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These are the notes of a “Topics in representation theory” class I taught in Princeton University
in the Fall of 2016. I tried to resist the urge to add things, but I succumbed in a few cases, most
notably the proofs of the spectral theorem in chapter V and of the character formulas in chapters
IV and VI. The problems are homework and final exam problems from various iterations of the
class, and are given with full solutions. 1

Here are the main sources for the notes : The abstract representation theory results of chapter
I are mostly taken from Lam’s book [20]. The results about representations of finite groups over
a field explained in chapters II and III can be found in Serre’s book [29], and the summary of
the representation theory of symmetric groups in chapter IV owes almost everything to Etingof’s
notes [12]. The proof of the Peter-Weyl theorem in chapter V was strongly inspired by Tao’s
online notes [34] and [33]. Finally, chapter VI was my attempt to specialize highest weight
theory to the Lie group SU(n) and the complex Lie algebra sln(C). I am not aware of a textbook
where this is done, but I used Humphreys’s book [15] as reference for the Lie algebra parts (the
general exposition and especially the proof of the Weyl character formula), and the introduction
of Knapp’s book [18] for the results about closed subgroups of GLn(C). Also, the proof of the
Baker-Campbell-Hausdorff formula in section VI.6 of chapter VI is due to Eichler (see [10]).

The books and notes just mentioned are a very good source for anybody wanting to learn
more about the various topics touched upon in these notes. Let me also mention Sepanski’s
book [27] for the representation theory of compact Lie groups and semisimple Lie algberas,
Serre’s books [31] and [30] for a very different approach to many of the same topics (Lie groups,
Lie algebras, and their representations), and the book [8] of Demazure-Gabriel for more about
algebraic groups. Other standard (and excellent) references on algebraic groups are the books of
Borel ([4]), Humphreys ([14]) and Springer ([32]). And of course, this short bibliography would
not be complete without a mention of Fulton and Harris’s book [13], that covers many of the
same topics as these notes and contains innumerable examples and exercises.

The problems have been taken from all of these sources and many others, and I cannot claim
to remember the provenance of every single one of them. 2 I will just indicate the source of a
few particular problems :

- Problem VII.1.9 is theorem (3.15) of Lam’s book [20].

- The problems about representations of GL2(Fq) (problems VII.2.6 and VII.2.8 to VII.2.15)
are giving some results of section 4.1 of Bump’s book [6].

- The problems about fields of definitions of representations (problems VII.2.1 and VII.2.7)
are from sections 12.1 and 12.2 of Serre’s book [29].

- The construction of Witt vectors in problem VII.3.4 follows closely section II.6 of Serre’s
book [28].

1There are two exceptions, both marked with (*) : problem 6.9(5) and problem 7.3.6(2). In the first case, I
succumbed to laziness. In the second case, I discovered after giving the problem as an exam question that I did
not know any elementary proof.

2If I used your work without mentioning it, I am very sorry ! Feel free to yell at me and I will correct the oversight.
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- The problems about Haar measures (problems VII.5.1 to VII.5.3) are adaptations of parts
of Tao’s blog entry [33].

- Most of the examples in problem VII.5.4 come from the examples and exercises in sections
1.1 and 1.2 of Sepanski’s book [27].

- The starting point of the problems about linear algebraic groups (problems VII.6.5, VII.6.6,
VII.6.18, VII.6.17 and VII.7.1) is example (v) in chapter I of Serre’s book [31].

- Problem VII.6.16 is an example of the theory of sections II.4.5- II.4.6 of Demazure and
Gabriel’s book [8], though to be honest I adapted it from a similar problem about Lie
groups, i.e. problems 11-13 of chapter III of Knapp’s book [18].

- The problem on pseudo-characters (problem VII.7.3) is extracted from Bellaı̈che’s notes
[2] and also Dotsenko’s notes [9].

- Finally, the problem on Schur-Weyl duality (problem VII.7.4) is extracted from sections
4.18-4.21 of Etingof’s notes [12], and the problem on the algebraic Peter-Weyl theorem
(problem VII.7.1) also owes a lot to these notes.

The formal prerequisites for the class were the two undergraduate algebra classes at Princeton
(covering, among other things, the basic theory of groups, rings, and modules, and some Galois
theory), but some knowledge of measure theory and Hilbert spaces was also necessary in chapter
V. Here are the prerequisites chapter by chapter :

- Chapter I assumes familiarity with groups, commutative rings and modules over them, and
also with tensor products (there is a review problem on that last point, see problem VII.1.1)

- Chapter II assumes that the reader is familiar with chapter I and its prerequisites.

- Chapter III assumes familiarity with chapters I and II.

- Chapter IV can be read after chapter I and sections 1-3 of chapter II.

- Chapter V is formally independent of the first four chapters, but it does assume that the
reader is familiar with the basic representation theory of finite groups in characteristic 0
(section 3 of chapter I and sections 1-3 of chapter II). It also requires knowledge of measure
theory (up to the Riesz representation theorem) and of Hermitian inner product spaces and
Hilbert spaces.

- Chapter VI is also mostly independent of the other chapters, but it depends on chapter V
via corollary VI.8.4. It also assumes some familiarity with modules over noncommutative
rings and tensor products over fields.

I would like to thank all the students who took the class (Alexandre De Faveri, Timothy Rati-
gan, Alex Song, Roger Van Peski, Joshua Wang, Xiaoyu Xu, Murilo Zanarella and Roy Zhao)
and also my graduate assistant Fabian Gundlach for being an excellent audience, for asking stim-
ulating questions and for pointing out many mistakes in the lectures and in the problem sets.
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Conventions : Unless otherwise specified, when we write
∑

i∈I xi (in some abelian group),
we will always be assuming that all but a finite number of the xi are 0, so that the sum is a finite
sum.

Also, N is the set of nonnegative integers, and we admit the axiom of choice.

Mnm(R) is the set of n × m matrices with coefficients in R, Mn(R) = Mnn(R),
GLn(R) = Mn(R)×.

tA is the transpose of a matrix.
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I Abstract representation theory

I.1 Semisimple rings

I.1.1 Definition and examples

In these notes, a ring will be a non necessarily commutative ring with unit.

Example I.1.1.1.

- R = {0}, the only ring where 0 = 1.

- Some commutative rings : Z, A[T1, . . . , Tn] (polynomials in n indeterminates over a com-
mutative ring A) or A[Ti, i ∈ I] (polynomials in a set of indeterminates indexed by I).

- Some noncommutative rings :

• Mn(R) (n× n matrices with coefficients in a ring R).

• The group algebra R[G] of a group G with coefficients in a (not necessarily com-
mutative) ring R. As a R-module, this is the free R-module with basis G, that is,
R[G] =

⊕
g∈GR · g. The multiplication is induced by that of G, i.e. given by :(∑

g∈G

αgg

)(∑
g∈G

βgg

)
=
∑
g∈G

( ∑
h1h2=g

αh1βh2

)
g.

Note that this definition also makes sense if G is a monoid.

• The free A-algebra over a set X , where A is a commutative ring, is the A-algebra
A〈X〉 of noncommutative polynomials with indeterminates in X . In other words, it’s
the algebra of the monoid MX whose elements are words on the elements of X and
whose multiplication is concatenation. (This MX is called the free monoid on X .)

Definition I.1.1.2. Let R be a ring. A left (resp. right) R-module is a commutative group M
with a biadditive map R ×M → M , (a, x) 7−→ ax (resp. M × R → M , (x, a) 7−→ xa), such
that :

- 1x = x (resp. x1 = x), ∀x ∈M .

- (ab)x = a(bx) (resp. x(ab) = (xa)b), ∀a, b ∈ R, ∀x ∈M .

11



I Abstract representation theory

If we want to make it very clear that M is a left (resp. right) R-module, we write RM (resp.
MR) instead of M .

By convention, a R-module will be a left R-module unless otherwise specified.

Remark I.1.1.3. If the ring R is commutative, then the notions of left and right R-module coin-
cide.

Example I.1.1.4. The ring R with left (resp. right) multiplication by itself is a left (resp. right)
R-module, called the left (resp. right) regular R-module and sometimes denoted by RR (resp.
RR).

Let’s define a few notions for left R-modules. We obviously have similarly defined notions
for R-modules.

Definition I.1.1.5. Let M be a R-module. A R-submodule (or submodule if R is clear) of M is
a subgroup N of M such that ax ∈ N for every a ∈ R and x ∈ N .

Example I.1.1.6. A submodule of M = RR is just a left ideal of R.

Definition I.1.1.7. If M is a R-module and N is a submodule of M , then the quotient group
M/N has a structure of R-module given by a(x+N) = ax+N for a ∈ R and x ∈M . This is
called a quotient R-module.

Definition I.1.1.8. Let M be a R-module and (Mi)i∈I be a family of submodules of M .

We say that M is the sum of the Mi and write M =
∑

i∈IMi if, for every x ∈ M , there exist
xi ∈M such that x =

∑
i∈I xi.

1

We say that M is the direct sum of the Mi and write M =
⊕

i∈IMi if, for every x ∈M , there
exist uniquely determined xi ∈Mi such that x =

∑
i∈I xi.

Definition I.1.1.9. Let M,N be R-modules. A R-linear map (or R-module morphism) from M
to N is a morphism of abelian groups ϕ/M → N such that ϕ(ax) = aϕ(x) for every a ∈ R and
x ∈M .

Definition I.1.1.10. An exact sequence of R-modules is an exact sequence of abelian groups
where all the abelian groups are R-modules and all the maps are R-linear.

Example I.1.1.11. Let ϕ : M → N be a R-linear map. Then Kerϕ ⊂ M and Imϕ ⊂ N are
submodules, and we have an exact sequence of R-modules :

0→ Kerϕ→M → N → N/ Imϕ→ 0.

Notation I.1.1.12. Let M,N be two R-modules. Then we write HomR(M,N) for the abelian
group of R-linear maps from M to N . We also write EndR(M) for HomR(M,M); this is a ring,
and its group of invertible elements (see definition I.1.1.16) will be denoted by AutR(M).

1By our general convention, all but a finite number of the xi must be 0.
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I.1 Semisimple rings

Examples of modules I.1.1.13.

- A Z-module is just an abelian group.

- Rn, seen as the set of n × 1 matrices with coefficients in R, is a left Mn(R)-module with
the operation given by matrix multiplication. If we see Rn as the set of 1×n matrices with
coefficients in R, we similarly get a right R-module structure on it.

- Let A be a commutative ring. Then a A[T ]-module is a A-module M with a A-linear
endomorphism (the action of T ∈ A[T ]).

- More generally, if A is a commutative ring and I is a set, then a A[Ti, i ∈ I]-module is a
A-module M with a family (ui)i∈I of pairwise commuting A-linear endomorphisms. (The
endomorphism ui is given by the action of Ti on M .)

- If A is a commutative ring and X is a set, then a A〈X〉-module is a A-module M with a
family (ux)x∈X of A-linear endomorphisms. (They are not required to commute with each
other anymore.)

- If A is a commutative ring and G is a group (or just a monoid), then a A[G]-module is a
A-module with a morphism of groups (or monoids) G → AutA(M). This is also called a
A-linear representation of the group (or monoid) G on the A-module M .

Definition I.1.1.14 (Ideals). Remember that a left ideal of R is a left submodule of RR, and a
right ideal of R is a right submodule of RR.

An ideal of R is a subset I of R that is both a left ideal and a right ideal.2 Then the quotient
abelian group R/I is also a ring.

Example I.1.1.15. Take R = C[x, σ], the ring of twisted polynomials over C in one indetermi-
nate x. Here σ is the endomorphism of C given by the complex conjugation, and the indetermi-
nate x does not commute with the elements of C : if a ∈ C and r ∈ N, we ask that xra = σa(a)x.

Then I1 = R(x2 − 1) and I2 = R(x − i) are both left ideals of R. The first one, I1, is also a
right ideal (so it’s an ideal) because x2− 1 is in the center of R (= commutes with every element
of R). But I2 is not an ideal, because :

(x− i)i = xi+ 1 = −ix+ 1 = −i(x+ i) 6∈ I2.

Definition I.1.1.16. An element a ∈ R is called left invertible (resp. right invertible) if there
exists b ∈ R such that ba = 1 (resp. ab = 1). In that case, b is called a left inverse (resp. right
inverse) of a.

If a is both left and right invertible, we say that it is invertible. In that case, if b, b′ are elements
of R such that ab = b′a = 1, then we have b = b′ and b is the unique element of R such that
ab = 1 (or ba = 1); we say that b is the inverse of a and write b = a−1.

2Unfortunately, this is not coherent with the convention that R-modules are left R-modules.
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I Abstract representation theory

We write R× for the set of invertible elements of R; it’s a group, with the group law given by
the multiplication of R.

If R 6= {0} and R× = R − {0}, we call R a divison ring. Note that a commutative division
ring is just a field.

Example I.1.1.17.

- The ring H of quaternions (see problem VII.1.6) is a division ring.

- Let V =
⊕

i∈NQei (a Q-vector space with a basis indexed by N) and R = EndQ(V ).
Define u, v, w ∈ R by :

u(ei) = ei+1 ∀i ∈ N

v(ei) =

{
0 if i > 0
ei−1 if i = 0

w(ei) =

{
e0 if i = 0
0 if i > 0

Then vu = 1 and vw = 0, so v is right-invertible but not left-invertible. (If we had u′v = 1
with u′ ∈ R, then we would have w = (u′v)w = u′(vw) = 0, which is not true.)

