ ϕ(1) =

∫
G
f(x)ϕ(x−1)dx is a multiplicative

functional, where the multiplication on Cc(K\G/K) is the convolution product.

In other words, the function ϕ is spherical if ϕ 6= 0 and if, for all f, g ∈ Cc(K \G/K), we
have χϕ(f ∗ g) = χϕ(f)χϕ(g).

Example V.4.2. If G is commutative and K = {1}, then every continuous morphism of groups
ϕ : G→ C× is a spherical function. Indeed, let f, g ∈ Cc(G). Then :∫

G

(f ∗ g)(x)ϕ(x−1)dx =

∫
G×G

f(y)g(y−1x)ϕ(x−1)dx

=

∫
G×G

f(y)g(z)ϕ(z−1y−1)dydz

=

(∫
G

f(y)ϕ(y−1)dy

)(∫
G

g(z)ϕ(z−1)dz

)
.

These are actually the only spherical functions in this case. (This follows immediately from
the next proposition.)

Proposition V.4.3. Let ϕ ∈ C (K\G/K). The following conditions are equivalent :

(i) The function ϕ is spherical.
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(ii) The function ϕ is nonzero and, for all x, y ∈ G, we have∫
K

ϕ(xky)dk = ϕ(x)ϕ(y).

(iii) We have :

(a) ϕ(1) = 1;

(b) for every f ∈ Cc(K\G/K), there exists χ(f) ∈ C such that f ∗ ϕ = χ(f)ϕ.

Proof. We can extend χϕ to Cc(G) by using the same formula, i.e., χϕ(f) =
∫
G
f(x)ϕ(x−1)dx.

Note that, for all f, g ∈ Cc(G), we have

χϕ(f ∗ g) =

∫
G×G

f(y)g(y−1x)ϕ(x−1)dx

=

∫
G×G

f(y)g(z)ϕ(z−1y−1)dydz,

hence

χϕ(f ∗ g)− χϕ(f)χϕ(g) =

∫
G×G

f(y)g(z)(ϕ(z−1y−1)− ϕ(z−1)ϕ(y−1))dydz.

Let f, g ∈ Cc(G). Applying the calculation above to f ′ := KfK and g′ := KgK and us-
ing the bi-invariance of ϕ (and the fact that the measure on K is normalized), we get that
χϕ(f ′ ∗ g′)− χϕ(f ′)χϕ(g′) is equal to∫

G2×K4

f(k1xk2)g(k3yk4)(ϕ(y−1x−1)− ϕ(y−1)ϕ(x−1))dxdydk1dk2dk3dk4

=

∫
G2×K2

f(x)g(y)(ϕ(y−1k3k2x
−1)− ϕ(x−1)ϕ(y−1))dxdydk2dk3

=

∫
G2

f(x)g(y)

(∫
K

ϕ(y−1kx−1)dk − ϕ(x−1)ϕ(y−1)

)
dxdy.

This shows that χϕ is multiplicative if and only
∫
G
ϕ(y−1kx−1)dk = ϕ(y−1)ϕ(x−1) for all

x, y ∈ G. As χϕ 6= 0 if and only if ϕ 6= 0, this proves that (i) and (ii) are equivalent.

Suppose that ϕ satisfies conditions (a) and (b) of (iii). Then, for every f ∈ Cc(K\G/K), we
have

χϕ(f) = f ∗ ϕ(1) = χ(f).

As f 7−→ χ(f) is multiplicative (by the associativity of the convolution product), this implies
that ϕ is spherical.
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Finally, suppose that ϕ is spherical. We want to prove that conditions (a) and (b) of (iii) are
satisfied. Let f ∈ Cc(K\G/K). Then we have, for every x ∈ G,

f ∗ ϕ(x) =

∫
G

f(y)ϕ(y−1x)dy

=

∫
G×K

f(y)ϕ(y−1kx)dydk (by left invariance of f )

=

∫
G

f(y)ϕ(y)−1ϕ(x)dy (by (ii))

= χϕ(f)ϕ(x).

This shows condition (b). Choosing f ∈ Cc(K \G/K) such that χϕ(f) 6= 0, and applying the
equality above to x = 1, we get χϕ(f) = χϕ(f)ϕ(1), hence ϕ(1) = 1.

Remember that L1(G) is a Banach ∗-algebra, for the convolution product and the involution
given by f ∗(x) = f(x−1). 2 We have seen that L1(K\G/K) is a commutative Banach subalgebra
of L1(G), and it is clear that it is also preserved by the involution. So it is natural to ask what the
spectrum of L1(K\G/K) is.

If ϕ ∈ Cb(K \G/K) (note the boundedness condition), then the integral
∫
G
f(x)ϕ(x−1)dx

converges for every f ∈ L1(G), so we can extend the linear functional χϕ on Cc(K\G/K) to a
bounded linear functional on L1(K\G/K), that we will still denote by χϕ.

Theorem V.4.4. The map ϕ 7−→ χϕ identifies the set of bounded spherical functions to
σ(L1(K\G/K)).

Example V.4.5. If G is commutative and K = {1}, a bounded spherical function is a bounded
continuous morphism of groups G → C×, that is, a continuous morphism of groups G → S1,
i.e. an irreducible unitary representation of G. So we get a canonical bijection Ĝ ∼→ σ(L1(G)).
In particular, every multiplicative functional on L1(G) is a ∗-homomorphism in this case, that is,
the Banach ∗-algebra L1(G) is symmetric. This recovers the result of question II.5.4(c).

If G is compact, we will see (in theorem V.7.1) that it is still true that every spherical function
defines a ∗-homomorphism of L1(K \G/K), i.e. that L1(K \G/K). But in general, this is not
true.

Proof of theorem V.4.4. If ϕ is a bounded spherical function, then χϕ is multiplicative on
Cc(K\G/K), hence also on L1(K\G/K) because Cc(K\G/K) is dense in L1(K\G/K).

Conversely, let χ : L1(K\G/K) → C be a multiplicative functional. By corollary II.2.6, the
linear functional χ is continuous and has norm ≤ 1.

2As (G,K) is a Gelfand pair, the group G is automatically unimodular by proposition V.2.4, so we don’t need the
factor ∆(x)−1.
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By remark V.2.2, the linear operator Cc(G) → Cc(K \G/K), f 7−→ KfK decreases the L1

norm, so it extends to a continuous linear operator L1(G) → L1(K \G/K), that we will still
denote by f 7−→ KfK . Then f 7−→ χ(KfK) is a continuous linear functional on L1(G), and its
norm is equal to that of χ, so there exists a unique ϕ ∈ L∞(G) such that ‖ϕ‖∞ = ‖χ‖op and
that, for every f ∈ L1(G), we have∫

G

f(x)ϕ(x−1)dx = χ(KfK).

In particular, for all k, k′ ∈ K and every f ∈ L1(G), we have∫
G

f(x)ϕ(kx−1k′)dx =

∫
G

f((k′)−1xk−1)ϕ(x−1)dx

= χ(K(Lk′Rk−1f)K)

= χ(KfK)

=

∫
G

f(x)ϕ(x−1)dx.

So ϕ is bi-invariant.

Let f, g ∈ L1(K\G/K). We have

χ(f ∗ g) =

∫
G

(f ∗ g)(x)ϕ(x−1)dx

=

∫
G×G

f(y)g(y−1x)ϕ(x−1)dxdy

=

∫
G×G

f(y)ϕ(y−1z)g(z−1)dydz

=

∫
G

(f ∗ ϕ)(z)g(z−1)dz.

As χ(f ∗ g) = χ(f)χ(g) = χ(f)
∫
G
ϕ(z)g(z−1)dz, this implies that∫

G

((f ∗ ϕ)− χ(f)ϕ)(z)g(z−1)dz = 0.

Hence, for every f ∈ L1(K \G/K), we have f ∗ ϕ = χ(f)ϕ. Choose f ∈ Cc(K \G/K)
such that χ(f) 6= 0. Then χ(f) = f ∗ ϕ(1) = χ(f)ϕ(1), so ϕ(1) = 1. Also, the function
f ∗ ϕ is continuous, because it is left uniformly continuous (note that, for every x ∈ G, we have
‖Lx(f ∗ϕ)−f ∗ϕ‖∞ = ‖(Lxf −f)∗ϕ‖∞ ≤ ‖Lxf −f‖1‖ϕ‖∞ and apply proposition I.3.1.13).
So ϕ is locally almost everywhere equal to a bi-invariant continuous bounded function, and this
continuous bounded function is spherical by proposition V.4.3.

Finally, let ϕ′ be another bounded spherical function such that, for every f ∈ L1(K \G/K),
we have ∫

G

f(x)ϕ′(x−1)dx =

∫
G

f(x)ϕ(x−1)dx.
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We have seen above that, for every f ∈ L1(G), we have∫
G

f(x)ϕ(x−1)dx = χ(KfK) =

∫
G

KfK(x)ϕ(x−1)dx,

and we have a similar equality for ϕ′. So∫
G

f(x)ϕ′(x−1)dx =

∫
G

f(x)ϕ(x−1)dx

for every f ∈ L1(G), and this implies that ϕ′ = ϕ.

V.5 Spherical functions of positive type

For the first result, we don’t need to assume that (G,K) is a Gelfand pair.

Proposition V.5.1. Let ϕ be a function of positive type on G, and let (πϕ, Vϕ) and vϕ ∈ Vϕ be
the unitary representation of G and the cyclic vector associated to ϕ. (See section III.2.)

Then vϕ ∈ V K
ϕ if and only if ϕ is bi-invariant.

Proof. For all k, k′ ∈ K and x ∈ G, we have

ϕ(kxk′) = 〈πϕ(kxk′)(vϕ), vϕ〉 = 〈πϕ(x)(πϕ(k′)(vϕ)), πϕ(k−1)(vϕ)〉.

So, if vϕ ∈ V K
ϕ , we get ϕ(kxk′) = ϕ(x). Conversely, suppose that ϕ is bi-invariant. Taking

k′ = 1 in the equation above, we see that, for every k ∈ K and every x ∈ G,

ϕ(x) = 〈πϕ(x)(vϕ), vϕ〉 = ϕ(k−1x) = 〈πϕ(x)(vϕ), πϕ(k)(vϕ)〉.

As vϕ is a cyclic vector, the span of {πϕ(x)(vϕ), x ∈ G} is dense in Vϕ, and so this implies that
πϕ(k)(vϕ) = vϕ, for every k ∈ K.

Theorem V.5.2. Assume again that (G,K) is a Gelfand pair. Let ϕ be a continuous bi-invariant
function on G.

If ϕ is a normalized function of positive type (i.e. ϕ ∈ P1), then ϕ is spherical if and only
ϕ ∈ E (P1), that is, if and only if the representation (πϕ, Vϕ) is irreducible.

Proof. We write (π, V ) and v for (πϕ, Vϕ) and vϕ. As ϕ is bi-invariant, we know that v ∈ V K by
proposition V.5.1. Suppose first that ϕ ∈ E (P1), i.e., that π is irreducible. By theorem V.3.1.1,
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we have dim(V K) = 1. Let f ∈ Cc(K\G/K). Then we have, for every x ∈ G,

f ∗ ϕ(x) =

∫
G

f(y)〈π(y−1x)(v), v〉dy

=

∫
G

f(y)〈π(x)(v), π(y)v〉dy

= 〈π(x)(v), π(f)(v)〉.

As π(f)(v) ∈ V K , we can write π(f)(v) = χ(f)v, with χ(f) ∈ C, and we get, for every x ∈ G,

f ∗ ϕ(x) = χ(f)〈π(x)(v), v〉 = χ(f)ϕ(x).

By proposition V.4.3, this implies that ϕ is spherical.

Conversely, assume that ϕ is spherical. Then, by proposition V.4.3 again, there exists a map
χ : Cc(K\G/K)→ C such that, for every f ∈ Cc(K\G/K), we have f ∗ ϕ = χ(f)ϕ. In other
words, for every f ∈ Cc(K\G/K) and every x ∈ G, we have

f ∗ ϕ(x) =

∫
G

f(y)〈π(y−1x)(v), v〉dy = 〈π(x)(v), π(f)(v)〉

= χ(f)ϕ(x)

= χ(f)〈π(x)(v), v〉.

As v is a cyclic vector, this implies that π(f)(v) = χ(f)v ∈ V K . But we have seen in the proof
of lemma V.3.1.4 that the space {π(f)(v), f ∈ Cc(K\G/K)} is dense in V K (if v is cyclic), so
dim(V K) = 1. By lemma V.5.3, this implies that (π, V ) is irreducible.

Lemma V.5.3. We don’t assume that (G,K) is a Gelfand pair. Let (π, V ) be a unitary repre-
sentation of G, and suppose that there is a cyclic vector in V K . If dim(V K) ≤ 1, then (π, V ) is
irreducible.

Proof. It suffices to prove that EndG(V ) = CidV . Indeed, if V has a closedG-invariant subspace
W such thatW 6= {0}, V , then the orthogonal projection onW is aG-equivariant endomorphism
of V (by lemma I.3.4.3) that is not a multiple of idV .

So let T ∈ EndG(V ). Then, by proposition V.1.7, the operator T commutes with the orthog-
onal projection on V K , so it preserves V K . Choose a cyclic vector v ∈ V K . As dim(V K) = 1,
we have T (v) = λv, with λ ∈ C. As T is G-equivariant, we get that T (π(x)(v)) = λπ(x)(v) for
every x ∈ G. As v is cyclic, this implies that T = λidV .

Corollary V.5.4. Assume that (G,K) is a Gelfand pair. Then ϕ 7−→ (πϕ, Vϕ) induces a bijec-
tion from the set of spherical functions in E (P1) to the set of unitary equivalence classes of
irreducible unitary representations (π, V ) of G such that V K 6= {0}.
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V Gelfand pairs

Proof. The only statement that doesn’t follows immediately from proposition V.5.1 and theo-
rem V.5.2 is the fact that, if two spherical functions in E (P1) give rise to unitarily equivalent
representations, then they must be equal. Let ϕ1, ϕ2 ∈ E (P1) be spherical, and suppose that
there is an isometric G-equivariant isomorphism T : Vϕ1 → Vϕ2 . By proposition V.5.1, the vec-
tors vϕ1 and vϕ2 are K-invariant. Also, as (G,K) is a Gelfand pair, the spaces V K

ϕ1
and V K

ϕ2
are

both of dimension ≤ 1, hence of dimension 1 because they contain nonzero vectors. But T is
G-equivariant, so we have T (V K

ϕ1
) ⊂ V K

ϕ2
, which implies that T (vϕ1) = λvϕ2 for some λ ∈ C.

As ‖vϕ1‖ = ‖vϕ2‖ = 1, we must have |λ| = 1. So, for every x ∈ G, we get

ϕ2(x) = 〈πϕ2(x)(vϕ2), vϕ2〉
= 〈πϕ2(x)(λ−1T (vϕ1)), λ−1T (vϕ1)〉
= 〈T (πϕ1(x)(vϕ1)), T (vϕ1)〉
= 〈πϕ1(x)(vϕ1), vϕ1〉.

V.6 The dual space and the spherical Fourier transform

In this section, we suppose that (G,K) is a Gelfand pair. We will state a few results on the
(spherical) Fourier transform without proof. In the next section, we will give proofs of some
version of these results if G is compact.

Definition V.6.1. The dual space of (G,K) is the set Z of spherical functions in E (P1), with
the weak* topology coming from the embedding E (P1) ⊂ L∞(G) ' Hom(L1(G),C).

Example V.6.2. If G is commutative and K = {1}, then Z = Ĝ, the dual group of G. (See
exercise I.5.4.1.)

Proposition V.6.3. The space Z is locally compact, and its topology coincides with the topology
of convergence on compact subsets of G.

Proof. For the first statement, note first that P0 = {ψ of positive type|ψ(1) ≤ 1} is weak*
compact, because it is weak* closed in the closed unit ball of L∞(G). By the proof of
theorem V.4.4, the subset P0 ∩ C (K \ G/K) is the set of ϕ ∈ P0 such that, for ev-
ery f ∈ L1(G), we have

∫
G
f(x)ϕ(x−1)dx =

∫
G
KfK(x)ϕ(x−1)dx. These are weak*

closed conditions, so P0 ∩ C (K \G/K) is weak* closed in P0, hence weak* compact. Fi-
nally, by theorem V.5.2, the set Z ∪ {0} is the set of ϕ ∈ P0 ∩ C (K \G/K) such that∫
G

(f ∗ g)(x)ϕ(x−1)dx =
(∫

G
f(x)ϕ(x−1)dx

) (∫
G
g(x)ϕ(x−1)dx

)
for all f, g ∈ L1(K \G/K).

This is a weak* closed condition, so Z ∪ {0} is weak* compact, and Z is locally compact. Note
that this also proves that Z ∪ {0} is the Alexandroff compactification of Z.

The second statement follows immediately from Raikov’s theorem (theorem III.4.3).
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Definition V.6.4. Let f ∈ L1(K\G/K). The (spherical) Fourier transform of f is the function
f̂ : Z → C defined by

f̂(ϕ) =

∫
G

f(x)ϕ(x−1)dx = χϕ(f).

Proposition V.6.5. The Fourier transform has the following properties :

(i) For every f ∈ L1(K\G/K), the function f̂ is in C0(Z), and we have ‖f̂‖∞ ≤ ‖f‖1.

(ii) The map L1(K\G/K)→ C0(Z), f 7−→ f̂ is C-linear and it has dense image.

(iii) For all f, g ∈ L1(K\G/K), we have f̂ ∗ g = f̂ ĝ.

(iv) For every f ∈ L1(K\G/K), we have f̂ ∗ = f̂ .

Proof. (i) The continuity f̂ follows immediately from the definition of the weak* topology.
In fact, we can extend f̂ (by the same formula) to a continuous linear functional on the
whole space L∞(G). But have seen in the proof of proposition V.6.3 that Z ∪ {0} is the
Alexandroff compactification of Z, so this implies that f̂ ∈ C (Z) vanishes at ∞. The
inequality ‖f̂‖∞ ≤ ‖f‖1 just follows from the fact that ‖ϕ‖∞ = 1 for every ϕ ∈ Z.

(iii) and (iv) This is just expressing the fact that χϕ is a ∗-homomorphism from L1(K\G/K) to C, for
every ϕ ∈ Z.

(ii) The linearity is clear. The second statement follows from the Stone-Weierstrass theorem :
indeed, the image of the spherical Fourier transform is a C-subalgebra of C0(Z) by (iii),
it is stable by complex conjugation by (iv), it separates points (because, by theorem V.4.4,
the map Z → σ(L1(K\G/K)), ϕ 7−→ (f 7−→ f̂(ϕ)) is injective), and it vanishes nowhere
(for every ϕ ∈ Z, the map f 7−→ f̂(ϕ) is a multiplicative functional on L1(K\G/K), so
it is nonzero).

Theorem V.6.6. (Fourier inversion) 3 Let V 1(K \G/K) be the space of L1 functions that are
complex linear combinations of bi-invariant functions of positive type on G.

Then there exists a unique measure ν on Z, called the Plancherel measure, such that, for every
f ∈ V 1(K\G/K), we have f̂ ∈ L1(Z, ν) and, for every x ∈ G,

f(x) =

∫
Z

ϕ(x)f̂(ϕ)dν.

Theorem V.6.7. (Plancherel formula) 4 For every f ∈ Cc(K\G/K), we have f̂ ∈ L2(Z, ν), and∫
G

|f(x)|2dx =

∫
Z

|f̂(ϕ)|2dν(ϕ).

3See [25] Theorem 6.4.5.
4See [25] Theorem 6.4.6.
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In particular, the map f 7−→ f̂ extends to an isometry L2(K\G/K)→ L2(Z, ν), and this is an
isomorphism.

Remark V.6.8. If G is commutative and K = {1}, then Z = Ĝ is a locally compact group, the
measure ν is a Haar measure on Ĝ, and the Pontrjagin duality theorem says that the canonical

map G → ̂̂
G, x 7−→ (ϕ 7−→ ϕ(x)) is an isomorphism of topological groups. (See for example

[11] Theorems 4.22 and 4.32, or [25] Theorems 5.5.1 and 5.7.1.)

But in general, the Plancherel measure ν could be supported on a strict subset of Z.

V.7 The case of compact groups

In this section, we assume that (G,K) is a Gelfand pair, and that G is compact. We also assume
that the Haar measure on G is normalized.

Theorem V.7.1. (i) The dual space Z of (G,K) is discrete, and it is an orthogonal subset of
L2(G).

(ii) Every spherical function on G is of positive type (hence in E (P1) by theorem V.5.2).
In other words, the set Z is in canonical bijection (via ϕ 7−→ (πϕ, Vϕ)) with the set of
equivalence classes of irreducible unitary representations of G such that dim(V K

ϕ ) = 1.

(iii) For every ϕ ∈ Z, we have

ϕ(x) =

∫
K

χπϕ(xk)dk

for x ∈ G, and ∫
G

|ϕ(x)|2 =
1

dimVϕ
.

(iv) If f ∈ L2(K\G/K) and (π, V ) ∈ Ĝ, then f ∗ χπ = 0 if V K = {0}, and otherwise f ∗ χπ
is a multiple of the element ϕπ of Z corresponding to π by corollary V.5.4.

Proof. Let ϕ, ϕ′ ∈ Z such that ϕ 6= ϕ′. We know by corollary V.5.4 (and proposition IV.2.6) that
the representations Vϕ and Vϕ′ are unitary and not equivalent. We also know (by construction of
the representation) that ϕ and ϕ′ are matrix coefficients of Vϕ and Vϕ′ , respectively. By Schur
orthogonality (theorem IV.3.8), this implies that 〈ϕ, ϕ′〉L2(G) = 0.

We prove that Z is discrete. Let ϕ ∈ Z, and consider U = {ϕ′ ∈ Z|‖ϕ−ϕ′‖∞ < ‖ϕ‖2}. This
is open in the topology of convergence on compact subsets of G (because G is compact), hence
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is an open subset of Z by Raikov’s theorem (theorem III.4.3). Also, if ϕ′ ∈ U , then we have

|〈ϕ, ϕ′〉L2(G)| = |〈ϕ, ϕ〉L2(G) − 〈ϕ, ϕ′ − ϕ〉L2(G)|
≥ ‖ϕ‖2

2 − ‖ϕ‖2‖ϕ− ϕ′‖2

≥ ‖ϕ‖2
2 − ‖ϕ‖2‖ϕ− ϕ′‖∞

> 0,

hence, by the first paragraph, ϕ′ = ϕ. This means that U = {ϕ}, i.e., that ϕ is an isolated point
of Z.

Let (π, V ) be an irreducible unitary representation of G and let f ∈ L2(K\G/K). We want
to calculate f ∗ χπ. Let (v1, . . . , vd) be an orthonomal basis; then, for every x ∈ G, we have
χπ(x) =

∑d
i=1〈π(x)(ei), ei〉. Hence, for every x ∈ G,

f ∗ χπ(x) =

∫
G

f(y)
d∑
i=1

〈π(y−1x)(ei), ei〉 =
d∑
i=1

〈π(x)(ei), π(f)(ei)〉.

Let PK ∈ End(V ) be the orthogonal projection on V K . As f is bi-invariant, we have
π(f) = PK ◦ π(f) ◦ PK by proposition V.1.7. Suppose first that V K = {0}. Then the for-
mula above gives f ∗ χπ = 0. Now suppose that V K 6= {0}. Then, by corollary V.5.4, there is
a unique spherical function of positive type ϕπ whose associated representation is (π, V ), and a
unitary cyclic vector v ∈ V K such that ϕπ(x) = 〈π(x)(v), v〉. We may choose the orthonormal
basis such that v1 = v. Then PK(vi) = 0 for i ≥ 2 and PK(v1) = v1, for every x ∈ G, we have

f ∗ χπ(x) =
d∑
i=1

〈π(x)(vi), PK(π(f)(PK(vi)))〉 = 〈π(x)(v1), PK(π(f)(v1))〉.

As V K is 1-dimensional, the vector PK(π(f)(v1)) is a multiple of v1, and so f ∗ χπ is a multiple
of ϕπ. This proves (iv). Note also that, for every x ∈ G, we have∫

K

χπ(kx)dk =

∫
K

d∑
i=1

〈π(kx)(vi), vi〉dk

=
d∑
i=1

〈
π(x)(vi),

∫
K

π(k−1)(vi)dk

〉

=
d∑
i=1

〈π(x)(vi), PK(vi)〉 (by proposition V.1.7)

= 〈π(x)(v1), v1〉
= ϕπ(x),

which gives the first part of (iii). The second part of (iii) is contained in point (ii) of proposition
IV.3.8.
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Now consider a spherical function ϕ on G. By proposition IV.7.1 (i.e. the Fourier inversion
formula), we have an equality (in L2(G))

ϕ =
∑
π∈Ĝ

dim(π)ϕ ∗ χπ.

By the calculations above, only the π ∈ Ĝ with nonzero K-invariant vectors appear in the sum
above, and then ϕ ∗ χπ is a multiple of the function that was denoted by ϕπ in the previous
paragraph. In other words, using corollary V.5.4 again, we get

ϕ =
∑
ψ∈Z

cψψ,

for some cψ ∈ C. If we denote by χϕ (resp. χψ) the linear functional f 7−→ f ∗ ϕ(1) (resp.
f 7−→ f ∗ ψ(1)) on L1(K \G/K), we know that it is multiplicative (for χψ, this uses theorem
V.5.2). Also, as ϕ =

∑
ψ∈Z cψψ, we have χϕ =

∑
ψ∈Z cψχψ. Let ψ, ψ′ ∈ Z such that ψ 6= ψ′.

Then ψ ∗ ψ′ = ψ′ ∗ ψ is a multiple of both ψ and ψ′ (by proposition V.4.3), so ψ ∗ ψ′ = 0. In
particular, we have χψ(ψ′) = χψ′(ψ) = 0. This implies that χϕ(ψ) = cψχψ(ψ) for every ψ ∈ Z;
note also that

χψ(ψ) =

∫
G

ψ(x)ψ(x−1)dx =

∫
G

ψ(x)ψ(x)dx > 0.

Hence, if ψ, ψ′ ∈ Z and ψ 6= ψ′, then

0 = χϕ(ψ ∗ ψ′) = χϕ(ψ)χϕ(ψ′) = cψc
′
ψχψ(ψ)χψ′(ψ

′),

so cψcψ′ = 0. So at most of one the cψ can be nonzero, i.e., there exists ψ ∈ Z such that ϕ = cψψ.
As ϕ(1) = 1 = ψ(1), we must also have cψ = 1, so finally we see that ϕ = ψ is of positive type.
This finishes the proof of (ii).

Corollary V.7.2. (i) We have a G-equivariant isomorphism

L2(G/K) '
⊕̂
ϕ∈Z

Vϕ.

(ii) The family ((dimVϕ)1/2ϕ)ϕ∈Z is a Hilbert basis of L2(K\G/K).

(iii) For every f ∈ L2(K\G/K), we have

f =
∑
ϕ∈Z

dim(Vϕ)f̂(ϕ)ϕ

(Fourier inversion formula) and

‖f‖2
L2(G) =

∑
ϕ∈Z

dim(Vϕ)|f̂(ϕ)|2

(Parseval formula).
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Proof. Point (i) is just a reformulation of the last statement of theorem V.3.2.4.

For (ii), we already know that the family (
√

dim(Vϕ)ϕ)ϕ∈Z is orthonormal in L2(G). Also, if
f ∈ L2(K\G/K), we have

f =
∑

(π,V )∈Ĝ

dim(V )f ∗ χπ

by proposition IV.7.1, so f is in the closure of Span(Z) by point (iv) of the theorem, which
means that Span(Z) is dense in L2(K\G/K).

The second formula of (iii) follows from the first formula and from (ii). To prove the first
formula, it only remains to show that, for every f ∈ L2(K \G/K) and every ϕ ∈ Z, we have
f ∗ χπϕ = f̂(ϕ)ϕ. As we already know that f ∗ χπϕ is a multiple of ϕ, we just need to check
that f ∗ χπϕ(1) = f̂(ϕ). By point (iii) of the theorem, we have ϕ(x) =

∫
K
χπϕ(kx)dk for every

x ∈ G. So :

f ∗ χπϕ(1) =

∫
G

f(x)χπϕ(x−1)dx

=

∫
G×K

f(k−1x)χπϕ(x)dxdk (f is left invariant and vol(K) = 1)

=

∫
G×K

f(x)χπϕ(kx)dxdk

=

∫
G

f(x)ϕ(x)dx

=

∫
G

f(x)ϕ(x−1)dx

= f̂(ϕ).

Remark V.7.3. The corollary says in particular that the Plancherel measure ν on Z is given by
|ν({ϕ})| = dim(Vϕ).

V.8 Exercises

V.8.1 The Gelfand pair (SO(n), SO(n− 1))

The material in this series of exercises is classical, but the exposition here ows a lot to section
2.3.2 of [22] and section 7.3 of [25].

Exercise V.8.1.1. Fix a positive integer n. For every m ∈ Z≥0, we denote by Vm(Rn) the vector
space of complex-valued polynomial functions on Rn that are homogenous of degree m. We
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define an action of O(n) on Vm(Rn) by (x · f)(v) = f(x−1v) if x ∈ O(n), f ∈ Vm(Rn) and
v ∈ Rn (in other words, x · f = Lxf ).

For i ∈ {1, . . . , n}, we denote by ∂xi the endomorphism f 7−→ ∂
∂xi
f of C∞(Rn) (the space

of smooth functions from Rn to C), and we set ∆ =
∑n

i=1(∂xi)
2 (this is called the Laplacian

operator).

The space of harmonic polynomials of degree m on Rn is the space

Hm(Rn) = {f ∈ Vm(Rn)|∆(f) = 0}.

(a). Calculate dim(Vm(Rn)).

(b). Show that the action of O(n) on Vm(Rn) is a continuous representation.

(c). Show that, for every x ∈ O(n) and every f ∈ C∞(Rn), we have ∆(Lxf) = Lx(∆(f)).
(Using V.8.1.2 can help with this question.)

(d). Show that the subspace Hm(Rn) of Vm(Rn) is O(n)-invariant.

Solution.

(a). For every i ∈ {1, . . . , n}, denote by xi ∈ V1(Rn) the function (z1, . . . , zn) 7−→ zi. Then
{xi11 . . . xinn , i1, . . . , in ∈ Z≥0, i1 + . . .+ in = m} is a basis of Vm(Rn). So

dim(Vm(Rn)) = |{(i1, . . . , in) ∈ (Z≥0)n|i1 + . . .+ in = m}|.

This is also equal to

|{(j1, . . . , jn) ∈ (Z≥1)n|j1 + . . .+ jn = m+ n}|

(take jr = ir + 1). Choosing (j1, . . . , jn) in the set above is equivalent to choosing the
numbers j1, j1 + j2, . . . , j1 + . . . + jn−1, which form a subset of {1, . . . , n + m − 1} of
cardinality n− 1. So we get

dim(Vm(Rn)) =

(
n+m− 1

n− 1

)
=

(
n+m− 1

m

)
.

(b). If we use the basis of Vm(Rn) from (a), the action of x ∈ O(n) is given by a matrix with
coefficients polynomial functions in the entries of x. So, for every f ∈ Vm(Rn), the map
O(n) → Vm(Rn), x · f is continuous. As Vm(Rn) is finite-dimensional, this implies that
the action is continuous.

(c). To avoid doing the calculation, let’s use V.8.1.2(c). Note that ∆ = ∂x2
1+...+x2

n
. So, by

V.8.1.2(c), for every f ∈ C∞(Rn) and every x ∈ G, we have

∆(x · f) = x · (∂gf),

where g = LxT (x2
1 + . . . + xn). So we just need to show that x2

1 + . . . + x2
n ∈ V2(Rn) is

invariant by all the elements of O(n), which follows directly from the definition of O(n).
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(d). Question (c) implies that ∆ : Vm(Rn) → Vm−2(Rn) is O(n)-equivariant, and Hm(Rn) is
its kernel.

�

Exercise V.8.1.2. We keep the notation of problem V.8.1.1. For i ∈ {1, . . . , n}, we denote by xi
the ith coordinate function on Rn.

(a). Show that the map xi → ∂xi extends to a unique morphism of C-algebras
from

⊕
m≥0 Vm(Rn) (the algebra of complex-valued polynomial functions on Rn) to

End(C∞(Rn)). We will denote this morphism by f 7−→ ∂f .

If f, g ∈ Vm(Rn), we set 〈f, g〉 = ∂g(f). (Note that g is still a polynomial function on Rn.)

(a). Show that 〈., .〉 is an inner form on Vm(Rn). (Hint : Can you find an orthogonal basis ?)

(b). Show that, for every f ∈ Vm(Rn) and every y ∈ O(n), we have ∂f ◦ Ly = Ly ◦ ∂L
yT
f in

End(C∞(Rn)).

(c). Show that the continuous representation of O(n) on Vm(Rn) defined in problem V.8.1.1 is
unitary for the inner product 〈., .〉.

(d). If m ≤ 1, show that Vm(Rn) = Hm(Rn).

(e). If m ≥ 2, show that Hm(Rn)⊥ = |x|2Vm−2(Rn), where |x|2 is the function∑n
i=1 x

2
i ∈ V2(Rn).

(f). Show that

Vm(Rn) =

bm/2c⊕
k=0

|x|2kHm−2k(Rn),

and that this induces a O(n)-equivariant isomorphism

Vm(Rn) =

bm/2c⊕
k=0

Hm−2k(Rn).

(g). If S ⊂ Rn is the unit sphere, show that the map
⊕

m≥0 Hm(Rn) → C (S), f 7−→ f|S is
injective.

(h). Show that, for every f ∈ Vm(Rn), there is a unique g ∈
⊕bm/2c

k=0 Hm−2k(Rn) such that
f|S = g|S .

Solution.

(a). Note that
⊕

m≥0 Vm(Rn) is isomorphic to the polynomial algebra C[x1, . . . , xn]. So we just
need to check that ∂xi and ∂xj commute for all i, j ∈ {1, . . . , n}. But this is a well-known
property of partial derivatives of C2 functions.
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(b). First, it is clear from the definition that 〈., .〉 is linear in the first variable and antilinear in
the second variable. We calculate the matrix of this form in the basis of V.8.1.1(a).