I.1.2 Zorn’s lemma

The goal of this section is to state Zorn’s and show a typical use in algebra.

Theorem I.1.2.1. The axiom of choice and Zorn’s lemma are equivalent, where Zorn’s lemma is
the following statement : 3

Zorn’s lemma I.1.2.2. Let X be a nonempty partially ordered set. Suppose that for every
Y ⊂ X that is totally ordered, there exists an upper bound of Y , that is, there exists x ∈ X
such that y ≤ x for every y ∈ Y .

Then X has a maximal element, that is, there exists x ∈ X such that no other x′ ∈ X is
strictly bigger than x. (In other words, every element of X − {x} is either smaller than x or not
comparable to x.)

When applying Zorn’s lemma, it is very important not to forget to check that the set X is
nonempty.

Example of application I.1.2.3. Let R be a ring. Then R has maximal ideals.

3See theorem 5.4 of Jech’s book [16].
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I.1 Semisimple rings

Proof. Let X be the set of ideals of R, ordered by inclusion. Then X is not empty because
{0} ∈ X . If Y is a totally ordered subset of X , then J =

⋃
I∈Y I is an ideal of R (because Y

is totally ordered),4 and it’s obviously an upper bound of Y . So X has a maximal element by
Zorn’s lemma.

I.1.3 Semisimple modules and rings

Definition I.1.3.1. Let R be a ring and M be a R-module.

1. We say that M is simple (or irreducible) if M 6= 0 and if the only R-submodules of M are
0 and M .

2. We say that M is semisimple (or completely reducible) if, for every submodule N of M ,
there exists a submodule N ′ of M such that M = N ⊕N ′. (In other words, if every short
exact sequence 0→ N →M →M/N → 0 of R-modules splits.)

Remark I.1.3.2.

- A simple R-module is semisimple.

- The R-module 0 is semisimple but not simple.

- If M is semisimple, then every submodule and quotient module of M is also semisimple.

- If R is a field (or a division ring), then every R-module is semisimple.

Example I.1.3.3. - If n ≥ 1, then Rn is a simple Mn(R)-module (whether it is seen as a left
or right module).

- Let K be a field and M be a K[T ]-module such that dimK(M) < +∞. Then M is a
semisimple K[T ]-module if and only if the endomorphism of M given by the action of T
is semisimple (= diagonalizable over an algebraic closure of K).

Theorem I.1.3.4. Let R and M be as above. The following are equivalent :

1. M is semisimple.

2. M is the direct sum of a family of simple submodules.

3. M is the sum of a family of simple submodules.

Lemma I.1.3.5. If M 6= 0 and M is semisimple, then it has a simple submodule.

Proof. Let x ∈ M − {0}, and set M ′ = Rx. Then M ′ is semisimple and nonzero, so we may
assume that M = M ′.

4If x, x′ ∈ J and a ∈ R, then we can find I, I ′ ∈ Y such that x ∈ I and x′ ∈ I ′. As Y is totally ordered, we have
I ⊂ I ′ or I ′ ⊂ I . In the first case, ax+ x′ ∈ I ⊂ J , and in the second, ax+ x′ ∈ I ′ ⊂ J ′.

15



I Abstract representation theory

We want to apply Zorn’s lemma to the setX of submodulesN ofM such that x 6∈M , ordered
by inclusion. This set is nonempty because it contains the zero submodule. If Y ⊂ X is totally
ordered, thenN =

⋃
N ′∈Y N

′ is a submodule ofM . (The proof is the same as in example I.1.2.3.)
Also, x 6∈ N by definition of N , so N is an element of X , and an upper bound of Y .

By Zorn’s lemma, X has a maximal element N . As x 6∈ N , N 6= M . As M is semisimple,
there exists a submoduleN ′ ofM such thatM = N⊕N ′, and we haveN ′ 6= 0 becauseN 6= M .

I claim that N ′ is simple. Indeed, if there were a submodule 0 6= N ′′ ( N ′ of N , then we
would have N ⊕ N ′′ 6∈ X by maximality of N in X , so x ∈ N ⊕ N ′′, but then N ⊕ N ′′ = M
(because M = Rx), and hence N ′′ = N ′, contradiction.

Proof of the theorem.

(ii)⇒(iii) Direct sums are sums.

(i)⇒(iii) Assume thatM is semisimple. LetM ′ be the sum of all the simple submodules of
M , and choose a submoduleM ′′ ofM such thatM = M ′⊕M ′′. IfM ′ 6= M , thenM ′′ 6= 0,
so by the lemma M ′′ has a simple submodule N , but then we should have N ⊂M ′, which
contradicts the fact that M ′ and M ′′ are in direct sum. So M ′ = M .

(iii)⇒(i)&(ii) Let (Mi)i∈I be the family of all simple submodules of M . We are assuming
that M =

∑
i∈IMi. Let N be a submodule of M . We will show that there exists J ⊂ I

such that

M = N ⊕
⊕
j∈J

Mj.

This clearly implies (i), and we also get (ii) by taking N = 0.

To get this J , we want to apply Zorn’s lemma to the set X of subsets of K of I such that
the sum N +

∑
k∈KMk is direct, ordered by inclusion. This set X is not empty, because

∅ ∈ X .

If Y ⊂ X is a totally ordered subset, let K =
⋃
K′∈Y K

′ and let’s show that K ∈ X
(and hence is an upper bound of Y ). Let n ∈ N and (mk)k∈K ∈

∏
k∈KMk such that

n +
∑

k∈Kmk = 0. Let K0 ⊂ K be a finite subset such that mk = 0 for k ∈ K − K0

(this exists by our convention at the beginning). For every k ∈ K0, there exists Lk ∈ Y
such that k ∈ Lk. As Y is totally ordered and K0 is finite, there exists L ∈ Y such that
K ⊃

⋃
k∈K0

Lk. Then L ∈ X , so n +
∑

k∈K0
mk = 0 implies that n = 0 and mk = 0

for every k ∈ K0. By the choice of K0, we get that n and all the mk, k ∈ K, are 0. So
K ∈ X .

By Zorn’s lemma, X has a maximal element J . Let M ′ = N ⊕
⊕

j∈JMj . We want to
show that M = M ′, so let’s show that M ′ ⊃ Mi for every i ∈ I . Let i ∈ I . If M ′ 6⊃ Mi,
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I.1 Semisimple rings

then M ′ ∩Mi = 0 (because Mi is simple). But then the sum

M ′ +Mi = (N +
∑
j∈J

Mj) +Mi

is direct, so J ∪ {i} ∈ X , and this contradicts the maximality of J .

Definition I.1.3.6. Let R be a ring and M be a R-module. We say that M is finitely generated
if there exists a finite family (xi)i∈I of M such that M =

∑
i∈I Rxi. We say that M is cyclic if

there exists x ∈M such that M = Rx. 5

Theorem-Definition I.1.3.7. Let R be a ring. The following are equivalent :

1. All short exact sequences of R-modules split.

2. All R-modules are semisimple.

3. All finitely generated R-modules are semisimple.

4. All cyclic R-modules are semisimple.

5. The left regular R-module RR is semisimple.

If these conditions are satisfied, then we say that the ring R is semisimple.

Remark I.1.3.8. A priori, this notion should be called “left semisimple ring”, and we should have
a similarly defined notion of “right semisimple ring”. But we will see in section I.1.10 that “left
semisimple” and “right semisimple” are actually equivalent.

Proof.

(i)⇔(ii) This follows directly from the definition of semisimple modules.

(ii)⇒(iii)⇒(iv)⇒(v) is obvious.

(v)⇒(ii) Let M be a R-module. If x ∈ M , then Rx ⊂ M is a quotient of RR, so it’s
semisimple because RR is semisimple. As M =

∑
x∈M Rx, theorem I.1.3.4 implies that

M is semisimple.

Example I.1.3.9.

- Division rings (and in particular fields) are semisimple, because their only left ideals are 0
and the whole ring.

- Z is not semisimple, because 2Z ⊂ Z is a not a direct factor of Z.

5A cyclic left (resp. right) ideal of R is also called a principal left (resp. right) ideal.
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I Abstract representation theory

- If R is a division ring and n ∈ N, then Mn(R) is a semisimple ring.

Proof. As a left Mn(R)-module, Mn(R) is isomorphic to a direct sum of n factors Rn,
and we already know that Rn is a simple Mn(R)-module.

We will now see another characterization of semisimple rings.

Definition I.1.3.10. A R-module P is called projective if, for every surjective R-linear map
π : M � N and every R-linear map ϕ : P → N , there exists a R-linear map ψ : P → M such
that πψ = ϕ.

P

ϕ
��

ψ

~~
M π

// // N

Also, a R-module F is called free if there exists a family (ei)i∈I of elements of F such that
F =

⊕
i∈I Rei and such that, for every i ∈ I , the map R→ Rei, a 7−→ aei, is an isomorphism.

Example I.1.3.11.

- Every free R-module is projective.

Proof. If F =
⊕

i∈I Rei, let π : M � N be a surjective R-linear map and ϕ : P → N
be a R-linear map. For every i ∈ I , choose xi ∈ M such that π(xi) = ϕ(ei). Define a
R-linear map ψ : P → M by ψ(ei) = xi for every i ∈ I . Then it’s easy to check that
πψ = ϕ.

- A direct summand of a projective module is projective.

Proof. Let P be projective, and suppose that P = P ′⊕P ′′. Let’s show that P ′ is projective.
Let π : M � N be a surjective R-linear map and ϕ′ : P ′ → N be a R-linear map. Let
ϕ = ϕ′ + 0 : P = P ′ ⊕ P ′′ → N . As P is projective, there exists a map ψ : P →M such
that πψ = ϕ. Write ψ = ψ′+ψ′′, where ψ′ (resp. ψ′′) is a map P ′ →M (resp. P ′′ →M ).
Then πψ′ = ϕ′.

- A R-module P is projective if and only every exact sequence of R-modules
0→M ′ →M → P → 0 splits.

Proof. If P is projective, then every such exact sequence splits by definition. Con-
verserly, if every such exact sequence splits, then applying this to the exact sequence
0 → K → F → P → 0 where F =

⊕
x∈P R, the map F → P sends (ax)x∈P to

18



I.1 Semisimple rings

∑
x∈P axx and K → F is the kernel of this map, we see that P is a direct summand of the

free R-module F , hence is projective.

Lemma I.1.3.12. Let P be a R-module. The following are equivalent :

1. P is projective.

2. P is a direct summand of a free R-module.

Proof. We saw that (ii) implies (i) in example I.1.3.11. Let’s show that (i) implies (ii). Suppose
that P is projective. Let M =

⊕
x∈P R, and define ϕ : M → P by ϕ((ax)x∈P ) =

∑
x∈P axx.

Then ϕ isR-linear and surjective, so there exists aR-linear map ψ : P →M such that ϕψ = idP .
So we have M ' P ⊕ Ker(ϕ), and we have found a free R-module M such that P is a direct
summand of M .

Example I.1.3.13. - By the structure theorem for finitely generated Z-modules, any finitely
generated projective Z-module is free. In fact, any projective Z-module is free.6

- In the previous example, we could replace Z by any principal ideal domain.

- If R is a Dedekind ring (for example a principal ideal domain or the ring of integers in a
number field), any fractional ideal of R is a projective R-module.

- Over R := Z× Z, P := Z× {0} is projective (because P ⊕ ({0} × Z) = R) but not free.

Theorem I.1.3.14. Let R be a ring. The following are equivalent :

1. R is a semisimple ring.

2. All R-modules are projective.

3. All finitely generated R-modules are projective.

4. All cyclic R-modules are projective.

Proof. (i)⇔(ii) follows from the definition, and (ii)⇒(iii)⇒(iv) is obvious.

(iv)⇒(i) Suppose that all cyclic R-modules are projective. Let’s show that RR is a
semisimple R-module. Let I ⊂ R be a left ideal, then R/I is a cyclic R-module, hence
projective, and so the short exact sequence 0 → I → R → R/I → 0 splits, that is,
R ' I ⊕R/I .

6See theorem 3 and its corollary in Kaplansky’s paper [17].
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Remark I.1.3.15. We have a dual notion of injective R-module (a R-module I is injective if for
every R-linear injective map ϕ : I → M , there exists a R-linear map ψ : M → I such that
ψϕ = idI). The analogue of theorem I.1.3.14 is still true but harder to prove. 7

Remark I.1.3.16. - A left ideal I of R is a simple R-module if and only if it is minimal
among nonzero left ideals of R. So if R is a semisimple ring, it has minimal nonzero left
ideals.

- Assume that I is a left ideal of R, and that the short exact sequence
0 → I → RR → R/I → 0 of R-modules splits, that is, that there exists a left ideal
J of R such that R = I ⊕ J . Write 1 = e + e′, with e ∈ I and e′ ∈ J . Then e2 = e,
e′2 = e′, and ee′ = e′e = 0. (We say that e and e′ are orthogonal idempotents of R.) Also,
I = Re and J = Re′.

If moreover I and J are ideals, then IJ = 0, e and e′ are central in R, I and J and rings
with respective units e and e′, and R = I × J as rings.

Proof. We have e = e(e + e′) = e2 + ee′ = e2 with e, e2 ∈ I and ee′ ∈ J , so e = e2 and
ee′ = 0. Similarly, e′2 = e′ and e′e = 0. Obviously, Re ⊂ I; conversely, if x ∈ I , then
x = x(e + e′) = xe + xe′ with xe ∈ I and xe′ ∈ J , so x = xe ∈ Re and xe′ = 0. This
shows that I = Re. The proof that J = Re′ is similar.

Assume that I and J are ideals. The IJ ⊂ I ∩ J = 0. Let a ∈ R. Then

a = a(e+ e′) = ae+ ae′ = (e+ e′)a = ea+ e′a,

with ae, ea ∈ I and ae′, e′a ∈ J . As R = I ⊕ J , we have ae = ea and ae′ = e′a. If
moreover a ∈ I (resp. a ∈ J), then ae = ea = a and ae′ = e′a = 0 (resp. ae = ea = 0 and
ae′ = e′a = 1). To finish the proof, let’s show that the map u : I×J → R, (a, b) 7−→ a+b,
is an isomorphism of rings. We already know that it is an isomorphism of abelian groups
by hypothesis. Let a, a′ ∈ I and b, b′ ∈ J . Then

u((a, b))u((a′, b′)) = (a+ b)(a′+ b′) = aa′+ab′+ ba′+ bb′ = aa′+ bb′ = u((a, b)(a′, b′)).

I.1.4 Schur’s lemma

Theorem I.1.4.1 (Schur’s lemma). Let R be a ring, M and N be R-modules, and u : M → N
be a R-linear map.

1. If M is simple, then u = 0 or u is injective.

2. If N is simple, then u = 0 or u is surjective.

7See theorem (2.9) of Lam’s book [20] and the remark following it.
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I.1 Semisimple rings

3. If M and N are simple, then u = 0 or u is an isomorphism.

In particular, if M is a simple R-module, then EndR(M) is a division ring.

Proof. This follows from the fact that Keru is a submodule of M and Imu is a submodule of
N .

I.1.5 Jordan-Hölder theorem

Let R be a ring and M be a R-module.

Definition I.1.5.1.

• A Jordan-Hölder series (or composition series) for M is a sequence of submodules
0 = Mk ⊂ · · · ⊂ M1 ⊂ M0 = M of M such that Mi/Mi+1 is a simple R-module
for every i ∈ {0, . . . , k − 1}. We say that the integer k is the length of the series.

• If a composition series for M exists, we say that M is has finite length. Then the length
lg(M) of M is the minimum of the lengths of all its Jordan-Hölder series. If M is not of
finite length, we set lg(M) = +∞.

• Two Jordan-Hölder series (Mi)0≤i≤k and (M ′
i)0≤i≤l are called equivalent if k = l and

there exists a permutation σ ∈ Sk such that Mi/Mi+1 ' M ′
σ(i)/M

′
σ(i)+1 for every

i ∈ {0, . . . , k − 1}.

Theorem I.1.5.2. If M has finite length, then all its Jordan-Hölder series are equivalent. In
particular, all the Jordan-Hölder series of M have the same length, and the length of M is the
length of any of its Jordan-Hölder series.

Lemma I.1.5.3. Suppose as above that M has finite length, and let N be a submodule of M .
Then N and M/N have finite length, and in fact lg(N) ≤ lg(M) and lg(M/N) ≤ lg(M)..

Proof. Let Mk ⊂ · · · ⊂ M0 = M be a Jordan-Hölder series for M such that k = lg(M).
For every i ∈ {0, . . . , k − 1}, (N ∩ Mi)/(N ∩ Mi+1) is a submodule of the simple module
Mi/Mi+1, so it is either 0 or Mi/Mi+1. This means that, after deleting some steps to get rid of
zero quotients, the sequence N ∩Mk ⊂ · · · ⊂ N ∩M0 = N is a Jordan-Hölder series for N ,
and so N has finite length ≤ k = lg(M).

The proof forM/N is similar : the image inM/N of the Jordan-Hölder seriesMk ⊂ · · · ⊂M0

is a Jordan-Hölder series for M/N after we delete some indices.
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Proof of the theorem. We do an induction on lg(M). If lg(M) = 0, then M = 0. If lg(M) = 1,
then M is simple and the result is obvious. So suppose that lg(M) ≥ 2 and that the result is
known for all R-modules of strictly smaller length.

Let (S) = (0 = Mk ⊂ · · · ⊂M1 ⊂M0 = M) and (S ′) = (0 = M ′
l ⊂ · · · ⊂M ′

1 ⊂M ′
0 = M)

be two Jordan-Hölder series for M , and assume that k = lg(M). (It is clearly enough to treat
this case.) If M1 = M ′

1, then we can apply the induction hypothesis to M1 (which has length
≤ k − 1 by the lemma or the existence of (S)), and this finishes the proof.

So assume that M1 6= M ′
1. Then M1 + M ′

1 = M . Indeed, the image of M ′
1 by the obvious

map M → M/M1 is a submodule, so it is 0 or M/M1 (because M/M1 is simple). If it is 0,
then M ′

1 ⊂ M1; then the submodule M1/M
′
1 of the simple module M/M ′

1 has to be 0 (if it were
M/M ′

1, then we would have M = M1), hence M1 = M ′
1, contradicting out assumption. So the

image of M ′
1 in M/M1 is equal to M/M1, which means that M = M1 +M ′

1.

AsM = M1+M ′
1, the obvious mapsM ′

1/(M
′
1∩M1)→M/M1 andM1/(M1∩M ′

1)→M/M ′
1

are isomorphisms, and in particular both M1/(M1 ∩M ′
1) and M ′

1/(M1 ∩M ′
1) are simple. Take

a Jordan-Hölder series 0 = Ns ⊂ · · · ⊂ N1 ⊂ N0 = M1 ∩ M ′
1 (this exists by the lemma).

Then applying the induction hypothesis to M1 (which has length ≤ k − 1 because it has a
Jordan-Hölder series of length k − 1), we see that its two Jordan-Hölder series Mk ⊂ · · · ⊂ M1

and Ns ⊂ · · · ⊂ N0 ⊂ M1 are equivalent. In particular, s = k − 2, so M ′
1 has a Jordan-

Hölder series of length k − 1, i.e. Ns ⊂ · · · ⊂ N0 ⊂ M ′
1, which implies that M ′

1 also has
length ≤ k − 1. We can then apply the induction hypothesis to M ′

1 to see that its two Jordan-
Hölder series M ′

l ⊂ · · · ⊂ M ′
1 and Ns ⊂ · · · ⊂ N0 ⊂ M ′

1 are equivalent. Finally, we have
shown that (S) is equivalent to Ns ⊂ · · · ⊂ N0 = M1 ∩ M ′

1 ⊂ M1 ⊂ M , and that (S ′) is
equivalent to Ns ⊂ · · · ⊂ N0 = M1 ∩M ′

1 ⊂ M ′
1 ⊂ M . As M ′

1/(M
′
1 ∩M1) ' M/M1 and

M1/(M1 ∩M ′
1) 'M/M ′

1, this show that (S) and (S ′) are equivalent.

This theorem justifies the following definition :

Definition I.1.5.4. If M has finite length qnd (Mi)0≤i≤k is a Jordan-Hölder series for M , then
the simple R-modules Mi/Mi+1, counted with multiplicities, are called the Jordan-Hölder con-
stituents of M .

Corollary I.1.5.5. If M has finite length and N is a submodule of M , then any Jordan-
Hölder factor of N (resp. M/N ) is also a Jordan-Hölder factor of M , and we have
lg(M) = lg(N) + lg(M/N).

Proof. We already know that N and M/N have finite length by lemma I.1.5.3. Let
Nk ⊂ · · · ⊂ N0 = N and M ′

l ⊂ · · · ⊂ M ′
0 = M/N be Jordan-Hölder series for N

and M/N , and let Mi be the inverse image of M ′
i in M , for every i ∈ {0, . . . , l}. Then

Nk ⊂ N0 = N = Ml ⊂ · · · ⊂M0 = M is a Jordan-Hölder series for M .
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I.1 Semisimple rings

I.1.6 Artinian and Noetherian modules

Definition I.1.6.1. Let R be a ring.

1. We say that a R-module M is Artinian (resp. Noetherian) if every strictly decreasing
(resp. strictly increasing) sequence of submodules of M is finite, that is, for any sequence
M0 ⊃ M1 ⊃ . . . (resp. M0 ⊂ M1 ⊂ . . . ) of submodules of M , there exists N ∈ N such
that Mi = Mi+1 for every i ≥ N .

2. We say that R is left Artinian (resp. left Noetherian) if the left R-module RR is Artinian
(resp. Noetherian), that is, for any sequence I0 ⊃ I1 ⊃ . . . (resp. I0 ⊂ I1 ⊂ . . . ) of left
ideals of R, there exists N ∈ N such that Ii = Ii+1 for every i ≥ N .

Proposition I.1.6.2. Let M be a R-module. Then M has finite length if and only if it is both
Artinian and Noetherian.

Lemma I.1.6.3. Let M be a R-module.

1. If M 6= 0 and M is Artinian (resp. Noetherian), then it admits minimal (resp. maximal)
nonzero submodules.

2. If M is Artinian (resp. Noetherian), so is any submodule and any quotient of M is Noethe-
rian.

Proof. Point (ii) is obvious. In (i), we treat the Artinian case (the Noetherian case is similar).
Suppose that M has no minimal nonzero submodule and that M 6= 0. We construct by induction
on i an infinite strictly decreasing sequence (Mi)i∈N of nonzero submodules of M , which will
prove that M is not Artinian. Take M0 = M . Now let i ≥ 0, suppose that M0 ) · · · ) Mi

are constructed, and let’s construct Mi+1. As Mi cannot be a minimal nonzero submodule of M ,
there exists a submodule Mi+1 of M such that 0 (Mi+1 (Mi, and we are done.

Proof of the proposition. Suppose that M is Artinian and Noetherian. Let’s prove that M has
finite length. We construct by induction on i a sequence (Mi)i∈N of submodules of M such that,
for every i ∈ N, Mi ⊂Mi+1 and Mi+1/Mi is zero or simple.

Take M0 = 0. Now suppose that i ≥ 0 and that M0, . . . ,Mi are constructed. If Mi = M ,
take Mi+1 = Mi. Otherwise, then by the fact that M is Artinian and by the lemma, M/Mi has
a minimal nonzero submodule, and we take for Mi+1 its inverse image in M . By minimality of
Mi+1/Mi, this R-module is simple.

We also know that M is Noetherian, so the sequence (Mi)i∈N must stabilize to M after a finite
number of steps. As all the quotients Mi+1/Mi are wero or simple, we can extract from (Mi)i∈N
a Jordan-Hölder sequence for M , and so M has finite length.

Now suppose that M has finite length, and let’s prove that M is Artinian and Noetherian. If
M is not Noetherian, then it has an infinite sequence of submodules M0 ( M1 ( . . . . But then
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lg(Mi+1) ≤ lg(Mi) + 1 for every i ∈ N, so lg(Mi) ≥ i, so lg(M) cannot be finite. Similarly, we
see that if M is not Artinian, then it cannot have finite length.

Remark I.1.6.4.

- If R is commutative, we recover the usual notions of Artinian and Noetherian ring.

- As in the commutative case, any left Artinian ring is automatically left Noetherian. 8 This
is not true for modules.

- If k is a field and R is a k-algebra that is finite-dimensional as a k-vector space, then R is
left Artinian and left Noetherian. (Because every left ideal of R is a k-vector subspace.)

- If R is a semisimple ring, then R is left Artinian and left Noetherian.

Proof. By theorem I.1.3.4, R =
⊕

i∈A Ii, where the Ii are left ideals of R that are simple
as R-modules. If we show that A is finite, then RR will have finite length, hence be an
Artinian and Noetherian R-module by proposition I.1.6.2, and we will be done. To show
that A is finite, write 1 =

∑
i∈A xi, with xi ∈ Ii for every i ∈ A and xi = 0 for all but a

finite number of i’s. LetB ⊂ A be a finite subset such that xi = 0 for i 6∈ B. AsR ·1 = R,
we have R =

∑
i∈B Rxi, so R =

⊕
i∈B Ii, so B = A, so A is finite.

Example I.1.6.5.

- Q[T1, . . . , Tn] is Noetherian but not Artinian (consider the sequence of ideals
(T1) ⊃ (T 2

1 ) ⊃ (T 3
1 ) ⊃ . . . ).

- Q[Ti, i ∈ N] is neither Artinian nor Noetherian.

- Q[T ]/(T 2) is borth Artinian and Noetherian.

I.1.7 Isotypic decomposition

Definition I.1.7.1. Let R be a ring. We write S(R) for the set of isomorphism classes of simple
R-modules.

Theorem I.1.7.2. Let R be a ring and M be a semisimple R-module. For every S ∈ S(R), let
MS be the sum of all the submodules of M that are isomorphic to S. Then :

1. We have M =
⊕

S∈S(R) MS .