Let f = xi11 . . . x
in
n , with i1, . . . , in ∈ Z≥0 and i1 + . . . + in = m. If r ∈ {1, . . . , n} and

a ∈ Z≥0, we have

∂xarf =

{
0 if a > ir
ir(ir − 1) . . . (ir − a+ 1)xir−ar

∏
s 6=r x

is
s if a ≤ ir.

Let g = xj11 . . . x
jn
n , with j1, . . . , jn ∈ Z≥0 and j1 + . . . + jn = m. As

i1 + . . . + in = j1 + . . . + jn, either there exists r ∈ {1, . . . , n} such that jr > ir, or
ir = jr for every r ∈ {1, . . . , n}. In the first case, we have 〈f, g〉 = ∂gf = 0. In the
second case, we have

〈f, g〉 = ∂gf = i1!i2! . . . in!.

So the matrix of 〈., .〉 in the basis {xi11 . . . xinn , i1, . . . , in ∈ Z≥0, i1 + . . . + in = m} of
Vm(Rn) is diagonal with real positive entries, and in particular Hermitian definite positive.
This implies that 〈., .〉 is an inner product.

(c). The statement is actually true for every y ∈ GLn(R), and we will prove this.

First note that the identity of the statement makes sense for f in the algebra
V (Rn) :=

⊕
Vm(Rn), and it is linear in f . Also, if it is true for f, g ∈ V (Rn), then

we have, for y ∈ GLn(R),

∂fg ◦ Ly = ∂f ◦ ∂g ◦ Ly
= ∂f ◦ Ly ◦ ∂L

yT
g

= Ly ◦ ∂L
yT
f ◦ ∂L

yT
g

= Ly ◦ ∂L
yT
fL

yT
g

= Ly ◦ ∂L
yT

(fg),

that is, the identity also holds for fg. In conclusion, we only need to prove it for the
functions x1, . . . , xn.

Let i ∈ {1, . . . , n}, and, let y ∈ GLn(R), and write y−1 = a = (aij) ∈ GLn(R). Then for
every (z1, . . . , zn) ∈ Rn, we have

(LyTxi)(z1, . . . , zn) = xi(a
T (z1, . . . , zn)) =

n∑
j=1

ajizj.

In other words, we have

LyTxi =
n∑
j=1

ajixj,
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so

∂L
yT
xi =

n∑
j=1

aji∂xj .

Let ϕ ∈ C∞(Rn) and z = (z1, . . . , zn) ∈ Rn. We have

∂L
yT
xiϕ =

n∑
j=1

aji
∂ϕ

∂xj
,

so

Ly∂L
yT
xiϕ(z) =

n∑
j=1

aji
∂ϕ

∂xj
(az).

On the other hand, Lyϕ(z) = ϕ(az), with

az = (
n∑
j=1

arjzr)1≤r≤n,

so

(∂xiLyϕ)(z) =
n∑
r=1

ari∂xrϕ(az).

We see that we do get the same result for Ly∂L
yT
xiϕ(z) and (∂xiLyϕ)(z).

(d). Let f, g ∈ Vm(Rn) and y ∈ O(n). By (c), we have

〈Lyf, Lyg〉 = ∂LygLyf = Ly∂L
yT
Lygf = Ly∂gf.

As ∂gf is a constant function, we have

Ly∂gf = ∂gf = 〈f, g〉,

which is what we wanted.

(e). If m ≥ 1, then ∆ = 0 on Vm(Rn), so Hm(Rn) = ker(∆) = Vm(Rn).

(f). Note that ∆ = ∂|x|2 . So, if f ∈ Vm(Rn) and g ∈ Vm−2(Rn), we have

〈f, |x|2g〉 = ∂|x|2gf = ∂g(∂|x|2f) = 〈∆f, g〉.

In other words, the map Vm−2(Rn) → Vm(Rn), g 7−→ |x|2g is the adjoint of
∆ : Vm(Rn)→ Vm−2(Rn), and so its image is the orthogonal of Ker ∆ = Hm(Rn).

(g). The first formula just follows from (f) by an easy induction. For the second for-
mula, we note that, for every k ∈ {0, . . . , bm

2
c}, the injective linear transformation

Vm−2(Rn) → Vm(Rn), g 7−→ |x|2kg is O(n)-equivariant, because the function |x|2k is
invariant by O(n).
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(h). We will use polar coordinates on Rn : a point z of Rn can be written as z = rs, with
r ∈ R≥0 and s ∈ S, and r and s are uniquely determined if z 6= 0.

Let f ∈Hm(Rn) and g ∈Hp(Rn). Then, if r ≥ R≥0 and s ∈ S, we have f(rs) = rmf(s)
and g(rs) = rpg(s). By Green’s second formula, we have∫

B

(f∆g − g∆f)dλ = c

∫
S

(f
∂g

∂r
− g∂f

∂r
)dµ,

where B is the closed unit ball, λ is Lebesgue measure on Rn, c is a positive constant and
and µ is the measure on S defined in 4(g). As f and g are in the kernel of ∆, this gives

0 = c(p−m)

∫
S

f(s)g(s)dµ(s).

If m 6= p, we get
∫
S
f(s)g(s)dµ(s) = 0. So, for m 6= p, the subspaces Hm(Rn)|S

and Hp(Rn)|S are orthogonal for the inner product of L2(S, µ). In particular, if
f ∈

⊕
m≥0 Hm(Rn) is such that f|S = 0, then, writing f =

∑
m≥0 fm with fm ∈Hm(Rn),

we must have fm|S = 0 for every m ≥ 0. But fm is homogeneous of degree m, so
fm(rs) = rmfm(s) for every r ∈ R≥0 and s ∈ S, so fm|S = 0 implies fm = 0.

(i). The existence follows from the first identity of (g) (because |x|2 = 1 on S), and the unique-
ness from (h).

�

Exercise V.8.1.3. Let n ≥ 2, and embed O(n− 1) into O(n) by using the map x 7−→
(

1 0
0 x

)
.

Let G = SO(n), and let K be the image of SO(n− 1) in G by the embedding we just defined.

(a). Let A be the subset of SO(n) consisting of matrices of the form cos θ 0 sin θ
0 In−2 0

− sin θ 0 cos θ

 ,

with θ ∈ R.

Show that A is a subgroup of G and that we have G = KAK.

(b). Show that (G,K) is a Gelfand pair. (You might want to use the involution θ of G defined
by θ(x) = JxJ , where J is the diagonal matrix with diagonal coefficients −1, 1, . . . , 1.)

Solution.

(a). For every θ ∈ R, we write Aθ =

 cos θ 0 sin θ
0 In−2 0

− sin θ 0 cos θ

. We have A = {Aθ, θ ∈ R}.

We check easily that AθAθ′ = Aθ+θ′ , so A is a subgroup of G.

256



V.8 Exercises

Let v0 = (1, 0, . . . , 0) ∈ S. Then the action of O(n) on Rn preserves S (and O(n)
acts transitively on S), and K is the stabilizer of v0 in O(n). Let x ∈ O(n), and write
z = x · v0 = (z1, . . . , zn). We can find y ∈ K such that y · z = (z1, 0, . . . , 0, c), with
c2 = z2

2 + . . . + z2
n, and then we can find a ∈ A such that a · (y · z) = (1, 0, . . . , 0) = v0.

Then we have (ayx) · v0 = v0, so ayx ∈ K, and x ∈ Ka−1y−1 ⊂ KAK.

(b). We want to apply proposition V.2.5 to θ, where θ sends x ∈ G to JxJ , with

J =

(
−1 0
0 In−1

)
. Note that J2 = In, so J = J−1, so θ is a morphism of groups

and an involution. It is also clear that θ(K) = K. We need to check that θ(x) ∈ Kx−1K
for every x ∈ G. Let x ∈ G, and write x = kak′, with k, k′ ∈ K and a ∈ A. Then
θ(x) = θ(k)θ(a)θ(k′) and θ(k), θ(k′) ∈ K, and, if a = Aθ, we have θ(a) = A−θ = a−1.
So θ(x) = θ(k)k′x−1kθ(k′) ∈ Kx−1K.

�

Exercise V.8.1.4. We use the notation of problems V.8.1.1 and V.8.1.2, and the embedding
O(n− 1) ⊂ O(n) defined in problem V.8.1.3.

(a). Show that we have a O(n− 1)-equivariant isomorphism

Vm(Rn) '
m⊕
k=0

Vm−k(Rn−1).

(b). Show that we have a O(n− 1)-equivariant isomorphism

Hm(Rn) '
m⊕
k=0

Hm−k(Rn−1).

(c). If m ≥ 2, show that Hm(R2) is an irreducible representation of O(2), but that it is not
irreducible as a representation of SO(2).

From now on, we assume that n ≥ 3.

(a). If m ≥ 1, show that Hm(Rn)SO(n) = {0}.

(b). Show that, for every m ≥ 0, the space Hm(Rn)SO(n−1) is 1-dimensional.

(c). Let S ⊂ Rn be the unit sphere, and let v0 = (1, 0, . . . , 0) ∈ S. Show that the map
SO(n)→ S, x 7−→ x · v0 induces a homeomorphism SO(n)/SO(n− 1)

∼→ S.

(d). Show that the measure µ on S defined in I.5.3.5(f) (using the normalized Haar measures
on SO(n) and SO(n− 1)) is given by µ(E) = cλ({tx, t ∈ [0, 1], x ∈ E}) for every Borel
subset E of S, where λ is Lebesgue measure on Rn and c−1 is the volume of the unit ball
(for λ).
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(e). By the previous question, we have the quasi-regular representation of SO(n) on L2(S),
and it preserves the subspace of continuous functions. If V ⊂ C (S) is a nonzero finite-
dimensional SO(n)-stable subspace, show that V SO(n−1) 6= {0}. (Hint : Start with a
function f ∈ V such that f(v0) 6= 0.)

(f). Show that the representation Hm(Rn) of SO(n) is irreducible.

(g). Show that the representations Hm(Rn) and Hm′(Rn) of SO(n) are not equivalent if
m 6= m′. (Hint : Compare the dimensions.)

(h). If m ≥ 2, show that Hm(Rn) is spanned by the functions
(z1, . . . , zn) 7−→ (a1z1 + . . . anzn)m, with a1, . . . , an ∈ C such that a2

1 + . . .+ a2
n = 0.

Solution.

(a). If f ∈ Vm(Rn), then we can write f =
∑m

k=0 x
k
1fk, for uniquely determined

fk ∈ Vm−k(Rn−1). As O(n − 1) ⊂ O(n) acts trivially on x1, this gives an O(n − 1)-
equivariant isomorphism Vm(Rn) '

⊕m
k=0 Vm−k(Rn−1).

(b). In this proof, we will use the convention that Vm(Rn) = 0 if m < 0. Fix
n and m. By V.8.1.2(f) and (g), we have an O(n)-equivariant isomorphism
Vm(Rn) 'Hm(Rn)⊕Vm−2(Rn). Using (a), we deduce from this an O(m−1)-equivariant
isomorphism

Vm(Rn) 'Hm(Rn)⊕
m−2⊕
k=0

Vm−2−k(Rn−1).

On the other hand, applying (a) to Vm(Rn) gives an O(n − 1)-equivariant isomorphism
Vm(Rn) '

⊕m
k=0 Vm−k(Rn−1). Using V.8.1.2(f) or (g) on each summand, we get an

O(n− 1)-equivariant isomorphism

Vm(Rn) '
m⊕
k=0

(Hm−k(Rn−1)⊕ Vm−2−k(Rn−1))

=

(
m⊕
k=0

Hm−k(Rn−1)

)
⊕

(
m−2⊕
k=0

Vm−2−k(Rn−1)

)
.

Define representations V1, V2 and V3 of O(n − 1) by V1 = Hm(Rn),
V2 =

⊕m
k=0 Hm−k(Rn−1) and V3 =

⊕m−2
k=0 Vm−2−k(Rn−1). We have just seen that

V1 ⊕ V3 ' V2 ⊕ V3, so χV1 + χV3 = χV2 + χV3 , so χV1 = χV2 . By corollary IV.5.10,
this implies that V1 and V2 are equivalent.

(c). Note that SO(2) is a commutative group (it is isomorphic to S1), so its irreducible rep-
resentations are all 1-dimensional. On the other hand, by V.8.1.2(f) and V.8.1.2(a), we
have

dim Hm(R2) = dimVm(R2)− dimVm−2(R2) =

(
m+ 1

m

)
−
(
m− 1

m− 2

)
= 2 > 1
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if m ≥ 2, so Hm(Rn) cannot be an irreducible representation of SO(2).

If m = 2, then a basis of Hm(R2) is given by the functions x2
1 − x2

2 and x1x2, and they
both span lines that are stable by the action of O(2), so H2(R2) is not an irreducible
representation of O(2).

Suppose that m ≥ 3. As dim Hm(R2) = 2, if Hm(R2) is not an irreducible represen-
tation of O(2), we must have a nonzero f ∈ Hm(R2) such that Lxf ∈ Cf for every
x ∈ O(2). We identify R2 with the complex plane C in the usual way. Then f(z), for
z ∈ C, can be written as f(z) =

∑m
r=0 arz

rzm−r, with a0, . . . , am ∈ C. The action of

SO(2) becomes the action of S1 on C by multiplication, and the action of
(

1 0
0 −1

)
cor-

responds to complex conjugation. By the assumption on f , for every” u ∈ S1, the function
f(uz) =

∑m
r=0 aru

2r−mzrzm−r is a multiple of f . This is only possible if there exists
r ∈ {0, . . . ,m} such that as = 0 for s 6= r. So we may assume that f(z) = zrzm−r. The
function f(z) = zm−rzr is also a multiple of f , so we must have m = 2r and f = |x|m.
Then ∆f = m(m− 1)|x|m−2, which contradicts the fact that ∆f = 0.

(d). Let f ∈ Vm(Rn)SO(n). As f is invariant by SO(n), it is constant on the sphere with center
0, so f(z) = f(‖z‖v0) for every z ∈ Rn. As f is homogeneous of degree m, we get that
f(z) = ‖z‖mf(v0), for every z ∈ Rn. So f is a polynomial if and only if m is even. Also,
we check easily that ∆f = m(m − 1)|x|−2f , so f ∈ Hm(Rn) if and only if f = 0 or
m = 0.

(e). By (b), we have a SO(n− 1)-equivariant isomorphism Hm(Rn) '
⊕m

k=0

Hfm−k(Rn−1). So, by (d), we get

Hm(Rn)SO(n−1) 'H0(Rn−1)SO(n−1) ' C.

(f). Let us denote the map SO(n)→ S, x 7−→ x ·v0 by ϕ. First, this map is clearly continuous,
and it is surjective because SO(n) acts transitively on S. (If we have v1, v

′
1 ∈ S, we want

to find x ∈ SO(n) such that x · v1 = v′1. We can complete v1 and v′1 to two orthonormal
bases (v1, . . . , vn) and (v′1, . . . , v

′
n) of Rn. The change of basis matrix between these two

bases is in O(n). If it is in SO(n), we are done. Otherwise, the change of basis matrix
between (v1, . . . , vn) and (v′1, . . . , v

′
n−1,−v′n) will be in SO(n).)

Also, the stabilizer of v0 in SO(n) is the subgroup of SO(n) whose elements have


1
0
...
0


as their first column, and we see easily that this is SO(n − 1). So ϕ induces a continuous
bijective map SO(n)/SO(n − 1)

∼→ S. As SO(n)/SO(n − 1) is compact, this map is a
homeomorphism.

259



V Gelfand pairs

(g). Define a regular Borel measure ν on S by

ν(E) = cλ({tx, t ∈ [0, 1], x ∈ E}).

Define a linear functional I : C (SO(n))→ C by

I(f) =

∫
S

fSO(n−1)(s)dν(s),

where
fSO(n−1)(x) =

∫
SO(n−1)

f(xy)dy

(we are using the normalized Haar measure on SO(n − 1)) for every s ∈ SO(n); the
function fSO(n−1) is right invariant by SO(n− 1), hence can be identified to a function on
S by (f).

This is a positive functional on C (SO(n)), so it comes from a regular Borel measure on
SO(n), say ρ. We want to show that ρ is the normalized Haar measure on SO(n).

Note that, if f is the constant function 1, then I(f) = 1. So, to show that ρ is the
normalized Haar measure on SO(n), it suffices to show that it is left invariant. Let
f ∈ C (SO(n)) and y ∈ SO(n). Then it follows immediately from the definition that
(Lyf)SO(n−1) = Ly(f

SO(n−1)), so we only need to show that the measure ν on S is left
invariant by the action of SO(n). But this follows immediately from the fact that Lebesgue
measure λ is left invariant by the action of SO(n) (which we can see using the change of
variables formula).

(h). Let V be as in the question. As SO(n) acts transitively on S and V is stable by SO(n), we
can find f ∈ V such that f(v0) 6= 0. Let (f1, . . . , fr) be a basis of V . As V is stable by
SO(n) and as the action of SO(n) on V is continuous, we can find continuous functions
c1, . . . , cr : SO(n) → C such that, for every x ∈ SO(n) and every s ∈ S, we have
f(x · s) =

∑r
i=1 ci(x)fi(s). Define f̃ : S → C by

f̃(s) =

∫
SO(n−1)

f(x · s)dx.

Then f̃ =
∑r

i=1

(∫
SO(n−1)

ci(x)dx
)
fi, so f̃ ∈ V . Also, f̃ is SO(n − 1)-invariant by

construction. Finally, as x · v0 = v0 for every x ∈ SO(n− 1), we have f̃(v0) = f(v0) 6= 0,
so f̃ 6= 0.

(i). By V.8.1.2(h), restriction from Rn to S is injective on Hm(Rn), so Hm(Rn) is irreducible
as a representation of SO(n) if and only Hm = Hm(Rn)|S ⊂ C (S) is irreducible as a
representation of SO(n). As SO(n) is compact, if Hm is not irreducible, then we can write
Hm = V ⊕ V ′ with V and V ′ nonzero SO(n)-invariant subspaces of Hm. By (h), this
implies that dim(H

SO(n)
m ) ≥ 2 and contradicts (d). So Hm is irreducible.
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(j). Let dm = dim Hm(Rn). We will show that dm+1 > dm for every m ∈ Z≥0, which implies
that dm 6= dm′ if m 6= m′, hence that Hm(Rn) and Hm′(Rn) are not equivalent.

If m ≤ 1, then, by V.8.1.1(a) and V.8.1.2(e), we have dm = dimVm(Rn) =
(
m+n−1

m

)
. If

m ≥ 2, then, by V.8.1.1(a) and V.8.1.2(f), we have

dm = dimVm(Rn)− dimVm−2(Rn)

=

(
m+ n− 1

m

)
−
(
m+ n− 3

m− 2

)
=

(m+ n− 3)!

(m− 2)!(n− 1)!

(
(m+ n− 1)(m+ n− 2)

m(m− 1)
− 1

)
=

(2m+ n− 2)(m+ n− 3)!

m!(n− 2)!
.

In particular, d0 = 1, d1 = n and d2 = 2n− 1, so d2 > d1 > d0. Let m ≥ 2. Then

dm+1 − dm =
(2(m+ 1) + n− 2)(m+ 1 + n− 3)!

(m+ 1)!(n− 2)!
− (2m+ n− 2)(m+ n− 3)!

m!(n− 2)!

=
(m+ n− 3)!

m!(n− 2)!

(
(2m+ n)(m+ n− 2)

m+ 1
− (2m+ n− 2)

)
=

(m+ n− 3)!

m!(n− 2)!

(2m+ n)(m+ n− 2)− (2m+ n− 2)(m+ 1)

m+ 1

> 0

(because m+ n− 2 ≥ m+ 1 and 2m+ n > 2m+ n− 2).

(k). Let a1, . . . , an ∈ C, and consider f = (a1x1 + . . . + anxn)m ∈ Vm(Rn). Then
∆f = m(m − 1)(a2

1 + . . . + a2
n)(a1x1 + . . . + anxn)m−2, so f ∈ Hm(Rn) if and only if

a2
1 + . . .+ a2

n = 0. Let

W = Span{(a1x1 + . . .+ anxn)m, a1, . . . , an ∈ C, a2
1 + . . .+ a2

n = 0} ⊂Hm(Rn).

As W 6= 0 and Hm(Rn) is irreducible as a representation of SO(n), to show that
W = Hm(Rn), it suffices to show that W is invariant by SO(m). Let x ∈ SO(n) and
a1, . . . , an ∈ C, and let f = (a1x1 + . . . + anxn)m. Write (b1, . . . , bn) = (a1, . . . , an)xT

(we see (a1, . . . , an) as a row vector). Then b2
1 + . . . + b2

n = 0 because x ∈ O(n), and
Lxf = (b1x1 + . . .+ bnxn)m, so Lxf ∈ W .

�

Exercise V.8.1.5. We keep the notation of problems V.8.1.1-V.8.1.4, and we assume that n ≥ 3.

(a). Show that the space
∑

m≥0 Hm(Rn)|S is dense in L2(S) and that the sum is direct.

(b). Show that the subspaces Hm(Rn)|S and Hm′(Rn)|S of L2(S) are orthogonal (for the L2

inner form) if m 6= m′.
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(c). Show that every irreducible unitary representation of SO(n) having a nonzero SO(n− 1)-
invariant vector is isomorphic to one of the Hm(Rn).

Solution.

(a). By V.8.1.2(i), we have ∑
m≥0

Hm(Rn)|S =
∑
m≥0

Vm(Rn)|S,

an the right hand side is dense in C (S) (hence in L2(S)) by the Stone-Weierstrass theo-
rem. Also, we have seen in the proof of V.8.1.2(h) that the spaces Hm(Rn)|S are pairwise
orthogonal in L2(S), so they are in direct sum.

(b). See (a).

(c). Let V be an irreducible unitary representation of SO(n) such that V SO(n−1) 6= 0. By
theorem V.3.2.4, V is a subrepresentation of L2(S). But we have seen that

L2(S) =
⊕
m≥0

Hm(Rn)|S

and that all these summands are irreducible, so V is isomorphic to one of them.

�

Exercise V.8.1.6. We keep the notation of problems V.8.1.1-V.8.1.5. We say that a function
ϕ ∈ C (S) is zonal if it is left invariant by SO(n− 1). (As S = SO(n)/SO(n− 1), we can also
see the function ϕ as a bi-invariant function on SO(n).) Suppose that n ≥ 3.

(a). Show that ϕ ∈ C (S) is zonal if and only if there exists a continuous function
f : [−1, 1]→ C such that, for every z = (z1, . . . , zn) ∈ S, we have ϕ(z) = f(z1).

(b). Show that there exists c ∈ R>0 such that, for every zonal ϕ ∈ C (S), if we define
f : [−1, 1]→ C as in (a), then∫

S

ϕ(z)dµ(z) = c

∫ 1

−1

f(t)(1− t2)(n−3)/2dt.

(Hint : You can try using spherical coordinates, as in https://en.wikipedia.org/
wiki/N-sphere#Spherical_coordinates.)

(c). Let m ≥ 0. If t ∈ S, let ft be the unique element of Hm(Rn) such that, for every
g ∈ Hm(Rn), we have 〈g, ft〉 = g(t). (Note that we are using the inner form of problem
V.8.1.2.)

Show that the function Zm = fv0|S (where v0 = (1, 0, . . . , 0)) is a zonal function.
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(d). Let fm : [−1, 1] → C be the continuous function corresponding to Zm as in question (a).
Show that fm is a polynomial function of degree ≤ m.

(e). If m 6= m′, show that
∫ 1

−1
fm(t)fm′(t)(1− t2)(n−3)/2dt = 0.

(f). Show that the degree of fm is m.

(g). Show that x 7−→ 1
Zm(v0)

Zm(x·v0) is a spherical function on SO(n), and that every spherical
function is of this form.

The polynomials 1
fm(1)

fm are called Gegenbauer polynomials (and also Legendre polynomials
if n = 3).

We will now give a different formula for the spherical functions.

(h). Consider the function hm ∈ Vm(Rn) defined by hm(z1, . . . , zn) = (z1 + iz2)m. Show that
hm ∈Hm(Rn).

(i). Define a function ψm : S → C by ψm(z) =
∫

SO(n−1)
hm(k · z)dk. Show that ψm is left

invariant by SO(n− 1), that ψm ∈Hm(Rn)|S and that ψm(v0) = 1.

(j). Show that every spherical function on SO(n) is of the form x 7−→ ψm(x · v0), for a unique
m ≥ 0.

We can calculate the integral defining ψm, and we get

ψm(cosϕ, z2, . . . , zn) =
Γ(n−1

2
)

√
πΓ(n−2

2
)

∫ π

0

(cosϕ+ i sinϕ cos θ)m sinn−3 θdθ.

5

Solution.

(a). If there exists a continuous function f : [−1, 1]→ C such that ϕ(z1, . . . , zn) = f(z1), then
ϕ is clearly zonal.

Conversely, suppose that ϕ is zonal, and define f : [−1, 1]→ C by

(z1) = ϕ(z1, 0, . . . , 0,
√

1− z2
1).

Then f is clearly continuous. Let s = (z1, . . . , zn) ∈ S. Then there exists x ∈ SO(n− 1)
such that x · s = (z1, 0, . . . , 0,

√
1− z2

1) (we are using the fact that SO(n− 1) acts transi-
tively on any sphere in Rn−1). As ϕ is zonal, we have ϕ(s) = f(z1).

5Reference.
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(b). We use spherical coordinates on Rn. That is, given (z1, . . . , zn) ∈ Rn, we write

z1 = r cosφ1

z2 = r sinφ1 cosφ2

. . .

zn−1 = r sinφ1 sinφ2 . . . sinφn−2 cosφn−1

zn = r sinφ1 sinφ2 . . . sinφn−2 sinφn−1,

with r =
√
z2

1 + . . .+ z2
n ∈ R≥0, φ1, . . . , φn−2 ∈ [0, π] and φn−1 ∈ [0, 2π) (φ1, . . . , φn−1

are not uniquely determined in general, but they are if for example z1, . . . , zn are all
nonzero). If dz is Lebesgue measure on Rn, then we have

dz = rn−1 sinn−2 φ1 sinn−3 φ2 . . . sinφn−2drdφ1 . . . dφn−1.

Let ϕ ∈ C (S) be zonal. Up to a positive real constant,
∫
S
ϕ(s)dµ(s) is equal to∫

B−{0} ψ(z)dz, where B is the closed unit ball and ψ(z) = ϕ(‖z‖−1z) for z 6= 0. This is

equal to the product of
∫ 1

0
rn−1dr (another positive real constant) and of∫ π

0

. . .

∫ π

0

∫ 2π

0

ϕ(cosφ1, sinφ1 cosφ2, . . . , sinφ1 . . . sinφn−2 sinφn−1)

sinn−2 φ1 sinn−3 φ2 . . . sinφn−2dφ1 . . . dφn−1.

As ϕ is zonal, the big integral above is equal to∫ π

0

. . .

∫ π

0

∫ 2π

0

f(cosφ1) sinn−2 φ1 sinn−3 φ2 . . . sinφn−2dφ1 . . . dφn−1.

Up to the constant ∫ π

0

. . .

∫ π

0

∫ 2π

0

sinn−3 φ2 . . . sinφn−2dφ2 . . . dφn−1

(which has to be positive because it calculates the integral of the constant function 1 up to
a positive constant), this is equal to∫ π

0

f(cosφ1) sinn−2 φ1dφ1.

Finally, we use the change of variable t = cosφ1. We have dr = − sinφ1dφ1, so∫ π

0

f(cosφ1) sinn−2 φ1dφ1 =

∫ −1

1

f(t)(−
√

1− t2
n−3

)dt

=

∫ 1

−1

f(1)(1− t2)(n−3)/2dt.
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(c). Let y ∈ SO(n− 1). By definition of fv0 , we have, for every g ∈Hm(Rn),

〈g, Lyfv0〉 = 〈Ly−1g, fv0〉 = Lyg(v0) = g(y−1v0) = g(v0) = 〈g, fv0〉

(because SO(n− 1) is the stabilizer of v0 in SO(n)). So fv0 −Lyfv0 is orthogonal to every
element of Hm(Rn), which implies that fv0 − Lyfv0 = 0, i.e. that fv0 = Lyfv0 . So Zm is
zonal.

(d). The function Zm is the restriction of fv0 , which is an element of Hm(Rn), and in particular
a polynomial function of degree m. As fm is defined by fm(t) = Zm(t, 0, . . . , 0,

√
1− t2),

we can write

fm(t) =
m∑
k=0

ckt
k(1− t2)(m−k)/2,

with c0, . . . , cm ∈ C. But we also have fm(t) = Zm(t, 0, . . . , 0,−
√

1− t2), so
m∑
k=0

ckt
k(1− t2)(m−k)/2 =

m∑
k=0

(−1)m−kckt
k(1− t2)(m−k)/2.

This forces ck to be 0 unless m − k is even, and so f(t) is indeed polynomial of degree
≤ m in t.

(e). The function s 7−→ Zm(s)Zm′(s) is zonal, so we have∫
S

Zm(s)Zm′(s)dµ(s) = c

∫ 1

−1

fm(t)fm′(t)(1− t2)(n−3)/2dt

by (b). By V.8.1.5(b), the left hand side is 0.

(f). For every m ≥ 0, the function Zm is nonzero by definition (and because there ex-
ist functions f ∈ Hm(Rn) such that g(v0) 6= 0, see the proof of V.8.1.4(h)), so
fm 6= 0 by V.8.1.2(h). By (e), the functions (fm)m≥0 form an orthogonal family in
L2([−1, 1], (1− t2)(n−3)/2dt), so they also form a linearly independent family. Fix m ≥ 0.
The space Pm of polynomials of degree ≤ m is of dimension m + 1 and contains the lin-
early independent family (f0, . . . , fm), so this family is a basis of Pm. But f0, . . . , fm−1

are of degree ≤ m− 1, so fm has to be of degree m.

(g). By corollary V.7.2, if Z is the set of spherical functions on SO(n), then we have

L2(S) =
⊕̂
ϕ∈Z

Vϕ

and ϕ generates V SO(n−1)
ϕ . So, using problem V.8.1.5, we see that the spherical functions

are exactly the generators of the spaces (Hm(Rn)|S)SO(n−1) that send v0 to 1.

For every m ≥ 0, the function Zm ∈ Hm(Rn)|S is invariant by SO(n − 3), so it gen-
erates the space of SO(n − 1)-invariant vectors in Hm(Rn)|S and has a multiple which
is a spherical functions. Because a spherical function must send v0 to 1, this multiple is
x 7−→ 1

Zm(v0)
Zm(x · v0).
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(h). This follows from V.8.1.4(k). It is also easy to prove it directly.

(i). This is exactly the same construction as in the proof of V.8.1.4(h) (with V = Hm(Rn)|S).
The same proof shows that ψm ∈ Hm(Rn)|S , that ψm is left invariant by SO(n − 1) and
that ψm(v0) = fm(v0) = 1.

(j). Same idea as in the proof of (g) : we have one spherical function in each Hm(Rn)|S , and
it is the unique SO(n − 1)-invariant element of this space that sends v0 to 1. By (i), the
function ψm satisfies all the required properties.

�

V.8.2 The Gelfand pair (Sn,Sr×Sn−r)

The goal of this series of exercises, which were extracted from sections 5.1, 6.1 and 6.2 of [7], is
to study the Gelfand pair (Sn,Sr×Sn−r). We will embed Sr×Sn−r in Sn in the following
way : If σ ∈ Sr and τ Sn−r, then σ × τ ∈ Sn is given by

(σ × τ)(i) =

{
σ(i) if 1 ≤ i ≤ r
τ(i− r) + r if r + 1 ≤ i ≤ n.

If E is a finite set, we will denote by L(E) the space of functions f : E → C, with the L2

inner product given by 〈f, f ′〉 =
∑

x∈E f(x)f ′(x).

Exercise V.8.2.1. In this problem, we fix a finite group G acting transitively (on the left) on a set
E. Let x0 ∈ E, and let K ⊂ G be the stabilizer of x0.

(a). Show that the following conditions are equivalent :

(i) For all x, y ∈ E, there exists g ∈ G such that g · (x, y) = (y, x).

(ii) For every g ∈ G, we have g−1 ∈ KgK.

(b). If the conditions of (a) are satisfied, show that (G,K) is a Gelfand pair.

We now assume that there is a metric d : E × E → R≥0, and that the group G
acts by isometries. Suppose that the action of G on E is distance-transitive, that is : for
all (x, y), (x′, y′) ∈ E × E such that d(x, y) = d(x′, y′), there exists g ∈ G such that
g · (x, y) = (x′, y′).

(c). Show that (G,K) is a Gelfand pair.

(d). Show that the orbits of K on E are the spheres {x ∈ E|d(x, x0) = j}, for j ∈ R≥0.

(e). Let Ωr be the set of cardinality r subsets of {1, . . . , n}. Show that the formula
d(A,B) = r − |A ∩B| defines a metric on Ωr.

(f). Show that (Sn,Sr×Sn−r) is a Gelfand pair.
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Solution.

(a). Suppose that (i) holds. Let g ∈ G. By (i), there exists h ∈ G such that
h · (K, gK) = (gK,K). Then the equality of the first entries gives g−1h ∈ K, and the
equality of the second entries gives g−1hg ∈ g−1K, hence g ∈ (g−1h)−1g−1K ⊂ Kg−1K.

Suppose that (ii) holds. Let g, h ∈ G. By (i), we can find k1, k2 ∈ K such that
g−1h = k1h

−1gk2, and then

(gK, hK) = g · (K, g−1hK) = g · (K, k1h
−1gK) = gk−1

1 · (K,h−1gK)

= gk−1
1 h−1 · (hK, gK).

(b). This follows from proposition V.2.5, taking θ = idG.

(c). Let x, y ∈ X . Then d(y, x) = d(x, y), so there exists g ∈ G such that g · (x, y) = (y, x).
In other words, condition (i) of (a) is satisfied, so condition (ii) is also satisfied. By (b),
this implies that (G,K) is a Gelfand pair.

(d). Write Sj = {x ∈ X|d(x, x0) = j}, for j ∈ Z≥0. As G acts by isometries on X and K
fixes x0, the sets Sj are stable by K. To show that they are the orbits of K on X , we need
to show that K acts transitively on each nonempty Sj . So let j ≥ 0, and suppose that we
have x, y ∈ Sj . Then d(x0, x) = d(x0, y) = j, so, by the hypothesis, there exists g ∈ G
such that g · (x0, x) = (x0, y). The fact that g · x0 = x0 implies that g ∈ K, so x and y are
in the same K-orbit.

(e). We clearly have d(A,B) = d(B,A) for all A,B ∈ Ωr. Let A,B,C ∈ Ωr. First, if
d(A,B) = 0, then |A ∩ B| = r = |A| = |B|, so A ∩ B = A and A ∩ B = B, and so
A = B. Let’s prove the triangle inequality. We have

|A∩B|+ |B ∩C| = |(A∩B)∪ (B ∩C)|+ |A∩B ∩C| ≤ |B|+ |A∩C| = r+ |A∩C|,

so
d(A,C) = r − |A ∩ C| ≤ 2r − |A ∩B| − |B ∩ C| = d(A,B) + d(B,C).

(f). We make Sn act by Ωr by σ · A = σ(A). This action is transitive, and Sr×Sn−r is the
stabilizer of {1, . . . , r}. Also, it is clear that Sn acts by isometries on Ωr. So, by (c), we
just need to check that the action is distance-transitive. Let A,B,A′, B′ ∈ Ωr such that
d(A,B) = d(A′, B′), i.e. |A ∩ B| = |A′ ∩ B′|. Choose a bijection ϕ : A

∼→ A′ that
sends the subset A ∩ B of A onto A′ ∩ B′; this is possible because |A ∩ B| = |A′ ∩ B′|.
Choose a bijection ψ : B − (A ∩ B)

∼→ B′ − (A′ ∩ B′); this is also possible, because
|B− (A∩B)| = r−|A∩B| = |B′− (A′∩B′)|. Putting ϕ and ψ together gives a bijection
A ∪ B ∼→ A′ ∪ B′ that sends A to A′ and B to B′, and any extension of this to an element
σ of Sn will satisfy σ · (A,B) = (A′, B′).

�
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Exercise V.8.2.2. Let (Ωr, d) be the finite metric space of question V.8.2.1(e). Let N be the
diameter of Ωr, that is,

N = max{d(A,B), A,B ∈ Ωr}.

For i ∈ {0, . . . , N}, we define a linear operator ∆i : L(Ωr)→ L(Ωr) by

∆if(A) =
∑

B∈Ωr, d(A,B)=i

f(B),

for every f ∈ L(Ωr). We also denote by Af the subalgebra of End(L(Ωr)) generated by
∆0, . . . ,∆N .

(a). Show that N = min(r, n− r).

(b). Show that there exist integers b0, . . . , bN , c0, c1, . . . , cN such that, for every i and all
A,B ∈ Ωr such that d(A,B) = i, we have

|{C ∈ Ωr|d(A,C) = 1 and d(B,C) = i+ 1}| = bi

and
|{C ∈ Ωr|d(A,C) = 1 and d(B,C) = i− 1}| = ci.

(Of course, c0 = 0 and c1 = 1.) 6

(c). Show that c2, . . . , cN > 0.

(d). If i ∈ {1, . . . , N}, show that

∆i∆1 = bi−1∆i−1 + (b0 − bi − ci)∆i + ci+1∆i+1,

with the convention that ∆N+1 = 0.

(e). Show that there exist polynomials p0, . . . , pN ∈ R[t] such that deg(pi) = i and
∆i = p(∆1).

(f). Show that Af is the subalgebra of End(L(Ωr)) generated by ∆1.

(g). Show that Af is spanned as a C-vector space by ∆0, . . . ,∆N .

(h). Show that dimC Af = N + 1.

(i). Show that the endormorphism ∆1 of L(Ωr) is self-adjoint.

(j). Show that we have a decomposition into pairwise orthogonal subspaces L(Ωr) =
⊕N

i=0 Vi,
where V0, . . . , VN are the eigenspaces of ∆1. (Hint : problem II.5.2.)

Solution.
6In other words, the graph with set of vertices Ωr and an edge between any A,B ∈ Ωr such that d(A,B) = 1 is

distance-regular, see definition 5.1.1 of [7] .
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(a). Note that d(A,B) ≤ r for all A,B ∈ Ωr by definition of d, so N ≤ r. Also, for all
A,B ∈ Ωr, we have

d(A,B) = r − |A ∩B| = r − (|A|+ |B| − |A ∪B|) = |A ∪B| − r ≤ n− r,

so N ≤ n− r, and N ≤ min(r, n− r).

Now take A = {1, . . . , r} and B = {n − r + 1, . . . , n}. Then A,B ∈ Ωr, and
|A ∩B| = max(0, 2r − n). So N ≥ d(A,B) = r −max(0, 2r − n) = min(r, n− r).

(b). Fix i ∈ {0, . . . , N}. For all A,B ∈ Ωr such that d(A,B) = i, let

Xi(A,B) = {C ∈ Ωr|d(A,C) = 1 and d(B,C) = i+ 1}

and
Yi(A,B) = {C ∈ Ωr|d(A,C) = 1 and d(B,C) = i− 1}.

If σ ∈ Sn is such that σ(A,B) = (A′, B′), then σ induces bijections
Xi(A,B)

∼→ Xi(A
′, B′) and Yi(A,B)

∼→ Yi(A
′, B′), because Sn acts on Ωr by isometries.

So the statement follows from the fact that the action of Sn on Ωr is distance-transitive,
which we showed in the proof of V.8.2.1(f).

(c). Let i ∈ {2, . . . , N}. Take A = {1, . . . , r} and B = {i + 1, i + 2, . . . , i + r}. (Note that
i + r ≤ N + r ≤ n by (a).) We need to show that there exists at least one C ∈ Ωr such
that d(A,C) = 1 (i.e. |A ∩ C| = r − 1) and d(B,C) = i− 1 (i.e. |B ∩ C| = r − i + 1).
This holds for C = {2, 3, . . . , r + 1}.

(d). Let f ∈ L(Ωr) and A ∈ Ωr. Then we have

∆i∆1f(A) =
∑

B∈Ωr,d(A,B)=i

∑
C∈Ωr,d(B,C)=1

f(C).

Let C ∈ Ωr. If there exists B ∈ Ωr such that d(A,B) = i and d(B,C) = 1, then we must
have i− 1 ≤ d(A,C) ≤ i+ 1 by the triangle inequality.

Suppose that d(A,C) = i+ 1. Then

{B ∈ Ωr|d(A,B) = i and d(B,C) = 1} = Yi+1(C,A)

(with the notation of the proof of (b)). Suppose that d(A,C) = i− 1. Then

{B ∈ Ωr|d(A,B) = i and d(B,C) = 1} = Xi−1(C,A).

Finally, suppose that d(A,C) = i. Consider the set

{B ∈ Ωr|d(A,B) = i and d(B,C) = 1} ∪ {B ∈ Ωr|d(A,B) = i+ 1 and d(B,C) = 1}
∪ {B ∈ Ωr|d(A,B) = i− 1 and d(B,C) = 1}.
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The union is clearly disjoint. We are trying to calculate the cardinality of the first set, the
second set is Xi(C,A) and the third set is Yi(C,A). Also, by the triangle inequality, the
union is simply

{B ∈ Ωr|d(B,C) = 1} = X0(C,C).

So we get
|{B ∈ Ωr|d(A,B) = i and d(B,C) = 1}|+ bi + ci = b).

Finally, we see that

∆iδ1f(A) = ci+1

∑
C, d(A,C)=i+1

f(C)bi−1

∑
C, d(A,C)=i−1

f(C) + (b0 − bi − ci)
∑

C, d(A,C)=i

f(C)

= ci+1∆i+1f(A) + bi−1∆i−1f(A) + (b0 − bi − ci)∆if(A).

(e). We prove the statement by induction on i. It is obvious i = 0 (note that ∆0 = id, so we
take p0 = 1) and for i = 1 (take p1(t) = t). Suppose the result known up to some i ≥ 1,
and let’s prove it for i+ 1. By (c) and (d), we have

∆i+1 = c−1
i+1(∆i∆1 − bi−1∆i−1 − (b0 − bi − ci)∆i),

so ∆i+1 = pi+1(∆1), with

pi+1(t) = c−1
i+1(tpi(t)− pi−1(t)− (b0 − bi − ci)pi(t)).

It is also clear that deg(pi+1(t)) = i+ 1.

(f). Let A′f be the subalgebra of End(L(Ωr)) generated by ∆1. Then A′f ⊂ Af by definition of
Af . By (e), we have ∆0, . . . ,∆N ∈ A′f , and so Af ⊂ A′f .

(g). We show by induction on i ≥ 0 that ∆i
1 ∈ Span(∆0,∆1, . . . ,∆i). (The conclusion will

follow by (f).) The assertion is clear for i = 0 and i = 1. Suppose that holds up to i ≥ 1,
and let’s prove it for i + 1. By (e), there exist a nonnezero c ∈ R and c0, . . . , ci ∈ R such
that ∆i+1 = a∆i+1

1 +
∑i

j=0 aj∆
j
1. As ∆j

1 ∈ Span(∆0, . . . ,∆j) for every j ∈ {0, . . . , i}
by the induction, we deduce that ∆i+1

1 ∈ Span(∆0, . . . ,∆i+1).

(h). We know that Af = Span(∆0, . . . ,∆N) by (g), so we must show that the family
(∆0, . . . .∆N) is linearly independent. Let c0, . . . , cN ∈ C. If A,B ∈ Ωr, and if we
denote by δA the indicator function of {A}, then ∆iδA(B) 6= 0 only if d(A,B) = i, and
we have

N∑
i=0

ci∆iδA(B) = cd(A,B).

As there are couples (A,B) ∈ Ω2
r such that d(A,B) = i for every i ∈ {0, . . . , N}, we

conclude that, if
∑N

i=0 ci∆i = 0, then c0 = . . . = cN = 0.
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(i). Let f, g ∈ L(Ωr). Then

〈f,∆1g〉 =
∑
A∈Ωr

f(A)(∆1g)(A)

=
∑
A∈Ωr

f(A)
∑

B∈Ωr, d(A,B)=1

g(B)

=
∑

A,B∈Ωr, d(A,B)=1

f(A)g(B)

=
∑
B∈Ωr

(∆1f)(B)g(B)

= 〈∆1f, g〉.

(j). As ∆1 is self-adjoint, the spectral theorem says that it is diagonalizable and that its
eigenspaces are pairwise orthogonal. So the only thing we have to show is that there are
N + 1 eigenspaces. By II.5.2(b), we know that the subalgebra of End(L(Ωr)) generated
by ∆1, i.e. Af (see (f)), is reduced. By II.5.2(c), we know that the number of eigenspaces
of Af , i.e. of ∆1, is dim(Af ), and by (h), we know that dim(Af ) = N + 1.

�

Exercise V.8.2.3. We use the notation of problem V.8.2.2. Note that we have an action of
G := Sn on Ωr, and that the stabilizer of {1, . . . , r} is K := Sr×Sn−r. Let Mn−r,r = L(Ωr),
seen as a representation of Sn via the quasi-regular representation (that is, if g ∈ G, f ∈Mn−r,n

and A ∈ Ωr, we have (g · f)(A) = f(g−1A)).

We define d : Mn−r,r →Mn−r+1,r−1 and d∗ : Mn−r+1,r−1 →Mn−r,r by

(df)(A) =
∑

B∈Ωr|A⊂B

f(B)

and
(d∗f)(B) =

∑
A∈Ωr|A⊂B

f(A).

(If r = 0, we take d = 0 and d∗ = 0.)

We also denote by ∆ the operator ∆1 of problem V.8.2.2; that is, for every f ∈ Mn−r,r, the
function ∆f ∈Mn−r,r is defined by

(∆f)(A) =
∑

B∈Ωr|d(A,B)=1

f(B).

7 Note that the functions d, d∗ and ∆ are defined for every r; we will not indicate r in the notation,
it should be clear from the context.

7This is closely related to the discrete Laplace operator. In fact, the most common definition of the discrete
Laplace operator on Mn−r,r would be 1

r∆− id.
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Finally, if a ∈ C and i ∈ Z≥0, we write

(a)i = a(a+ 1) . . . (a+ i− 1).

For example, we have (1)n = n! and
(
n
k

)
= (n−k+1)k

k!
.

(a). Show thatA 7−→ {1, . . . , n}−A induces aG-equivariant isomorphismM r,n−r ∼→Mn−r,r.

(b). Show that d and ∆ are G-equivariant.

(c). Show that d∗ is the adjoint of d.

(d). If f ∈Mn−r,r, show that

dd∗f = ∆f + (n− r)f and d∗df = ∆f + rf.

(e). Let f ∈Mn−r,r and 1 ≤ p ≤ q ≤ n− r. Show that

d(d∗)qf = (d∗)qdf + q(n− 2r − q + 1)(d∗)q−1f.

If moreover df = 0, show that

dp(d∗)qf = (q − p+ 1)p(n− 2r − q + 1)p(d
∗)q−pf.

Suppose that 0 ≤ r ≤ n/2. If r > 0, set Sn−r,r = Ker(d : Mn−r,r → Mn−r+1,r−1); if r = 0,
set Sn−r,r = Mn−r,r. This is a G-stable subspace of Mn−r,r.

(a). If 0 ≤ m ≤ n and 0 ≤ r ≤ min(m,n −m), show that (d∗)m−r : Sn−r,r → Mn−m,m is
injective. (Hint : calculate ‖(d∗)m−rf‖2

2).

(b). Under the hypothesis of (f), show that (d∗)m−r(Sn−r,r) is contained in the eigenspace of ∆
for the eigenvalue m(n−m)− r(n− r + 1).

(c). Show that the orthogonal of Sn−m,m in Mn−m,m is d∗(Mn−m+1,m−1), if 1 ≤ m ≤ n/2.

(d). Show that Sn−r,r 6= 0 for every r such that 0 ≤ r ≤ n/2.

(e). If 0 ≤ m ≤ n, show that we have

Mn−m,m =

min(m,n−m)⊕
r=0

(d∗)m−r(Sn−r,r),

where the summands are pairwise orthogonal and are exactly the eigenspaces of ∆.

(f). Show that dimC(Sn−r,n) =
(
n
r

)
−
(
n
r−1

)
if r > 0.

(g). Show that the representations Sn−r,r, 0 ≤ r ≤ n/2, are irreducible and pairwise inequiva-
lent. (Hint : how many irreducible constituents does Mm,n−m have ?)
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Solution.

(a). The map A 7−→ {1, . . . , n} − A is a bijection from Ωr to Ωn−r, and it commutes with the
action of G on these two sets. The conclusion follows immediately.

(b). Let f ∈Mn−r,r and σ ∈ Sn. If A ∈ Ωr−1, then

(dLσf)(A) =
∑

B∈Ωr, B⊃A

f(σ−1(B))

=
∑

B′∈Ωr, B′⊃σ−1(A)

f(B′)

= (df)(σ−1(A))

= Lσ(df)(A).

If A ∈ Ωr, then

(∆Lσf)(A) =
∑

B∈Ωr, d(A,B)=1

f(σ−1(B))

=
∑

B′∈Ωr, d(σ−1(A),B′)=1

f(B′)

= ∆f(σ−1(A))

= Lσ(∆f)(A).

(c). Let f ∈Mn−r,r and g ∈Mn−r+1,r−1. Then

〈df, g〉 =
∑

A∈Ωr−1

df(A)g(A)

=
∑

A∈Ωr−1,B∈Ωr, A⊂B

f(B)g(A)

=
∑
B∈Ωr

f(B)d∗g(B).

(d). Let f ∈Mn−r,r and A ∈ Ωr. Then

dd∗f(A) =
∑

B∈Ωr+1,B⊃A

d∗f(B)

=
∑

B∈Ωr+1, C∈Ωr C⊂B⊃A

f(C)

Let C ∈ Ωr. If there exists B ∈ Ωr+1 such that C ⊂ B ⊃ A, then d(A,C) ≤ 1. If C = A,
then

|{B ∈ Ωr+1|C ⊂ B ⊃ A}| = |{B ∈ Ωr+1|A ⊂ B}| = n− r}.
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If d(A,C) = 1, then the only element of Ωr+1 that contains bothA and C isA∪C. Finally,
we get

dd∗f(A) = (n− r)f(A) +
∑

C∈Ωr, d(A,C)=1

f(C)

= (n− r)f(A) + ∆f(A).

Similarly, we have

d∗df(A) =
∑

B∈Ωr−1,B⊂A

df(B)

=
∑

C∈Ωr, B∈Ωr−1,C⊃B⊂A

f(C).

Let C ∈ Ωr. If there exists B ∈ Ωr−1 such that C ⊃ B ⊂ A, then d(A,C) ≤ 1. If A = C,
then

|{B ∈ Ωr−1|C ⊃ B ⊂ A}| = r.

If d(A,C) = 1, then the only B ∈ Ωr−1 that is contained in both A and C is B = A ∩ C.
So we get

d∗df(A) = rf(A) +
∑

C∈Ωr, d(A,C)=1

f(C)

= rf(A) + ∆f(A).

(e). We show the first identity by induction on q. If q = 1, then, by (d), we have

dd∗f = ∆f + (n− r)f = ∆f + rf + (n− 2r)f = d∗df + q(n− 2r − q + 1)(d∗)q−1f

for every f ∈Mn−r,r. Now suppose the identity known for q ∈ {1, . . . , n− r − 1}, every
s and every element of Mn−s,s, and let’s show it for q + 1. If f ∈Mn−r,r, we have

d(d∗)q+1f = d(d∗)q(d∗f)

= (d∗)qd(d∗f) + q(n− 2(r + 1)− q + 1)(d∗)q−1(d∗f)

(by the induction hypothesis for d∗f ∈Mn−r−1,r+1)
= (d∗)q(d∗df + (n− 2r)f) + q(n− 2r − q − 1)(d∗)qf

(by the case q = 1)
= (d∗)q+1df + (n− 2r + q(n− 2r − q − 1))(d∗)qf

= (d∗)q+1df + (q + 1)(n− 2r − (q + 1) + 1)(d∗)qf.

Now let’s prove the second identity by induction on p. If p = 1, it just reduce to the first
identity (using that df = 0). Suppose that we have proved it for some p ∈ {1, . . . , q − 1}
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(and all s and all f ∈Mn−s,s such that df = 0), and let’s prove it for p+1. Let f ∈Mn−r,r

such that df = 0. Then we have

dp+1(d∗)qf = d(dp(d∗)qf)

= d((q − p+ 1)p(n− 2r − q + 1)p(d
∗)q−pf)

= (q − p+ 1)p(n− 2r − q + 1)p(q − p)(n− 2r − (q − p) + 1)(d∗)q−p−1f

(using the first identity and the fact that df = 0)
= (q − p)p+1(n− 2r − q + 1)p+1(d∗)q−p−1f.

(f). Let f ∈ Sn−r,r, f 6= 0. Using (c) and then the second identity of (e), we see that

〈(d∗)m−rf, (d∗)m−rf〉 = 〈dm−r(d∗)m−rf, f〉
= (1)m−r(n− 2r − (m− r) + 1)m−r〈f, f〉
6= 0,

so (d∗)m−rf 6= 0.

(g). Let f ∈ Sn−r,r. Using the second formula of (d) to calculate ∆ onMn−m,m and the second
formula of (e) (with p = 1), we get

∆((d∗)m−rf) = d(d∗)m−r+1f − (n−m)(d∗)m−rf

= (m− r + 1)(n− 2r − (m− r + 1) + 1)(d∗)m−rf − (n−m)(d∗)m−rf

= (m(n−m)− r(n− r + 1))(d∗)m−rf.

(h). This is an immediate consequence of the definition of Sn−m,m and of (c).

(i). The space Sn−r,r is the kernel of d : Mn−r,r → Mn−r+1,r−1, and
dim(Mn−r+1,r−1) =

(
n
r−1

)
<
(
n
r

)
dim(Mn−r,r) because r ≤ n/2, so d cannot be injective.

(j). The subspaces (d∗)m−r(Sn−r,r), for 0 ≤ r ≤ min(m,n−m), are contained in eigenspaces
of ∆ for different eigenvalues by (g). They are all nonzero by (f) and (i). We know
that ∆ is seld-adjoint by V.8.2.2(i), so these spaces are pairwise orthogonal. Also, we
know that ∆ ∈ End(Mn−m,m) has exactly 1 + min(m,n −m) eigenvalues by V.8.2.2(a)
and V.8.2.2(j), so these eigenvalues have to be the numbers m(n − m) − r(n − r + 1),
0 ≤ r ≤ min(m,n−m). It remains to show that

Mn−m,m =

min(m,n−m)⊕
r=0

(d∗)m−r(Sn−r,r).

We prove this by induction on m. It’s obvious if m = 0. Suppose that we have the result
for m− 1, with n/2 ≥ m ≥ 1, and let’s prove it for m. By (h), we have

Mn−m,m = Sn−m,m ⊕ d∗(Mn−m+1,m−1).
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By the induction hypothesis, we have

Mn−m+1,m−1 =
m−1⊕
r=0

(d∗)m−1−r(Sn−r,r).

The result for m follows immediately from these two facts.

Finally, we treat the case m ≥ n/2. Let m′ = n−m. We have seen that

Mn−m′,m′ =
m′⊕
r=0

(d∗)m
′−r(Sn−r,r).

By (f), this implies that dim(Mn−m′ ,m′) =
∑m′

r=0 dim(Sn−r,r). We have also seen that

Mn−m,m ⊃
m′⊕
r=0

(d∗)m−r(Sn−r,r),

and, again by (f), this implies that dim(Mn−m,m) ≥
∑m′

r=0 dim(Sn−r,r) = dim(Mm′,n−m′).
But dim(Mn−m,m) = dim(Mn−m′,m′) (by (a)), so the inequality above is an equality, and

Mn−m,m =
m′⊕
r=0

(d∗)m−r(Sn−r,r).

(k). By (j) and (f), the map d∗ : Mn−r+1,r−1 →Mn−r,r is injective. By (h), this implies that

dim(Sn−r,r) = dim(Mn−r,r)− dim(Mn−r+1,r−1) =

(
n

r

)
−
(

n

r − 1

)
.

(l). Let m = bn/2c. As the maps d and d∗ are Sn-equivariant (see (b) for d, and d∗ is the
adjoint of d by (c) so it also equivariant), the subspace Sn−r,r ⊂ Mn−r,r is Sn-stable for
every r ≤ n/2, and the decomposition of (j) is a decomposition into Sn-subspaces. Next,
we know that (Sn,Sm×Sn−m) is a Gelfand pair by V.8.2.1(f), so the corresponding
quasi-regular representation, which is Mn−m,r, decomposes into a direct sum of distinct
irreducible representations by theorem V.3.2.4. By corollary V.7.2, the number of irre-
ducible summands in Mn−m,m is the number of spherical functions for the Gelfand pair,
which is the dimension of the space of bi-invariant functions on Sn (because spherical
functions form a basis for these bi-invariants functions by (iii) of the same corollary), i.e.
the cardinality of (Sm×Sn−m) \ Sn /(Sm×Sn−m), and this is also equal to the num-
ber of orbits of Sm×Sn−m on Ωm. But we have seen in V.8.2.1(d) that the orbits of
Sm×Sn−m on Ωm are the spheres with center A0 := {1, . . . ,m}. The possible radii for
these spheres are 0, 1, . . . ,min(m,n − m) = m by 2(a), and it is easy to see that all the
spheres are nonempty (we already used this in the proof of V.8.2.2(f)). Finally, we get
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that the number of irreducible constituents of Mn−m,m is m + 1. As the decomposition
of (j) is a decomposition of Mn−m,m int m + 1 nonzero subrepresentations, it must be
its decomposition into irreducible constituents, and so we get the conclusion. (Note that
(d∗)m−r(Sn−r,r) is equivalent to Sn−r,r as a representation of Sn by (f).)

�

Exercise V.8.2.4. We keep the notation of problem V.8.2.3. If m,h ∈ {0, . . . , n}, A ∈ Ωm,
and max(0, h −m) ≤ ` ≤ min(n −m,h), we denote by σ`,h−`(A) ∈ L(Ωh) the characteristic
function of the set {C ∈ Ωh||A ∩ C| = h− `}. We also write σ−1,h+1(A) = 0. We fix A ∈ Ωm.

(a). If h = m, show that, for every ` ∈ {0, . . . ,min(m,n−m)}, the function σ`,m−`(A) is the
characteristic function of the sphere {C ∈ Ωm|d(A,C) = `}.

(b). Show that

d(σ`,h−`(A)) = (n−m− `+ 1)σ`−1,h−`(A) + (m− h+ `+ 1)σ`,h−`−1(A).

(c). If k ≤ h and max(0, k −m) ≤ i ≤ min(k, n−m), show that

1

(h− k)!
(d∗)h−kσi,k−i(A) =

min(h−k+i,n−m)∑
`=max(i,h−m)

(
`

i

)(
h− `
k − i

)
σ`,h−`(A).

From now on, we take A = {1, . . . ,m}.

(a). If 0 ≤ h ≤ min(m,n − m), show that the space of Sm×Sn−m-invariant vectors in
Mn−h,h is spanned by the functions σ`,h−`(A), for 0 ≤ ` ≤ h.

(b). If 0 ≤ h ≤ min(m,n−m), show that the space of Sm×Sn−m-invariant vectors in Sn−h.h

is spanned by the function

h∑
`=0

(n−m− h+ 1)h−`
(−m)h−`

σ`,h−`(A).

(c). For 0 ≤ h ≤ min(m,n−m), let ϕh ∈Mn−m,m be the unique spherical function contained
in the summand (d∗)m−h(Sn−h,h). Show that

ϕh =

min(m,n−m)∑
`=0

ϕ(n,m, h; `)σ`,m−`(A),

where

ϕ(n,m, h; `) = (−1)h
1(

n−m
h

) min(`,h)∑
i=max(0,`−m+h)

(
m− `
h− i

)(
`

i

)
(n−m− h+ 1)h−i

(−m)h−i
.
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(d). Fix h such that 0 ≤ h ≤ min(m,n − m). Show that the coefficient of σ1,m−1(A) in

ϕh is 1− h(n− h+ 1)

m(n−m)
. (Remark : there is a way to solve this question with minimal

calculations.)

Solution.

(a). The function σ`,m−`(A) is the characteristic function of the set {C ∈ Ωm||A∩C| = m−`}.
As d(A,C) = m− |A ∩ C|, this set is exactly the sphere of radius ` with center A.

(b). Let B ∈ Ωh−1. We have

d(σ`,h−`(A))(B) =
∑

C∈Ωh, C⊃B

σ`,h−`(A)(C)

= |{C ∈ Ωh|C ⊃ B and |A ∩ C| = h− `}|.

If there exists at least oneC ∈ Ωh such thatC ⊃ B and |A∩C| = h−`, thenA∩C ⊃ A∩B
and these two sets differ by at most one element, so |A ∩B| ∈ {h− `, h− `− 1}.

Suppose that |A ∩ B| = h − `. Then, for every C ∈ Ωh such that C ⊃ B and
|A ∩ C| = h − `, we must have A ∩ C = A ∩ B. We get each such C by adding an
element of {1, . . . , n} − (A ∪B) to B, so the number of possibilities for C is

n− |A∪B| = n− (|A|+ |B| − |A∩B|) = n− (m+ h− 1− (h− `)) = n−m− `+ 1.

Suppose that |A ∩ B| = h − ` + 1. Then, for every C ∈ Ωh such that C ⊃ B and
|A∩C| = h− `, the unique element of C −B must be the element of A∩C −A∩B. So
the number of possibilities for C is

|A− A ∩B| = m− h+ `− 1.

Finally, we get

d(σ`,h−`(A))(B) = (n−m− `− 1)σ`−1,h−`(B) + (m− h+ `− 1)σ`,h−`−1(B),

as desired.

(c). For every i and every D ∈ Ωi, denote by δD ∈ L(Ωi) the characteristic function of {D}.
Let S be the set {C ∈ Ωk||A ∩ C| = k − i}. Then σi,k−i(A) is the characteristic function
of S. If C ∈ S, then, for every D ∈ Ωh, we have

(d∗)h−kδC(D) =
∑

C⊂D1⊂...⊂Dh−k−1⊂Dh−k=D, Di∈Ωk+i

1.

If C 6⊂ D, the set {C ⊂ D1 ⊂ . . . ⊂ Dh−k−1 ⊂ Dh−k = D, Di ∈ Ωk+i} is empty; if
C ⊂ D, this set has (h− k)! elements. So we see that

(d∗)h−kδC = (h− k)!
∑

C⊂D∈Ωh

δD.
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So, if D ∈ Ωh, the coefficient of δD in 1
(h−k)!

(d∗)h−kσi,k−i(A) is the cardinality of the set
{C ∈ S|C ⊂ D}. Write |A ∩D| = h− `, with 0 ≤ ` ≤ h; note that we have

h− ` = |A ∩D| = |A|+ |D| − |A ∪D| ≥ m+ h− |A ∪D|

and h ≤ |A ∪D| ≤ n, so h−m ≤ ` ≤ n−m, and all the nonnegative ` in this range can
occur. We get a C ∈ S such that C ⊂ D by removing (h − `) − (k − i) elements from
A∩D and `− i elements from D− (A∩D). This is only possible if h− `− (k− i) ≥ 0
and 0 ≤ ` − i, and we have

(
h−`

(h−`)−(k−i)

)(
`
`−i

)
different possible choices. Putting all this

together, we see that, if |A∩D| = h−`, then the coefficient of δD in 1
(h−k)!

(d∗)h−kσi,k−i(A)

is
(
h−`
k−i

)(
`
i

)
if max(h−m, i) ≤ ` ≤ min(n−m,h− k+ i) and 0 otherwise. This gives the

result.

(d). The statement is equivalent to the fact that the orbits Sm×Sn−m in Ωh are the
S` := {C ∈ Ωh||A ∩ C| = h − `}, for 0 ≤ ` ≤ h. Let’s prove this fact. As
Sm×Sn−m fixes A, the sets S` are invariant by Sm×Sn−m, so we just need to show
that Sm×Sn−m acts transitively on these sets. Fix ` ∈ {0, . . . , h} and take C,C ′ ∈ S`.
As |A∩C| = |A∩C ′|, we can find an element σ ∈ Sm that sends A∩C to A∩C ′. Also,
we have |{m + 1, . . . , n} ∩ C| = |{m + 1, . . . , n} ∩ C ′| = `, so we can find an element
τ ∈ Sn−m that sends {m+1, . . . , n}∩C to {m+1, . . . , n}∩C ′. Then σ×τ ∈ Sm×Sn−m
sends C and C ′.

(e). Let f ∈ Sn−h,h be a Sm×Sn−m-invariant vector. By (d), the invariance condition is
equivalent to the fact that we can write f =

∑h
`=0 a`σ`,h−`(A), with a0, . . . , ah ∈ C. The

fact that f ∈ Sn−h,h means that df = 0. Using (b), we can rewrite this condition as

0 =
h∑
`=0

a`((n−m− `+ 1)σ`−1,h−`(A) + (m− h+ `+ 1)σ`,h−1−`(A))

=
h−1∑
`=0

a`+1(n−m− `)σ`,h−`+1(A) +
h∑
`=0

a`(m− h+ `+ 1)σ`,h−1−`(A).

As the functions σ`,h−1−`(A), 0 ≤ ` ≤ h− 1, are linearly independent (because they have
disjoint supports), this equality if equivalent to the fact that

a` = a`+1
n−m− `

−m+ h− `− 1
,

for every ` ∈ {0, . . . , h− 1}. A straightforward descending induction on ` shows that this
is equivalent to

a` =
(n−m− h+ 1)h−`

(−m)h−`
ah

for every ` ∈ {0, . . . , h}. This implies the desired result.
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(f). By (e) (and the Sn-equivariance of d∗), the function ϕh is a multiple of

ψ :=
1

(m− h)!
(d∗)m−h

(
h∑
i=0

(n−m− h+ 1)h−i
(−m)h−i

σi,h−i(A)

)
.

We calculate ψ using the formula of (c). We get

ψ =
h∑
i=0

(n−m− h+ 1)h−i
(−m)h−i

min(m−h+i,n−m)∑
`=i

(
`

i

)(
m− `
h− i

)
σ`,m−`(A)

=

min(m,n−m)∑
`=0

min(`,h)∑
i=max(0,`−m+h)

(
`

i

)(
m− `
h− i

)
(n−m− h+ 1)h−i

(−m)h−i
σ`,m−`(A).

This is almost the formula we want, except for the constant (−1)h 1

(n−mh )
at the beginning.

The spherical function ϕh is normalized by the fact that ϕh(A0) = 1, so we have
ϕh = 1

ψ(A0)
ψ. So to finish the proof, we just need to show that ψ(A0) = (−1)h

(
n−m
h

)
.

Note that σ`,m−`(A)(A0) = 0 unless ` = 0 and σ0,m(A)(A0) = 1, so

ψ(A0) =

(
m

h

)
(n−m− h+ 1)h

(−m)h

=
m!

h!(m− h)!

(n−m)!

(n−m− h)!

(−1)h(m− h)!

m!

= (−1)h
(
n−m
h

)
.

(g). Let’s try and ignore questions (c), (d), (e) and (f).

The function ϕh is spherical, so it is constant on the Sm×Sn−m-orbits in Ωm, which are
the spheres with centerA by V.8.2.1(d). By (a) and V.8.2.2(a), this means that ϕh is a linear
combination of the functions σ`,m−`(A), for 0 ≤ ` ≤ min(m,n−m). Also, by V.8.2.3(g),
the function ϕh is an eigenvector of ∆ with eigenvalue m(n − m) − h(n − h + 1). Let
S = {B ∈ Ωm|d(A,B) = 1}. Then σ1,m−1(A) is the characteristic function of S, and we
have seen that ϕh is constant on S, the coefficient of σ1,m−1(A) in ϕh is 1

|S|
∑

B∈S ϕh(B).
On the other hand,

∑
B∈S ϕh(B) is equal to ∆ϕh(A) by definition of ∆, and this is equal to

(m(n−m)−h(n−h+1))ϕh(A). Moreover, as ϕh is spherical, we must have ϕh(A) = 1.
Finally, the coefficient of σ1,m−1(A) in ϕh is 1

|S|(m(n−m)− h(n− h− 1)). To finish the
calculation, we just need to show that |S| = m(n − m). This just follows from the fact
that we get every element B of S by removing one element of A (m choices) and adding
an element of {1, . . . , n} − A (n−m choices).