2. There exist sets IS such that MS '
⊕

i∈IS S for every S ∈ S(R).

8See theorem (4.15) of Lam’s book [20].
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I.1 Semisimple rings

3. Let N be a submodule of M . If we write N '
⊕

S∈S(R) NS and NS '
⊕

S∈JS S as in (i)
and (ii), then, for every S ∈ S(R), NS = MS ∩M for every S ∈ S(R) and we can find an
injection JS ↪→ IS .

In particular, if the set IS is finite for some S ∈ S(R), then |IS| depends only on M .

The nonzeroMS are called the isotypic components ofM , andM =
⊕

S∈S(R) MS is called the
isotypic decomposition of M . If IS is a finite set for some S ∈ S(R), we call |IS| the multiplicity
of S in M .

The following lemma will be used repeatedly in the proof of the theorem.

Lemma I.1.7.3. Let M be a R-module, and suppose that there exists a simple R-module S
and s set I and an isomorphism ϕ : M

∼→
⊕

i∈I S. Then every simple R-submodule of M is
isomorphic to S.

Proof. Let N be a simple R-submodule of M , and suppose that N is not isomorphic to S. Then
for every i ∈ I , the composition of the projection on the ith summand

⊕
i∈I S → S and of ϕ is

a R-linear map N → S, which has to be zero by Schur’s lemma (theorem I.1.4.1). But then ϕ is
zero on N , which implies that N = 0, contradicting the fact that N is simple.

Proof of the theorem. 1. First, note that
∑

S∈S(R) MS is the sum of all the simple submod-
ules of M . As M is semisimple, M =

∑
S∈S(R) MS . Now we want to show that

the sum is direct. Let S ∈ S(R), let X = S(R) − {S}. We must show that
N := MS ∩

(∑
S′∈XMS′

)
= 0. As N is submodule of M , it is semisimple, so, if it’s

nonzero, then it has a simple submodule. But if N ′ is a simple submodule of N , then
it’s a simple submodule of MS , hence isomorphic to S, and also a simple submodule of∑

S′∈XMS′ , hence isomorphic to an element of X . This is not possible. So N = 0.

2. As MS is a submodule of the semisimple R-module M , it is semisimple. By theorem
I.1.3.4, MS is the direct sum of a family of simple submodules. But every simple submod-
ules of MS is isomorphic to S.

3. Let S ∈ S(R). Then NS is a sum of simple R-modules isomorphic to S, so NS ⊂MS . On
the other hand, N ∩MS is a direct sum of simple submodules of N , and all these simple
modules have to be isomorphic to S, so N ∩MS ⊂ NS .

So we may assume that M = MS and N = NS for some S ∈ S(R), and we are reduced
to the following statement : If S is a simple R-module and I, J are two sets such that we
have an injective R-linear map u : N :=

⊕
j∈J S ↪→ M :=

⊕
i∈I S, then there exists an

injection J ↪→ I .

We will only use this statement when I and J are finite, and in that case it follows from
the Jordan-Hölder theorem (theorem I.1.5.2), but let’s see how to prove it general. For any
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R-modules M1,M2, let Homfs(M1,M2) ⊂ HomR(M1,M2) be the subgroup of R-linear
maps that are 0 outside a finite length submodule of M1. Then we have

Homfl(N,S) =
⊕
j∈J

EndR(S) ⊂ HomR(N,S) =
∏
j∈J

EndR(S),

and similarly

Homfl(M,S) =
⊕
i∈I

EndR(S) ⊂ HomR(M,S) =
∏
i∈I

EndR(S).

Note that D := EndR(S) is a division ring by Schur’s lemma (theorem I.1.4.1),
that HomR(M,S) and HomR(N,S) are naturally D-modules (if f ∈ HomR(M,S) or
HomR(N,S) and r ∈ D, set r · f = r ◦ f ) and that Homfl(M,S) and Homfl(N,S) are D-
submodules. Moreover, we have a map ϕ : Homfl(M,S) → Homfl(N,S), f 7−→ f ◦ u,
and it is clearly D-linear. If we can show that ϕ is surjective, we will done by linear alge-
bra. (More precisely, the incomplete basis theorem.) So let g ∈ Homfl(N,S). As M is a
semisimple R-module, there exists a R-submodule N ′ of M such that M = u(N) ⊕ N ′.
Define f : M → S by f(u(x) + y) = g(x) if x ∈ N and y ∈ N ′. This makes sense
because u is injective, is clearly R-linear, and we have ϕ(f) = g.

I.1.8 Simple rings

Definition I.1.8.1. A ring R is called simple if R 6= 0 and if the only ideals of R are 0 and R.

Remark I.1.8.2. Note that the definition of a simple ring involves ideals, and that of a semisimple
ring involves left ideals. In particular, a simple ring has no a priori reason to be semisimple, and
indeed there exist simple rings that are not semisimple.9 So the terminology is a bit unfortunate.

Theorem I.1.8.3. Let D be a division ring, n ≥ 1 be an integer, and R = Mn(D). Let V = Dn.
We will write RV when we view V as a left R-module by considering Dn as a space of n × 1
matrices, and VD when we view V as the right D-module Dn

D.

Then :

1. The ring R is simple, semisimple, left Artinian and left Noetherian.

2. R has a unique (up to isomorphism) simple left module, which is RV . As left R-modules,
RR and RV

n are isomorphic.

3. EndD(VD) = R.

4. EndR(RV ) = D.
9See problem VII.1.9.
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Proposition I.1.8.4. If R is a ring and n ≥ 1 is an integer, then any ideal I of Mn(R) if of the
form I = Mn(J), where J is a uniquely determined ideal of R.

Corollary I.1.8.5. If R is a simple ring, then so is Mn(R) for every n ≥ 1.

Proof of the proposition. If J is an ideal of R, then Mn(J) is clearly an ideal of Mn(R). Also, if
J, J ′ are two ideals of R such that Mn(J) = Mn(J ′), then it is obvious that J = J ′. So we just
need to prove that any ideal of Mn(R) is of the form Mn(J).

Let I be an ideal of Mn(R), and let J be the set of (1, 1)-entries of elements of I . We’ll show
that J is an ideal and that I = Mn(J).

First, let x, y ∈ J and let a ∈ R. Choose matrices X, Y ∈ I such that the (1, 1)-entries
of X and Y are x and y respectively. Then aX , Xa and X + Y are in I , and their respective
(1, 1)-entries are ax, xa and x+ y, so ax, xa, x+ y ∈ J . So J is an ideal of R.

Now let’s denote by Eij , for 1 ≤ i, j ≤ n, the elementary matrices in Mn(R). (So Eij has all
its entries equal to 0, except for the entry (i, j) which is equal to 1.) If X = (xij) ∈Mn(R), then
EijXEkl = xjkEjk.

Let’s show that I ⊂Mn(J). If X ∈ I , then for all j, k ∈ {1, . . . , n}, E1jXEk1 = xjkE11 ∈ I ,
so xjk ∈ J , and so X ∈Mn(J).

Let’s show that Mn(J) ⊂ I . Let X = (xij) ∈ Mn(J). Then X =
∑

1≤i,j≤n xijEij , so it
suffices to show that all the xijEij are in I . Fix i, j ∈ {1, . . . , n}. Choose Y ∈ I such that the
(1, 1)-entry of Y is xij . Then Ei1Y E1j = xijEij ∈ I .

Proof of the theorem. Let’s prove (i). First, by the proposition, R is simple because D is. As a
left D-vector space, R is finite-dimensional. Since left ideals of R are D-vector subspaces of R,
R is left Artinian and left Noetherian.10

Let’s prove that RV is a simple R-module. Take a nonzero R-submodule W of RV . We use
the same notation Eij as in the proof of the proposition (for the elementary matrices in R). Let

w ∈ W − {0}, and write w =

w1
...
wn

. Choose i0 ∈ {1, . . . , n} such that wi0 6= 0. Then


1
0
...
0

 = (w−1
i0
E1i0)w ∈ W.

10This would also follow from the fact that R is semisimple.
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Now if v =

v1
...
vn

 is any element of RV , then

v =

v1 0 . . . 0
...

...
...

vn 0 . . . 0




1
0
...
0

 ∈ W,
and so W = V .

As the left R-module RR is clearly isomorphic to RV
n, the ring R is semisimple.

Let’s prove (ii). It only remains to show that any simple R-module is isomorphic to RV . So
let M be a simple R-module. Choose x ∈ M − {0}. Then the map u : RR → M , a 7−→ ax is
surjective (because its image is a nonzero submodule of M ), so M is isomorphic to a quotient of
the R-module RR. As RR ' RV

n with RV , this implies that M ' RV .

Let’s prove (iii). Consider the map ϕ : R → EndD(VD), a 7−→ (x 7−→ xa)). This map is
well-defined, because for every a ∈ R, for every x ∈ V and λ ∈ D,

ϕ(a)(xλ) = a(xλ) = (ax)λ = (ϕ(a)(x))λ,

so ϕ(a) is D-linear. The map ϕ is obviously a map of rings, and we want to show that it is an
isomorphism.

Let a = (aij) ∈ R = Mn(D) such that ϕ(a) = 0. Then for every j ∈ {1, . . . , n}, if ej ∈ V is
the element with jth entry equal to 1 and all the other entries equal to 0, we have

0 = ϕ(a)(ej) =

a1j
...
anj

 .

So a = 0. This proves that ϕ is injective.

Let u ∈ EndD(VD). For every j ∈ {1, . . . , n}, if ej ∈ V is defined as above, write

u(ej) =

a1j
...
anj

 .

Let a = (aij) ∈ Mn(D). Then ϕ(a)(ej) = u(ej) for every j ∈ {1, . . . , n}. As (e1, . . . , en) is
obviously a basis of VD over D, this imples that ϕ(a) = u. So we have proved that ϕ is surjective.

Let’s prove (iv). Let E = EndR(RV ). We write the action of the ring E on V on the right,
that is, we write x(v) = vx for v ∈ V and x ∈ E. Let ψ : D → E, λ 7−→ (v 7−→ vλ). As
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for ϕ, this map is well-defined, i.e. δ(λ) is R-linear for every λ ∈ D, and it is a morphism of
rings. We want to show that it is an isomorphism of rings. First, ψ is injective because n ≥ 1
and D is a division algebra. Now let x ∈ E. Define λ ∈ D by e1x = λe1 +

∑n
j=2 µjej , with

µj ∈ D and where e1, . . . , en ∈ V are as in the proof of (iii). Let v =

v1
...
vn

 ∈ V , and let

a =

v1 0 . . . 0
...

...
...

vn 0 . . . 0

 ∈Mn(D) = R. Then v = ae1, so

vx = (ae1)x = a(e1x) = a


λ
µ2
...
µn

 =

v1λ
...
vnλ

 = vλ.

So x = ψ(λ), and ψ is surjective.

Corollary I.1.8.6. If D,D′ are two division rings and n, n′ ≥ 1 are two integers such that
Mn(D) 'Mn′(D′) as rings, then D ' D′ and n = n′.

Proof. Let R = Mn(D) ' Mn(D′), and let M be the unique simple R-module (given by (ii) of
the theorem). By (iii) of the theorem, D′ ' EndR(M) ' D. Hence

n = dimD(M) = dimD′(M) = n′.

I.1.9 Double centralizer property

We have seen in theorem I.1.8.3 that every Mn(D) with D a division ring is simple. We’ll now
see a kind of converse of this. (Not an actual converse, as there are simple rings not of the form
Mn(D).)

Definition I.1.9.1. If R is a ring, we denote by Rop its opposite ring : it’s isomorphic to R as an
additive group, and its multiplication is given by

ab( in Rop) = ba( in R).
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Theorem I.1.9.2 (Double centralizer property). Let R be a simple ring and I be a nonzero left
ideal of R. Let D = EndR(I), and make I a right Dop-module by setting xu = u(x) if x ∈ I
and u ∈ D.

Then the map f : R→ EndDop(I), a 7−→ (x 7−→ ax), is an isomorphism of rings.

Proof. It’s obvious that f is well-defined and is a morphism of rings.

Let’s show that f is injective. As I 6= 0, Ker f 6= R (for example, 1 6∈ Ker f ). As Ker f is an
ideal of R and R is simple, Ker f = 0.

Let’s show that f is surjective. Let E = EndDop(I). Make I a left E-module by setting
hx = h(x), for every x ∈ I and h ∈ E. Then, for every x ∈ I and h ∈ E, we have
hf(x) = f(hx). Indeed, if a ∈ I , then ra : I → I , y 7−→ ya, is in D, so

h(xa) = h(ra(x)) = h(xra) = h(x)ra = h(x)a,

and so
(hf(x))(a) = h(xa) = h(x)a = f(h(x))(a).

This imples that Ef(I) ⊂ f(I). But we know I is a nonzero left ideal of R, so IR is a
nonzero ideal of R, hence IR = R as R is simple. Apply the morphism of rings f gives
f(I)f(R) = f(R). Finally,

E = Ef(R) = Ef(I)f(R) ⊂ f(I)f(R) = f(R)

(the first equality holds because 1 ∈ f(R)), and so f is surjective.

Corollary I.1.9.3. If R is a simple ring with a minimal nonzero left ideal, then there exists a
unique division ring D and a unique integer n ≥ 1 such that R 'Mn(D).