�
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V.8.3 Problem : the Satake isomorphism

This probolem was extracted from Cartier’s survey in Corvalley ([6]), especially chapter IV, and
from unpublished notes of Kottwitz.

We will use the following conventions :

- If G is a locally compact group, we denote by µG a left Haar measure on G (sometimes
normalized in a particular way). We then denote the corresponding Lp spaces by Lp(G).

- If G is a locally compact group and H ⊂ G is a closed subgroup, then we denote by µG/H
(resp. µH\G) the left (resp. right) G-invariant measure on G/H (resp. H \G) induced by
the measures µG and µH . See proposition V.1.3. To construct the measure µH\G, we need
µG to be right invariant.

To make things a bit more concrete, I wrote this problem for GL3(Qp). Everything generalizes
to GLn(Qp) (for any n ≥ 1), and in fact most questions have a solution that applies to GLn(Qp)
with minimal changes.

Let n = 3. We write G = GL3(Qp) and K = GL3(Zp). We denote by B the subgroup of
upper triangular matrices in G, by T the group of diagonal matrices in G and by N the group
of unipotent upper triangular matrices in G (i.e. upper triangular matrices with all their diagonal
entries equal to 1). We write X = Z3 and

X+ = {(λ1, λ2, λ3) ∈ Z3|λ1 ≥ λ2 ≥ λ3}.

If λ = (λ1, λ2, λ3) ∈ X , we set

pλ =

pλ1 0
pλ2

0 pλ3

 ∈ T.
We fix left Haar measures µG, µB, µT , µN and µK on G, B, T , N and K; if there is no risk
of confusion, we will just write dx instead of dµG(x) etc in the integrals. We normalize all the
Haar measures by demanding that vol(H ∩K) = 1 for H ∈ {G,B, T,N,K}. In this problem
only, we will write Cc(X) for the space of locally constant functions f : X → C with compact
support. (Where “locally constant” means exactly what you would image : f : X → C is locally
constant if for every x ∈ X , there exists a neighborhood U of x in X such that f|U is constant.
Note that this implies that f is continuous.)

Let H = Cc(K \G/K) and HT = Cc(T/(T ∩K)), with the algebra structure given by the
convolution product. (It is very easy to check that the convolution product respects the “locally
constant” condition.) The goal of this problem is to understand the structure of the algebra H .

(1) Define δ : B → R>0 by

δ

a1 ∗ ∗
0 a2 ∗
0 0 a3

 =
n∏
i=1

|ai|n+1−2i
p .
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Show that δ−1 is the modular function of B, and that we have∫
B

f(b0bb
−1
0 )db = δ−1(b0)

∫
B

f(b)db.

for every f ∈ Cc(B) and every b0 ∈ B.

(2) Show that G = BK, and that we have∫
G

f(g)dg =

∫
B

∫
K

f(bk)dbdk =

∫
T

∫
N

∫
K

f(tnk)dtdndk

for every f ∈ Cc(G).

(3) Let (e1, e2, e3) be the canonical basis of Q3
p. Show that the map

g 7−→ Zpg(e1) + Zpg(e2) + Zpg(e3) induces a bijection between G/K and the set
of free Zp-submodules of rank 3 of Q3

p.

(4) Show that
G =

∐
λ∈X+

KpλK.

(This is called the Cartan decomposition.) .

(5) Show that (G,K) is a Gelfand pair. (Hint : θ(x) = (xT )−1.)

Let z = (z1, z2, z3) ∈ (C×)3. We define a morphism χz : B → C× by

χz

a1 ∗ ∗
0 a2 ∗
0 0 a3

 =
n∏
i=1

z
vp(ai)
i ,

where, for every a ∈ Q×p , we write |a|p = p−vp(a) (so that vp(a) ∈ Z). We denote by Vz the space
of functions f : G→ C such that :

(i) for every b ∈ B and every g ∈ G, we have

f(bg) = χz(b)δ(b)
1/2f(g);

(ii) there exists an open compact subgroup K1 of G such that f(gk) = f(g) for every g ∈ G
and every k ∈ K1.

We make G act on Vz by g · f = Rg(f).

(6) Show that Vz is a representation of G (note that I am not saying anything about continuity)
and that dim(V K

z ) = 1.

Remark. (Not necessary to do the problem.) The elements of Vz are locally constant but don’t
have compact support in general, because of condition (i). Also, we did not define a topology
on Vz, so we cannot say that Vz is a continuous representation of G. In fact, it is what is called
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a smooth representation, which means that every element of Vz is fixed by an open compact
subgroup of G (this is automatic from condition (ii)). This means that the representation is con-
tinuous if we put the discrete topology on Vz, and it is a more natural condition for representations
of totally disconnected groups. If we wanted a continuous representation on a Hilbert space, we
would put the inner form 〈f1, f2〉 =

∫
K
f1(k)f1(k)dk on Vz and complete for this inner form.

Note that, even then, the representation would not be unitary unless |z1| = |z2| = |z3| = 1.

We denote by ϕz the unique element of V K
z such that ϕz(1) = 1.8 For every f ∈ H , we

denote by f∨ : (C×)3 → C the function9

z 7−→
∫
G

f(g)ϕz(g)dg.

If f ∈HT , we define f∨ : (C×)3 → C by

f∨(z) =

∫
T

f(t)χz(t)dt.

(7) Show that, for all f1, f2 ∈H , we have (f1 ∗ f2)∨ = f∨1 f
∨
2 .

(8) Show that
T =

∐
λ∈X

(T ∩K)pλ.

(9) Show that f 7−→ f∨ is a an isomorphism of C-algebras from HT to the algebra of
functions on (C×)3 that are polynomial in z±1

1 , z±1
2 , z±1

3 ; we will identify this algebra to
C[z±1

1 , z±1
2 , z±1

3 ].

For every f ∈ Cc(G), we define a function f (B) : T → C by

f (B)(t) = δ(t)1/2

∫
N

f(tn)dn.

(10) Show that f (B) ∈ Cc(T ) for every f ∈ Cc(G), and that f (B) ∈HT if f ∈H .

(11) Show that, for every f ∈H and every z ∈ (C×)3, we have f∨(z) = (f (B))∨(z).

Define D : T → R>0 by

D

a1 0 0
0 a2 0
0 0 a3

 =
∏

i,j∈{1,...,n},i 6=j

|1− aia−1
j |p.

8It is a spherical function (except that it’s not bounded in general), hence the notation. But you cannot use this fact
unless you prove it first !

9This is morally the spherical Fourier transform, but unfortunately the usual convention for p-adic groups differs
from the convention that we used in class.
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If f ∈ Cc(G) and t ∈ T is such that D(t) 6= 0, we set

Ot(f) =

∫
T\G

f(g−1tg)dµT\G.

(12) Show that, for every f ∈ Cc(N) and every t ∈ T such that D(t) 6= 0, we have∫
N

f(n)dn = D(t)1/2δ(t)1/2

∫
N

f(ntn−1t−1)dn.

(Hint : Consider the subgroup U ⊂ N defined by

U =


1 0 ∗

0 1 0
0 0 1


and use the formula

∫
N
f(n)dn =

∫
N/U

∫
U
f(nu)dµN/U(n)dµU(u).)

(13) Show that, for every f ∈H and every t ∈ T such that D(t) 6= 0, we have

Ot(f) = D(t)−1/2f (B)(t).

(14) Show that, for every f ∈ H , the function f∨ : (C×)3 → C is an element of
C[z±1

1 , z±1
2 , z±1

3 ]S3 , the algebra of symmetric polynomial functions in z±1
1 , z±1

2 , z±1
3 , i.e.

{p(z1, z2, z3) ∈ C[z±1
1 , z±1

2 , z±1
3 ]|∀σ ∈ S3, p(zσ(1), zσ(2), zσ(3)) = p(z1, z2, z3)}.

We define a partial order on X = Z3 by saying that (µ1, µ2, µ3) ≤ (λ1, λ2, λ3) if and only if
µ1 ≤ λ1, µ1 + µ2 ≤ λ1 + λ2 and µ1 + µ2 + µ3 = λ1 + λ2 + λ3. (Note that the last relation is an
equality !) For every λ = (λ1, λ2, λ3) ∈ X , we define zλ ∈ C[z±1

1 , z±2
2 , z±1

3 ] by

zλ = zλ1
1 zλ2

2 zλ3
3

and fλ ∈H by
fλ = 11KpλK .

(15) Show that (fλ)λ∈X+ is a basis of H .

(16) For every λ = (λ1, λ2, λ3) ∈ X+, let

cλ =
∑
σ∈S3

z(λσ(1),λσ(2),λσ(3)).

Show that (cλ)λ∈X+ is a basis of C[z±1
1 , z±1

2 , z±1
3 ]S3 .

(17) For every λ ∈ X , we write
(fλ)

∨ =
∑
µ∈X

cλ(µ)zµ,

with the cλ(µ) ∈ C. The goal of this question is to show the following two facts :
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(i) If λ, µ ∈ X+ and µ 6≤ λ, then cλ(µ) = 0.

(ii) For every λ ∈ X+, we have

cλ(λ) = p
1
2

∑n
i=1(n+1−2i)λi .

If µ = (µ1, µ2, µ3) ∈ X , we write µ = (µ3, µ2, µ1).

(a). For every g = (gij) ∈ M3(Qp), let ‖g‖ = supi,j |gi,j|p. Show that, for every
g ∈M3(Qp) and k, k′ ∈ K, we have ‖g‖ = ‖kgk′‖.

(b). Let r ∈ {1, . . . , n}, and let Ωr be the set of cardinality r subsets of {1, . . . , n}. If
g = (gij) ∈M3(Qp), we define Λrg : Ωr × Ωr → Qp by

Λr(g)(A,A′) = det((gij)i∈A,j∈A′),

and ‖Λrg‖ by
‖Λrg‖ = sup

A,A′∈Ωr

|Λrg(A,A′)|p.

Show that, for every g ∈M3(Qp) and r ∈ {1, . . . , n} :

(α) If k, k′ ∈ K, then ‖Λr(kgk′)‖ = ‖Λrg‖.

(β) If t ∈ T and n ∈ N , then ‖Λr(tn)‖ ≥ ‖Λr(t)‖.

(γ) If g = pλ with λ = (λ1, λ2, λ3) ∈ X+, then

‖Λrg‖ = p−(λ3−r+1+...+λ3).

(c). For all λ, µ ∈ X , show that

cλ(µ) = f
(B)
λ (pµ) = f

(B)
λ (pµ).

(d). Let λ, µ ∈ X+. If there exists n ∈ N such that pµn ∈ KpλK, show that µ ≤ λ.

(e). Prove (i).

(f). Let λ ∈ X+, and let t = pλ. For every n ∈ N , show that tn ∈ KtK if and only if
n ∈ N ∩K.

(g). Prove (ii).

(18) Show that f 7−→ f∨ induces an isomorphism of C-algebras H
∼→ C[z±1

1 , z±1
2 , z±1

3 ]S3 .
(This isomorphism is called the Satake isomorphism.)

Solution.
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(1) We have seen that δ−1 is the modular function of B in I.5.3.8(d). The second statement
follows from the left invariance of db and proposition I.2.8.

(2) Note that, as B and K are subgroups of G, it is equivalent to, prove that G = BK and to
prove that G = KB. (This decomposition of G is called the Iwasawa decomposition.) We
will prove the second statement, using a variant of the algorithm of Gaussian elimination
(a.k.a. row reduction). In this algorithm, we apply three kinds of operations on a matrix of
GL3(Qp) :

(a) swapping two rows;

(b) multiplying a row by an element α of Q×p ;

(c) adding a multiple by an element β of Qp of a row to another row.

Each of these operations corresponds to multiplication on the left by an elementary matrix.
Moreover, this matrix is in GL3(Zp) in case (a), in case (b) if α ∈ Z×p , and in case (c)
if β ∈ Zp. So it suffices to show that, if we apply a sequence of operations (a), (b), (c)
with the restrictions just noted on the operations, we can always get an upper triangular
matrix. So let g = (gij) be an element of GL3(Qp). As g is invertible, it has a nonzero
entry in its first column. After permuting the rows of g (operation (a)), we may assume
that g11 6= 0 and that, for i = 2, 3, we have |g11|p ≥ |gi1|p. After adding −g−1

11 g21 (resp.
−g−1

11 g31) times the first row of g to the second (resp. third) row of g (operation (b), note
that we are multiplying the first row by an element of Zp by the first step), we may assume
that g11 is the only nonzero element of the first column of g. Then at least one of g22 and
g23 is nonzero (otherwise the rank of g would be ≤ 2), so, after possibly switching the last
two rows of g, we may assume that g22 6= 0 and that |g22|p ≥ |g23|p. Then, after adding
−g−1

22 g23 times the second row to the third row, we may assume that g23 = 0. At this point,
the matrix g is upper triangular, so we are done.

We now prove the second statement. Consider the group G′ = B × K, and its subgroup
H = {(x, x), x ∈ B ∩ K}. We consider the measure µG′ = µB × µK on G′; this
is obviously a left Haar measure. We also put the normalized Haar measure µH on the
compact group H . Consider the continuous action of G′ of G given by (b, k) · g = bgk−1.
By the first part of this question, this action is transitive. Also, the stabilizer of 1 ∈ G is
clearly H , so we get a surjective continuous map ϕ : G′/H

∼→ G. Let’s show that ϕ is also
open. If x ∈ G′/H , then ((B∩K)×K)x is an open neighborhood of x (because B∩K is
open inB), and its image by ϕ is (B∩K)ϕ(x)K, which is open inG becauseK is an open
subgroup of G. So ϕ is open, hence it is a homeomorphism. Let µ be the image by ϕ−1

of the fixed Haar measure on G. As G is unimodular (by I.5.3.8(c)), the measure µ is left
invariant by G′, so the positive linear functional Cc(G

′)→ C, h 7−→
∫
G′/H

hH(x)dµ(x) is
left invariant, so it is a positive multiple of µG′ , say cµG′ with c > 0. Let f ∈ Cc(G). We
define a function h ∈ C (G′) by h(b, k) = f(bk−1); we have h(b, k) = 0 if b 6∈ (supp f)K,
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so h has compact support. Applying problem I.5.3.6, we get∫
G′
h(b, k)dµG′(b, k) =

∫
B

∫
K

f(bk)dbdk = c−1

∫
G′/H

hH(x)dµ(x).

Let x ∈ G′/H . We choose a preimage (b, k) ∈ G′ of x, so that ϕ(x) = bk. Then

hH(x) =

∫
H

h((b, k)h)dh =

∫
B∩K

f(bhh−1k)dh = f(bk).

So ∫
B

∫
K

f(bk)dbdk = c−1

∫
G

f(g)dg,

for every f ∈ Cc(G). To calculate c, we apply this to f = 11K (this is a continuous function
with compact support, because K is an open compact subgroup of G by I.5.1.4(m)). The
left hand side is µH(H)µK(K) = 1, and the right hand side is µG(K) = 1 (by the choice
of µG). So c = 1.

Finally, we prove the last formula by applying I.5.3.6 to the subgroups T and N of B : we
get that a positive constant c′ such that, for every f ∈ Cc(B), we have∫

B

fdµB = c′
∫
T

∫
N

f(tn)dµT (t)dµN(n).

To show that c′ = 1, it suffices to calculate both sides of this equality for f = 11B∩K and to
use the (easy) fact that B ∩K = (T ∩K)(N ∩K).

(3) We first note the following easy fact : Let (x1, x2, x3) be a family of elements of Q3
p; then

this family is linearly independent over Zp if and only if it is linearly independent over Qp.
Indeed, linear independence over Qp clearly implies linear independence over Zp (because
Zp ⊂ Qp). Conversely, suppose that (x1, x2, x3) is linearly independent over Zp; if we
have a1x1 + a2x2 + a3x3 = 0 with a1, a2, a3 ∈ Qp, then there exists m ∈ Z such that
pma1, p

ma2, p
ma3 ∈ Zp, and the relation pma1x1 + pma2x2 + pma3x3 = 0 implies that

pma1 = pma2 = pma3 = 0, hence a1 = a2 = a3 = 0.

Let L be the set of free Zp-submodules of rank 3 of Q3
p, and let

L0 = Zpe1 + Zpe2 + Zpe3 = Z3
p ∈ L . If L ∈ L and g ∈ GL3(Qp), then g(L)

is also an element of L . Indeed, if (x1, x2, x3) is a Zp-basis of L, then the family
(x1, x2, x3) is also linearly independent over Qp, so the family (g(x1), g(x2), g(x3)) of
Q3
p is linearly independent over Qp, hence over Zp, so the Zp-submodule of Q3

p that it
generates is an element of L . This shows that (g, L) 7−→ g(L) defines a left action of G
on L . Moreover, the stabilizer of L0 is clearly GL3(Zp).

We show that this action if transitive, which will give the desired bijection G/K ∼→ L .
Let L ∈ L , and let (x1, x2, x3) be a basis of L over Zp. Then we have seen that the family
(x1, x2, x3) is also linearly independent over Qp. So (x1, x2, x3) is a basis of the Qp-vector
space Q3

p, hence there exists g ∈ GL3(Qp) such that xi = g(ei) for i = 1, 2, 3, and then we
have L = g(L0).
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(4) We first prove that G =
⋃
λ∈X+ KpλK. Let g ∈ G. Let x1, x2, x3 ∈ Q3

p be the columns
of g, and let let L be the sub-Zp-module of Q3

p generated by (x1, x2, x3); in the notation
of the solution of (3), this is g(L0). As Qp = pZZp, we can choose m ∈ Z such that the
entries of the matrix pmg are all in Zp. Then the sub-Zp-module L′ of Q3

p generated by
(pmx1, p

mx2, p
mx3) satisfies L0 ⊃ L′ = pmL. By Theorem 4 of chapter 12 of Dummit

and Foote, there exists a basis (y1, y2, y3) of L0 and elements a1, a2, a3 ∈ Zp − {0} such
that a3|a2|a1 and that (a1y1, a2y2, a3y3) is a basis of L′. As each element a of Zp − {0}
can be written (in a unique way) a = pnu with nZ≥0 and u ∈ Z×p , we may assume that
ai = pni with n1, n2, n3 ∈ Z≥0 and n1 ≥ n2 ≥ n3. Let g′ (resp. k) be the matrix with
columns a1y1, a2y2, a3y3 (resp. y1, y2, y3) and t the diagonal matrix with diagonal entries
a1, a2, a2; in other words, we have t = p(n1,n2,n3). Then k ∈ K and g′ = kt. Also, as
L′ = g′(L0) = pmL = pmg(L0), question (3) implies that there exists k′ ∈ K such that
pmg = g′k′. So we get

g = p−mg′k′ = kp(n1−m,n2−m,n3−m)k′ ∈ Kp(n1−m,n2−m,n3−m)K.

Note that we have also shown that, if m = 0 (for example if all the entries of g are already
in Zp), so that L ⊂ L0, then we have L0/L ' (Z/pn1Z)× (Z/pn2Z)× (Z/pn3Z).

Now we show that the union is a disjoint union. Let λ, λ′ ∈ X+, and suppose that
KpλK ∩ Kpλ′K 6= ∅. After multiplying pλ and pλ

′ by pm with m ∈ Z big enough,
we may assume that λ and λ′ are in Z3

≥0. Let g ∈ KpλK ∩ Kpλ′K, and let L = g(L0).
As the entries of g are elements of Zp (by the assumption on λ), we have L ⊂ L0. Write
λ = (n1, n2, n3) and λ′ = (n′1, n

′
2, n

′
3), with n1 ≥ n2 ≥ n3 and n′1 ≥ n′2 ≥ n′3. By the

previous paragraph, we have

L0/L ' (Z/pn1Z)× (Z/pn2Z)× (Z/pn3Z) ' (Z/pn′1Z)× (Z/pn′2Z)× (Z/pn′3Z).

By Theorem 9 of Chapter 12 of Dummit and Foote, this implies that ni = n′i for i = 1, 2, 3,
i.e. that λ = λ′.

(5) Consider the map θ : G→ G, x 7−→ (xT )−1. This is a continuous isomorphism of groups,
hence a homeomorphism because θ−1 = θ. We also have θ(K) = K. Let g ∈ G. By (4),
we can write g = kpλk′, with k, k′ ∈ K and λ ∈ Z3. Then

θ(g) = θ(k)p−λθ(k′) = θ(k)k′g−1kθ(k′) ∈ Kg−1K.

So, by proposition V.2.5, (G,K) is a Gelfand pair.

(6) The space of all functions f : G → C, with the action of G given by x · f = Rxf , is a
representation of G. We check that Vz is a subrepresentation of this space. First, it is a
vector subspace :

- the function 0 is in Vz;

- condition (i) is clearly stable by linear combinations;
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- let f, f ′ ∈ Vz, and let K1 and K ′1 be open compact subgroups of G such that f
(resp. f ′) is right K1-invariant (resp. right K ′1-invariant); then K1 ∩K ′1 is a compact
subgroup of G, and any linear combination of f and f ′ is right K1 ∩K ′1-invariant, so
it satisfies condition (ii).

Now we check that Vz is G-invariant. Let f ∈ Vz and x ∈ G. For every b ∈ B and every
g ∈ G, we have

(Rxf)(bg) = f(bgx) = χz(b)δ(b)
1/2f(gx) = χz(b)δ(b)

1/2Rxf(g),

so Rxf satisfies condition (i). Let K1 be an open compact subgroup of G such that f is
right K1-invariant. Then, for every g ∈ G and k ∈ K1, we have

Rxf(gxkx−1) = f(gxk) = f(gx) = Rxf(g),

soRxf is right invariant under the open compact subgroup xK1x
−1 ofG, and so it satisfies

condition (ii).

Finally, we compute the dimension of V K
z . Remember that the map G′ := B ×K → G,

(b, k) 7−→ bk−1 identifies G with the quotient G′/H , where H = {(x, x), x ∈ B ∩ K}.
Consider the function
varphi′z : G′ → R>0, (b, k) 7−→ χz(b)δ(b)

1/2. This is a continuous morphism of groups,
so it is trivial on the compact subgroup H , and so it descends to the quotient G′/H and
defines a continuous function fromG to R>0, which we will denote by ϕz. By construction,
the function ϕz satisfies

ϕz(bk) = χz(b)δ(b)
1/2

for every b ∈ B and every k ∈ K, so ϕz(1) = 1 and ϕz ∈ V K
z . To finish the proof, we

show that V K
z is generated by ϕz. Let f ∈ V K

z . If g ∈ G, then, by question (2), we can
find b ∈ B and k ∈ K such that g = bk, and then

f(g) = f(b) = χz(b)δ(b)
1/2f(1) = ϕz(g)f(1).

So f is a multiple of ϕz.

(7) Fix z ∈ (C×)3.

Let f ∈H . We define f̃ ∈H by f̃(x) = f(x−1). Let’s show that ϕz∗f̃ = f∨(z)ϕz. First
note that ϕz ∗ f̃ is right K-invariant, because f̃ is (this follows from proposition V.1.8).
Let x ∈ G and b ∈ B. Then

ϕz∗f̃(bx) =

∫
G

ϕz(bxy)f(y)dy =

∫
G

χz(b)δ(b)
1/2ϕz(xy)f(y)dy = χz(b)δ(b)

1/2ϕz∗f̃(x)

(because ϕz ∈ Vz). So ϕz ∗ f̃ ∈ V K
z , which implies that ϕz ∗ f̃ is a scalar multiple of ϕz by

question (6). To find the scalar, we evaluate both functions at 1 : we have ϕz(1) = 1, and

ϕz ∗ f̃(1) =

∫
G

ϕz(y)f(y)dy = f∨(z).
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Now let f1, f2 ∈H . Then, for every x ∈ G, we have

f̃1 ∗ f2(x) = f1 ∗ f2(x−1)

=

∫
G

f1(x−1y−1)f2(y)dy

=

∫
G

f̃1(yx)f̃2(y−1)dy = (f̃2 ∗ f̃1)(x) (because G is unimodular)

= (f̃1 ∗ f̃2)(x) (because (G,K) is a Gelfand pair),

so f̃1 ∗ f2 = f̃1 ∗ f̃2. (Actually, the fact that f̃1 ∗ f2− = f̃2 ∗ f̃1 would be good enough for
our purposes.) Using the calculation of the previous paragraph, we get

(f1 ∗f2)∨(z) = (ϕz ∗ f̃1 ∗ f2)(1) = (ϕz ∗ f̃1 ∗ f̃2)(1) = ((f∨1 (z)ϕz)∗ f̃2)(1) = f∨1 (z)f∨2 (z).

(8) Note that T ∩K is the group of invertible diagonal matrices t such that both t and t−1 have
all their entries in Zp, i.e. such that all the entries of t are in Z×p . So the statement follows
from the fact that Q×p =

∐
m∈Z p

mZ×p (applied to each diagonal entries of the matrices),
and this fact follows from I.5.1.4(i).

(9) The map f 7−→ f∨ is clearly linear in f ∈ HT . Let’s show that it is a morphism of
algebras. Let f1, f2 ∈HT , and let z ∈ (C×)3. Then

(f1 ∗ f2)∨(z) =

∫
T

(f1 ∗ f2)(t)χz(t)dt

=

∫
T×T

f1(t′)f2((t′)−1t)χz(t)dtdt
′

=

∫
T×T

f1(t′)f2(t)χz(t
′t)dtdt′(∫

T

f1(t′)χz(t
′)dt′

)(∫
T

f2(t)χz(t)dt

)
(because χz is multiplicative)

= f∨1 (z)f∨2 (z),

as desired.

By question (8), the family (11(T∩K)pλ)λ∈X is a basis of HT . Let λ = (λ1, λ2, λ3) ∈ X ,
and let gλ = 11(T∩K)pλ . Then, for every z = (z1, z2, z3) ∈ (C×)3, we have

g∨λ (z) =

∫
(T∩K)pλ

χz(t)dt = vol(T ∩K)χz(p
λ) = zλ1

1 zλ2
2 zλ3

3 .

As the functions of the form (z1, z2, z3) 7−→ zλ1
1 zλ2

2 zλ3
3 , for (λ1, λ2, λ3) ∈ X , for a basis of

C[z±1
1 , z±1

2 , z±1
3 ], this shows that the linear transformation f 7−→ f∨ sends a basis of HT

to a basis of C[z±1
1 , z±1

2 , z±1
3 ], so it is an isomorphism from HT to C[z±1

1 , z±1
2 , z±1

3 ].
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(10) By I.5.2.2, the open compact subgroups of G form a basis of neighborhoods of
1. Let f ∈ Cc(G). By definition of Cc(G), for every x ∈ G, there exists an
open compact subgroup Kx of G such that f is constant on K2

xxK
2
x. We have

supp f ⊂
⋃
x∈suppxKxxKx and supp f is compact, so there exist x1, . . . , xm ∈ supp f

such that supp f ⊂
⋃m
i=1KxixiKxi . Let L =

⋂m
i=1 Kxi; this is an open compact subgroup

of G. Let’s show that f is bi-L-invariant. Let x ∈ G. If x ∈ supp f , then there exists
i ∈ {1, . . . ,m} such that x ∈ KxixiKxi . Then LxL ⊂ K2

xi
xiK

2
xi

, so f is constant on LxL.
If x 6∈ supp f , we want to show that LxL ∩ (supp f) = ∅. But suppose that there exist
l, l′ ∈ L such that lxl′ ∈ supp f , then we know that f is constant on L(lxl′)L = LxL by
what we have just seen, and in particular f cannot vanish at x. So LxL ∩ (supp f) = ∅,
and in particular f is constant (and equal to 0) on LxL.

Now we show that f (B) is bi-invariant underL∩T ; this implies that f (B) is locally constant,
as L ∩ T is an open compact subgroup of T . As T is commutative, we only need to show
that f (B) is left invariant underK∩T , but then this follows immediately from the definition
and from the fact that δ : T → R>0 is multiplicative (because then δ must be trivial on the
compact subgroup K ∩ T of T ).

Finally, we need to show that f (B) has compact support. Let t ∈ T be such that f (B)(t) 6= 0.
Then there exists n ∈ N such that tn ∈ B∩ (supp f). In particular, t is in the image of the
compact set B ∩ (supp f) by the continuous projection map B → T ' B/N . This image
is compact and contains the support of f (B), so f (B) has compact support.

If f ∈H , then we can take L = K in the proof of the first assertion, and we get that f (B)

is bi-invariant under K ∩ T , i.e. that f (B) ∈HT .

(11) Let z ∈ (C×)3. Note that the multiplicative functions δ and χz are both trivial on N . So, if
t ∈ T and n ∈ N , then we have ϕz(tn) = χz(t)δ(t)

1/2.

Let f ∈H . Then, using the integration formula of question (2), we get

f∨(z) =

∫
T

∫
N

∫
K

f(tnk)ϕz(tnk)dtdndk

=

∫
T

∫
N

f(tn)ϕz(tn)dtdn (because both f and ϕz are right K-invariant)

=

∫
T

∫
N

f(tn)χz(t)δ(t)
1/2dtdn

=

∫
T

f (B)(t)χz(t)dt

= (f (B))∨(z).

(12) We could actually do the calculation directly (by writing the formula for ntn−1t−1 and
using the change of variables), but we’ll take the hint, as it generalizes better to GLn(Qp)
for arbitrary n.

First we note that the subgroup U of N is normal (and even central) and isomorphic to the
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additive group Qp. In particular, we have the Haar measure µU = λ on U given by I.5.3.4
(which is normalized by requiring that Zp have volume 1).

Next, we note that the map N → Q2
p,

1 a b
0 1 c
0 0 1

 7−→ (a, c) induces an isomor-

phism of topological groups from N/U to Q2
p, and that the action by left translations

of N on N/U corresponds via this isomorphism to the action of N on Q2
p given by1 a b

0 1 c
0 0 1

 · (x, y) = (a + x, c + y). In particular, the measure λ2 on Q2
p gives a reg-

ular Borel measure dµN/U on N/U that is left invariant by N . Then the positive linear
function Cc(N) → C, f 7−→

∫
N/U

∫
U
f(nu)dµN/U(n)dµU(u) is left invariant, hence it is

a multiple of the Haar measure µN . Also, by taking f = 11K∩N (and using the fact that
K ∩ U = Zp and (K ∩ N)/(K ∩ U) corresponds to the subgroup Z2

p of Q2
p in the iso-

morphism above), we see that this positive linear functional is actually equal to µN , which
proves the integration formula of the hint.

In the calculation that follows, we will identify U to Qp and N/U to Q2
p. Let

t =

x1 0 0
0 x2 0
0 0 x3

 ∈ T . Note that the map N → N , n 7−→ ntn−1t−1 preserves

U , so it induces maps U → U and N/U → N/U . If u ∈ U = Qp, we have
utu−1t−1 = (1−x1x

−1
3 )u. On the other hand, if n ∈ N and if the image of n inN/U = Q2

p

is (a, b), then the image of ntn−1t−1 in N/U is (a(1− x1x
−1
2 ), b(1− x2x

−1
3 )).

Suppose that D(t) 6= 0. By the change of variable formula proved in I.5.3.8, we have :

- for every f ∈ Cc(U),

∫
U

f(u)du = |1− x1x
−1
3 |p

∫
U

f(utu−1t−1)du;

- for every f ∈ Cc(N/U),

∫
N/U

f(n)dn = |1− x1x
−1
2 |p|1− x2x

−1
3 |p

∫
N/U

f(ntn−1t−1)dn.

Also, using the fact that U is central in N and that t−1Ut = U , we see that, for every
n ∈ N and every u ∈ U , we have

(ntn−1t−1)(utu−1t−1) = ntn−1(t−1ut)u−1t−1 = nt(t−1ut)u−1n−1t−1 = nut(nu)−1t−1.
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Let f ∈ Cc(N). Then

∫
N

f(n)dn =

∫
U

∫
N/U

f(nu)dµN/U(n)dµU(u)

= |1− x1x
−1
2 |p|1− x2x

−1
3 |p|1− x1x

−1
3 |p∫

U

∫
N/U

f((ntn−1t−1)(utu−1t−1))dµN/U(n)dµU(u)

= |1− x1x
−1
2 |p|1− x2x

−1
3 |p|1− x1x

−1
3 |p∫

U

∫
N/U

f(nut(nu)−1t−1)dµN/U(n)dµU(u)

= |1− x1x
−1
2 |p|1− x2x

−1
3 |p|1− x1x

−1
3 |p

∫
N

f(ntn−1t−1)dn.

To finish the proof, it suffices to notice that

|1− x1x
−1
2 |p|1− x2x

−1
3 |p|1− x1x

−1
3 |p = D(t)1/2δ(t)1/2.

We will actually need a variant of the formula of this question in question (13), so let’s
prove it now. Define a function f̃ ∈ Cc(N) by f̃(n) = f(n−1). Applying the formula we
just obtained to f̃ and using the fact that N is unimodular, we get :

∫
N

f(n)dn =

∫
N

f(n−1)dn

= D(t)1/2δ(t)1/2

∫
N

f̃(ntn−1t−1)dn

= D(t)1/2δ(t)1/2

∫
N

f(tnt−1n−1)dn

= D(t)1/2δ(t)1/2

∫
N

f(tn−1t−1n)dn

(13) Let f ∈ H , and let h ∈ Cc(T \G) be the function defined by h(g) = f(g−1tg). By
I.5.1.1(d), we can find h′ ∈ Cc(G) such that Th′ = h. By I.5.1.1(f), we have

Ot(f) =

∫
T\G

h(g)dµT\G(g) =

∫
G

h′(g)dg.
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Using question (2), we get :

Ot(f) =

∫
T

∫
N

∫
K

h′(tnk)dtdndk

=

∫
N

∫
K

h(nk)dndk (by definition of Th′)

=

∫
N

∫
K

f(k−1n−1tnk)dndk

=

∫
N

f(n−1tn)dn (because f is bi-K-invariant)

=

∫
N

f(t(t−1n−1tn))dn

= D(t−1)1/2δ(t−1)1/2

∫
N

f(tn)dn (by the end of the proof of (12)

= D(t)−1/2f (B)(t),

where we used the facts that δ(t−1) = δ(t)−1 and D(t−1) = D(t), which are both obvious
on the definitions.