In particular, a simple ring is left Artinian if and only if it is of the form Mn(D) with D a
division ring and n ≥ 1.

Proof. We already know that D and n are unique if they exist (by corollary I.1.8.6).

Let I ⊂ R be a minimal nonzero left ideal. Then I is a simple R-module, so D := EndR(I) is
a division ring by Schur’s lemma (theorem I.1.4.1). Make I a right Dop-module as as in theorem
above. (Note that Dop is also a division ring.) By that theorem, R ' EndDop(I). So we only
need to show that I is finite-dimensional as a right Dop-vector space. Let E = EndDop(I), and
let

Ef = {u ∈ E|rk(u) < +∞},

where rk(u) is as usual the dimension (over Dop of the image of u). It’s easy to see that Ef 6= 0,
and that Ef is an ideal of E. As E ' R is a simple ring, Ef = E. Hence the identity of I is in
Ef , and I is a finite-dimensional right Dop-vector space.
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The last sentence follows from theorem I.1.8.3 and the fact that a left Artinian ring admits
minimal nonzero left ideals (by lemma I.1.6.3).

I.1.10 Structure of semisimple rings (Artin-Wedderburn theorem)

The goal of this section is to show that every semisimple is a finite direct product of rings of
the form Mn(D), with D a division ring. This will imply in particular that the notions of “left
semisimple rings” and “right semisimple rings” coincide.

Proposition I.1.10.1. LetR1, . . . , Rn be rings, and letR = R1×· · ·×Rn. Then everyR-module
is of the form M = M1 × · · · ×Mn, with Mi a Ri-module for 1 ≤ i ≤ n.

Proof. In R, write 1 = e1 + · · ·+ en, with ei ∈ Ri. Of course, as an element of R1 × · · · × Rn,
ei is the n-uple with ith entry equal to 1 ∈ Ri and all the other entries equal to 0. Note that all
the ei are central in R, that e2

i = ei for every i and that eiej = ejei = 0 for i 6 j.

Let M be a R-module, set Mi = eiM . Then R acts on Mi through the obvious projec-
tion R → Ri, so we just need to show that M ' M1 × · · · × Mn. Consider the map
u : M1 × . . .Mn → M , (x1, . . . , xn) 7−→ x1 + · · · + xn; this is a R-linear map by the pre-
vious remark about the action of R on the Mi. If x ∈ M , then x = xe1 + · · · + xen with
xei ∈ Mi for every i, so u is surjective. Moreover, if x1 + · · · + xn = 0 with xi ∈ Mi for every
i, then for every j ∈ {1, . . . , n}, 0 = ej(x1 + · · ·+ xn) = ejxi = xi. Hence u is injective.

Corollary I.1.10.2. Suppose that R = R1 × · · · ×Rn as in the proposition.

1. R is semisimple if and only if all the Ri are semisimple.

2. Every simple R-module is of the form 0× · · · × 0×Mi× 0× · · · × 0, with i ∈ {1, . . . , n}
and Mi a simple Ri-module.

Corollary I.1.10.3. Let D1, . . . ,Dr be division rings, and n1, . . . , nr ≥ 1 be integers. Then
R := Mn1(D1)×· · ·×Mnr(Dr) is a semisimple ring, and its simple modules (up to isomorphism)
are Dn1

1 , . . .Dnr
r .

Conversely, we want to show that every semisimple ring is of this form.

Notation I.1.10.4. LetR be a ring and I be a left ideal ofR. In the rest of this section, we denote
by II ⊂ R the sum of all the left ideals I ′ of R that are isomorphic to I as R-modules. This is a
left ideal of R.

Theorem I.1.10.5 (Artin-Wedderburn theorem). Let R be a semisimple ring. Let (Ii)i∈A be a
set of representatives of the isomorphism classes of minimal nonzero left ideals of R, and let
Ri = IIi ⊂ R.
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Then A is finite, so we choose an identification A = {1, . . . , r}. Moreover, all the Ri are rings
(with unit), R ' R1 × · · · × Rr as rings, and for every i ∈ {1, . . . , r}, there exists a unique
division ring Di and a unique integer ni ≥ 1 such that Ri 'Mni(Di).

Lemma I.1.10.6. Let R be a ring and I be a minimal nonzero left ideal of R. Then II is an
ideal of R. (That is, it is also a right ideal of R.)

Moreover, if I and J are two nonisomorphic minimal nonzero left ideals ofR, then IIIJ = 0.

Proof. The main point is that minimal nonzero left ideals of R are simple R-modules.

Let’s prove that II is a right ideal. Let I ′ be a left ideal of R such that I ′ ' I as R-modules,
and let a ∈ R. We want to show that I ′a ⊂ II . We have a surjective R-linear map I ′ → I ′a,
x 7−→ xa, and I ′ is a simple R-module, so I ′a = 0 or I ′a ' I ′. In the first case, I ′a ⊂ II is
obvious; in the second case, I ′a is another left ideal of R that is isomorphic to I , so we also have
I ′a ⊂ II .

Now let J be another minimal nonzero left ideal of R, and suppose that IIIJ 6= 0. Then
there exist left ideals I ′, J ′ of R and an element a of J ′ such that I ′ ' I , J ′ ' J and I ′a 6= 0.
As J ′ is a simple R-module and I ′a ⊂ J ′ is a nonzero submodule of J ′, we have I ′a = J ′. As
I ′ is a simple R-module, the surjective map I ′ → I ′a, x 7−→ xa, is an isomorphism. So we get
R-module isomorphisms I ' I ′ ' I ′a = J ′ ' J . This proves the second part of the lemma.

Proof of the theorem. As R is a semisimple ring, RR is a direct sum of simple submodules (=
minimal nonzero left ideals of R) by theorem I.1.3.4. So RR =

⊕
i∈ARi by theorem I.1.7.2. By

remark I.1.6.4 (that says that semisimple rings are left Artinian and left Noetherian), this implies
that A is finite.

By the lemma, every Ii is an ideal of R. As R =
⊕r

i=1 Ri, remark I.1.3.16 implies that all
the Ri are rings (with unit) and that R ' R1 × · · · ×Rr as rings.

We now prove that all the Ri are simple rings. Fix i ∈ {1, . . . , r}. Let J 6= 0 be an ideal of
Ri. We want to show that J = Ri. As J is also an ideal of R, it contains a minimal nonzero left
ideal I of R (by remark I.1.3.16). By definition of I1, . . . , Ir, there exists j ∈ {1, . . . , j} such
that I ' Ij as R-modules; as I ⊂ J ⊂ Ri, we must have j = i. So Ri = IIi = II . Hence it
suffices to show that, if I ′ is a left ideal of R such that I ′ ' I , then I ′ ⊂ J . Fix such a I ′, and let
ϕ : I

∼→ I ′ be an isomorphism of R-modules. As R is a semisimple ring, there exists a left ideal
I ′′ of R such that R = I ⊕ I ′′. We write 1 = e + e′′ with e ∈ I and e′′ ∈ I ′′. We have seen in
remark I.1.3.16 that e2 = e and I = Re. So

I ′ = ϕ(I) = ϕ(Re) = ϕ(Re2) = ϕ((Re)e) = ϕ(Ie) = Iϕ(e) ⊂ J

(as J is also a right ideal of R).
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As R is semisimple, it’s left Artinian (by remark I.1.6.4), so all the Ri are left Artinian, so by
corollary I.1.9.3 there exist uniquemy determined division rings Di and integers ni ≥ 1 such that
Ri 'Mni(Di) for every i.

Remark I.1.10.7. Let R be a semisimple ring, and use the notation of the Artin-Wedderburn
theorem.

- LetK be a field, and suppose thatR is a semisimpleK-algebra that is finite-dimensional as
a K-vector space. Then its simple factors Ri are also K-algebras, and so are the division
rings Di; of course, dimK(Di) < +∞. (This follows for example from the fact that
Di ' EndRi(Vi) = EndR(Vi), where Vi is the simple R-module corresponding to the
factor Ri, see theorem I.1.8.3.)

In particular, ifK is algebraically closed, then all the Di are equal toK by problem VII.1.3.
so R 'Mn1(K)× · · · ×Mnr(K).

- IfR is commutative, then n1 = · · · = nr = 1 and all the Di are commutative division rings
(i.e. fields), so R is a finite product of fields. This recovers the result of problem VII.1.5,
but without the Noetherian hypothesis on R.

I.2 Jacobson radical

We will just give some basic definitions and facts about the Jacobson radical of a ring (as much
as we need for our representation theoretic purposes).

The basic idea is that the Jacobson radical of a ring R should be the minimal ideal I of R
such that the ring R/I is semisimple. Actually, this is true if R is left Artinian, but the general
situation is more complicated.

Definition I.2.1. LetR be a ring. The Jacobson radical ofR is the intersection of all the maximal
left ideals of R. We will denote it by rad(R).

Remark I.2.2. At this point, it looks like this should be called the left Jacobson radical of R, but
we will see in corollary I.2.9 that rad(R) is also the intersection of all the maximal right ideals
of R.

Definition I.2.3. Let R be a ring and M be a R-module. If x ∈M , the annihilator of x in R is

AnnR(x) = {a ∈ R|ax = 0}.

This is obviously a left ideal of R. Also, the annihilator of M in R is

AnnR(M) =
⋂
x∈M

AnnR(x) = {a ∈ R|∀x ∈M, ax = 0}.

This is also obviously a left ideal of R.
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Proposition I.2.4. Let R be a ring and M be a R-module. Then AnnR(M) is actually an ideal
of R.

Proof. We just need to show that it’s a right ideal. Let a ∈ AnnR(M) and b ∈ R. Then for
every x ∈ M , (ab)x = a(bx) = 0 because a is also in the annihilator of bx ∈ M . Hence
ab ∈ AnnR(M).

Proposition I.2.5. Let R be a ring and x ∈ R. The following are equivalent :

1. x ∈ rad(R).

2. For every y ∈ R, 1− yx is left invertible. (See definition I.1.1.16.)

3. For every simple R-module M , x ∈ AnnR(M).

Proof.

(i)⇒(ii) : Suppose that x ∈ rad(R). Let y ∈ R. If 1 − yx is not left invertible, then
R(1 − yx) ( R, so there exists a maximal left ideal m of R such that 1 − yx ∈ m. But
x ∈ rad(R) ⊂ m, so yx ∈ m, so 1 ∈ m, which is not possible.

(ii)⇒(iii) Let M be a simple R-module, and let m ∈ M . If xm 6= 0, then Rxm = M
(because Rxm is a nonzero submodule of M ), so there exists y ∈ R such that yxm = m,
i.e. (1−yx)m = m. As 1−yx is left invertible, this implies thatm = 0, which contradicts
the assumption that xm 6= 0.

(iii)⇒(i) Let m ⊂ R be a maximal left ideal. Then R/m is a simple R-module, so
x ∈ AnnR(R/m), i.e. x(R/m) = 0, i.e. x ∈ m.

Corollary I.2.6. The Jacobson radical ofR is the intersection of the annihilators of all the simple
R-modules. In particular, it is an ideal of R.

Corollary I.2.7. The rings R and R/ rad(R) have the same simple modules.

Corollary I.2.8. Let x ∈ R. The following are equivalent :

1. x ∈ rad(R).

2. For all y, z ∈ R, 1− yxz is invertible.

Proof. We already know that (ii) implies (i) by the proposition. Let’s prove that (i) implies
(ii). Let x ∈ rad(R), and let y, z ∈ R. As rad(R) is an ideal of R by a previous corollary,
xz ∈ rad(R), so 1 − yxz is left invertible by the proposition, so there exists u ∈ R such that
u(1− yxz) = 1 = u− uyxz.
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Moreover, yxz ∈ rad(R), so u = 1 + u(yxz) is left invertible by the proposition. As u is left
and right invertible, it is invertible, and hence 1 − yxz is the (unique) inverse of u and is also
invertible.

As the characterization of rad(R) in the corollary above is unchanged if we reverse the order
of the multiplication in R, we get the :

Corollary I.2.9. We have rad(R) = rad(Rop), where Rop is as in definition I.1.9.1. In other
words, the ideal rad(R) is also the intersection of all the maximal right ideals of R.

Remark I.2.10. If I ⊂ rad(R) is an ideal of R, then rad(R/I) = rad(R)/I . In particular,
rad(R/ rad(R)) = 0.

Theorem I.2.11. Assume that R is left Artinian. Then the following are equivalent :

1. The ring R is semisimple.

2. rad(R) = 0.

Proof.

(i)⇒(ii) IfR is semisimple, then there exists a left ideal I ofR such that RR = I⊕rad(R).
If rad(R) 6= 0, then I 6= R, so there exists a maximal left ideal m of R such that I ⊂ m.
But then I ⊂ rad(R), so rad(R) = R, which is only possible if R = {0}, and this
contradicts rad(R) 6= 0.

(ii)⇒(i) Let (mi)i∈A be the family of all maximal left ideals of R. We have
rad(R) =

⋂
i∈Ami. As R is left Artinian, there exists a finite subset B of A such that

rad(R) =
⋂
i∈B mi. (If this were not true, we could find a sequence B0 ⊃ B1 ⊃ . . . of

finite subsets of A such that
⋂
i∈B0

mi )
⋂
i∈B1

mi ) . . . , which would contradict the fact
that R is left Artinian.)

Now if rad(R) = 0, then the obvious R-module map RR →
⊕

i∈B R/mi is injective. As
each R/mi is a simple R-module, their direct sum over i ∈ B is a semisimple R-module,
and so is its submodule RR.

Corollary I.2.12. If R is left Artinian, then R/ rad(R) is semisimple, and it has the same simple
modules as R.

Remark I.2.13.

- In general, a ring R such that rad(R) = 0 is called Jacobson semisimple. Any semisimple
ring is Jacobson semisimple, but the converse is false. For example, ifG is any group, then
the groups algebras C[G] and R[G] are Jacobson (see theorem (6.4) of Lam’s book [20]),
but they are not semisimple if G is infinite by remark I.3.3.
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- A left (resp. right) ideal I of R is called nilpotent if there exists n ≥ 1 such that In = 0.

If R is left Artinian, then rad(R) is the largest nilpotent left (resp. right) ideal of R, see
theorem (4.12) of Lam’s book [20]. This is not true in general. For example, if R = Zp
(the ring of p-adic integers), then rad(R) = pZp is not nilpotent.

Example I.2.14.

- rad(Z) =
⋂
p prime pZ = 0, even though Z is not semisimple. (Note that Z is not Ar-

tinian.)

- rad(Zp) = pZp (where Zp is the ring of p-adic integers).

More generally, if A is a commutative local ring, then rad(A) is its unique maximal ideal.

- Let D be a division ring and R be the ring of upper triangular n × n matrices with co-
efficients in D. Then rad(R) is the set of strictly upper triangular matrices (i.e. upper
triangular matrices with zeroes on the diagonal). Indeed, let’s call this set J . Then J is an
ideal of R, and 1− x is invertible for every x ∈ J , so J ⊂ rad(R). Moreover, R/J ' Dn

is semisimple, so J ⊃ rad(R).

I.3 Applications to the representation theory of finite
groups

Let R be a ring and G be a group. Remember (exemple I.1.1.1 that the group algebra
R[G] of G with coefficients in R is defined to be

⊕
g∈GRg, with the multiplication given by

(ag)(bh) = (ab)(gh) if a, b ∈ R and g, h ∈ G.

Vocabulary I.3.1. AR[G]-module is aR-moduleM with aR-linear action ofG, i.e. a morphism
of monoids ρ : G → EndR(M). This is also called a (R-linear) representation of G on the R-
module M , and denoted by (M,ρ), or just M if the action is obvious.

The representation (M,ρ) is called irreducible (resp. completely reducible or semisimple) if
the R[G]-module M is simple (resp. semisimple), and it is called faithful if ρ is injective.

AR[G]-linear map is also called a (R-linear)G-equivariant map (or just a morphism of repre-
sentations). A sub-R[G]-module is also called a subrepresentation. IfR is clear from the context,
we write HomG, EndG and AutG instead of HomR[G], EndR[G] and AutR[G].

The regular representation of G is the representation corresponding to the left regular R[G]-
module.

Let ε : R[G]→ R,
∑

g∈G αgg 7−→
∑

g∈G αg. This is a surjective R-linear map of rings, called
the augmentation map. Its kernel is the augmentation ideal of R[G].

A representation of G on the regular R-module RR (that is, a morphism of monoids
G → EndR(RR) = R) is sometimes called a character of G. This terminology is mostly
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used when R is a field, and we will try to avoid it in these notes, because the word “character”
also has another meaning in representation theory. (As we will see in chapter II.)

Theorem I.3.2. Let R be a ring and G be a finite group. Then R[G] is a semisimple ring if and
only R is a semisimple ring and |G| is invertible in R.

If R is a field, this theorem is called Maschke’s theorem.

Proof.

⇐ : Let M be a R[G]-module, and let N be a R[G]-submodule of M . As R is semisimple,
there exists a R-submodule N ′ of M such that M = N ⊕ N ′, so there exists a surjective
R-linear map f : M → N such that f|N = idN . Define F : M → N by :

F (v) = |G|−1
∑
g∈G

g−1f(gv)

(here we use the fact that |G| is invertible in R).

We will prove that F is R[G]-linear and that F|N = idN . First, F is obviously R-linear. If
g ∈ G and v ∈M , then

F (gv) = |G|−1
∑
h∈G

h−1f(hgv) = |G|−1g
∑
h∈G

(hg)−1f(hgv) = gF (v).

So F is indeed R[G]-linear. Next, let v ∈ N . Then for every g ∈ G, gv is also in N , so
f(gv) = gv. Hence

F (v) = |G|−1
∑
g∈G

g−1f(gv) = |G|−1
∑
g∈G

g−1gv = v.

If we can show that M = N ⊕ Ker(F ), we will be done, because Ker(F ) is a R[G]-
sundmodule ofM thanks to theR[G]-linearity of F . For every v ∈M , we have F (v) ∈ N ,
hence F (F (v)) = F (v), hence F (v−F (v)) = 0 and v = (v−F (v)+F (v) ∈ Ker(F )+N .
Moreover, if v ∈ N ∩ Ker(F ), then v = F (v) = 0. This finishes the proof that
M = N ⊕Ker(F ).

⇒ : Assume that R[G] is semisimple. Then we have the augmentation map ε : R[G]→ R
(see I.3.1). It makes R into a R[G]-module, which is automatically semisimple by as-
sumption. As R[G] acts on R through its quotient R[G]/Ker ε = R, the R-module RR is
semisimple, and so R is a semisimple ring.

As in the Artin-Wedderburn theorem (theorem I.1.10.5), write
R = Mn1(D1) × · · · × Mnr(Dr), with D1, . . . ,Dr division rings and n1, . . . , nr ≥ 1
integers. For every i, let Ri = Mni(Di); we have a surjective morphism of rings
R[G] → Ri, and hence Ri is also semisimple (this is the same proof as in the previous
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paragraph : RiRi is a semisimple Ri-module). Also, |G| is invertible in R if and only if it
is invertible in every Ri. For a fixed i ∈ {1, . . . , r}, |G| is invertible in Ri if and only if it
is invertible in Di, if and only if it is nonzero in Di, if and only it is nonzero in Ri.

So we may assume that R = Mn(D) with n ≥ 1 and D a division ring, and we are now
trying to prove that |G| 6= 0 in R. Suppose that |G| = 0 in R, and let x =

∑
g∈G g ∈ R[G].

Then x is central in R[G]. Indeed, for every y =
∑

g∈G αgg, we have

yx =
∑
g∈G

∑
g1g2=g

αg1g =

(∑
g∈G

αg

)(∑
g∈G

g

)

and

xy =
∑
g∈G

∑
g1g2=g

αg2g =

(∑
g∈G

αg

)(∑
g∈G

g

)
.

Note that this does not use the fact that |G| = 0, but is true in any group algebra as long as
G is finite (otherwise, x doesn’t make sense).

Also,

x2 =

(∑
g∈G

1

)(∑
g∈G

g

)
= |G|x = 0.

Let I = R[G]x. As R[G] is semisimple, there exists a left ideal J of R[G] such that
R[G] = I ⊕ J . By remark I.1.3.16, there exists e ∈ I such that e = e2 6= 0. But we have
e = yx with y ∈ R[G], so e = e2 = (yx)(yx) = y2x2 = 0, contradiction.

Remark I.3.3. If G is infinite and R 6= 0, then R[G] is never semisimple.

Proof. Let I be the augmentation ideal of R[G] (see I.3.1). Suppose that R is semisimple. Then
there exists a left ideal J of R such that RR = I ⊕ J , and J 6= 0 because I 6 R[G]. Let
0 6= b =

∑
g∈G βgg. For every h ∈ G, (1 − h)b ∈ I ∩ J , so (1 − h)b = 0, i.e. b = hb. Hence

βhg = βg for every g, h ∈ G, which means that all the βg are equal. As b 6= 0, at least one of the
βg is nonzero, so all the βg are nonzero, and this is only possible if G is finite.

Let k be a field and G be a finite group. Using the Artin-Wedderburn theorem (theorem
I.1.10.5, see also remark I.1.10.7) and theorem I.3.2, we get :
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Theorem I.3.4. 1. There are uniquely determined k-division algebras D1, . . . ,Dr and inte-
gers n1, . . . , nr ≥ 1 such that dimk(Di) is finite for every i and

k[G]/ rad(k[G]) 'Mn1(D1)× · · · ×Mnr(Dr).

A complete set of representatives of the isomorphisms classes of irreducible representa-
tions of G is given by V1 := Dn1

1 , . . . , Vr := Dnr
r , and we have a G-equivariant isomor-

phism
k[G]/ rad(k[G]) ' V n1

1 ⊕ · · · ⊕ V nr
r .

2. If k is algebraically closed, then Di = k for every i, and so∑
V

(dimk V )2 =
r∑
i=1

dimk(Vi)
2 =

r∑
i=1

n2
i = dimk(k[G]/ rad(k[G])) ≤ dimk(k[G]) = |G|,

where the first sum is taken over the isomorphism classes of irreducible representations of
G. This inequality is an equality if and only if the characteristic of k does not divide |G|.

Definition I.3.5. If R is a ring and G is a group, we denote by SR(G) the set of isomorphism
classes of irreducible representations of G on R-modules.

Remark I.3.6. By the theorem above, Sk(G) is finite if k is a field and G is a finite group.

Example I.3.7.

- Fix R and G as above. The trivial representation of G (over R) is the representation of G
on RR given by the augmentation map R[G] → R (see I.3.1), i.e. by the trivial action of
G on R. We denote it by 11.

- IfG is the symmetric group Sn andR is any ring, we denote by sgn the representation ofG
onR given by the sign morphismG→ {±1} composed with the obvious map {±1} → R.

Example I.3.8.

(1) Let G = S2 and k be a field.

If char(k) 6= 2, then k[G] ' k × k, where the first factor corresponds to the trivial repre-
sentation 11 and the second to the sign representation sgn.

If char(k) = 2, then 11 = sgn is the unique simple k[G]-module, rad(k[G]) is equal to the
augmentation ideal of k[G] (see I.3.1), and we have k[G]/ rad(k[G]) = k.

(2) Let G = S3 and k be a field such that char(k) 6 |6. We know that k[G] is a semisimple.

The only 1-dimensional representations of S3 (corresponding to the morphisms of groups
S3 → k×) are 11 and sgn, and they are nonisomorphic because char(k) 6= 2.

Make S3 act on k3 by

σ · (x1, x2, x3) = (xσ−1(1), xσ−1(2), xσ−1(3)).
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Let
V2 = {(x1, x2, x3) ∈ k3|x1 + x2 + x3 = 0}.

Then k3 = V2 ⊕ 11, and V2 is an irreducible subrepresentation of k3. Indeed, if V2 were not
simple, it would be a sum of two 1-dimensional subrepresentations, so we just need to see
that neither 11 not sgn are isomorphic subrepresentations of V2. Let v = (x, y,−x−y) ∈ V2,
and suppose that σ · v = v for every σ ∈ S3. Then x = y = −x− y, so 3x = 3y = 0, so
x = y = 0 as char(k) 6= 3, and hence v = 0. So V2 has no subrepresentation isomorphic
to 11. Now let v = (x, y,−x−y) ∈ V2, and suppose that σ ·v = sgn(σ)v for every σ ∈ S3.
Then x = −y = x+y, so x = y = 0, so v = 0. So V2 has no subrepresentation isomorphic
to sgn.

We found three irreducible representations of S2 of dimensions 1, 1 and 2. As
12 + 11 + 22 = 6 = |G|, there are no other irreducible representations of G, and we
have

k[G] ' Endk(11)× Endk(sgn)× Endk(V2) ' k × k ×M2(k)

as k-algebras.
Remark. If char(k) = 2, then V2 is still an irreducible representation of S3, but we now
have 11 = sgn. The Jacobson radical rad(k[G]) is 1-dimensional over k, and we have
k[G]/ rad(k[G]) ' k ×M2(k).

If char(k) = 3, then 11 6' sgn, but V2 is not irreducible anymore. In fact, we have an exact
sequence of k[G]-modules 0 → 11 → V2 → sgn → 0. The Jacobson radical rad(k[G]) is
4-dimensional over k, and we have k[G]/ rad(k[G]) ' k × k.

(3) Let G be the quaternion group Q = {±1,±i,±j,±j} ⊂ H, with the mutliplication given
by that of H. (See problem VII.1.8.)

In problem VII.1.8, the following facts are proved :

R[G] ' R× R× R× R×H,

and so SR(G) has 5 elements. More precisely, the elements of SR(G) are :

• The trivial representation of G on R.

• The representation of G on R given by the map


G → R

±1, k 7−→ 1
i, j 7−→ −1

• The representation of G on R given by the map


G → R

±1, i 7−→ 1
j, k 7−→ −1

• The representation of G on R given by the map


G → R

±1, j 7−→ 1
i, k 7−→ −1
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• The (4-dimensional) representation of G on H given by the inclusion G ⊂ H× and
the action of H× on H by multiplication on the left.