(14) Let f ∈ H . Then we have f∨ = (f (B))∨ by question (11), so f∨ ∈ C[z±1
1 , z±1

2 , z±1
3 ] by

question (9).

We want to show that f∨ is symmetric in the variables z1, z2, z3. So let σ ∈ S3; we write
σ−1(z) = (zσ(1), zσ(2), zσ(3)). If t ∈ T has diagonal entries x1, x2, x3, then

χσ−1(z)(t) = z
vp(x1)

σ(1) z
vp(x2)

σ(2) z
vp(x3)

σ(3) = z
vp(xσ−1(1))

1 z
vp(xσ−1(2))

2 z
vp(xσ−1(3))

3 = χz(A
−1tA),

where A is the permutation matrix associated to σ. Applying this to the formula defining
(f (B))∨(z), we get

f∨(σ−1(z)) =

∫
T

f (B)(t)χz(A
−1tA)dt =

∫
T

f (B)(AtA−1)χz(t)dt,

where the second equality comes from the fact that dt is the product of the Haar measures
on the three factors Q×p of T , so it is invariant by permutation of these factors. So, to
show that f∨(σ−1(z)) = f∨(z), it suffices to prove that f (B)(AtA−1) = f (B)(t). We use
the equality of question (14). First note that it is obvious on the definition of D(t) that
the value of D(t) doesn’t change if we permute the diagonal entries of t. So it suffices to
prove that Ot(f) = OAtA−1(f). Using the fact that A ∈ GL3(Z) ⊂ GL3(Zp) (hence f is
invariant by left and right translation by A and A−1), the fact that the Haar measure on G
is invariant by left and right translations (because G is unimodular), and the fact (which
we have just noted) that the Haar measure on T is invariant by conjugation by A±1, we see
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that

OAtA−1(f) =

∫
T\G

f(g−1AtA−1g)dg =

∫
T\G

f((A−1gA)−1t(A−1gA))dg

=

∫
T\G

f(g−1tg)dg = Ot(f).

(15) AsK is open and compact, every function fλ is in Cc(G); also, fλ is clearly bi-K-invariant,
so it is in H .

Now let f ∈H . By question (4), the function f is constant on every set KpλK, λ ∈ X+;
also, as all these sets are open and f has compact support, the support of f must be a
finite union of sets of the form KpλK. This shows that f is a (finite) linear combination
of functions fλ, λ ∈ X+, so the family (fλ)λ∈X+ generates H . As the supports of the fλ
(for λ ∈ X+) are disjoint (by question (4)) again, this family is linearly independent, so it
is a basis of H .

(16) First, the family (cλ)λ∈X+ is linearly independent, because the sets of monomials that
appear in its elements are pairwise disjoint.

Let’s show that this family generates C[z±1
1 , z±1

2 , z±1
3 ]S3 (it is clearly contained in this

space). Let f ∈ C[z±1
1 , z±1

2 , z±1
3 ]S3 . We can find a family of complex numbers (aλ)λ∈Z3

such that all but a finite number of the aλ are 0 and that f =
∑

λ∈I aλz
λ. Moreover, as f is

symmetric, we must have aσ(λ) = aλ for every λ ∈ I and every σ ∈ S3. For every λ ∈ Z3,
there is a unique element of {σ(λ), σ ∈ S3} that is in X+. So f is a linear combination
of the cλ; more precisely, we have f =

∑
λ∈X+ bλcλ, where

bλ =
1

|{σ ∈ S3 | σ(λ) = λ}|
∑
σ∈S3

aλ.

(17) (a). Let k = (kij) ∈ GL3(Zp). Then, for all i, j ∈ {1, 2, 3}, we have
(kg)ij =

∑3
r=1 kirgrj and (gk)ij =

∑3
r=1 girkrj , so

|(kg)ij|p ≤ sup
1≤r≤3

|kir|p|grj|p ≤ sup
1≤r≤3

|grj|p ≤ ‖g‖

and
|(gk)ij|p ≤ sup

1≤r≤3
|gir|p|krj|p ≤ sup

1≤r≤3
|gir|p ≤ ‖g‖

(because all the entries of k, being elements of Zp, have p-adic absolute value ≤ 1).
This implies that ‖kg‖ ≤ ‖g‖ and ‖gk‖ ≤ ‖g‖. As k−1 is also in GL3(Zp), we can
apply this result to k−1 and kg (resp. gk) to get ‖g‖ ≤ ‖kg‖ (resp. ‖g‖ ≤ ‖gk‖), so
we have finally ‖kg‖ = ‖g‖ = ‖gk‖. This implies the statement.

(b). (α) What is hidden behind this proof if the fact that, for all g, h ∈ GL3(Qp) and
every r, we have Λr(gh) = Λr(g)Λr(h); as Λr(h) has coefficients in Zp if h
does, we can then just use the same proof as in (a) to get the desired statement.
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The reason for the compatibility of Λr with products is that Λrg is the matrix
of the action of g on the rth exterior power of Q3

p, but in our case, we can also
prove it directly. There is nothing to prove if r = 1 (because Λ1g = g) or r = 3
(because Λ3g = det(g)), so we may assume r = 2. Let g, h ∈ GL3(Qp) and
A,A′ ∈ Ω2. We want to show that Λ2(gh)A,A′ =

∑
A′′∈Ω2

Λ2(g)A,A′′Λ
2(h)A′′,A.

We may assume that A = A′ = {1, 2} (the other cases are similar). Then∑
A′′∈Ω2

Λ2(g)A,A′′Λ
2(h)A′′,A is equal to

(g11g22 − g12g21)(h11h22 − h12h21) + (g11g23 − g13g21)(h11h23 − h13h21)

+ (g12g23 − g13g22)(h12h23 − h13h22),

while Λ2(gh)A,A′ is equal to

(g11h11 + g12h21 + g13h31)(g21h12 + g22h22 + g23h32)

−(g11h12 + g12h22 + g13h32)(g21h11 + g22h21 + g23h31).

It is easy to check that these two expressions are equal.

(β) We have seen in the proof of (α) that Λr(tn) = Λr(t)Λr(n). As Λr(t) is diagonal
and the diagonal entries of Λr(n) are all equal to 1, the diagonal entries of Λr(tn)
are equal to the diagonal entries Λr(t). So ‖Λr(tn)‖ is at least the supremum of
the p-adic absolute values of the diagonal entries of Λrt, and this last number is
‖Λrt‖.

(γ) We already noted that Λrg is diagonal. So

‖Λrg‖ = sup
A∈Ωr

∣∣p∑i∈A λi
∣∣
p

= p− infA∈Ωr

∑
i∈A λi .

As λ1 ≥ λ2 ≥ λ3, we have

inf
A∈Ωr

∑
i∈A

λi = λ3−r+1 + . . .+ λ3.

(c). First we note that we can prove as in question (15) that (11(K∩T )pλ)λ∈X is a basis of
the C-vector space HT .

Now let’s show that, for every h ∈HT , we have h∨ =
∑

µ∈X h(pµ)zµ. As both sides
are linear in h, we may assume that h = 11(K∩T )pλ for some λ ∈ X . Then, for every
z ∈ (C×)3, we have :

h∨(z) =

∫
T

h(t)χz(t)dt =

∫
(T∩K)pλ

χz(t)dt.

As χz is constant on the set (K ∩ T )pλ (because T ∩ K is the group of diagonal
matrices with entries in Z×p , and we have |u|p = 1 for every u ∈ Z×p ), and as this set
has volume 1, we get

h∨(z) = χz(p
λ) = zλ = h(pλ)zλ =

∑
µ∈X

h(pµ)zµ
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(for the last equality, note that h(pµ) = 0 for every µ 6= λ, because the sets (K∩T )pµ

are pairwise disjoint by question (8)).

Now let f ∈ H . By applying the statement proved in the previous paragraph to
f (B), we get cλ(µ) = f

(B)
λ (pµ). But pµ = ApµA−1 where A is the permutation matrix

associated to σ = (13) (i.e. the matrix with antidiagonal entries 1 and all other entries
0), and we have seen in the proof of question (14) that f (B)(AtA−1) = f (B)(t) for
every f ∈H and every t ∈ T . So we are done.

(d). Suppose that pµn ∈ KpλK for some n ∈ N . Then
det(pµ) = det(pµn) ∈ Z×p det(pλ) (because det(K) ⊂ Z×p ), so
‖ det(pµ)‖p = ‖ det(pλ)‖p, which gives µ1 + µ2 + µ3 = λ1 + λ2 + λ3. Also,
by (b), we have, for every r ∈ {1, 2, 3},

p−(µ3+1−r+...+µ3) = ‖Λrpµ‖ ≤ ‖Λr(pµn)‖ = ‖Λrpλ‖ = p−(λ3−r+1+...+λ3).

Taking r = 1 gives µ3 ≥ λ3, and taking r = 2 gives µ2 + µ3 ≥ λ2 + λ3. Using this
and the fact that µ1 +µ2 +µ3 = λ1 +λ2 +λ3, we get µ1 +µ2 ≤ λ1 +λ2 and µ1 ≤ λ1,
as desired.

(e). Suppose that cλ(µ) 6= 0. By (c), we have

cλ(µ) = f
(B)
λ (pµ) = δ(pµ)1/2

∫
N

fλ(p
µn)dn.

As this is nonzero, the set pµN must intersect supp(λ) = KpλK. By (d), this implies
that µ ≤ λ.

(f). Let n ∈ N . If n ∈ N ∩ K, then tn ∈ t(K ∩ N) ⊂ KtK. Conversely, suppose

that tn ∈ KtK. We write n =

1 a b
0 1 c
0 0 1

; then tn =

pλ3 pλ3a pλ3b
0 pλ2 pλ2c
0 0 pλ1

. We

want to show that n ∈ N ∩ K, which means that a, b, c ∈ Zp. As K ⊂ Mn(Zp)
and as λ1 ≥ λ2 ≥ λ3, the fact that tn ∈ KtK implies that every entry of
tn is pλ3 times an element of Zp. In particular, a, b ∈ Zp. Moreover, we have
‖Λ2(tn)‖ = ‖Λ2t‖ = p−(λ2+λ3) by (b). Applying this to the entry of Λ2(tn) indexed
by A = {1, 2} and A′ = {1, 3}, we get

p−(λ2+λ3) ≥
∣∣∣∣det

(
pλ3 pλ3b
0 pλ2c

)∣∣∣∣
p

= p−(λ2+λ3)|c|p,

so |c|p ≤ 1, which means that c ∈ Zp.

(g). Let λ ∈ X+. By (c), we have

cλ(λ) = f
(B)
λ (pλ) = δ(pλ)1/2

∫
N

fλ(p
λn)dn.
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As fλ = 11KpλK = 11KpλK (because pλ and pλ are conjugate under a permutation
matrix, and permutation matrices are in K), question (f) implies that

cλ(λ) = δ(pλ)1/2 vol(K ∩N),

where the volume is taken for the Haar measure on N . By the choice of the Haar
measure on N , we have vol(K ∩N) = 1. So

cλ(λ) = δ(pλ)1/2 = |pλ3|p|pλ1|−1
p = pλ1−λ3 .

This is the statement of (ii).

(18) We denote the map H
∼→ C[z±1

1 , z±1
2 , z±1

3 ]S3 , f 7−→ f∨ by S. We have seen in question
(14) that this map is well-defined, and in question (7) that it is a morphism of C-algebras.
So we just need to show that it is an isomorphism of C-vector spaces. We have given a basis
(fλ)λ∈X+ of H in question (15), and a basis (cλ)λ∈X+ of C[z±1

1 , z±1
2 , z±1

3 ]S3 in question
(16). Moreover, the set X+ is partially ordered, and the matrix of S in the two bases is
upper triangular (for this partial order) by question (17)(i) and has nonzero diagonal entries
by 17(ii). So S is invertible.

If we want to make the argument more explicit, we could say the following : By (17)(i)
and (ii), we have, for every λ ∈ X+,

S(fλ) =
∑

µ∈X+, µ≤λ

cλ(µ)cµ,

with cλ(λ) ∈ C×. We will try to construct the inverse T : C[z±1
1 , z±1

2 , z±1
3 ]S3 → H of S.

It suffices to give the value of T on the basis elements cλ, λ ∈ X+. If there is no µ ∈ X+

such that µ ≤ λ and µ 6= λ, we set T (cλ) = cλ(λ)−1fλ. Otherwise, we define T (cλ)
recursively by

T (cλ) = cλ(λ)−1fλ − cλ(λ)−1
∑

µ∈X+−{λ}, µ≤λ

cλ(µ)T (cµ).

As {µ ∈ X+ | µ ≤ λ} is finite (indeed, if µ ∈ X+ and µ ≤ λ, then
µ3 = (λ1 + λ2 + λ3) − (µ1 + µ2) ≥ λ3, so λ3 ≤ µ3 ≤ µ2 ≤ µ1 ≤ λ1), this process
will always terminate.

�

V.8.4 Problem

10 11

10What is the name of this result ? And a reference ?
11H/t G. Dospinescu.
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In this problem, we write G = SL2(R) and K = SO(2). We denote the subgroup of upper
triangular matrices in G by B and the subgroup of unipotent upper triangular matrices by N
(“unipotent upper triangular” means “upper triangular with diagonal entries all equal to 1”). 12

13 We fix left Haar measures on all the groups. Remember that G is unimodular.

(1) The goal of this question is to prove the following fact : (*) If (π, V ) is a unitary represen-

tation of G and if v ∈ V is a vector that is fixed by an element of G of the form
(

1 u
0 1

)
with u 6= 0, then v is fixed by every element of G.

We fix a unitary representation (π, V ) of G.

(a). Let v ∈ V , and suppose that there exists a continuous morphism of groups

χ : R → S1 such that, for every u ∈ R, we have π
(

1 u
0 1

)
(v) = χ(u)v. De-

fine ϕ : G→ C by ϕ(x) = 〈π(x)(v), v〉.

(i) Show that, if x =

(
a b
c d

)
and x′ =

(
a′ b′

c′ d′

)
are such that c = c′, then we have

|ϕ(x)| = |ϕ(x′)|.

(ii) Show that, if x ∈ B, then |ϕ(x)| = |ϕ(1)|.

(iii) Show that there exists a continuous group morphism ψ : B → S1 such that
π(x)(v) = ψ(x)v for every x ∈ B.

(iv) Show that the function x 7−→ |ϕ(x)| is constant on G.

(v) Show that π(x)(v) = v for every x ∈ G.

(b). Prove (*).

(2) Let

A+ =

{(
a 0
0 a−1

)
, a ∈ R≥1

}
⊂ G.

(a). Show that
G =

∐
a∈A+

KaK.

(As sets, not as topological spaces.)

(b). Show that (G,K) is a Gelfand pair.

(c). Generalize questions (a) and (b) to SLn(R), where K = SO(n) and A+

is the set of diagonal matrices with diagonal coefficients a1, . . . , an satisfying
a1 ≥ a2 ≥ . . . an > 0.

12We could make everything in this problem work for SLn(R), but the generalization is a bit more painful than in
problem V.8.3.

13References.
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(3) The goal of this question is to prove the following fact : (**) For every unitary representa-
tion (π, V ) of G such that V G = {0}, for all v, w ∈ V , we have limx→∞〈π(x)(v), w〉 = 0,
where ∞ is the point at infinity of the Alexandroff compactification of G. (So
limx→∞〈π(x)(v), w〉 = 0 means that for every ε > 0, there exists a compact subset X
of G such that |〈π(x)(v), w〉| ≤ ε for every x ∈ G−X .)

We fix a unitary representation (π, V ) of G, and we assume that it does not satisfy the
conclusion of (**).

(a). Show that there exists v, v′ ∈ V , a sequence (an)n≥0 of elements of R≥1 and
α ∈ C− {0} such that :

• an → +∞ as n→ +∞;

• 〈π(tn)(v), v′〉 → α as n→ +∞, where tn =

(
an 0
0 a−1

n

)
.

(b). Show that, after replacing (an)n≥0 by a subsequence, we may assume that there exists
v0 ∈ V such that, for every w ∈ V , we have 〈π(tn)(v), w〉 → 〈v0, w〉 as n→ +∞.

(c). Show that v0 6= 0 and that v0 is fixed by every element of N . (Hint : If x ∈ N and
w ∈ V , what is the behavior of 〈π(xtn)(v), w〉 − 〈π(tn)(v), w〉 → 0 as n→ +∞ ?)

(d). Conclude.

(4) The goal of this question is to show that the quotient SL2(Z)\G has finite volume.

Let h := {z ∈ C| Im(z) > 0}.

For g =

(
a b
c d

)
∈ G and z ∈ h, we set

g · z =
az + b

cz + d
.

(a) Show that this defines a left action of G on h.

(b) Show that the stabilizer of i ∈ h is K, and that this induces a homeomorphism
G/K

∼→ h.

(c) Show that the homeomorphism of (b) sends the measure µG/K to a multiple of dxdy
y2 ,

where x and y are the real and imaginary parts of z ∈ h and dx and dy are Lebesgue
measure on R.

(d) Let Ω = {z ∈ h||Re(z)| ≤ 1
2

and |z| ≥ 1}. Show that, for every z ∈ h, there exists
g ∈ SL2(Z) such that g · z ∈ Ω.

(e) Show that
∫
z=x+iy∈Ω

dxdy
y2 < +∞.

(f) Show that vol(SL2(Z)\G) < +∞.
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(5) In this question, we fix a closed discrete subgroup Γ ofG such that vol(Γ\G) < +∞. Note
that G is unimodular by I.5.3.7, so the Haar measure on G is also right invariant. We write
X = Γ\G and we denote by µ the measure µΓ\G; we normalize the Haar measures onG and
Γ so that µ(X) = 1. We consider the space L2(X) = L2(X,µ) with the right quasi-regular
representation π of G (i.e. we have π(g)(f) = Rgf for g ∈ G and f ∈ L2(X)).

Show that, for all f1, f2 ∈ L2(X), we have

lim
g→∞

∫
X

f1(xg)f2(x)dµ(x) =

∫
X

f1(x)dµ(x)

∫
X

f2(x)dµ(x).

(Hint : what are the G-invariant vectors in V := {f ∈ L2(X)|
∫
X
f(x)dµ(x) = 0} ?)

(6) We use the notation of question (5). Let Y = (Γ ∩ K) \K. We put the measure
µY = µ(Γ∩K)\K on Y , and we normalize the Haar measures on Γ ∩ K and K so that
Y has volume 1.

The goal of this question is to prove the following statement : (***) For every f ∈ Cc(X),
we have

lim
g→∞

∫
Y

f(yg)dµY (y) =

∫
X

f(x)dµ(x).

14

We think of µK as the continuous linear functional on Cc(G) given by

µK(f) =

∫
K

f(x)dµK(x),

for f ∈ Cc(G). Proving (***) would be relatively easy (from what we have already done)
if µK were representable by an element of Cc(G) (i.e. if we had some h ∈ Cc(G) such
that

∫
K
f(x)dµK(x) =

∫
G
f(x)h(x)dµG(x) for every f ∈ Cc(G)), but this is not the

case. Nevertheless, we can try to approximate µK by elements of Cc(G). You might
remember that we have used that kind of technique several times already to approximate
Dirac measures.

(a). If ψ ∈ Cc(G), we define a continuous linear functional ψ ∗ µK on Cc(G) by

ψ ∗ µK(f) =

∫
G×K

f(xy)ψ(x)dµG(x)dµK(y).

Show that there exists h ∈ Cc(G) such that

ψ ∗ µK(f) =

∫
G

f(x)h(x)dµG(x)

for every f ∈ Cc(G).
14In other words, the sets Y g become equidistributed in X as g → ∞ in G. Note that g → ∞ if and only if
g−1 →∞.
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(b). Show that there exists a sequence (ψn)n≥0 of elements of Cc(G) such that µK is the
limit of the sequence (ψn ∗ µK)n≥0 in the weak* topology of Hom(Cc(G),C).

(c). Prove (***).

Solution.

(1) (a). Note that, if n =

(
1 u
0 1

)
, n′ =

(
1 u′

0 1

)
∈ N and x ∈ G, then

|ϕ(nxn′)| = |〈π(x)(π(n′)(v)), π(n)−1(v)〉| = |χ(u′)χ(u)〈π(x)(v), v〉| = |ϕ(x)|.

(i) Suppose first that c = c′ 6= 0. Let n =

(
1 c−1(d′ − d)
0 1

)
and

n′ =

(
1 c−1(a′ − a)
0 1

)
. Then we have

n′xn =

(
a′ w
c′ d′

)
,

for somew ∈ R. As 1 = det(n′xn) = a′d′−wc′ = a′d′−b′c′ and c′ 6= 0, we must
have w = b′, so n′xn = x′, and the remark above implies that |ϕ(x)| = |ϕ(x′)|.

Now suppose that c = c′ = 0. Then we can sequence (xn)≥1 and (x′n)≥1 in G
such that xn → x, x′n → x′ and, for every n ≥ 1, the (2, 1)-entries of xn and x′n

are both equal to 1
n

. For example, we can take xn =

(
a+ b

nd
b

1
n

d

)
, which makes

sense because det(x) = ad = 1 implies that d 6= 0, and we can define x′n by a
similar formula. Applying the first case to xn and x′n gives |ϕ(xn)| = |ϕ(x′n)|
for every n ≥ 1; as ϕ is continuous, we can go to the limit in n, and we get
|ϕ(x)| = |ϕ(x′)|.

(ii) This follows from the case ”c = c′ = 0” of question (i).

(iii) Let x ∈ B. We have |〈π(x)(v), v〉)| = |〈v, v〉| by (ii), so, by the case of equal-
ity in the Cauchy-Schwartz formula, we must have π(x)(v) = ψ(x)v for some
ψ(x) ∈ S1. As x 7−→ π(x)(v) is continuous in x and ψ(x) = 〈π(x)(v), v〉, the
function x 7−→ ψ(x) is also continuous. The fact that it is a morphism of groups
follows immediately from the fact that π(xy) = π(x) ◦ π(y) for all x, y ∈ B.

(iv) Repeating what we did at the beginning of the proof of (a) and using (iii), we see

that |ϕ(bxb′)| = |ϕ(x)| for every x ∈ G and all b, b′ ∈ G. Let x0 =

(
0 1
−1 0

)
.

Let x =

(
a b
c d

)
∈ G. If c 6= 0, then

x =

(
1 c−1a
0 1

)
x0

(
c −d
0 b− c−1ad

)
,
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so |ϕ(x)| = |ϕ(x0)|. If c = 0, then we can approximate x by elements of G
whose (2, 1)-entry is nonzero (as in the proof of (i)), so, by the first case and
continuity of ϕ, we also get |ϕ(x)| = |ϕ(x0)|.

(v) We repeat the reasoning of (iii) to show that there exists a continuous group
morphism ψ : G→ S1 (extending the map ψ of (iii)) such that π(x)(v) = ψ(x)v
for every x ∈ G. But there are no nontrivial group morphisms from G to a
commutative group (becauseG is equal to its commutator subgroup, and a group
morphism into a commutative is trivial on every commutator), so ψ = 1, so
v ∈ V G.

(b). We denote by π′ the unitary representation of R on V defined by π′(t) = π

(
1 t
0 1

)
,

for every t ∈ R. By hypothesis, we have π′(u)(v) = v. As R is commutative, this
implies that π(u)(w) = w for everyw in {π(t)(u), t ∈ R}, hence (because both sides
are linear and continuous in w) for every w ∈ W := Span{π(t)(v), t ∈ R}. In other
words, the unitary representation π′|W is trivial on the subgroup Zu of R, so it in-
duces a unitary representation of the compact group R/Zu on W . By theorem IV.2.1
and corollary I.3.4.4, the space W is the closure of a direct sum of 1-dimensional
representations of R/Zu, that is, there exists a linearly independent family (vi)i∈I
generating a dense subspace of W and such that every vi is an eigenvector of all the
π(n), n ∈ N . By question (a), this implies that all vi are in V G, hence W ⊂ V G, and
in particular v ∈ V G.

(2) (a). We prove the result directly for SLn(R), so we will write G = SLn(R) and
K = SO(n).

We will use the polar decomposition for elements of GLn(R) (see Theorem 12.35 of
Rudin’s [20], 15 though that is overkill because we only need the finite-dimensional
case) : for every g ∈ GLn(R), there exists a unique couple (u, p) such that u is
orthogonal, p is symmetric positive definite and g = up; also, we have p2 = gTg. If
g ∈ G, then det(p)2 = det(gTg) = 1; as p is definite positive, we have det(p) > 0,
so det(p) = 1, and then we also deduce that det(u) = 1, i.e. that u is in K.

We prove that G =
⋃
a∈A+ KaK. Let g ∈ G. Let g = up be the polar decomposition

of g. As p is symmetric, is is diagonalizable in an orthonormal basis by the spectral
theorem, so we can write p = kak−1 with k ∈ O(n) and a diagonal. The diagonal
entries of a are the eigenvalues of p, and we may assume that they are in decreasing
order, so that a ∈ A+. Also, if k is not in SO(n), then we can change the sign of the
one of the vectors of the eigenbasis; this does not affect a, and the new k is in SO(n).
Finally, we get g = (uk)ak−1 ∈ KaK.

We also want to prove that the set KaK, a ∈ A+, are pairwise disjoint. Let
a, a′ ∈ A+, and suppose that KaK ∩ Ka′K 6= ∅. Then there exist k, l ∈ K such

15Better ref.
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that a′ = kal. So
(a′)2 = a′a′

T
= kallTakT = ka2k−1,

which implies that the (a′)2 and a2 have the same eigenvalues, i.e. they have the
same diagonal entries up to reordering. As the diagonal entries of (a′)2 and a2 are de-
creasing, these two matrices actually have the same diagonal entries, i.e. (a′)2 = a2.
Finally, as a and a′ are diagonal with positive entries, the fact that (a′)2 = a2 implies
that a′ = a.

(b). (We still take G = SLn(R) and K = SO(n).) Consider the continuous group au-
tomorphism θ : G → G, g 7−→ (gT )−1. We have θ2 = idG, and θ|K = idK .
For every g ∈ G, if we write g = kal with k, l ∈ K and a ∈ A+, then
θ(g) = ka−1l = klg−1kl ∈ Kg−1K. By proposition V.2.5, (G,K) is a Gelfand
pair.

(3) Now we are back in SL2(R), so that frees the letter n.

(a). As V does not satisfy the conclusion of (**), there exists v1, v2 ∈ V and ε > 0
such that, for every compact subset X of G, there exists x ∈ G − X such that
|〈π(x)(v1), v2〉| > ε.

For every n ≥ 1, let A+
n be the set of

(
a 0
0 a−1

)
∈ A+ such that a ≤ n.. Then⋃

t∈A+
n
KtK is relatively compact in G, because, if g ∈ KtK with t ∈ A+

n , then
all the entries of g and of g−1 are bounded by 4n in absolute value (note that, if
k ∈ K, then the entries of k are all bounded by 1 in absolute value). So we can find
xn ∈ G −

⋃
t∈A+

n
KtK such that |〈π(xn)(v1), v2〉| > ε. Write xn = kntnln with

kn, ln ∈ K and tn =

(
an 0
0 a−1

n

)
∈ A+

n . As K is compact, after replacing (kn) and

(ln) by subsequences, we may assume that (kn) (resp. (ln)) has a limit k ∈ K (resp.
l ∈ L). Let v = π(l)(v1) and v′ = π(k)−1(v2). As the sequence (〈π(tn)(v), v′〉) of
elements of C is bounded (by ‖v‖‖v′‖), after going to a subsequence, we may assume
that it converges to some α ∈ C. To finish the proof, we just need to show that α 6= 0.
Note that, for every n ≥ 1, we have

〈π(tn)v, v′〉 = 〈π(kk−1
n )π(kntnln)π(l−1

n l)v1, v2〉 = 〈π(xn)π(l−1
n l)v1, π(knk

−1)v2〉,

so

|〈π(tn)v, v′〉 − 〈π(xn)v1, v2〉| ≤ ‖v1‖‖v2‖(‖π(l−1
n l)− id‖op + ‖π(knk−1)− id‖op.

This tends to 0 as n → 1. As |〈π(xn)v1, v2〉| ≥ ε for every n ≥ 1, the limit α of the
sequence (〈π(tn)(v), v′〉) cannot be 0.

(b). The conclusion means that the sequence of bounded linear forms
(Λn : w 7−→ 〈π(tn)(v), w〉)n≥1 on V converges to the bounded linear form
w 7−→ 〈v0, w〉 in the weak* topology of V ∗. As each Λn is in the closed unit ball
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of V ∗ (for the operator norm), and as this closed unit ball is weak* compact by the
Banach-Alaoglu theorem, we may indeed assume, after going to a subsequence, that
the sequence (Λn)n≥1 converges to some element Λ ∈ V ∗ in the weak* topology.
But we know that Λ has to be of the form w 7−→ 〈v0, w〉, for a uniquely determined
v0 ∈ V , so we are done.

(c). We have 〈v0, v
′〉 = limn→+∞〈π(tn)(v), v′〉 = α 6= 0, so v0 6= 0.

Let x ∈ N , and write x =

(
1 u
0 1

)
. Let w ∈ V . Then

〈π(xtn)(v), w〉 − 〈π(tn)(v), w〉 = 〈π(tn)(π(t−1
n xtn)(v)− v), w〉,

so
|〈π(xtn)(v), w〉 − 〈π(tn)(v), w〉| ≤ ‖(π(t−1

n xtn)− π(1))(v)‖‖w‖.

As t−1
n xtn =

(
1 a−2

n u
0 1

)
and as limn→+∞ an = +∞, we have

limn→+∞ t
−1
n xtn = 1. Using the continuity of the representa-

tion π, we deduce that limn→+∞(π(t−1
n xtn)(v) − v) = 0, so that

limn→+∞ |〈π(xtn)(v), w〉 − 〈π(tn)(v), w〉| = 0. But we know that
limn→+∞〈π(tn)(v), w〉 = 〈v0, w〉, so we get limn→+∞〈π(xtn)(v), w〉 = 〈v0, w〉. On
the other hand, we have

lim
n→+∞

〈π(xtn)(v), w〉 = lim
n→+∞

〈π(tn)(v), π(x)−1(w)〉 = 〈v0, π(x)−1(w)〉 = 〈π(x)(v0), w〉.

As this holds for every w ∈ V , we deduce that π(x)(v0) = v0.

(d). By question (1), (d) implies that v0 is fixed by every element of G. So V G 6= {0},
which finishes the proof of the contrapositive of (**).

(4) (a). We first check that g · z is well-defined and in h if z ∈ h. Write g =

(
a b
c d

)
. If

c 6= 0, then Im(cz + d) = c Im(z) 6= 0, so the quotient az+b
cz+d

makes sense. If c = 0,
then ad = det(g) = 1, so d 6= 0, so cz + d = d 6= 0, so once again the quotient az+b

cz+d

makes sense. We calculate the imaginary part of this quotient. We have

az + b

cz + d
=

(az + b)(cz + d)

(cz + d)(cz + d)
=
aczz + bd+ adz + bcz

(cz + d)(cz + d)
,

so

Im

(
az + b

cz + d

)
=

1

(cz + d)(cz + d)
(ac Im(z)− bd Im(z)) =

Im(z)

(cz + d)(cz + d)
> 0,

and az+b
cz+d
∈ h.

If g = 1, then clearly g · z = z. Let h =

(
a′ b′

c′ d′

)
be another element of G. We must

check that (gh) · z = g · (h · z). This is a straightforward calculation.
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(b). Let g =

(
a b
c d

)
∈ G such that g · i = i. This is equivalent

ai + b = i(ci + d) = −c + id, i.e. to the fact that a = d and b = −c. If a = d
and b = −c, then 1 = ad − bc = a2 + b2 = d2 + c2 and ac + bd = 0, so g is an
orthogonal matrix, hence g ∈ K because det(g) = 1. Conversely, if g ∈ K, then g is

of the form
(

cos θ sin θ
− sin θ cos θ

)
, so we do have a = d and b = −c, hence g · i = i.

If z is an arbitrary element of h, we write z = x + iy with x ∈ R and y ∈ R>0.

Then z = g(z) · i, with g(z) =

(√
y
√
y−1x

0
√
y−1

)
∈ G. So the action of G on h is

transitive, and it induces a continuous bijection α : G/K
∼→ h. To show that α is a

homeomorphism, we note that the map h → G, z 7−→ g(z) that we just constructed
is continuous, and that z 7−→ g(z)K is the inverse of α.

(c). Let µ be the image by α−1 of the measure dxdy
y2 . Reasoning as in the proof of (2) of

problem V.8.3, we see that it suffices to prove that µ is left invariant by G. In other
words, it suffices to prove that the measure dxdy

y2 is invariant by the action of G on h.

Let g =

(
a b
c d

)
∈ G, and let z = x+ iy ∈ h. We have seen in the proof of (a) that

Im(g · z) =
y

(cz + d)(cz + d)
=

y

c2(x2 + y2) + 2cdx+ d2
.

Similarly,

Re(g · z) =
ac(x2 + y2) + (ad+ bc)x+ bd

c2(x2 + y2) + 2cdx+ d2
.

If we write x′ = Re(g · z) and y′ = Im(g · z), we want to show that dx
′dy′

y′2
= dxdy

y2 .

Let g0 =

(
0 1
−1 0

)
. We saw in the proof of (1)(a)(iv) that G = B ∪ Bg0B, so it

suffices to show that dx
dy
y2 is invariant under the action of an element of B and of g0.

In both cases, we will use the usual change of variables on R2 to calculate dx′dy′.

If g ∈ B (i.e. c = 0), then x′ = 1
d2 (x+ bd) and y′ = y

d2 , so dx′dy′ = 1
d4dxdy, and we

get dx
′dy′

y′2
= dxdy

y2 .