Also,
C[G] ' C× C× C× C×M2(C),

and so SC(G) has 5 elements. The first four are 1-dimensional and are just the tensor
products by C of the four 1-dimensional representations of G over R. The fifth is 2-
dimensional : to construct, we use the C-algebra isomorphism H ⊗R C ' M2(C), which
splits the 4-dimensional representation of G on H ⊗R C (coming from the 4-dimensional
simple R[G]-module) into two isomorphic irreducible 2-dimensional representations.

Proposition I.3.9. If G is a finite abelian group and k is an algebraically closed field, then every
simple k[G]-module is of dimension 1 over k.

Proof. Let V be a simple k[G]-module. Then any nonzero element v of V gives a surjective
k-linear map k[G]→ V (sending x ∈ k[G] to xv), and so in particular V is a finite-dimensional
vector space, and so is Endk[G](V ). The finite-dimensional k-algebra Endk[G](V ) is also a k-
division algebra by Schur’s lemma (theorem I.1.4.1), so Endk[G](V ) = k by problem VII.1.3.
Moreover, as G is abelian, k[G] is a commutative ring, so the action of any element of k[G]
on V is k[G]-linear. This means that the action of k[G] on V is given by a map of k-algebras
k[G] → Endk[G](V ) = k ⊂ Endk(V ). So for any v ∈ V , the subspace kv is a k[G]-module of
V . As V is irreducible, this implies that dimk(V ) = 1.

Remark I.3.10. The proposition above is false in general for infinite groups. For example, if
k = C and G = C(T )×, then C(T ) is a simple C[G]-module with the obvious action of G by
mutliplication, but it is not 1-dimensional over C.

The reason for this is that, if G is infinite, then we cannot conclude from Schur’s lemma that
the algebra of endomorphisms of a simple k[G]-module if equal to k. However, if for example k
is algebraically closed and uncountable, then we still have Endk[G](V ) = k for any simple k[G]-
module V provided that either G is countable or dimk V is countable. 11 So for example, if we
suppose thatG is commutative and countable, and that k is algebraically closed and uncountable,
we can deduce that every simple k[G]-module is 1-dimensional over k.

Example I.3.11. The proposition above is also false if the field k is not algebraically closed. For
example, take G = {±1,±i} ⊂ C× and k = R. Then C, with the obvious action of G, is a
2-dimensional irreducible representation of G over R.
11See lemma 2.11 of the book [3] of Bernstein and Zelevinski. The proof goes as follows : Let u ∈ Endk[G](V ),

suppose that u 6∈ k · idV . For every λ ∈ k, u− λidV is G-equivariant and nonzero, so it is invertible by Schur’s
lemma; let vλ = (u− λidV )−1. Now choose x ∈ V − {0}. Then it is an easy exercise to show that the family
(vλ(x))λ∈k is linearly independent. If we assumed that dimk V is countable, we get a contradiction. If we
assumed thatG is countable, then this forces dimk V to be countable (because we have a surjective k-linear map
k[G]→ V , a 7−→ ax), so we also get a contradiction.
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Example I.3.12. Let G = Z/nZ (n ≥ 1), and let k be an algberaically closed field.

- The case char(k) 6 |n : Fix a primitive nth root ζn of 1 in k. The k-algebra k[G] is semisim-
ple, so k[G] ' k× · · · × k, where the n factors k correspond to the n irreducible represen-
tations of G given by the maps G = Z/nZ→ k×, 1 7−→ ζ in, for 1 ≤ i ≤ n.

- The case char(k)|n : Let p = char(k), and write n = prm, with m prime to p. Then
G = Z/prZ × Z/mZ. To give a 1-dimensional representation of G, we have to give the
images a, b ∈ k× of (1, 0), (0, 1) ∈ Z/prZ × Z/mZ by the map G → k× corresponding
to the representation. We must have apr = 1, hence a = 1 because char(k) = p, and
b can be any of the m solutions of the equation xm = 1 in k. So we get m irreducible
representations of G, and k[G]/ rad(k[G]) ' km.

I.4 The representation ring

Definition I.4.1. Let R be a ring.

1. We define K(R) to be the quotient of the free abelian group on the basis elements [M ], for
M a finite length12 R-module, by all the relations of the form [M ] = [M ′] + [M ′′], where
0→M ′ →M →M ′′ → 0 is an exact sequence of R-modules.

2. We define PK(R) to be the quotient of the free abelian group on the basis elements [P ],
for P a finite length projectiveR-module, by all the relations of the form [P ] = [P ′]+[P ′′],
where 0→ P ′ → P → P ′′ → 0 is an exact sequence of R-modules.
13

We have an obvious map PK(R)→ K(R), which is neither injective nor surjective in general.

Remark I.4.2. The group K(R) (resp. PK(R)) is usually called the Grothendieck group of the
category of finite length (resp. finite length projective) R-modules.

Remark I.4.3. Here are some easy properties of K(R) and PK(R) :

(1) The exact sequence 0 → 0 → 0 → 0 → 0 gives an equality [0] = [0] + [0] in K(R) and
PK(R), so we get [0] = 0 in these groups.

(2) If we have an isomorphism of (projective) R-modules M ∼→ M ′, then the sequence
0→M

∼→M ′ → 0 is exact, so [M ] = [M ′] + [0] = [M ′] in K(R) (and PK(R)).

(3) If M = M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 are R-modules, then [M ] =
∑n

i=1[Mi−1/Mi] in
K(R), by an easy induction on n.

Proposition I.4.4. As a group, K(R) is the free abelian group with basis {[M ], V ∈ S(R)}
where S(R) is the set of isomorphism classes of simple R-modules (as in definition I.1.7.1).

12See definition I.1.5.1.
13Unfortunately, the notation is totally ad hoc.
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We will prove a similar statement for PK(R) in corollary III.2.1 of chapter III.

Proof. Let S be the free abelian group on the set S(R), and denote by (eM)M∈S(R) its canonical
basis.

Define ϕ : S → K(R) by ϕ(eM) = [M ].

Define ψ : K(R) → S as follows : If M is a R-module of finite length, then it has a Jordan-
Hölder series M = M0 ⊃M1 · · · ⊃Mn = 0 by definition, and we set

ψ([M ]) =
n∑
i=1

eMi−1/Mi
.

By theorem I.1.5.2, this does not depend on the choice of the Jordan-Hölder series.

Let’s show that ψ is well-defined. If 0→M ′ →M
u→M ′′ → 0 is an exact sequence of finite

length R-modules, we need to show that ψ([M ]) = ψ([M ′]) + ψ([M ′′]). Choose Jordan-Hölder
series M ′ = M ′

0 ⊃ · · · ⊃ M ′
n = 0 and M ′′ = M ′′

0 ⊃ · · · ⊃ M ′′
m = 0. For 0 ≤ j ≤ m, let

Mj = u−1(M ′′
j ). Then M = M0 ⊃ · · · ⊃Mm = M ′

0 ⊃ · · · ⊃M ′
n = 0 is a Jordan-Hölder series

for M , which gives the desired equality immediately.

It is now obvious that ϕ and ψ are inverses of each other.

Proposition I.4.5. If R is a semisimple ring, then K(R) = PK(R), and, for all finite length
R-modules M,M ′, we have [M ] = [M ′] in K(R) if and only if M 'M ′.

Proof. If R is a semisimple ring, then every R-module is projective, so K(R) = PK(R).

Let M and M ′ be two R-modules of finite length. As R is semisimple, we can write
M '

⊕
N∈S(R) N

⊕rN and M ′ '
⊕

N∈S(R) N
⊕r′N . Then [M ] =

∑
N∈S(R) rN [N ] and

[M ′] =
∑

N∈S(R) r
′
N [N ]. By proposition I.4.4, we have [M ] = [M ′] if and only if rN = r′N

for every N ∈ S(R), which is equivalent to M 'M ′.

We now apply this to representations of groups. Let k be a field, and let G be a group.

Definition I.4.6. We write Rk(G) = K(k[G]), Pk(G) = PK(k[G]) and Sk(G) = S(k[G]) (that
last notation was already introduced in definition I.3.5).

We call Rk(G) is called the representation ring of G over the field k.

The name “representation ring” is explained by the following fact :

Proposition I.4.7. We have a multiplication on Rk(G) given [M ][M ′] = [M ⊗k M ′], and this
makes RK(G) into a commutative ring, with unit element equal to [11].
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Proof. As tensoring over a field preserves equal sequences, the formula [M ][M ′] = [M ⊗k M ′]
does define a bi-additive map Rk(G)× Rk(G)→ Rk(G). Everything else is clear.

Proposition I.4.8. If M is a k[G] and N is a projective k[G]-module, then the k[G]-module
M ⊗k N is also projective.

Proof. As N is projective over k[G], it is a direct summand of some free k[G]-module k[G]⊕I ,
14 and then M ⊗k N is a direct summand of M ⊗k k[G]⊕I = (M ⊗k k[G])⊕I . So it is enough to
show that M ⊗k k[G] is projective.

We will actually show that the k[G]-module M ⊗k k[G] is free over k[G]. Let M be the k-
vector space M , considered as a representation of G with the trivial action. Define a k-linear
map u : M ⊗k k[G] → M ⊗k k[G] by sending x⊗ g to gx⊗ g, if x ∈ M and g ∈ G. Then the
k-linear map v : M ⊗k k[G]→ M ⊗k k[G] that sends x⊗ g to g−1x⊗ g for x ∈ M and g ∈ G
is an inverse of u, so u is an isomorphism of k-modules. Let’s show that u is G-equivariant. Let
g, h ∈ G and x ∈ x. Then :

h · u(x⊗ g) = h · (gx⊗ g) = (hgx)⊗ (hg)

and
u(h · (x⊗ g)) = u(x⊗ (hg)) = (hgx)⊗ (hg)

are equal. Finally, we have found an isomorphism of k[G]-modulesM⊗kk[G] 'M⊗kk[G]. As
M ⊗k k[G] is just a (possibly infinite) direct sum of copies of k[G], the k[G]-module M ⊗k k[G]
is free.

Corollary I.4.9. The tensor product over k induces a bi-additive map Rk(G)×Pk(G)→ Pk(G),
which makes Pk(G) into a RK(G)-module, and the obvious map Pk(G) → Rk(G) is Rk(G)-
linear.

Remark I.4.10. If G is a finite group, then a k[G]-module V has finite length if and only if it is a
finite-dimensional k-vector space.

Proof. If dimk(V ) is finite, then V is Artinian and Noetherian as a k-module, so it is Artinian
and Noetherian as a k[G]-module, and hence has finite length by proposition I.1.6.2.

Conversely, suppose that V is a finite length k[G]-module. Then V has a Jordan-Hölder series
V = V0 ⊃ · · · ⊃ Vn = 0. We have dimk(V ) =

∑n
i=1 dimk(Vi−1/Vi), and each Vi−1/Vi

is a simple k[G]-module, so we only need to prove that every simple k[G]-module is a finite-
dimensional k-vector space. But we already saw this : a simple k[G]-module is a quotient of the
right regular module k[G], and dimk(k[G]) = |G| is finite.

14The free k[G]-module with basis I .
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Remark I.4.11. IfG is a finite group andK/k is a field extension, then [V ] 7−→ [V ⊗kK] induces
a morphism of rings Rk(G)→ RK(G).

This morphism is injective if char(k) = 0 or if K/k is a separable algebraic extension, 15 but
it is not always surjective. We give counterexamples below.

Example I.4.12.

(1) TakeG = Z/nZ and k a field containing all the nth roots of unity and such that char(k) 6 |n.
Then Rk(G) ' Zn as a group, and Rk(G) is isomorphic to the group algebra Z[Z/nZ] as
a ring. (See example I.3.12.)

(2) Take G = {±1,±i} ⊂ C×. Then, as groups, RR(G) ' Z3 (see example I.3.11) and
RC(G) ' Z4 (see proposition I.3.9). The map RR(G)→ RC(G) is (a, b, c) 7−→ (a, b, c, c),
and it is not surjective.

(3) If G = Z/pZ and k is a field of characteristic p, then Rk(G) ' Z as a ring, because the
only simple k[G]-module is the trivial representation. (See example I.3.12.)

(4) If G = {±1,±i,±j,±k} ⊂ H× as in example I.3.8(3), then, using the calculations of
this example, we get isomorphisms of groups RR(G) ' Z5 and RC[G] ' Z5, and we see
that the map RR[G] → RC[G] is given by (a, b, c, d, e) 7−→ (a, b, c, d, 2e). This is also not
surjective.

I.5 Induction and restriction

Let R be a ring and α : H → G be a morphism of groups. Then α a morphism of rings
ϕ : R[H] → R[G]. In many applications, G is finite, α is the inclusion of a subgroup of G, and
R is a field, but we’ll do as much as we can in the general setting.

I.5.1 Definitions

Definition I.5.1.1 (Restriction). If M is a R[G]-module, we can see it as a R[H]-module by
making R[H] act via the morphism ϕ : R[H] → R[G]. The resulting R[H]-module is denoted
by ResGHM (or α∗M if we need to make α explicit) and called the restriction of M to H (along
α).

If u : M → N is a morphism of R[G]-modules, we write ResGH(u) : ResGHM → ResGH N for
the same map u, now seen as a morphism of R[H]-modules.

Remark I.5.1.2. It is clear from the definition that ResGH preserves exact sequences.