If g = g0, then x′ = − x
x2+y2 and y′ = y

x2+y2 , so

dx′dy′ =

∣∣∣∣∣det

(
−(x2+y2)+2x2

(x2+y2)2
−2xy

(x2+y2)2

2xy
(x2+y2)2

(x2+y2)−2y2

(x2+y2)2

)∣∣∣∣∣ dxdy =
dxdy

(x2 + y2)2
,

and again this implies immediately that dx
′dy′

y′2
= dxdy

y2 .
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(d). If g =

(
a b
c d

)
∈ SL2(Z), then we have ad− bc = 1, so c and d are relatively prime

in Z. Conversely, if c and d are relatively prime in Z, then there exist a, d ∈ Z such

that ad− bc = 1, and then g :=

(
a b
c d

)
is in SL2(Z).

Let z ∈ h. Then the group Z+Zz is discrete in C (because z 6∈ R), so its intersection
with every ball is finite. In particular, the infimum of |cz+d| as c, d ∈ Z are relatively
prime is attained. By the previous paragraph and the fact that Im(g · z) = Im(z)

|cz+d|2 if

g =

(
a b
c d

)
, we see that sup{| Im(g · z)|, g ∈ SL2(Z)} is also attained. We want to

show that there exists g ∈ SL2(Z) such that g · z ∈ Ω. After replacing z by some g · z
with g ∈ SL2(Z), we may assume that | Im(z)| = sup{| Im(g · z)|, g ∈ SL2(Z)}.

In particular, taking g =

(
0 −1
1 0

)
, we get | Im(z)| ≥ | Im(z)|

|z|2 , so |z| ≥ 1. If

gn =

(
1 n
0 1

)
with n ∈ Z, then gn · z = z + n, so Im(gn · z) = Im(z) and we

still have | Im(gn · z)| = sup{| Im((hgn) · z)|, h ∈ SL2(Z)}, and in particular we still
have |g · z| ≥ 1. We can choose n ∈ Z such that −1

2
≤ Re(z) + n ≤ 1

2
, and then we

have gn · z ∈ Ω and we are done.

(e). We have : ∫
Ω

dxdy

y2
=

∫ 1/2

−1/2

∫ +∞

√
1−x2

dxdy

y2

=

∫ 1/2

−1/2

1√
1− x2

dx < +∞.

(f). For every ε ∈ (0, 1/4), let

Ωε = {z ∈ h | |z| > 1− ε and | Im(z)| < 1
2

+ ε}.

As in (e), we see that

Iε :=

∫
Ωε

dxdy

y2
=

∫ 1/2+ε

−1/2−ε

1√
1− x2 − ε

dx < +∞.

Let
Ω′ε = {g ∈ G | g · i ∈ Ωε}.

This is the inverse image of Ωε by the continuous map G→ G/K. In particular, it is
an open subset of G, so, by the definition of a regular Borel measure (and Urysohn’s
lemma), we have

µG(Ω′ε) = sup

{∫
G

fdµG, f ∈ Cc(G), 0 ≤ f ≤ 1 and supp(f) ⊂ Ω′ε

}
.
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If f ∈ Cc(G) is such that 0 ≤ f ≤ 1 and supp(Ω′ε), then, for every g ∈ G, we have
fK(gK) =

∫
K
f(gk)dµK(k) ∈ [0, 1] (because the Haar measure µK has total volume

1), and fK(gK) = 0 if g ∈ Ω′ε, i.e. if gK 6∈ Ωε; so
∫
G/K

fKdµG/K ≤ µG/K(Ωε). As∫
G
fdµG =

∫
G/K

fKdµG/K for every f ∈ Cc(G), and as µG/K is a multiple of the
measure dxdy

y2 by (c), we see that µG(Ωε) is bounded by a multiple of Iε, hence finite.

On the other hand, as Ωε ⊃ Ω, the restriction to Ω′ε of the projection
π : G → SL2(Z) \G is surjective; indeed, if g ∈ G, then, by (d), there exists
h ∈ SL2(Z) such that hg · i ∈ Ω, and then hg ∈ Ω′ε and π(hg) = π(g). Again by the
definition of a regular Borel measure and Urysohn’s lemma, there exists f ∈ C +

c (G)
such that f|Ω′ε = 1 and

∫
G
fdµG < +∞. Let h = SL2(Z)f ∈ Cc(SL2(Z)\G). We have∫

SL2(Z)\G hdµSL2(Z)\G =
∫
G
fdµG < +∞. But if x ∈ SL2(Z)\G and g is an element

of Ω′ε such that π(g) = x, then

h(x) =
∑

h∈SL2(Z)

f(hg) ≥ f(g) = 1

(using the fact that f ≥ 0). So

vol(SL2(Z)\G) ≤
∫

SL2(Z)\G
hdµSL2(Z)\G < +∞.

(5) Let V := {f ∈ L2(X)|
∫
X
f(x)dµ(x) = 0}. This is a G-invariant subspace of L2(X)

because the measure µ is left invariant by G. We show that V G = 0. Let f ∈ L2(X)G.
Then we have ‖Rgf − f‖L2(X) = 0 for every g ∈ G. Applying Minkowski inequality (see
I.5.6.7) to the function ϕ : G×X → C, (g, x) 7−→ |f(xg)− f(x)|, we see that∫

X

∣∣∣∣∫
G

|f(xg)− f(x)|dg
∣∣∣∣2 dx = 0,

so the function x 7−→
∫
G
|f(xg)− f(x)|dg is 0 almost everywhere on x. Choose x0 ∈ X

such that
∫
G
|f(x0g)− f(x0)|dg = 0. Then the function g 7−→ f(x0g)− f(x0) is 0 almost

everywhere on G, so f is equal in L2(X) to the class of the constant function f(x0). If
moreover f ∈ V , this forces f to be 0.

Now we can apply question (4) to V . Its conclusion says that, for allf1, f2 ∈ V , we have

lim
g→+∞

〈Rgf1, f2〉 = 0.

Let f1, f2 ∈ L2(X). We write c1 =
∫
X
f1dµ and c2 =

∫
X
f2dµ. As vol(X) = 1, the

functions f1 − c1 and f2 − c2 are in V , so, by what we have just seen, we have

lim
g→+∞

〈Rgf1 − c1, f2 − c2〉 = 0.
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For every g ∈ G, we have

〈Rgf1 − c1, f2 − c2〉 =

∫
X

(f1(xg)− c1)(f2(x)− c2)dx

=

∫
X

f1(xg)f2(x)dx− c1

∫
X

f2(x)dx− c2

∫
X

f1(xg)dx+ c1c2

=

∫
X

f1(xg)f2(x)dx− c1c2.

Finally, we get

lim
g→+∞

∫
X

f1(xg)f2(x)dx = c1c2,

as desired.

(6) (a). We define a function h : G→ C by

h(x) =

∫
K

ψ(xy−1)dµK(y),

for every y ∈ G. Let’s show that h is continuous. Let ε > 0. As ψ ∈ Cc(G), proposi-
tion I.1.12 implies that ψ is left uniformly continuous, so there exists a neighborhood
U of 1 in G such that |ψ(x′x)− ψ(x)| ≤ ε for every x ∈ G and every x′ ∈ U . Then,
if x ∈ G and x′ ∈ U , we have

|h(x′x)− h(x)| ≤
∫
K

|ψ(x′xy−1)− ψ(xy−1)|dµK(y) ≤
∫
K

εdµK = ε,

so h is also left uniformly continuous (and in particular continuous). Moreover, ince
we have ψ(xy−1) = 0 unless x ∈ (suppψ)y ⊂ (suppψ)K, the support of ψ is
contained in (suppψ)K, hence it is compact.

Finally, for every f ∈ Cc(G), we have :

ψ ∗ µK(f) =

∫
G×K

f(xy)ψ(x)dµG(x)dµK(y)

=

∫
G×K

f(x)ψ(xy−1)dµG(x)dµK(y) (because ∆G|K = 1)

=

∫
G

f(x)h(x)dµG(x).

(b). Let (Un)n≥0 be a decreasing sequence of neighborhoods of 1 in G that forms a basis
of neighborhoods; for example, we can take for Un the intersection of G with the ball
of radius 2−n in M2(R), for any choice of norm on M2(R). By proposition I.4.1.8,
there exists an approximate identity (ψn)n≥0 such that supp(ψn) ⊂ Un for every n.

309



V Gelfand pairs

We prove as in proposition I.4.1.9 that this sequence (ψn)n≥0 works. Let f ∈ Cc(G).
Then µK(f) =

∫
K
f(y)dµK(y) =

∫
G×K f(y)ψn(x)dµG(x)dµK(y) for every n, so

|ψn∗µK(f)−µK(f)| ≤
∫
G×K
|f(xy)−f(y)|ψ(x)dµG(x)dµK(y) ≤ sup

x∈Un
‖Lx−1f−f‖∞.

As f is left uniformly continuous, this tends to 0 when n→ +∞.

�
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VI Application of Fourier analysis to
random walks on groups

We will mostly be interested in the case of finite groups in this chapter, but we will give some
results for more general groups in the last section.

VI.1 Finite Markov chains

We fix once and for all a probability space Ω (i.e. a measure space with total volume one).

Definition VI.1.1. Let X be a measurable space (i.e. a space with a σ-algebra). A random
variable with values in X is a measurable function X : Ω→ X .

For every measurable subset A of X , we write P(X ∈ A) for the measure of X−1(A). (We
think of this as the probability thatX is inA.) The distribution ofX is the probability distribution
µ on X defined by µ(A) = P(X ∈ A).

We think of random variables as representing the outcome of some experiment or observation.
The probability space Ω is usually not specified (you can think of it as something like “all the
possible universes”). For example, we could think of the outcome of flipping a coin as a random
variable with values in the finite set {heads, tails}. If the coin is unbiased, the distribution of that
random variable is given by µ({heads}) = µ({tails}) = 1

2
.

In this notes, we will only be concerned with the case where X is finite and its σ-algebra is the
set of all subsets of X . We can (and will) think of measures on X as functions µ : X → R≥0.

From now on, we assume that X is finite.

Definition VI.1.2. A matrix P = (Pi,j) ∈ Mn(R) is called stochastic if Pi,j ≥ 0 for all
i, j ∈ {1, . . . , n} and

∑n
j=1 Pi,j = 1 for every i ∈ {1, . . . , n}.

If P : X × X → R is a function, we think of it as a matrix of size |X| × |X| and we call is
stochastic if P (x, y) ≥ 0 for all x, y ∈ X and

∑
y∈X P (x, y) = 1 for every x ∈ X .

Definition VI.1.3. Let P : X2 → R be a stochastic function and ν be a probability distribution
on X A (discrete-time homogeneous) Markov chain with state space X , initial distribution ν
and transition matrix P is a sequence (Xn)n≥0 of random variables with values in X such that :
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(a) The distribution of X0 is ν.

(b) For every n ≥ 0 and all x0, . . . , xn+1 ∈ X , if P(Xn = xn, . . . , X0 = x0) > 0, then

P(Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = P (xn, xn+1).

Let P,Q : X2 → R be two functions. We write PQ for the function X2 → R defined by

PQ(x, y) =
∑
z∈X

P (x, z)Q(z, y).

(If we see functions on X2 as matrices, this is the usual matrix product.)

In particular, we write P n for the product PP . . . P (n times); by convention, P 0 is the char-
acteristic function of the diagonal.

Lemma VI.1.4. Let (Xn)n≥0 be a Markov chain on X with initial distribution ν and transition
matrix P . Then, for every x ∈ X , we have

P(Xn = x) =
∑
y∈X

ν(y)P n(y, x).

In other words, if we see P as a matrix and ν as a row vector, then the distribution of Xn is
νP n.

Proof. We prove the result by induction on n. It is obvious for n = 0. Suppose that we know it
for some n, and let’s prove it for n+ 1. Let x ∈ X . Then

P(Xn+1 = x) =
∑

y∈X, P(Xn=y) 6=0

P(Xn+1 = x|Xn = y)

=
∑
y∈X

P(Xn = y)P(Xn+1 = x|Xn = y)

=
∑
y∈X

P(Xn = y)P (y, x).

Using the induction hypothesis, we get

P(Xn+1 = x) =
∑
y∈X

P (y, x)
∑
z∈X

ν(z)P n(z, y) =
∑
z∈X

ν(z)P n+1(z, x).
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Example VI.1.5. (1) Random walk on the discrete circle : We take X = Z/rZ, ν = δ0 and
P defined by

P (x, y) =

{
1
2

if x− y ∈ {±1}
0 otherwise.

The Markov chain is modeling a random walk on the “discrete circle” Z/nZ where we
start at 0 with probability 1, and then, at each time n, we have a 50% chance to go to the
preceding point on the discrete circle and a 50% chance to go to the next point of the circle.

(2) Mixing a deck of cards using random transpositions : We are trying to understand the fol-
lowing situation : We have a deck of N cards. At each time n, we randomly (uniformly
and independently) choose two cards and switch their positions in the deck. How long will
it take to mix the deck ?

This problem is modeled by a Markov chain with state space SN (representing all the
possible orderings of the deck), initial distribution the Dirac measure supported at our
starting position, and transition matrix P given by

P (τσ, σ) =


1
N

if τ = 1
2
N2 if τ is a transposition
0 otherwise.

(3) The Bernoulli-Laplace diffusion model : We have two urns labeled by 0 and 1. At the start,
urn 0 contains r red balls and urn 1 contains b blue balls. At each time n, we choose a ball
in each urn (uniformly and independently) and switch them. How long will it take to mix
the balls ?

We model this problem using a Markov chain with state space SN /Sr×Sb,
where N = r + b, and Sr×Sb is embedded in SN via the obvious bijection
{1, . . . , r} × {1, . . . , b} ' {1, . . . , N}. Indeed, we can think of the N balls as the set
{1, . . . , N}, where the first r balls are red and the last b balls are blue. A state of the pro-
cess described above is a subset A of {1, . . . , N} such that |A| = r (the content of urn 0);
note that switching two balls between the urns does not change the number of balls in each
urn. The group SN acts transitively on the set Ωr of cardinality r subsets of {1, . . . , N},
and its subgroup Sr×Sb is the stabilizer of {1, . . . , r}, so the state set is indeed in bi-
jection with SN /Sr×Sb. The initial distribution is the Dirac measure concentrated at
{1, . . . , r} The transition matrix P is given by

P (A′, A) =

{
(r−1)!(b−1)!

(r+b)!
if r − |A ∩ A′| = 1

0 otherwise.

Indeed, we need the calculate the number of pairs (A,A′) of subsets of cardinality r of
{1, . . . , N} such that r − |A ∩ A′| = 1; note that the condition means that A′ − A and
A − A′ both have exactly one element. There are (r+b)!

r!b!
choices for A, b choicse for the

element of A′ − A and r choices for the element of A− A′.
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We have been asking if the chains described in the examples converge, but the first question
should be : to what distribution(s) can they converge ?

Definition VI.1.6. Consider a stochastic function P : X2 → R. A stationary distribution for P
is a probability distribution µ on X such that, for every y ∈ X , we have

µ(y) =
∑
x∈X

µ(x)P (x, y).

If we think of P as a |X| × |X| matrix and of µ as a row vector of size |X|, then the condition
becomes µP = µ.

If a Markov chain with transition matrix P converges in any reasonable sense, then the distri-
bution of its limit should be a stationary distribution of P .

Finally, we define the distance that we will use on random variables. Note that this definition
makes just as much sense if X is a general measure space, and the lemma following it stays true
with essentially the same proof.

Definition VI.1.7. Let µ and ν be two probability distributions on X . Their total variation
distance is

‖X − Y ‖TV = max
A⊂X
|µ(A)− ν(A)|.

This is clearly a metric on the set of probability distributions, and in fact it is closely related
to the L1 metric.

Lemma VI.1.8. Let µ and ν be two probability distributions on X . Then we have

‖µ− ν‖TV =
1

2

∑
x∈X

|µ(x)− ν(x)|.

Proof. Let B = {x ∈ X|µ(x) ≥ ν(x)}. For every A ⊂ X , we have

µ(A)− ν(A) = µ(A ∩B)− ν(A ∩B) +
∑

x∈A−A∩B

(µ(x)− ν(x))

≤ µ(A ∩B)− ν(A ∩B)

= µ(B)− ν(B)−
∑

x∈B−A∩B

(µ(x)− ν(x))

≤ µ(B)− ν(B).

Similarly, we have

ν(A)− µ(A) ≤ ν(X −B)− µ(X −B) = µ(B)− ν(B).
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Hence |µ(A)− ν(A)| ≤ µ(B)− ν(B), with equality if A = B or A = X −B, and we get

‖µ− ν‖TV = µ(B)− ν(B) =
1

2
(µ(B)− ν(B) + ν(X −B)− µ(X −B))

=
1

2

∑
x∈B

|µ(x)− ν(x)|+ 1

2

∑
x∈X−B

|µ(x)− ν(x)|

=
1

2
‖µ− ν‖1.

VI.2 The Perron-Frobenius theorem and convergence of
Markov chains

Notation VI.2.1. Let A,B ∈ Mnm(R). We say that A ≥ B (resp. A > B) if Aij ≥ Bij (resp.
Aij > Bij) for every (i, j) ∈ {1, . . . , n} × {1, . . . ,m}. We also denote by |A| the n×m matrix
(|Aij|).

Definition VI.2.2. We say that a matrix P = (Pij) ∈Mn(R) is positive if P > 0.

Definition VI.2.3. We say that a stochastic matric P ∈Mn(R) is ergodic if there exists a positive
integer r such that P r is positive.

Remember the following classical theorem from linear algebra :

Theorem VI.2.4 (Perron-Frobenius theorem). Let P = (Pij) ∈Mn(R) be an ergodic stochastic
matrix. Then :

(i) The matrix P has 1 as a simple eigenvalue, and every complex eigenvalue λ of P satisfies
|λ| < 1.

(ii) The space of row vectors w ∈ M1n(R) such that wP = w is 1-dimensional, and it has a
generator v = (v1, . . . , vn) such that vi > 0 for every i and v1 + . . .+ vn = 1.

(iii) Let P∞ be the n × n matrix all of whose rows are equal to the vector v of (ii). Then
P r → P∞ as r → +∞. More precisely, let ρ = max{|λ|, λ 6= 1 eigenvalue of P}; by (i),
we know that ρ < 1. Fix any norm ‖.‖ on Mn(R). Then there exists a polynomial f ∈ Z[t]
such that

‖P k − P∞‖ ≤ f(k)ρk.

Lemma VI.2.5. Let A = (Aij) ∈Mn(R) be a positive matrix, let

Z = {x = (x1, . . . , xn) ∈ Rn|x ≥ 0 and x1 + . . .+ xn = 1},
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and let
Λ = {λ ∈ R|∃x ∈ Z, Ax ≥ λx}.

Then the real number λ0 = sup Λ is positive and a simple root of the characteristic polynomial
of A, and it has an eigenvector all of whose entries are positive. Moreover, for any complex
eigenvalue λ 6= λ0 of A, we have |λ| < λ0.

Proof. Note that Λ 6= ∅ because 0 ∈ Λ, and Λ is bounded above by the sum of all the entries of
A. So λ0 is well-defined and nonnegative. Let (µn)n≥0 be a sequence of elements of Λ converging
to λ0; for every n ≥ 0, choose x(n) ∈ Z such that Ax(n) ≥ µnx

(n). As Z is compact, we may
assume that the sequence (x(n))n≥0 converges to some x ∈ Z, and then we have Ax ≥ λ0x.
Suppose that Ax 6= λ0x, then, as A > 0, we get A(Ax) > λ0Ax. As Ax ≥ 0 and Ax 6= 0, we
can multiply Ax by a positive scalar to get a vector y ∈ Z such that Ay > λ0y, which contradicts
the definition of λ0. So Ax = λ0x. Also, as x has at least one positive entry and A > 0, the
vector λ0x = Ax has all its entries positive, which implies that λ0 > 0 and x > 0.

Next we show that every complex eigenvalue λ 6= λ0 of A satisfies |λ| < λ0. Let λ be a
complex eigenvalue of A. Then there exists a nonzero vector y = (y1, . . . , yn) ∈ Cn such that
Ay = λy. For every i ∈ {1, . . . , n}, we have

|λ||yi| =

∣∣∣∣∣
n∑
j=1

Ai,jyj

∣∣∣∣∣ ≤∑
j=1

Ai,j|yj|.

In other words, we have A|y| ≥ |λ||y|. As we can normalize |y| to get an element of Z, this
shows that |λ| ≤ λ0. Suppose that |λ| = λ0. As A > 0, there exists a positive real number δ
such that A′ := A− δIn > 0. Then µ 7−→ µ− δ induces a bijection between the eigenvalues and
those of A′, and in particular λ0− δ is the biggest real eigenvalue of A′ (and it is positive because
A′ > 0). By applying the beginning of the paragraph to A′, we see that |λ − δ| ≤ λ0 − δ. But
then

λ0 = |λ| = |λ− δ + δ| ≤ |λ− δ|+ δ ≤ λ0,

so |λ− δ|+ δ = |λ|, so λ ∈ R≥δ, and we must have λ = λ0.

Let’s show that the eigenspace Eλ0 := Ker(A − λ0In) has dimension 1. Suppose that there
exists y = (y1, . . . , yn) ∈ Eλ0 (with real entries) such that the family {x, y} is linearly inde-
pendent. We may assume that y has at least one positive entry. Write x = (x1, . . . , xn), and let
µ = sup{ν ∈ R|∀i ∈ {1, . . . , n}, xi ≥ νyi}. Then x − νy ≥ 0 and x − νy 6> 0. The vector
x−νy is nonzero because x and y are linearly independent, and we haveA(x−νy) = λ0(x−νy).
As A > 0, x− νy ≥ 0 and λ0, this implies x− νy > 0, contradicting the choice of ν.

Now we show that λ0 is a simple root of the characteristic polynomial χA(t) of A. We can

find g ∈ GLn(R) such that g−1Ag is of the form
(
λ0 ∗
0 B

)
, with B ∈ Mn−1(R). We have

χA(t) = (t − λ0)χB(t). Suppose that the multiplicity of λ0 as a root of χA(t) is ≥ 2. Then λ0
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is a root of χB(t), so there exists z ∈ Rn−1 such that Bz = λ0z. Let y = g

(
0
z

)
∈ Rn, then

Ay = λ0y + αx for some α ∈ R. As dim(Eλ0) 6= 0, the vector y cannot be an eigenvector of
A, so α 6= 0. An easy induction (using the fact that Ax = λ0x) shows that, for every positive
integer r, we have Ary = λr0y + rαλr−1

0 x. As Ar > 0, this implies that

Ar|y| ≥ |Ary| = |λr0y + rαλr−1
0 x| ≥ |rαλr−1

0 x| − λr0|y| = λr−1
0 (r|αx| − λ0|y|).

As α 6= 0 and x > 0, there exists a positive integer r such that r|αx| − λ0|y| > λ0|y|, and then
we have Ar|y| > λr0|y|. As Ar > 0, applying the beginning of the proof to Ar, we see that this
implies that Ar has a real eigenvalue > λr0. But this impossible, because the eigenvalues of Ar

are the rth powers of the eigenvalues of A, so they all absolute value ≤ λr0.

Proof of the theorem. We prove (i). Let v0 = (1, . . . , 1) ∈ Rn. Then the fact that P is stochastic
is equivalent to the fact P ≥ 0 and Pv0 = v0. As all the matrices P r for r ≥ 1 have nonnegative
entries and satisfy P rv0 = v0, they are all stochastic. Also, if x = (x1, . . . , xn) ∈ (R≥0)n and
Q = (Qij) ∈Mn(R) is stochastic, then, for every i ∈ {1, . . . , n}, we have

(Qx)i =
n∑
j=1

Qijxj ≤ sup
1≤j≤n

xj.

Fix an integer r ≥ 1 such that P r > 0. By the lemma, the matrix P r has a simple real
positive eigenvalue λ0 such that every complex eigenvalue λ 6= λ0 of P r satisfies |λ| < λ0. By
the definition of λ0 in the lemma and the observation above about stochastic matrices, we have
λ0 ≤ 1. On the other hand, we have Pv0 = v0, so 1 is an eigenvalue of P , hence also of P r, and
so λ0 = 1. Let λ ∈ C be an eigenvalue of P , and y ∈ Cn be an eigenvector for this eigenvalue.
Then P ry = λry, so λr is an eigenvalue of P r. If λr 6= 1, then |λr| < 1 by the lemma, hence
|λ| < 1. If λr = 1, then the eigenvector y must be in Ker(P r − In), and we know (again by the
lemma) that this space is 1-dimensional. As v0 ∈ Ker(P r − In), the vector y must be a multiple
of v0, and then λ = 1.

Finally, if the characteristic polynomial of P is χP (t) = (t− λ1) . . . (t− λn), then that of P r

is χP r(t) = (t − λr1) . . . (t − λrn). So the multiplicity of 1 in χP (t) is at most its mutliplicity in
χP r(t), which we know is 1 by the lemma. This finishes the proof of (i).

Let’s prove (ii). As P and P T have the same characteristic polynomial, we know that 1 is a
simple eigenvalue of P T by (i), so the space of row vectors w such that wP = w has dimension
1. Let w = (w1, . . . , wn) be a nonzero vector in this space. Then we also have |w|P = |w|.
Indeed, for every j ∈ {1, . . . , n}, we have

|wj| =

∣∣∣∣∣
n∑
i=1

wiPij

∣∣∣∣∣ ≤
n∑
i=1

|wi|Pi,j
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(because all the Pij are nonnegative). Suppose that |w| 6= |w|P . Then there exists
j0 ∈ {1, . . . , n} such that |wj0 | <

∑n
i=1 |wi|Pij0 , and this implies that

n∑
i=1

|wi| =
n∑

i,j=1

|wi|Pij >
n∑
j=1

|wj|,

a contradiction. As w 6= 0, at least one of the |wi| is positive. If we choose as before
r ≥ 1 such that P r > 0, then |w| = P r|w|, so, for every j ∈ {1, . . . , n}, we have
|wj| =

∑n
i=1(P r)i,j|wi| > 0. This finishes the proof of (ii).

We finally prove (iii). As all the norms on Mn(R) are equivalent, it suffices to prove the state-
ment for a particular norm. By the existence of the Jordan normal form (actually by the Jordan-

Chevalley decomposition), there exists a matrix g ∈ GLn(R) with g−1Pg = A =

(
1 0
0 B

)
,

with B ∈ Mn−1(R) such that B = D + N , with D a diagonal matrix, N a nilpotent matrix and
DN = ND. Choose the operator norm ‖.‖ on Mn(R) coming from the usual Euclidian norm
on Rn. The entries of D are the eigenvalues of P different from 1, so ‖D‖ = ρ. As D and N
commute, we have, for every k ∈ Z≥0,

Bk = (D +N)k =
k∑
j=0

(
k

j

)
Dk−jN j.

If k ≥ n (in fact, k ≥ n− 1 suffices), then this simplifies to
∑n

j=0

(
k
j

)
Dk−jN j , because N j = 0

for j ≥ n. Hence, if k ≥ n,

‖Bk‖ ≤
n∑
j=0

(
k

j

)
‖D‖k−j‖N‖j ≤ ρk−n

n∑
j=0

kj‖N‖j.

Let A∞ =

(
1 0
0 B∞

)
, with B∞ = 0 ∈Mn−1(R). Then ‖Ak−A∞‖ = ‖Bk‖ for every k ≥ 0, so

Ak → A∞ as k → +∞ (because ρ < 1). This implies that P k → P ′ := gA∞g
−1 as k → +∞.

Also,
‖P k − P ′‖ = ‖g−1(Ak − A∞)g‖ ≤ ‖g‖‖g−1‖‖Bk‖,

which is bounded by the product of ρk and of a polynomial in k. So it only remains to show that
P ′ = P∞. As P ′ = limk→+∞ P

k, we have P ′P = PP ′ = P ′. Remember that 1 is a simple
eigenvalue of P and of P T . So all the rows of P ′ are multiples of the corresponding eigenvector
of P T , i.e. of v. Also, as P k is stochastic for every k ≥ 0, its limit P ′ is stochastic. So all the
rows of P ′ have nonnegative entries whose sum is 1, which means that they are all equal to v,
and that P ′ = P∞.

Definition VI.2.6. A Markov chain with transition matrix P is called ergodic if P is ergodic.
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In example VI.1.5, all the chains are ergodic, except the Markov chain of (1) when r is even.

Corollary VI.2.7. Let (Xn)n≥0 be an ergodic Markov chain with transition matrix P . Then P
has a unique stationary distribution µ, and, if µn is the distribution of Xn, we have

‖µn − µ‖TV ≤ f(n)ρn,

where f is a polynomial and ρ = max{|λ|, λ 6= 1 eigenvalue of P} < 1.

Proof. Let ν be the initial distribution of the Markov chain. By lemma VI.1.4, we have
µn = νP n. Let P∞ be the limit of the sequence (P n)n≥0. All the rows of P∞ are equal to
µ, so νP∞ = µ. If we use the L1 norm on the space of functions from X to R (for the counting
measure on X) to define the operator norm ‖.‖ on the space of matrices, then we have

‖µn − µ‖TV =
1

2
‖µn − µ‖1 =

1

2
‖νP n − νP∞‖1 ≤

1

2
‖ν‖1‖P n − P∞‖,

so the bound on ‖µn − µ‖TV follows immediately from (iii) of the theorem.

Remark VI.2.8. Although the bound on ‖µn − µ‖TV looks quite good (it is exponential), it is
useless if we want to know when exactly µn becomes close to the stationary distribution. We
need to analyse the problem more closely to answer that kind of question. This is what we will
now try to do in some particular cases.

Example VI.2.9. The chain of example VI.1.5(2) is ergodic. Indeed, let T ⊂ Sn be the union
of {1} and of the set of transpositions. Then, for r ≥ 1 and σ, σ′ ∈ Sn, we have P r(σ′, σ) > 0
if and only if σ′σ−1 can be written as a product of exactly r elements of T ; as 1 ∈ T , this is
equivalent to the condition that σ′σ−1 can be written as a product of s transpositions, for some
s ≤ r. So if r ≥ n(n−1)

2
(the length of the longest element of Sn), then P r(σ′, σ) > 0 for all

σ, σ′ ∈ Sn.

VI.3 A criterion for ergodicity

The definitions and results ot this sectiona are not used in the next sections.

Remember the following definitions :

Definition VI.3.1. A (finite unoriented) graph is a pair G = (X,E), where X is a finite set and
E is a set of unordered pairs {x, y} of distinct elements of X . We say that X is the set of vertices
of G and that E is the set of edges.

Let x, y ∈ X . A path connecting x and y in the graph G is a sequence p = (e0, . . . , en) of
edges of G such that we can write ei = {xi, yi} with x0 = x, yn = y and yi = xi+1 for every
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VI Application of Fourier analysis to random walks on groups

i ∈ {0, . . . , n − 1}. We call the integer n + 1 the length of the path p and denoted by |p|. If
x = y, we say that the path if a closed path or a loop based at x.

We say that the graph G is connected if for every x, y ∈ X , there exists a path connected x
and y. We say that G is bipartite if there exists a surjective function φ : X → {−1, 1} such that,
for every edge e = {x, y} of G, we gave φ(x) 6= φ(y). (In other parts, we can partition X into
two nonempty subsets X0 and X1 such that every edge connects an element of X0 to an element
of X1.)

For every x, y ∈ X , the distance d(x, y) between x and y is the length of the shortest path
connecting x and y; if there is no such path, then we set d(x, y) = +∞. Note that this defines a
metric on X if G is connected.

The following result is classical.

Proposition VI.3.2. Let G = (X,E) be a connected graph such that |X| ≥ 2. Then the follow-
ing conditions are equivalent :

(i) G is bipartite;

(ii) every loop in G has even length;

(iii) there exists x0 such that every loop based at x0 has even length.

Proof. We show that (i) implies (ii). Suppose that G is bipartite, and let φ : X → {−1, 1} be as
in the definition above. Let (e0, . . . , en) be a loop in G. We write ei = {xi, yi} with xi = yi+1

for 0 ≤ i ≤ n − 1 and yn = x0. Then an easy induction on i shows that, if i is even, we have
φ(xi) = φ(x0) and φ(yi) 6= φ(x0), and, if i is odd, we have φ(xi) 6= φ(x0) and φ(yi) = φ(x0).
But yn = x0, so φ(yn) = φ(x0), so n is odd, and the loop has even length.

It is obvious that (ii) implies (iii). Now assume (iii) and let’s show (i). Pick x0 ∈ X such
that every loop based at x0 has even length. We want to define a function φ : X → {0, 1}. Let
y ∈ X . As G is connected, there exists a path p = (e0, . . . , en) connecting x0 and x, and we set
φ(x) = (−1)|p|. We need to show that this does not depend on the path. Let q = (f0, . . . , fm) be
another path connecting x0 and x. Then (e0, . . . , en, fm, . . . , f0) is a loop based at x0, so it has
even length by assumption, so |p| + |q| and even, and (−1)|p| = (−1)|q|. Note that φ(x0) = 1
and that φ(x) = −1 if {x0, x} is an edge (such an edge must exist because G is connected and
|X| ≥ 2). So φ is surjective. Let e = {x, y} be an edge of G. Let p = (e0, . . . , en) be a path
connecting x0 and x. Then p′ := (e0, . . . .en, e) is a path connecting x0 and y, and |p′| = |p|+ 1,
so φ(x) 6= φ(y). This shows that G is bipartite.

We now come to the connection with Markov chains.

Proposition VI.3.3. Let X be a finite set and P : X × X → R be a stochastic function. We
define a graph G = (X,E) in the following way : a pair {x, y} of distinct elements of X is an
edge of G if and only if P (x, y) > 0.
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Suppose that G is connected and that it is not bipartite. Then the function P is ergodic.

Proof. Note that, for every x, y ∈ X and every n ≥ 1, we have P n(x, y) > 0 if and only if there
exists a path of length n connecting x and y.

By proposition VI.3.2, for every x ∈ X , there exists a loop px of odd length based at x. Write
2m + 1 = maxx∈X |px|, with m ∈ Z≥0. Let x ∈ X . Let’s show that, for every n ≥ 2m, there
is a loop of length n based at x. Let {x, z} be an edge. For every r ≥ 0, write q2r for the loop
of length 2r given by q2r = ({x, z}, {z, x}, . . . , {x, z}, {z, x}). Let n ≥ 2m. If n is even, then
qn is a loop of length n based at x. If n is odd, then r := n−|px|

2
is a nonnegative integer, and the

loop obtained by concatening px and q2r has length n and contains x.

Let δ = maxx,y∈X d(x, y). (This is called the diameter of the graph G.) Let x, y ∈ X and
n ≥ 2m + δ, and let’s show that there is a path of length connecting x and y (this will finish the
proof). Let p be any path connecting x and y. Then |p| ≤ δ, so, by the previous paragraph, there
exists a loop q of length n− |p| based at x. The concatenation of p and q is the desired path.

Corollary VI.3.4. (i) The chain of example VI.1.5(1) is ergodic if and only if r is odd.

(ii) The chain of example VI.1.5(3) is ergodic if r ≤ n− 1.

We will reprove (ii) by a different method in section VI.5.

Proof. (i) The graph corresponding to the chain has Z/rZ as set of vertices, and there is an
edge between a, b ∈ Z/rZ if and only if a−b ∈ {±1}. This graph is obviously connected,
and ti is easy to see that it is bipartite if and only if r is even. In particular, if r is odd, then
the proposition implies that the chain is ergodic.

Now assume that r is even. An easy induction on n shows that, for every n ≥ 1 and all
a, b ∈ Z/rZ, we have P n(a, b) = 0 if the image of n+ a+ b in Z/2Z is nonzero. Indeed,
this follows from the definition of P if n = 1. Suppose the result known up to some
n ≥ 1, and let’s prove it for n + 1. Let a, b ∈ Z/rZ be such that P n+1(a, b) 6= 0. As
P n+1(a, b) =

∑
c∈Z/rZ P (a, c)P n(c, b), there exists c ∈ Z/rZ such that P (a, c) 6= 0 and

P n(c, b) 6= 0. By the induction hypothesis and the case n = 1, this implies that a + c 6= 0
mod 2 and n+ c+ b 6= 0 mod 2, and then n+ a+ b+ 2c = n+ a+ b = 0 mod 2.

(ii) The graph corresponding to the Markov chain has the set Ωr of cardinality r subsets of
{1, . . . , n} as its set of vertices, and there is an edge linking A,A′ ∈ Ωr if and only if
|A ∩ A′| = r − 1. Let A0 = {1, . . . , r}. We first show that the graph is connected. Let
A ∈ Ωr. We writeA = {n1, . . . , nr}, and we choose the ordering of the elements such that
A ∩ A0 = {1, . . . , ns}, with s = |A ∩ A0|. Let m1, . . . ,mr−s be the elements of A0 − A.
For 0 ≤ i ≤ r − s, let Bi = {n1, . . . , ns+i,mi+1, . . . ,mr−s}. Then B0 = A0, Br−s = A,
and there is an edge between Bi and Bi+1 for every i ∈ {0, . . . , r − s − 1}. So the graph
is connected.
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VI Application of Fourier analysis to random walks on groups

Now we show that the graph is not bipartite, by finding a loop of odd length. Let
A = {1, . . . , r− 1, r+ 1} and B = {2, . . . , r, r+ 1}. Then {A0, A}, {A,B} and {B,A0}
are edges, so we have found a loop of length 3.

VI.4 Random walks on homogeneous spaces

Now suppose that we have a finite group G acting transitively (on the left) on the finite set X .
Fix x0 ∈ X , and let K be the stabilizer of x0 in G, so that we have a bijection G/K ' X ,
g 7−→ g · x0.

Warning : We will be using the counting measure on G to define convolution products and
Lp norms in this section. Beware constants ! (The reason for this choice is that we want the
convolution of two probability distributions to be a probability distribution.)

Definition VI.4.1. If π is a probability distribution on G, we denote by Pπ : X × X → R the
function defined by

Pπ(xK, yK) = π(yKx−1),

for all x, y ∈ G.

Definition VI.4.2. A left-invariant random walk on X driven by π and with initial distribution ν
is a Markov chain with state space X , initial distribution ν and transition matrix Pπ.

Here is the description of this Markov chain (Xn)n≥0 in words : We choosing a starting point
on X according to the probability distribution ν. At time n, we choose an element of G using
the probability distribution π and act on our position by this element to get to the position at time
n+ 1.

Remark VI.4.3. The matrix Pπ is actually bistochastic, i.e. both Pπ and its transpose are stochas-
tic. Indeed, for every y ∈ G, we have∑

x∈G/K

Pπ(xK, yK) =
∑

x∈G/K

π(yKx−1)

=
∑
x∈G

π(yx−1)

= 1.

In particular, the uniform probability distribution on X is an invariant distribution for Pπ. If
Pπ is ergodic, it is the only invariant distribution.

If the homogeneous space isG itself, we can give a simple criterino for ergodicity. (See lemma
16.20 and proposition 16.21 of [1].)
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Proposition VI.4.4. Suppose thatX = G, and let S = supp(π). WriteGS for the set of elements
of G that can be written as g1 . . . g2r for some r ≥ 0, with exactly r of the gi in S and r of the gi
in S−1.

Then GS is a subgroup of G, and the function Pπ is ergodic if and only if G = GS .

In particular, if π(1) 6= 0, then Pπ is ergodic if and only S generates G. More generally, if S
generates G and is not contained in a coset of a strict subgroup of G, then Pπ is ergodic. (Note
that we have S ⊂ gGS for every g ∈ S.)

Proposition VI.4.5. For every n ≥ 1, we have P n
π = Pπ∗n , where π∗n is the n-fold convolution

product of π.

Proof. We prove the result by induction on n. It is just the definition of Pπ if n = 1. Suppose
the equality known for some n ≥ 1, and let’s prove it for n+ 1. Let x, y ∈ X . Then

P n+1
π (xK, yK) =

∑
z∈G/K

Pπ(xK, zK)P n
π (zK, yK)

=
∑

z∈G/K

π(zKx−1)π∗n(yKz−1)

=
∑

z∈G, h∈K

π(zx−1)π∗n(yhz−1)

=
∑
h∈K

π∗(n+1)(yhx−1)

= π∗(n+1)(x, y).

Corollary VI.4.6. Let π a probability measure on G, and suppose that π is right invariant by
K. Consider a left-invariant random walk (Xn)n≥0 driven by π and with initial distribution
the Dirac measure concentrated at x0 ∈ X . Let µn be the distribution of Xn, and let µ be the
uniform probability distribution on X .

Then, for every n ≥ 0, we have

‖µn − µ‖2
TV ≤

1

4

∑
(ρ,V )∈Ĝ|V K 6=0 and ρ 6'11

dim(V )Tr((π̂(ρ)∗)n ◦ π̂(ρ)n),

where we denote by 11 the trivial representation of G.

Remember that, if (ρ, V ) ∈ Ĝ is an irreducible unitary representation of G and f : G→ C is
a function, then f̂(ρ) is then endomorphism of V defined by

f̂(ρ) =
∑
x∈G

f(x)ρ(x−1).
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Proof. Fix n ≥ 0. For every x ∈ G, we have

µn(x) = P n
π (x0, x) = π∗n(xK)

by lemma VI.1.4 and proposition VI.4.5. Let π0 be the uniform probability distribution on G.
By lemma VI.1.8, we have

‖µn − µ‖2
TV =

1

4

 ∑
x∈G/K

|µn(x)− µ(x)|

2

=
1

4

(∑
x∈G

|π∗n(x)− π0(x)|

)2

=
1

4
‖π∗n − π0‖2

1

≤ |G|
4
‖π∗n − π0‖2

2,

where the last inequality is the Cauchy-Schwarz inequality. (Note that we are using the counting
measure on G to define the Lp norms.) Let f = π∗n − π0 ∈ L2(G). By the Parseval formula
(theorem IV.6.3(iii), note the factor 1

|G| coming from the unnormalized Haar measure), we have

‖f‖2 =
1

|G|
∑

(ρ,V )∈Ĝ

dim(V )Tr(f̂(ρ)∗ ◦ f̂(ρ)).

So we need to calculate the f̂(ρ). Note that we have

f̂(ρ) = π̂(ρ)n − µ̂(ρ)

for every ρ ∈ Ĝ.

Suppose first that ρ = 11. Then π̂(ρ) = µ̂(ρ) = 1, so f̂(ρ) = 0.

Let (ρ, V ) ∈ Ĝ, and suppose that ρ 6' 11. Then µ̂(ρ) =
∑

x∈G ρ(x−1) is an element of
End(V ) that is G-equivariant, hence a multiple of idV by Schur’s lemma, and has trace equal
to 1
|G|
∑

x∈G χ(x) = 0 (by corollary IV.5.8). So µ̂(ρ) = 0, and f̂(ρ) = π̂(ρ)n. To finish the
proof, we just need to show that π̂(ρ) = 0 if V K = 0. Let T = π̂(ρ) =

∑
x∈G π(x)ρ(x−1) and

PK =
∑

x∈K ρ(x). As π is right invariant by K, we have ρ(x) ◦ T = T for every x ∈ K,
so PK ◦ T = |K|T . But PK is the orthogonal projection on V K by proposition V.1.7, so
Im(T ) ⊂ V K , and so T = 0 if V K = 0.

Corollary VI.4.7. With the notation of the previous corollary, suppose that (G,K) is a Gelfand
pair and that π is bi-K-invariant. As in section V.6, let Z be the dual space of (G,K) (i.e. the
set of spherical functions by theorem V.7.1).
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Then, for every n ≥ 0, we have

‖|µn − µ‖2
TV ≤

1

4

∑
ϕ∈Z, ϕ6=1

dim(Vϕ)|π̂(ϕ)|2n,

where now, if f ∈ C (K \G/K) and ϕ ∈ Z, the scalar f̂(ϕ) ∈ C is the spherical Fourier
transform, defined by

f̂(ϕ) =
∑
x∈G

f(x)ϕ(x−1).

Proof. The proof is almost the same as for the previous corollary, except that we use the Parseval
formula of corollary V.7.2 to calculate ‖π∗n − π0‖2

2. By this formula, we have

‖π∗n − π0‖2
2 =

1

|G|
∑
ϕ∈Z

dim(Vϕ)|f̂(ϕ)|2,

where f = π∗n−π0. If ϕ = 1 is the spherical function corresponding to the trivial representation,
then π̂(ϕ) = π̂0(ϕ) = 1, so f̂(ϕ) = 0. If ϕ 6= 1, then

π̂0(ϕ) =
∑
x∈G

ϕ(x−1) = 〈1, ϕ〉L2(G) = 0

(by (i) of theorem V.7.1 for example). So f̂(ϕ) = π̂(ϕ)n, which finishes the proof.

VI.5 Application to the Bernoulli-Laplace diffusion
model

Remember that the Bernoulli-Laplace diffusion model was described in example VI.1.5(3). We
have two positive integers r and b. This model is a Markov chain (Xn)n≥0 on the set Ωr of subsets
of cardinality r of {1, . . . , r + b} with initial distribution the Dirac distribution concentrated at
{1, . . . , r}. The group G := Sr+b acts transitively on Ωr, and the stabilizer of A0 := {1, . . . , r}
is K := Sr×Sb. The transition matrix P of the chain is given by

P (A′, A) =

{
(r−1)!(b−1)!

(r+b)!
if r − |A ∩ A′| = 1

0 otherwise.

Remember that we have defined in exercise V.8.2.1(e) a metric d on Ωr by
d(A,A′) = r − |A ∩ A′|, and that we have proved in V.8.2.1(d) (and V.8.2.1(f)) that the or-
bits of K on G/K ' Ωr are the spheres with center A0 for this metric. Bi-invariant probability
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VI Application of Fourier analysis to random walks on groups

distributions π on G correspond bijectively to probability distributions on the set K\G/K of K-
orbits on G/K, and the description of P implies easily that P = Pπ, where π is the bi-invariant
probability distribution that corresponding to the uniform distribution on the sphere with center
A0 and radius 1.

If µn is the distribution ofXn and µ is the uniform distribution of Ωr, then, by corollary VI.4.7,
we have

‖µn − µ‖2
TV ≤

1

4

∑
ϕ∈Z−{1}

dim(Vϕ)|π̂(ϕ)|2n.

We calculated all these terms in the exercises of section V.8.2. Suppose for example that r ≤ b
(if not, we can just switch r and b and we get an equivalent problem). Then we saw how to
decompose the quasi-regular representation of G on L2(Ωr) into irreducible subrepresentations
in exercise V.8.2.3 (see V.8.2.3(j) and V.8.2.3(k)), and we have exactly r + 1 of them. We
denote the corresponding spherical functions by ϕ0, . . . , ϕr, as in exercise V.8.2.4. In particular,
the function ϕ0 is just the constant function 1. We calculated these functions in V.8.2.3(f), but
actually we only need V.8.2.3(g). Indeed, we only care about π̂(ϕs), for 1 ≤ s ≤ r. As π
corresponds to the uniform distribution on the sphere or radius 1 centered at A0, the number
π̂(ϕs) is just the coefficient of σ1,r−1(A0) in ϕs (with the notation of exercise V.8.2.3), that is,

π̂(ϕs) = 1− s(r + b− s+ 1)

rb
.

Also, V.8.2.3(f) says that

dim(Vϕs) =

(
r + b

s

)
−
(
r + b

s− 1

)
if 1 ≤ s ≤ r.

So corollary VI.4.7 gives

‖µn − µ‖TV ≤
1

4

r∑
s=1

((
r + b

s

)
−
(
r + b

s− 1

))(
1− s(r + b− s+ 1)

rb

)2n

.

With some more effort, we can get the following result.

Theorem VI.5.1. (See theorem 10 of chapter 3F of [8].) There exists a universal constant
a ∈ R>0 such that, if n = r+b

4
(log(2(r + b)) + c) with c ≥ 0, then we have

‖µn − µ‖TV ≤ ae−c/2.

A different calculation (still using spherical functions) gives the following theorem :

Theorem VI.5.2. (See theorem 6.3.2 of [7].) If r = b is large enough, then, for
n = r+b

4
(log(2(r + b))− c) with 0 < c < log(2(r + b)), we have

‖µn − µ‖TV ≥ 1− 32e−c.
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VI.6 Random walks on locally compact groups

In this section, we will see a few results (mostly without proofs) about random walks on more
general groups. A good reference for many questions that we did not touch on here is Breuillard’s
survey [5].

We fix a locally compact group G and a left Haar measure on G.

VI.6.1 Setup

Definition VI.6.1.1. (See remark I.4.1.6.) A (complex) Radon measure on G is a bounded linear
functional on C0(G) (with the norm ‖.‖∞). We denote by M (G) the space of Radon measures
and by ‖.‖ its norm (which is the operator norm); this is a Banach space. If µ is a Radon measure,
we write f 7−→

∫
G
f(x)dµ(x) for the corresponding linear functional on C0(G).

Example VI.6.1.2. (1) Any regular Borel measure is a Radon measure on G (such measure
are called “positive” when we want to distinguish them from general Radon measures).

(2) If ϕ ∈ L1(G), then the linear functional f 7−→
∫
G
f(x)ϕ(x)dx is a Radon measure on G,

often denoted by ϕ(x)dx or ϕdx.

(3) For every x ∈ G, the linear functional C0(G)→ C, f 7−→ f(x) is a Radon measure on G,
called the Dirac measure at x.

We define the convolution product µ ∗ ν of two Radon measures µ and ν to be the linear
functional

f 7−→
∫
G×G

f(xy)dµ(x)dν(y).

Then it is not very hard to check that ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖ and that the convolution product is
associative on M (G). This makes M (G) into a Banach algebra, and the Dirac measure at 1 is a
unit element of M (G).

If µ = ϕdx and µ′ = ϕ′dx, then it is easy to check that µ ∗ µ′ = (ϕ ∗ ϕ′)dx, where ϕ ∗ ϕ′ is
the usual convolution in L1(G).

We denote by Ĝ the set of unitary equivalence classes of irreducible unitary representations of
G. We can extend the Fourier transform (both the ordinary and the spherical versions) to M (G)
:

(1) If µ ∈M (G) and (π, V ) ∈ Ĝ, define µ̂(π) ∈ End(V ) by

µ̂(π)(v) =

∫
G

π(x−1)(v)dµ(x).
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VI Application of Fourier analysis to random walks on groups

(2) Suppose thatG is the first entry of a Gelfand pair (G,K), and that ϕ is a spherical function
of positive type on G. Then, for every µ ∈M (G), we define µ̂(f) ∈ C by :

µ̂(f) =

∫
G

ϕ(x−1)dµ(x).

For both versions of the Fourier transform, the equality

µ̂ ∗ µ′ = µ̂µ̂′

for all µ, µ′ ∈ M (G) (where the product on the right is composition of endomorphisms in the
first case and multiplication in the second case).

The following theorem is a generalization of Lévy’s convergence criterion. We say that a
sequence (µn)n≥0 of Radon measures converges weakly if it converges in the weak* topology of
M (G).

Theorem VI.6.1.3. (See [12], section 5.2, theorem 5.2.)

(i) If µ, µ′ ∈M (G) are such that µ̂(π)µ̂′(π) for every π ∈ Ĝ, then µ = µ′.

(ii) Let (µn)n≥0 be a sequence of (positive) probability measures on G and µ be another prob-
ability measure on G. If (µn)n≥0 converges weakly to µ, then, for every (π, V ) ∈ Ĝ and
every v ∈ V , we have limn→+∞ µ̂n(π)(v) = µ̂(π)(v). Conversely, if, for every (π, V ) ∈ Ĝ
and all v, w ∈ V , we have limn→+∞〈µ̂n(π)(v), w〉 = 〈µ̂(π)(v), w〉, then (µn)n≥0 con-
verges weakly to µ.

VI.6.2 Random walks

We fix a regular Borel probability measure µ on G, and we want to understand the behavior of
µ∗n as n→ +∞.

The connection with random walks is that µ∗n is the distribution of the nth step of a Markov
chain with state spaceG, initial distribution δ1 and “transition matrix” µ(yx−1). (We are choosing
δ1 as initial distribution to simplify the notation, but this is not really necessary for most results.)
In other words, we consider a sequence (gn)n≥1 of independent random variables with values
in G and distribution µ. The Markov chain (Xn)n≥0 is defined by Xn = g1n . . . g1 (so X0 is
the constant function 1). We could also consider random walks on a space G/K, where K is a
subgroup of G : take (gn)n≥1 as before, fix some initial random variable X0 with values in G/K
(for example a constant function) and set Xn = gn . . . g1X0.

VI.6.3 Compact groups

In this section, we suppose that G is compact. We start with a general convergence result, due to
Ito and Kawada ([14], see also theorem 2.3 of [5]).
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Remember that the support of µ is by definition the set of x ∈ G such that, for every neigh-
borhood U of x, we have µ(U) > 0.

Theorem VI.6.3.1. Suppose that the support of µ generates a dense subgroup of G and is not
contained in any (left or right) coset of a proper closed subgroup of G. Then the sequence
(µ∗n)n≥0 converges weakly to the normalized Haar measure on G.

The proof is based on the convergence criterion of theorem VI.6.1.3(ii). We must show that, for
every (π, V ) ∈ Ĝ nontrivial, the sequence µ̂∗n(π) = µ̂(π)n converges to 0 in End(V ). Note that
V is finite-dimensional (because G is compact), so all the notions of convergence in End(V ) are
equivalent, and we just need to prove that all the eigenvalues of µ̂(π) are < 1 in absolute value.
Suppose that this not the case, then there exists a unit vector v ∈ V such that∫

G

π(x−1)(v)dµ(x) = λv,

with |λ| = 1. It is not hard to see that this forces π(x−1)(v) to be equal to λv µ-almost everywhere
and contradicts the hypothesis of the theorem.

Note that this result is much weaker that proposition VI.4.4 (and the Perron-Frobenius the-
orem), because it only guarantees the weak convergence of (µ∗n)n≥0 and says nothing about
convergence for other topologies (such as the one induced by the total variation distance) or
about the speed of convergence. If G is finite, all the notions of convergence on the set of prob-
ability measures on G coincide (it’s just a convex subset of the space of functions on G, which
is finite-dimensional); also, it follows from the upper bound lemma (corollary VI.4.6) that the
speed is convergence is exponential and controlled by the biggest eigenvalue of a µ̂(π) that is
6= 1. But if G is infinite, then Ĝ is also infinite, so, also µ̂(π) has all its eigenvalues < 1 (in
absolute value), we can get eigenvalues that are arbitrarily close to 1. In fact, there is a special
name for when this doesn’t happen :

Definition VI.6.3.2. We say that the probability measure µ on G has a spectral gap if there
exists ε > 0 such that, for every π ∈ Ĝ nontrivial and for every eigenvalue λ of µ̂(π), we have
|λ| < 1− ε.

Let’s first look at some examples.

Example VI.6.3.3. If µ = ϕdx with ϕ ∈ L2(G), then µ has a spectral gap. In fact, the upper
bound lemma (corollary VI.4.6) holds with essentially the same proof : for every n ≥ 0, we have

‖µ∗n − µG‖2
TV ≤

1

4

∑
(ρ,V )∈Ĝ|ρ 6'11

dim(V )Tr((π̂(ρ)∗)n ◦ π̂(ρ)n),

where we denote by 11 the trivial representation of G and by µG the normalized Haar measure on
G. (We could also prove a version for random walks on spaces G/K.) So we have convergence
in total variation distance and with exponential speed in this case.
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VI Application of Fourier analysis to random walks on groups

At the other extreme, we have measures with finite support.

Example VI.6.3.4. Take G = S1. Let λ1, . . . , λr ∈ R, and consider the measure

µ =
1

2r

r∑
s=1

(δe2iπλs + δe−2iπλs )

on G. Remember that Ĝ = Z (where n ∈ Z corresponds to the representation z 7−→ zn of G).
For every n ∈ Z, we have

µ̂(n) =
1

2r

r∑
s=1

(e2iπnλs + e−2iπnλs).

Suppose that the family (1, λ1, . . . , λr) is Q-linearly independent. Then Kronecker’s theorem
(see for example chapter XXIII of [13]) says that the set {(e2iπnλ1 , . . . , e2iπnλr), n ∈ Z} is dense
in (S1)r. So we can find n 6= 0 such that µ̂(n) is arbitrarily close to 1. In other words, the
measure µ has no spectral gap.

The question of which measures on nice groups like SU(d) have a spectral gap is a very
difficult and an active area of research. We’ll give some (difficult) recent results, due to Bourgain
and Gamburd (cf. [4] and [3]) for G = SU(d) and to Benoist and de Saxcé (cf. [2]) for a general
simple compact Lie group.

Theorem VI.6.3.5. Let G be a simple compact Lie group (for example G = SU(d) for d ≥ 2
or G = SO(d) for d = 3 or d ≥ 5), and let µ be a probability measure on G. We say that µ is
almost Diophantine if there exists c1, c2 > 0 such that for every proper closed subgroup H of G
and for every n ∈ Z≥0 big enough, we have µ∗n({x ∈ G|d(x,H) ≤ e−c1n}) ≤ e−c2n (where d is
any metric on G).

Then µ has a spectral gap if and only if it is amost Diophantine.

Although the next version has a generalization to any simple compact Lie group, we’ll just
state it for SU(d) for simplicity.

Theorem VI.6.3.6. Let G = SU(d), and let µ be a probability measure on G such that the
support of µ generates a dense subgroup of G (such a measure is sometimes called “adapted”).

If every element of the support of µ has algebraic entries, then µ has a spectral gap.

In fact, Benoist and de Saxcé conjecture that the algebraicity condition is not necessary (so
every adapted measure should have a spectral gap), see the introduction of [2].

Remark VI.6.3.7. The spectral gap question is also connected to the Banach-Ruziewicz problem
(see chapter 2 of Sarnak’s book [21] for the connection; another good reference on the Banach-
Ruziewicz problem is Lubotzky’s book [15]). This problem asks whether Lebesgue measure is
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the only (up to a constant) finitely additive SO(n+1)-invariant measure on Lebesgue measurable
subsets of the sphere Sn ⊂ Rn. The answer is known to be “no” for n = 1 and “yes” for n ≥ 2.
For n ≥ 4, it is due to Margulis and Sullivan and uses the fact that SO(n + 1) has a finitely
generated dense subgroup that satisfies Kazhdan’s property (T) for n ≥ 4 (in fact, the same
methods will show that Haar measure is the only left-invariant mean on any simple compact Lie
group that is not SO(n) with n ≥ 4). For n = 2, 3, the solution is originally due to Drinfeld and
uses the Jacquet-Langlands correspondence and the Ramanujan-Petersson conjecture. (All this
and more is explained in [15].)

VI.6.4 Convergence of random walks with Fourier analysis

We now present some example of random walks on compact groups (or homogeneous spaces)
that can be analyzed using Fourier analysis, in the spirit of section VI.5.

As we noted before (in example VI.6.3.3), the upper bound lemma (corollary VI.4.6) still
holds for general compact groups.

As for finite groups, Fourier analysis works best if the measure µ is conjugation or if µ is
bi-K-invariant and (G,K) is a Gelfand pair.

Random reflections in SO(n)

The reference for this result is Rosenthal’s paper [17]. Fix n ≥ 2 and θ ∈ (0, 2π). Let

Rθ =


cos θ sin θ 0
− sin θ cos θ

1
. . .

0 1

 ∈ SO(n),

and let µθ be the unique conjugation-invariant probability measure concentrated on the conjugacy
class ofRθ (in other words, the measure µθ is the image of the normalized Haar measure of SO(n)
by the map SO(n)→ SO(n), x 7−→ xRθx

−1).

Theorem VI.6.4.1. (i) There exist Γ,∆ > 0 (with ∆ independent of θ) such that, for every
n ≥ 1 and every c > 0, if k = 1

2(1−cos θ)
(n log n− cn), then

‖µ∗kθ − dx‖TV ≥ 1− Γe−2c −∆
log n

n
.

(ii) Suppose that θ = π. Then there exist Λ, γ > 0 such that, for every n ≥ 3 and every c > 0,
if k = 1

4
n log n+ cn, then

‖µ∗kθ − dx‖TV ≤ Λe−γc.

331



VI Application of Fourier analysis to random walks on groups

The Gelfand pair case

The reference for this result is Su’s paper [24].

Fix θ ∈ (0, π) and consider the following random process on S2 ' SO(3)/SO(2) :

- X0 is constant with value the North pole;

- to go from Xn to Xn+1, choose a direction (independently and uniformly) and move a
distance of θ following the geodesic (= big circle) in that direction.

This random walk is not driven by a measure on SO(3), but it is equivalent to one that is
(see section 3 of [24]). Let µn be the distribution of Xn and λ be the unique SO(3)-invariant
probability measure on §2. Then we have the following result :

Theorem VI.6.4.2. If n = c
sin2 θ

with c ≥ 0, then

0.433e−c/2 ≤ ‖µl − λ‖DD ≤ 4.442e−c/8.

In this theorem, ‖.‖DD is the discrepancy distance : If X is a metric space and µ, µ′ are two
(Borel) probability measures on X , then

‖µ− µ′‖DD = sup
B⊂X ball

|µ(B)− µ′(B)|.

It is bounded above by the total variation distance, but it can see some phenomena that the total
variation distance misses (see the next subsection).

Remark about the different types of convergence

The reference for this subsection is Su’s paper [23].

Consider a random walk (Xn)n≥0 on the circle S1 driven by the masure µ = 1
2
(δe2iπα+δe−2iπα),

for some α ∈ R irrational, and let µn be the distribution of Xn. Then :

- The general convergence result of Ito-Kawada (theorem VI.6.3.1) says that (µn)n≥0 con-
verges weakly to the normalized Haar measure dx on S1.

- On the other hand, we have seen in example VI.6.3.4 that µ has no spectral gap, so the
convergence cannot be too good. In fact, (µn)n≥0 does not converge to dx in total variation
distance.

- On the third hand, (µn)n≥0 does converge to dx (but not exponentially fast) in discrepancy
distance in many cases. More precisely, we have :

Theorem VI.6.4.3. Let η be the type of α, i.e.

η = sup{γ > 0| lim inf
m→+∞

mγ{mα} = 0}
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(where {.} is the fractional part). Then we have, for every ε > 0,

‖µn − dx‖DD = O(n−1/2η+ε)

and
‖µn − dx‖DD = Ω(n−1/2η−ε).

If α is irrational quadratic, we can do better : there exist constants c1, c2 > 0 such that, for
every n ≥ 1, we have

c1√
n
≤ ‖µn − dx‖DD ≤

c2√
n
.

It is known that η = 1 if α is algebraic, and also that the subset of type 1 elements of [0, 1] has
Lebesgue measure 1.

VI.6.5 Random walks on noncompact groups

We don’t assume that G is compact anymore. We fix a probability measure µ on G. One of the
many questions we can ask is whether a random walk on G driven by µ goes to infinity, and if
so, how fast.

A reference for this section are the excellent course notes of Quint ([16]).

First, we define a continuous linear operator Pµ : L2(G)→ L2(G) by setting

Pµ(f)(x) =

∫
G

f(yx)dµ(y)

if f ∈ Cc(G) and x ∈ G; this extends to L2(G) by continuity. (If µ = ϕdx with ϕ ∈ L1(G), this
is just the construction of theorem I.4.2.6(i) applied to the right regular representation of G.)

We denote by ρ(Pµ) the spectral radius of Pµ, seen as an element of the Banach algebra
End(L2(G)). We always have ρ(Pµ) ≤ 1 (because µ is a probability measure).

Theorem VI.6.5.1. (Kesten’s criterion, theorem 5.2 of [16].)

(i) If G is amenable, then ρ(Pµ) = 1.

(ii) Let H be the closure of the subgroup of G generated by the support of µ. If ρ(Pµ) = 1,
then H is amenable.

Definition VI.6.5.2. We say that G is compactly generated if there exists a compact subset K of
G that generates G.

If G is discrete, this just means that G is finitely generated.
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Definition VI.6.5.3. Suppose that G is compactly generated, and let K be a symmetric compact
subset generating G. We define jK : G→ Z by

jK(x) = min{n ∈ Z≥0|x ∈ Kn}

(with the convention that K0 = {1}).

Lemma VI.6.5.4. IfK and L are two symmetric compact subsets generatingG, then there exists
a > 0 such that jL ≤ ajK .

Corollary VI.6.5.5. (Corollary 7.3 of [16].) Suppose that G is compactly generated, and let
K be a symmetric compact subset generating G. Let µ be a probability measure on G, and let
(gn)n≥1 be a sequence of idenpendent random variables valued on G with distribution µ.

LetH be the closure of the subgroup ofG generated by the support of µ. IfH is not amenable,
then there exist α, ε > 0 such that, for every n ≥ 1, we have

P(jK(gn . . . g1) ≤ εn) = o(e−αn).

In particular, by the Borel-Cantelli lemma (see section 17.1 of [18]), if n is large enough, we
have jK(gn . . . g1) ≥ εn almost surely.

We finish with an example. We say that a subgroup H of SL2(R) is non-elementary if no
conjugate of H is contained in SO(2), in{(

a b
0 a−1

)
, a ∈ R×, b ∈ R

}
or in {(

a 0
0 a−1

)
, a ∈ R×

}
∪
{(

0 a
a−1 0

)
, a ∈ R×

}
.

(An equivalent condition is that H is not compact and does not fix a line in R2 or the union of
two lines in R2. Here the action of SL2(R) in R2 is the standard one, given by the inclusion
SL2(R) ⊂ GL2(R).)

Proposition VI.6.5.6. (Proposition 8.6 of [16].) A closed subgroup of SL2(R) is non-amenable
if and only if it is non-elementary.

Example VI.6.5.7. If t ∈ R×, we set

at =

(
t 0
t−1 0

)
.

If θ ∈ R, we set

rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

Then, if s, t > 1 and 0 < θ < π/2, the subgroup of SL2(R) spanned by as and rθatr
−1
θ

is non-elementary, and so corollary VI.6.5.5 applies to a random walk driven by the measure
µ = 1

2
(δat + δrθatr−1

θ
).

334



VI.7 Problem : Random walks on non-amenable groups

VI.7 Problem : Random walks on non-amenable groups

LetG be a locally compact group. We fix a left invariant Haar measure µG onG. In this problem,
all the measures on G are assumed to be regular Borel measures, and you may assume that G is
σ-compact.1

(1) Let H be a closed subgroup of G, and let µH be a left-invariant Haar measure on H . The
goal of this question is to show that, if there exists a mean on L∞(G) that is left invariant
by H , then H is amenable. 2

(a). We want to show that, for every open neighborhood U of 1 in G, there exists a subset
T of G/H such that :

• G/H =
⋃
t∈T Ut;

• for every compact subset K of G/H , the set K ∩ T is finite.

To simplify the proof (and because this is the only case we’ll need later), we as-
sume that G is the union of a countable family of compact subsets. Choose an open
neighborhood V of 1 in G such that V −1V ⊂ U .

(i) Show that, ifK is a compact subset ofG/H , there is no infinite sequence (tn)n≥0

of elements of K such that V tn ∩ V tm = ∅ for n 6= m.

(ii) Write G/H =
⋃
n≥0Kn with the Kn compact subsets of G/H such that

Kn ⊂ Kn+1 for every n ≥ 0. Define a family (Tn)n≥0 of finite subsets of
G/H inductively like so :

∗ T0 = ∅;

∗ for n ≥ 1, take for Tn a maximal finite subset of
Ln := Kn − (UT0 ∪ . . . ∪ UTn−1) such that V t ∩ V t′ = ∅ for all
t, t′ ∈ Tn such that t 6= t′.

Show that the definition makes sense and that we have Kn ⊂
⋃n
i=0 UTi for every

n ≥ 1.

(iii) Show that T :=
⋃
n≥0 Tn satisfies the two required properties.

(b). Show that there exists a bounded continuous function θ : G→ R≥0 such that :

• for any compact subset K of G, the function θ|KH has compact support;

• for every x ∈ G, we have
∫
H
θ(xy)dµH(y) = 1.

(Hint : Take T as in question (a) with U relatively compact, take ϕ ∈ C +
c (G) such

that ϕ|U = 1, define ψ by ψ(x) =
∑

t∈T ϕ(xg−1
t ) where gt ∈ G is a lift of t, and

1We are mostly interested in compactly generated groups, and those are clearly σ-compact.
2The converse is also true and much easier to prove, but we won’t need it.

335



VI Application of Fourier analysis to random walks on groups

modify ψ a bit.)

(c). For every ϕ ∈ L∞(H), define ϕθ : G→ C by

ϕθ(x) =

∫
H

ϕ(y)θ(x−1y)dµH(y).

Show that ϕθ ∈ L∞(G).

(d). If M is a mean on L∞(G) that is left-invariant by H , show that ϕ 7−→ M(ϕθ) is a
left-invariant mean on L∞(H).

(2) Let T : V → W be a bounded linear operator between two normed C-vector spaces.

(a). If V and W are Hilbert spaces and if Im(T ) is not dense in W , show that T ∗ is not
injective.

(b). If V is complete and Im(T ) is not closed in W , show that there exists a sequence
(vn)n≥0 of norm 1 vectors in V such that limn→+∞ T (vn) = 0.

(3) Let µ be a probability measure on G. For every f ∈ Cc(G), we define a function
Pµf : G→ C by

(Pµf)(x) =

∫
G

f(yx)dµ(y).

(a). For every f ∈ Cc(G), show that Pµf is continuous and that ‖Pµf‖2 ≤ ‖f‖2.

(b). Show that Pµ extends to a continuous linear operator Pµ : L2(G) → L2(G) and that
we have ‖Pµ‖op ≤ 1.

(c). Show that (Pµ)∗ = Pν , where ν is the probability measure defined by
ν(E) = µ(E−1).

(4) Suppose thatG is amenable, and let µ be a probability measure onG. We want to show that
ρ(Pµ) = 1. (Where ρ(Pµ) is the spectral radius of Pµ, seen as an element of End(L2(G)).)

(a) For every ε > 0, show that there exists a compact subset K of G and a function
f ∈ L2(G) such that :

∗ µ(K) ≥ 1− ε;

∗ ‖f‖2 = 1;

∗ supx∈K ‖Lxf − f‖2 ≤ ε.

(b) For every ε > 0, show that there exists a function f ∈ L2(G) such that ‖f‖2 = 1 and
‖Pµf − f‖2 ≤ ε.

(c) Show that ρ(Pµ) = 1.

(5) Let µ be a probability measure on G. Suppose that ρ(Pµ) = 1, and let H be the closure of
the subgroup generated by the support of µ. (Where the support of µ is the set of x ∈ G
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such that every open neighborhood of x has positive volume for µ.) We want to show that
H is amenable.

(a). Show that at least one of the following conditions holds :

(α) There exists λ ∈ C such that |λ| = 1 and Pµ − λidL2(G) is not injective.

(β) There exists λ ∈ C such that |λ| = 1 and Im(Pµ − λidL2(G)) is not dense in
L2(G).

(γ) There exists λ ∈ C such that |λ| = 1 and Im(Pµ − λidL2(G)) is not closed in
L2(G).

(b). Suppose that condition (α) holds.

(i) Show that Pµ − idL2(G) is not injective.

(ii) Show that there exists a nonzero element of L2(G) that is left H-invariant.

(iii) Show that H is compact.

(c). If condition (β) holds, show that H is compact.

(d). Suppose that condition (γ) holds.

(i) Show that there exists a sequence (fn)n≥0 of norm 1 elements of L2(G) such that
limn→+∞ ‖Pµfn − λfn‖2 = 0.

(ii) Define gn : G→ R≥0 by

gn(x) = ‖Lxfn − λfn‖2
2.

Show that the sequence (gn)n≥0 converges to 0 in L1(G, µ) (note the measure !).

(iii) Show that we may assume that limn→+∞ gn(x) = 0 µ-almost everywhere on G.

(iv) Define hn : G→ R≥0 by hn(x) = |fn(x)|2. Show that
∫
G
hn(x)dµG(x) = 1 for

every n and that limn→+∞ ‖Lxhn − hn‖1 µ-almost everywhere on G. (Note that
we are back in L1(G).)

(v) Show that there exists a mean M on L∞(G) that is left invariant by H .

(6) If K is a compact symmetric (i.e. K−1 = K) subset of G that generates G, we define
jK : G→ Z≥0 by

jK(x) = min{n ∈ Z≥0|x ∈ Kn}
(with the convention that K0 = {1}).

Show that, if L is another compact symmetric subset that generates G, then there exists
a > 0 such that jL ≤ ajK .

- Let K be a compact symmetric subset of G with nonempty interior. The goal of this
question is to show that the sequence (µG(Kn)1/n)n≥1 converges.
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(a). If A, B and C are compact subsets of G, show that

µG(AB)µG(C) ≤ µG(AC)µG(C−1B).

(Hint : Look at 11AC ∗ 11C−1B.)

(b). Show that, for all n,m ∈ Z≥1, we have

µG(Kn+m) ≤ µG(K)−1µG(Kn+1)µG(Km+1).

(c). Conclude.

(7) Let µ be a probability measure onG. Suppose that the closureH of the subgroup generated
by the support of µ is not amenable, and that G is compactly generated. Fix a symmetric
compact subset K of G generating G. We want to show that there exist ε, α > 0 such that,
if (gn)n≥1 is a sequence of independent random variables valued in G with distribution µ,
then, for every n ≥ 0, we have

P(jK(gn . . . g1) ≤ εn) = o(e−αn).

In other words, we want to show that

µ∗n(Kbεnc) = o(e−αn),

where µ∗n is the image of the measure µn on Gn by the multiplication map
(x1, . . . , xn) 7−→ x1 . . . xn. (The equivalence of these two statements is basically the
definition of “independent”, and you don’t need to prove it.)

(a). Show that we may assume that K has nonempty interior.

(b). Show that, for every compact subset L of G and every n ≥ 1, we have

µ∗n(L)µG(K) ≤ 〈P n
µ 11LK , 11K〉L2(G).

(c). Let ε > 0. Show that there exists α > 0 such that, for every n ≥ 1, we have

〈P n
µ 11Kbεnc+1 , 11K〉L2(G) = o(e−αn‖11Kbεnc+1‖L2(G)‖11K‖L2(G)).

(d). Show that, if we choose ε small enough in (c), then we have

〈P n
µ 11Kbεnc+1 , 11K〉L2(G) = o(e−αn/2).

(e). Conclude.
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A Urysohn’s lemma and some
consequences

A.1 Urysohn’s lemma

Definition A.1.1. A topological space X is called normal if whenever we have two disjoint
closed subsets A and B of X , there exist open subsets U and V of X such that A ⊂ U and
B ⊂ V .

Proposition A.1.2. Any topological space that is compact Hausdorff or metrizable is normal.

Theorem A.1.3 (Urysohn’s lemma). Let X be a normal topological space, and let A, B be two
disjoint closed subsets of X . Then there exists a continuous functions f : X → [0, 1] such that
f(x) = 0 for every x ∈ A and f(x) = 1 for every x ∈ B.

A.2 The Tietze extension theorem

Corollary A.2.1 (Tietze extension theorem). LetX be a normal topological space,A be a closed
subset of X and f : A → C be a continuous function. Then there exists a continuous function
F : X → R such that F|A = f and that supx∈X |F (x)| = supx∈A |f(x)|.

A.3 Applications

Corollary A.3.1. Let X be a locally compact Hausdorff topological space, and let K ⊂ U be
two subsets of X such that K is compact and U is open. Then there exists a continuous function
with compact support f : X → [0, 1] such that f|K = 1 and supp f ⊂ U .

Proof. As X is locally, for every x ∈ K, we can find an open neighborhood Vx of x such that
V x is compact and contained in U . We have K ⊂

⋃
x∈K Vx; as K is compact, we can find

x1, . . . , xn ∈ K such that K ⊂
⋃n
i=1 Vxi . Set K ′ =

⋃n
i=1 V xi . Then K ′ is a compact subset of

X , it is contained in U and its interior contains K. Applying the same procedure to K ′subsetU ,
we can find a compact subset K ′′ ⊂ U of X whose interiot contains K ′.
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The spaceK ′′ is compact, hence normal, and its subsetsK andK ′′−K̊ ′ are closed and disjoint,
so, by Urysohn’s lemma, we have a continuous function f : K ′′ → [0, 1] such that f|K = 1 and
f|K′′−K̊′ = 0. We extend f to X by setting f(x) = 0 if x ∈ X −K ′′. Then f is equal to 0 (hence
comtinuous) on X −K ′, and it is also continuous on K̊ ′′. As X −K ′ and K̊ ′′ are open subset
whose union is X , the function f is continuous on X . It is clear from the construction of f that
it satisfies all the desired properties.

Corollary A.3.2. Let X be a locally compact Hausdorff topological space, and let K ⊂ U be
two subsets of X such that K is compact and U is open. Then, for every continuous function
f : K → C, there exists a continuous function with compact F : X → C such that :

(a) supp(F ) ⊂ U ;

(b) F|K = f ;

(c) supx∈X |F (x)| = suppx∈K |f(x)|.

Proof. By corollary A.3.1, we can find a continuous function with compact support
ψ : X → [0, 1] such that ψ|K = 1 and supp(ψ) ⊂ U . On the other hand, we can find, as
in the proof of corollary A.3.1, a compact set K ′ ⊂ U whose interior contains suppψ. Applying
the Tietze extension to the normal space K ′, we get a continuous function f ′ : K ′ → C such
that f ′|K = f and suppx∈K′ |f ′(x)| = suppx∈K |f(x)|. We define a function F : X → C by
F (x) = f ′(x)ψ(x) if x ∈ K ′, and F (x) = 0 if x ∈ X −K ′. This functuion F clearly satisfies
conditions (a)-(c), so we just need to check that it is continuous. But this follows from the fact
that F is continuous on the open sets X − supp(ψ) (because it is zero on that set) and K̊ ′, and
that the union of these open sets is X .
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B Useful things about normed vector
spaces

B.1 The quotient norm

See [19] 18.15 or [20] 1.40, 1.41.

Definition B.1.1. Let V be a normed vector space and W ⊂ V be a subspace. Then the quotient
seminorm on V/W is defined by

‖x+W‖ = inf
w∈W
‖v + w‖.

If W is closed, this is called the quotient norm.

Proposition B.1.2. (i) The formula of the preceding definition gives a seminorm on V/W ,
which is a norm if and only if W is closed in V .

(ii) If V is a Banach space andW is closed in V , then V/W is a Banach space for the quotient
norm.

Proof. (i) Let v, v′ ∈ V and λ ∈ C. Then we have

‖v+v′+W‖ = inf
x∈W
‖v+v′+w‖ ≤ inf

w∈W
‖v+w‖+ inf

w∈W
‖v′+w‖ = ‖v+W‖+‖v′+W‖.

If λ = 0, then λv ∈ W , so ‖λv +W‖ = 0; otherwise,

‖λv +W‖ = inf
w∈W
‖λv + w‖ = inf

w∈W
‖λ(v + w)‖ = |λ| inf

w∈W
‖v + w‖ = |λ|‖v +W‖.

This shows that the quotient seminorm is indeed a seminorm on V/W . Now let’s prove
that ‖v + W‖ = 0 if and only v ∈ W , which will imply the last statement. By definition
of ‖v + W‖ (and the fact that W is a subspace), we have ‖v + W‖ = 0 and and only if,
for every ε > 0, there exists w ∈ W such that ‖v − w‖ < ε. This is equivalent to v ∈ W .

(ii) Let (vn)n≥0 be a sequence in V such that (vn +W )n≥0 is a Cauchy sequence in V/W . Up
to replacing (vn)n≥0 by a subsequence, we may assume that ‖vn+1 − vn + W‖ < 2−n for
every n ≥ 0. We define another sequence (v′n)n≥0 such that v′n ∈ vn + W for n ≥ 0 and
‖v′n − v′n−1‖ < 2−n+1 for n ≥ 1, in the following way :
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B Useful things about normed vector spaces

• Take v′0 = v0.

• Suppose that we have v′0, . . . , v
′
n satisfying the two required conditions, with n ≥ 0.

Then we have ‖vn+1 − v′n + W‖ = ‖vn+1 − vn + W‖ < 2−n, so, by definition of
the quotient norm, we can find w ∈ W such that ‖vn+1 − v′n + w‖ < 2−n. Take
v′n+1 = vn+1 + w.

By the second condition, (v′n)n≥0 is a Cauchy sequence, so it has a limit v in V . By the
first condition, v′n + W = vn + W for every n ≥ 0, so v + W is the limit of the sequence
(vn +W )n≥0 in V/W .

B.2 The open mapping theorem

This is also known as the Banach-Schauder theorem. See for example theorem 5.10 of [19].

Theorem B.2.1. Let V and W be Banach spaces, and let T : V → W be a bounded linear
transformation that is bijective. Then T−1 : W → V is also bounded.

B.3 The Hahn-Banach theorem

See [19] Theorem 5.16 or [20] Theorems 3.2-3.7.

Theorem B.3.1 (Hahn-Banach theorem, analytic version, real case). Let V be a vector space
over R, let p : V → R such that :

(a) p(v + v′) ≤ p(v) + p(v′) for all v, v′ ∈ V (i.e. p is subadditive);

(b) p(λv) = λp(v) for every v ∈ V and ever λ ∈ R>0.

Let E ⊂ V be a K-subspace and let f : E → K be a linear functional such that, for every
x ∈ E, we have f(x) ≤ p(x).

Then there exists a linear function F : V → K such that F|W = f and F (x) ≤ p(x) for every
x ∈ V .

Note that, in this version, there is no norm or topology or V and no continuity condition on
the linear functionals.

Proof. Consider the set X of pairs (W, g), where W ⊃ E is a subspace of V and g : W → R
is a linear functional such that g|E = f and g(x) ≤ p(x) for every x ∈ W . We order this set by
saying that (W, g) ≤ (W ′, g′) if W ⊂ W ′ and g = g′|W . Suppose that (Wi, gi)i∈I is a nonempty
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totally ordered family in X , and let’s show that it has an upper bound. We set W =
⋃
i∈IWi;

this is a subspace of V because (Wi)i∈I is totally ordered (so, for all i, j ∈ I , we have Wi ⊂ Wj

or Wj ⊂ Wi). We define g : W → R in the following way : If v ∈ W , then there exists i ∈ I
such that v ∈ Wi, and we set g(v) = gi(v). We obviously have g(v) ≤ p(v). Also, if j ∈ I is
another element such that v ∈ Wj , then we have (Wi, fi) ≤ (Wj, fj) or (Wj, fj) ≤ (Wi, fi), and
in both cases this forces gi(v) = gj(v), so the definition makes sense. It is also easy to see that g
is R-linear, so that (W, g) ∈ X . This is an upper bound for the family.

So we can apply Zorn’s lemma to the set X . Let (W, g) be a maximal element of X , and
let’s show that W = V . Suppose that W 6= V , and choose v ∈ V −W . We want to extend g
to a linear functional h on on W ⊕ Rv such that h ≤ p, which will contradict the maximality
of (W, g). This just means that we have to choose the value of h(v), say h(v) = α ∈ R. The
condition h ≤ p means that we want, for every w ∈ W and every t ∈ R :

h(w + tv) = g(w) + tα ≤ p(w + tv).

If the inequality above is true for a t ∈ R and all w ∈ W , it is also true for all ct, c ∈ R>0, and
for all w ∈ W (because W is a subspace and the values of both g and p are multiplied by c when
their argument is multiplied by c). So it suffices to check it for t = ±1, which means that we
want, for every w ∈ W :

g(w) + α ≤ p(w + v) and g(w)− α ≤ p(w − v).

In other words, we want to have :

sup
w∈W

(g(w)− p(w − v)) ≤ α ≤ inf
w∈W

(p(w + v)− g(w)).

We can find such a α because we have, for all w,w′ ∈ W ,

g(w) + g(w′) = g(w + w′) ≤ p(w + w′) ≤ p(w + v) + p(w′ − v),

i.e.
g(w′)− p(w′ − v) ≤ p(w + v)− g(w).

So we get our contradiction, we can conclude that W was equal to V after all, and we are done.

Theorem B.3.2 (Hahn-Banach theorem, analytic version, complex case). Let V be a vector
space over C, let p : V → R≥0 be a semi-norm, 1 let E ⊂ V be a C-subspace and let f : E → C
be a linear functional such that, for every x ∈ E, we have |f(x)| ≤ p(x).

Then there exists a linear function F : V → C such that F|W = f and |F (x)| ≤ p(x) for
every x ∈ V .

1This means that, for all x, y ∈ V and all λ ∈ C, we have p(x+ y) ≤ p(x) + p(y) and p(λx) = |λ|p(x).

343



B Useful things about normed vector spaces

Proof. We see V and E as R-vector spaces, and define a R-linear functional h : E → R by

h(v) = 1
2
(f(v) + f(v)).

Then we have, for every v ∈ E,

h(v) ≤ 1
2
(|f(v)|+ ||f(v)|) ≤ p(v).

Note that satisfies conditions (a) and (b) of theorem B.3.1. By that theorem, we can find a R-
linear functional H : V → R such that H|E = h and that H(v) ≤ p(v) for every v ∈ V . Define
F : V → C by

F (v) = H(v) +
1

i
H(iv),

and let’s show that it has all the desired properties.

(i) F is R-linear by construction, and, for everey v ∈ V , we have

F (iv) = H(iv) +
1

i
H(i(iv)) = iF (v).

So F is C-linear.

(ii) If v ∈ E, then

F (v) = h(v) +
1

i
h(iv) =

1

2
(f(v) + f(v)− if(iv)− if(iv)) = f(v)

(because f is C-linear), so F|E = E.

(iii) Let v ∈ V and choose θ ∈ R such that eiθF (v) ∈ R≥0. Then we have

|F (v)| = eiθF (v) = F (eiθv) = H(eiθv)− iH(ieiθv) ∈ R.

As H(eiθv) ∈ R and iH(eiθv) ∈ iR, we must have iH(ieiθv) = 0. So

|F (v)| = H(eiθv) ≤ p(eiθv) = p(v).

Corollary B.3.3. Let V be a normed vector space (over R or C), let W be a subspace of V , and
let TW be a bounded linear functional on W . Then there exists a bounded linear functional T on
V such that T|W = TW and ‖T‖op = ‖TW |op.

Proof. LetC = ‖TW‖op. Apply the Hahn-Banach with p(v) = C‖V ‖. We get a linear functional
T : V → C extending TW and such that |T (v)| ≤ C‖v‖ for every v ∈ V , which means that T is
bounded and ‖T‖op ≤ ‖TW‖op. As the inequality ‖TW‖op ≤ ‖T‖ is obvious, we are done.
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Corollary B.3.4. (See Theorem 5.20 and Remark 5.21 of [19].) Let V be a normed vector space
over K = R or C. We write V ∗ = Hom(V,K). Then the map V → V ∗∗ sending v ∈ V to the
linear functional v̂ : V ∗ → C, T 7−→ T (v) is an isometry.

In particular, this map is injective, which means that bounded linear functionals on V separate
points.

We can now deduce the geometric versions of the Hahn-Banach theorem. (In finite dimension,
these are sometimes called “the hyperplane separation theorem”).

Definition B.3.5. Let V be a vector space over the field K, with K = R or C. We say that V is
a topological vector space over K if it has a topology such that :

- (V,+) is a topological group;

- the map K × V → V , (a, v) 7−→ av is continuous.

We say that a topological vector space is locally convex if every point has a basis of convex
neighborhoods.

Example B.3.6. (a) Any normed vector is a locally convex topological vector, as is its dual
for the weak* topology.

(b) Let (X,µ) be a measure space, let p ∈ (0, 1), and consider the space Lp(X,µ), with the
metric given by

d(f, g) =

∫
X

|f(x)− g(x)|pdµ(x).

This makes Lp(X,µ) into a topological vector space, which is not locally convex if µ is
atomless and finite (for example if µ is Lebesgue measure on a bounded subset of Rn, or
the Haar measure on a compact group).

Theorem B.3.7 (Hahn-Banach theorem, first geometric version). Let V be a topological R-
vector space, and let A and B be two nonempty convex subsets of V . Suppose that A is open and
that A ∩B = ∅.

Then there exists a continuous linear functional f : V → R and c ∈ R such that, for every
x ∈ A and every y ∈ B, we have

f(x) ≤ c ≤ f(y).

We are going to use as our function p what is called the gauge of an open convex set C 3 0.

Lemma B.3.8. Let C be a nonempty open convex subset of V , and suppose that 0 ∈ C. We
define the gauge p : V → R≥0 of C by

p(v) = inf{α > 0|v ∈ αC}.

Then p satisfies conditions (a) and (b) of theorem B.3.1, and moreover :
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(c) If V is a normed vector space, then there exists M ∈ R≥0 such that, for every v ∈ V ,

0 ≤ p(v) ≤M‖v‖.

(d) C = {v ∈ V |p(v) < 1}.

Proof. The fact that p(λv) = λp(v) for every λ ∈ R>0 and every v ∈ V follows immediately
from the definition (and doesn’t use the convexity or openness of C).

Let’s prove (c). As C is open and 0 ∈ C, there exists r > 0 such that C ⊃ {v ∈ V |‖v‖ < r}.
Then, for every v ∈ V − {0}, we have r

‖v‖v ∈ C, so p(v) ≤ 1
r
‖v‖.

Let’s prove (d). Let v ∈ C. As C is open, there exists ε > 0 such that (1 + ε)v ∈ C. So
p(v) ≤ 1

1+ε
< 1. Conversely, let v ∈ V such that p(v) < 1. Then there exists α ∈ (0, 1) such

that x ∈ αC, i.e. 1
α
v ∈ C, and then we have v = α( 1

α
v) + (1− α)0 ∈ C, because C is convex.

Finally, we prove that p is subadditive, i.e. condition (b). Let v, w ∈ V . Let ε > 0. By (b)
(and the first property we proved), we have 1

p(v)+ε
v ∈ C and 1

p(w)+ε
w ∈ C. As C is convex, this

implies that, for every t ∈ [0, 1], we have

t
p(v)+ε

v + 1−t
p(w)+ε

w ∈ C.

Taking t = p(v)+ε
p(v)+p(w)+2ε

, we get that

1

p(v) + p(w) + 2ε
(v + w) ∈ C,

i.e. that p(v + w) ≤ p(v) + p(w) + 2ε. As ε > 0 was arbitrary, this implies that
p(v + w) ≤ p(v) + p(w).

Lemma B.3.9. Let C ⊂ V be a nonempty open convex subset, and let v0 ∈ V − C.

Then there exists a continuous linear functional F on V such that, for every v ∈ C, we have
F (v) < F (v0).

Proof. We may assume 0 ∈ C (by translating the situation). Let p : V → R≥0 be the gauge of
C, i.e. the function defined in the preceding lemma.

Let E = Rv0, and let f : E → R be the linear functional defined by f(λv0) = λ, for
every λ ∈ R. Let’s show that f ≤ p. If λ ≤ 0, then f(λv0) ≤ 0 ≤ p(λv0). If λ > 0, then
λ = g(λv0) ≤ p(λv0) because 1

λ
(λv0) = v0 6∈ C.

So we can apply the analytic form of the Hahn-Banach theorem to get a linear function
F : V → R such that F (v) ≤ p(v) for every v ∈ V . In particular, F (v0) = 1, and, if v ∈ C,
then F (v) ≤ p(v) < 1 (by (d) in the first lemma).
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Finally, we show that F is continuous. Note that, if v ∈ −C, we have −F (v) = F (−v) < 1.
So, for every v in the open neighborhood U := C ∩ (−C) of 0, we have |F (v)| < 1. If ε > 0,
then εU is an open neighborhood of 0 in V , and we have |F (v)| < ε for every v ∈ εU . So F
is continuous at 0. As F is linear and translations are continuous on V , this implies that F is
continous at every point of V .

Proof of the theorem. Let C = A− B = {x− y, x ∈ A, y ∈ B}. Then C is clearly convex, C
is open because it is equal to

⋃
y∈B(A − y), and 0 6∈ C because A ∩ B = ∅. So we can apply

the second lemma above to get a continuous linear functional f : V → R such that f(x) < 0 for
every x ∈ C. Then, for every x ∈ A and every y ∈ B, we have f(x) < f(y). So the conclusion
is true for f and for c = supx∈A f(x).

Theorem B.3.10 (Hahn-Banach theorem, second geometric version). Let V be a locally convex
topological R-vector space, and let A and B be two nonempty convex subsets of V . Suppose that
A is closed, that B is compact, and that A ∩B = ∅.

Then there exists a continuous linear functional f : V → R and c ∈ R such that, for every
x ∈ A and every y ∈ B, we have

f(x) < c < f(y).

Proof. We first find a convex open neighborhood U of 0 in V such that (A+U)∩ (B+U) = ∅.
(Note : this only uses that V is locally and that A is closed and B compact, but not the fact that
A and B are convex.)

For every x ∈ B, choose a symmetric convex open neighborhood Ux of 0 such that
(x + Ux + Ux + Ux) ∩ A = ∅; as Ux is symmetric, this is equivalent to saying that
(x + Ux + Ux) ∩ (A + Ux) = ∅. As B is compact, we can find x1, . . . , xn ∈ B such that
B ⊂

⋃n
i=1(xi + Uxi). Let U =

⋂n
i=1 Uxi . Then U is a convex open neighborhood of 0, and we

have B + U ⊂
⋃n
i=1(xi + Uxi + U) and A+ U ⊂

⋂n
i=1(A+ Uxi), so (B + U) ∩ (A+ U) = ∅.

The sets A + U and B + U are convex and open, so, by theorem B.3.7, there exists a con-
tinuous linear functional f : V → R and c′ ∈ R such that f(x) ≤ c′ ≤ f(y) for every
x ∈ A + U and every y ∈ B + U . As B is compact and f continuous, there exists y0 ∈ B
such that f(y0) = miny∈B f(y). In particular, c′ < miny∈B f(y). Choose c ∈ R such that
c′ < c < miny∈B f(y). Then we have f(x) < c < f(y) for every x ∈ A and every y ∈ B.
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B.4 The Banach-Alaoglu theorem

See section 15.1 of [18] or Theorem 3.15 of [20]. This theorem is also called “Alaoglu’s theo-
rem”.

Theorem B.4.1. Let V be a normed vector space. Then the closed unit ball in Hom(V,C) is
compact Hausdorff for the weak* topology.

Compare with the following results, usually called “Riesz’s lemma” or “Riesz’s theorem” (see
section 13.3 of [18] or Theorem 1.22 of [20]) :

Theorem B.4.2. Let V be normed vector space. Then the closed unit ball of V is compact if and
only if V is finite-dimensional.

B.5 The Krein-Milman theorem

See section 14.6 of [18] (or theorem 3.23 of [20]).

Definition B.5.1. Let V be a R-vector space and C be a convex subset of V . We say that x ∈ C
is extremal if, whenever x = ty+(1− t)z with t ∈ (0, 1) and y, z ∈ C, we must have y = z = x.

Theorem B.5.2. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V . ThenK is the closure of the convex hull of its set of extremal points.

Lemma B.5.3. Let V be a locally convex topological R-vector space, and let K be a nonempty
compact convex subset of V . Then K has an extremal point.

Proof. We say that a subset S of K is extremal if for every x ∈ S, if we have x = ty + (1− t)z
with y, z ∈ K and t ∈ (0, 1), then we must have y, z ∈ S. (Note that a point x ∈ K is extremal
if and only if {x} is extremal.)

Let X be the set of nonempty closed extremal subsets of K, ordered by reverse inclusion. Let
Y a nonempty totally ordered subset of X , and let’s show that it has a maximal element. As
Y is totally ordered, for all T1, . . . , Tn ∈ Y , there exists i ∈ {1, . . . , n} such that Ti ⊂ Tj for
every j ∈ {1, . . . , n}, and then T1 ∩ . . . ∩ Tn ⊃ Ti 6= ∅. As K is compact, this implies that
S :=

⋂
T∈Y T is not empty. The set S is clearly closed, so if we can show that it is extremal, we

will be done. Let x ∈ S, and write x = ty + (1 − t)z, with y, z ∈ K and t ∈ (0, 1). For every
T ∈ Y , as T is extremal, we must have y, z ∈ T . So y, z ∈ S, and S is indeed extremal.

By Zorn’s lemma, the set X has a maximal element, let’s call it S. To finish the proof, we just
need to show that S is a singleton. If |S| ≥ 2, let x, y ∈ S such that x 6= y. By the geometric
version of the Hahn-Banach theorem (theorem B.3.10), there exists a continuous linear functional
f : V → R such that f(x) < f(y). As S is compact, the continuous function f reaches its
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minimum on S. Let m = minz∈S f(z), and let S ′ = {z ∈ S|f(z) ≤ m}. Then S ′ is closed, it
is nonempty by the observation we just made, and S ′ 6= S because y 6∈ S ′. Let’s show that S ′ is
extremal, which will give a contradiction (and imply that S had to be a singleton). Let z ∈ S ′,
and write z = tz′ + (1 − t)z′′, with z′, z′′ ∈ K and t ∈ (0, 1). As S, we have z′, z′′ ∈ S. By
definition of m, we have m = f(z) = tf(z′) + (1 − t)f(z′′) ≤ tm + (1 − t)m, which forces
m = f(z′) = f(z′′), i.e. z′, z′′ ∈ S ′.

Proof of the theorem. Let L be the closure of the convex hull of the set of extremal points of K.
Then L is convex, closed and contained in K; in particular, L is also compact. Suppose that
L 6= K, and let x ∈ K \L. By the geometric version of the Hahn-Banach theorem (theorem
B.3.10), there exists a continuous linear functional f : V → R such that maxy∈L f(y) < f(x).
Let M = maxz∈K f(z), and let K ′ = {z ∈ K|f(z) = M}. Then K ′ is a closed convex subset
of K (hence it is compact), and K ′ ∩ L = ∅. By the lemma, K ′ must have an extremal point z,
and it is easy to see (as in the proof of the lemma) that z is also an extremal point of K. But then
z should be in L, contradiction.

B.6 The Stone-Weierstrass theorem

See section 12.3 of [18] or theorem 5.7 of [20] for the case of a compact space.

Theorem B.6.1. Let X be a locally compact Hausdorff topological space, and let A be a C-
subalgebra of C0(X) such that :

(a) for every f ∈ A, the function x 7−→ f(x) is also in A;

(b) for all x, y ∈ X such that x 6= y, there exists f ∈ A such that f(x) 6= f(y) (“A separates
the points of X”);

(c) for every x ∈ X , there exists f ∈ A such that f(x) 6= 0 (“A vanishes nowehere on X”).

Then A is dense in C0(X).
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∗-homomorphism, 36
C∗-algebra, 128
G-invariant mean, 179

adjoining an identity, 124
affine action, 179
affine map (on a convex set), 179
amenable group, 179
approximate identity, 33

Banach ∗-algebra, 35
Banach algebra, 32
Borel measure, 11
Borel set, 11

Cartan decomposition, 276
central function, 207
centralizer, 132
character of a representation, 207
class function, 207
compact group, 9
compactly generated group, 327
convolution, 30
cyclic representation, 26
cyclic subspace, 26
cyclic vector, 26

diagonal matrix coefficient, 163
diameter, 262
Dirac measure, 321
discrepancy distance, 326
discrete Laplace operator, 265
distance-regular graph, 262
distribution of a random variable, 305
dual group, 80

dual space, 240

equivalent representations, 20
equivariant map, 20
ergodic Markov chain, 312
extremal point, 342

fixed point property, 179
Fourier transform, 211, 241
function of positive type, 145

gauge (of a convex set), 339
Gegenbauer polynomials, 257
Gelfand pair, 228
Gelfand representation, 126
Gelfand transform, 126
Gelfand’s formula for the spectral radius,

119
Gelfand-Mazur theorem, 123
Gelfand-Naimark theorem, 130
Gelfand-Raikov theorem, 159
group algebra, 32

Haar measure, 11
Hahn-Banach theorem (analytic version),

336
Hahn-Banach theorem (geometric version),

339
Hilbert space, 22

ideal, 123
indecomposable representation, 20
intertwining operator, 20
involution on a Banach algebra, 36
irreducible representation, 20
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isomorphic representations, 20

Krein-Milman theorem, 342

Lévy’s convergence criterion, 322
left regular representation, 22, 161
Legendre polynomials, 257
locally almost everywhere, 145
locally Borel set, 145
locally compact, 7
locally compact group, 9
locally convex, 339
locally measurable function, 145
locally null subset, 145

Markov chain, 305
matrix coefficient, 160, 200
mean, 179
measure algebra, 32
Milman’s theorem, 166
Minkowski’s inequality, 41
modular function, 17
multiplicative functional, 124
multiplicity-free representation, 232

nondegenerate representation, 36
normal (in a Banach ∗-algebra), 130
normal topological space, 333
normalized Haar measure, 18
normalized matrix coefficient, 163

Peter-Weyl theorem, 206
Ping pong lemma. Reference ?, 192
Plancherel measure, 241
positive linear functional, 11
positive matrix, 309
proper ideal, 123

quasiregular representation, 233
quotient norm, 123, 335

Radon measure, 32, 321
random variable, 305
reducible representation, 20
regular Borel measure, 11

regular representation, 22, 161
representation, 19
representation (of a Banach ∗-algebra), 36
right regular representation, 22

Satake isomorphism, 279
semisimple representation, 20
spectral gap, 323
spectral radius, 119
spectral theorem, 131
spectral theorem for self-adjoint compact

operators, 195
spectrum of a Banach algebra, 124
spectrum of an element, 119
spherical Fourier transform, 241
spherical function, 234
stochastic matrix, 305
subrepresentation, 20
symmetric ∗-algebra, 129
symmetric subset, 8

topological group, 7
topological vector space, 339
total variation distance, 308
trivial representation, 20

uniformly continuous, 10
unimodular group, 17
unital (Banach algebra), 32
unitary dual, 200
unitary equivalence, 199
unitary representation, 23

weak containment, 164

zonal function, 256
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