15See problem VII.2.1.
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Hence, if α(H) has finite index in G and k is a field, ResGH induces morphisms of groups
ResGH : Rk(G) → Rk(G) and Pk(G) → Pk(H) (see definition I.4.6), and the first morphism
is actually a morphism of rings. (The condition on α is needed to preserve the finite length
condition on the representations appearing in the definition of the representation rings.)

Definition I.5.1.3 (Induction). If M is a R[H]-module, we set

IndGHM = R[G]⊗R[H] M,

where R[H] acts on the left on R[G] via the morphism ϕ. This is called the induction of M from
H to G, and is sometimes also denoted by α!M .

If u : M → N is a morphism of R[H]-modules, we write IndGH(u) : IndGHM → IndGH N for
the R[G]-linear map idR[G] ⊗ u.

Definition I.5.1.4 (Coinduction). If M is a R[H]-module, we set

CoIndGHM = HomR[H](R[G],M),

where R[G] is seen as a left R[H]-module via ϕ : R[H] → R[G]. We make this into a left
R[G]-module using the right regular action of R[G] on itself. More concretely, if x ∈ R[G] and
u ∈ CoIndGHM , then x · u is defined by (x · u)(y) = u(yx), for every y ∈ R[H].

TheR[G]-module CoIndGHM is called the coinduction ofM fromH toG, and it is sometimes
denoted by α∗M .

If u : M → N is a morphism of R[H]-modules, we write
CoIndGH(u) : CoIndGHM → CoIndGH N for the R[G]-linear map sending
v ∈ HomR[H](R[G],M) to u ◦ v.

Remark I.5.1.5. Here is a more concrete description of the coinduction. Let M be a R[H]-
module. Then restricting maps R[G] → M along the inclusion G ⊂ R[G] induces an isomor-
phism of R-modules

CoIndGHM
∼→ {f : G→M |∀h ∈ H,∀g ∈ G, f(α(h)g) = hf(g)}.

The action of G on the right-hand side is given in the following way : If f : G → M and if
x ∈ G, then x · f : G→M is defined by (x · f)(g) = f(gx), for every g ∈ G.

Proof. Denote by ψ the R-module morphism defined above. It is injective because G generates
the R[H]-module R[G], so a R[H]-linear map u : R[G] → M is uniquely determined by its
restriction to G.

Let’s show that ψ is surjective. Let f : G→M satisfying the condition in the formula above,
and define a R-linear map u : R[G]→M by

u(
∑
g∈G

cgg) =
∑
g∈G

cgf(g).
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If we can show that u is R[H]-linear, we’ll be done because we’ll then have ψ(u) = f . But if
h ∈ H and x =

∑
g∈G cgg ∈ R[G], then

u(hx) = u(
∑
g∈G

cgα(h)g) =
∑
g∈G

cgf(α(h)g) =
∑
g∈G

cghf(g) = hu(x).

The last sentence of the remark is clear.

The analogue of remark I.5.1.2 for induction and coinduction is more complicated (and not
always true). We will consider this question below.

I.5.2 Induction and exact sequences

The following obvious result will be used several times :

Proposition I.5.2.1. If α : H → G is injective, then ϕ : R[H] → R[G] makes R[G] into a
free (left or right) R[H]-module. More precisely, let (gi)i∈I be a complete set of representatives
of α(H) ⊂ G (resp. G/α(H)) in G; then (gi)i∈I is a basis of R[G] as a left (resp. right)
R[H]-module.

Definition I.5.2.2. Suppose that G = {1}. Then, for every R[H]-module M , Ind1
HM is called

the R-module of coinvariants of M under H and denoted by MH .

Remark I.5.2.3. It follows directly from the definition that MH is the quotient of M by the R-
submodule generated by all hm−m, with h ∈ H and m ∈M .

Theorem I.5.2.4. For every exact sequence 0 → M ′ → M → M ′′ → 0 of R[H]-modules, the
sequence IndGHM

′ → IndGHM → IndGHM
′′ → 0 is exact.

Moreover, we can also deduce that the sequence 0→ IndGHM
′ → IndGHM → IndGHM

′′ → 0
is exact in the following two situations :

1. α : H → G is injective.

2. Ker(α) is finite, R is semisimple and |Ker(α)| is invertible in R.

Lemma I.5.2.5. Let M be a R[H]-module.

1. If α : H → G is surjective, then IndGH = MKerα, with the following action of G : For
every g ∈ G and x ∈ MKerα, choose preimage h ∈ H of g by α and m ∈ M of x by the
obvious quotient map, and then gx is the image in MKerα of hm.

2. In general, IndGH = IndGα(H)MKerα.
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Proof. 1. Let u : IndGHM = R[G] ⊗R[H] M → MKerα be defined as follows : If a ∈ R[G]
and m ∈,M , choose b ∈ R[H] such that ϕ(b) = a and take for u(a⊗m) the image of bm
in MKerα. This does not depend on the choice of b, because Kerϕ is the R[H]-submodule
of R[H] generated by all h− 1, for h ∈ Kerα, and it does define a map on R[G]⊗R[H]M ,
because the formula for u(a ⊗ m) is additive in a and m and takes the same value on
(aϕ(x),m) and (a, xm) if x ∈ R[H].

Let v′ : M → R[G]⊗R[H] M be the map m 7−→ 1⊗m. If m ∈M and h ∈ Kerα, then

v′(hm−m) = 1⊗ (hm)− 1⊗m = α(h)⊗m− 1⊗m = 0.

So v′ defines a R-linear map v : MKerα → IndGHM .

It is now very easy to check that u and v are inverses of each other, and to read the formula
for the action of G on MKerα on the definition of u.

2. This follows from the fact that IndGHM = IndGα(H) Ind
α(H)
H (which is just the transitivity

of ⊗) and from (i).

Lemma I.5.2.6. Suppose that R is semisimple, and that G is a finite group such that |G| is
invertible in R. Then, for every exact sequence of R[G]-modules 0 → M ′ → M → M ′′ → 0,
the sequence 0→M ′

G →MG →M ′′
G → 0 is also exact.

Proof. The hypotheses imply that the ring R[G] is semisimple (see theorem I.3.2). By the first
part of the theorem (whose proof does not use this lemma), we only need to show that taking
coinvariants preserves injectivity in our situation. So let M → N be an injective R[G]-linear
map. As R[G] is semisimple, there exists a R[G]-submodule M ′ of N such that N = M ⊕M ′.
It’s clear on the definition of coinvariants thatNG = MG⊕M ′

G. In particular, the mapMG → NG

is injective.

Proof of the theorem. The first part follows from the general properties (more precisely, the right
exactness) of the tensor product.

Let’s prove the second part. In situation (i), the rightR[H]-moduleR[G] is free by proposition
I.5.2.1, so taking tensor products byR[G] overR[H] preserves exact sequences. Suppose that we
are in situation (ii). Then, by lemma I.5.2.5, IndGHM = IndGα(H) MKerα for every R[H]-module
M , and so the statement follows from lemma I.5.2.6 and from situation (i).

Remark I.5.2.7. The second part of the theorem is not true in general, because taking coinvariants
does not always preserve exact sequences. 16

16See any book on group homology, for example Brown’s book [5].
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Corollary I.5.2.8. Suppose that R = k is a field. If G and H are finite and char(k) does not
divide |Ker(α)|, then IndGH induces a morphism of groups Rk(H)→ Rk(G).

Remark I.5.2.9. Note that this is not a morphism of rings. For example, it sends the unit [11] of
Rk(H) to [k[G]⊗k[α(H)] k]. 17

I.5.3 Coinduction and exact sequences

Definition I.5.3.1. Suppose that G = {1}. Then, for every R[H]-module M , CoInd1
HM is

called the R-module of invariants of M under H and denoted by MH .

Remark I.5.3.2. It follows directly from the definition that

MH = {m ∈M |∀h ∈ H, hm = m}.

Theorem I.5.3.3. For every exact sequence 0 → M ′ → M → M ′′ → 0 of R[H]-modules, the
sequence 0→ CoIndGHM

′ → CoIndGHM → CoIndGHM
′′ is exact.

Moreover, we can also deduce that the sequence 0→ CoIndGHM
′ → CoIndGHM → CoIndGHM

′′ → 0
is exact in the following two situations :

1. α : H → G is injective.

2. Ker(α) is finite, R is semisimple and |Ker(α)| is invertible in R.

Lemma I.5.3.4. Let M be a R[H]-module.

1. If α : H → G is surjective, then CoIndGH = MKerα, with the following action of G : For
every g ∈ G and m ∈MKerα, choose a preimage h ∈ H of g by α, and then gm is defined
to be hm.

2. In general, CoIndGH = CoIndGα(H) M
Kerα.

Proof. 1. Let u : CoIndGHM = HomR[H](R[G],M) → MKerα be defined as follows : If
f : R[G]→ M is a R[H]-linear map, take u(f) = f(1). This is well-defined because, for
every h ∈ Kerα, hf(1) = f(α(h)1) = f(1).

Let v : MKerα → HomR[H](R[G],M) be the map defined as follows : If m ∈ M and
a ∈ R[G], choose b ∈ R[H] such that ϕ(b) = a, and set v(m)(a) = bm. This does not
depend on the choice of b, because Kerϕ is the R[H]-submodule of R[H] generated by all
h− 1, for h ∈ Kerα.

It is now very easy to check that u and v are inverses of each other, and the statement about
the action of G on MKerα is obvious.

17But see corollary I.5.6.2 for a property that it does have.
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2. This follows from the fact that CoIndGHM = CoIndGα(H) CoInd
α(H)
H (i.e. that

HomR[H](R[G],M) = HomR[α(H)](R[G],HomR[H](R[α(H)],M)), which is a general
property of Hom) and from (i).

Lemma I.5.3.5. Suppose that R is semisimple, and that G is a finite group such that |G| is
invertible in R. Then, for every exact sequence of R[G]-modules 0 → M ′ → M → M ′′ → 0,
the sequence 0→M ′G →MG →M ′′G → 0 is also exact.

Proof. The hypotheses imply that the ring R[G] is semisimple (see theorem I.3.2). By the first
part of the theorem (whose proof does not use this lemma), we only need to show that taking
invariants preserves surjectivity in our situation. So let M → N be an surjective R[G]-linear
map. As R[G] is semisimple, there exists a R[G]-submodule N ′ of M such that M = N ⊕ N ′.
It’s clear on the definition of invariants that MG = NG⊕N ′G. In particular, the map MG → NG

is surjective.

Proof of the theorem. The first part follows from the general properties (more precisely, the left
exactness) of Hom.

Let’s prove the second part. In situation (i), the left R[H]-module R[G] is free by proposition
I.5.2.1, so taking HomR[H](R[G], ·) preserves exact sequences. Suppose that we are in situation
(ii). Then, by lemma I.5.3.4, CoIndGHM = CoIndGα(H) M

Kerα for every R[H]-module M , and
so the statement follows from lemma I.5.3.5 and from situation (i).

Remark I.5.3.6. The second part of the theorem is not true in general, because taking invariants
does not always preserve exact sequences. 18

Corollary I.5.3.7. If R = k is a field, G and H are finite and char(k) does not divide |Ker(α)|,
then CoIndGH induces a morphism of groups Rk(H)→ Rk(G). 19

I.5.4 Frobenius reciprocity

Definition I.5.4.1. Let M be a R[H]-module. We denote by εM the morphism
ResGH CoIndGHM → M sending u ∈ HomR[H](R[G],M) to u(1) ∈ M , and by ηM the mor-
phism M → ResGH IndGHM , m 7−→ 1⊗m.

Proposition I.5.4.2. For every R[H]-module M , the maps εM and ηM are R[H]-linear.
18See any book on group cohomology, for example Brown’s book [5].
19Note that CoIndGH is actually canonically isomorphic to IndGH in that case, by corollary I.5.5.2 and proposition

I.5.5.3.
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Proof. It is clear that ηM is R[H]-linear. Let u ∈ HomR[H](R[G],M) and x ∈ R[H]. Then

εM(x · u) = (x · u)(1) = u(x) = xu(1)

because u is R[H]-linear.

Theorem I.5.4.3 (Frobenius reciprocity). Let M be a R[G]-module and N be a R[H]-module.

1. The morphism of groups

Φ : HomR[G](M,CoIndGH N)→ HomR[H](ResGHM,N)

sending u ∈ HomR[G](M,CoIndGH N) to εN ◦ ResGH(u) is an isomorphism. It is R-linear
if R is commutative.

2. The morphism of groups

Φ′ : HomR[G](IndGH N,M)→ HomR[H](N,ResGHM)

sending u ∈ HomR[G](IndGH N,M) to ResGH(u) ◦ ηN is an isomorphism. It is R-linear if R
is commutative.

Remark I.5.4.4. This theorem is not specific to group algebras and stays true (with the obvi-
ous modifications in the definitions and the same proof) if we replace the morphism of rings
R[H]→ R[G] by any morphism of rings R1 → R2.

Also, point (ii) follows from a more general statement, called the adjunction between ⊗ and
Hom. (See problem VII.1.1.)

Proof. The statements about the R-linearity of Φ and Ψ if R is commutative are obvious.

Write R1 = R[H] and R2 = R[G].

1. Consider the map

Ψ : HomR[H](ResGHM,N) = HomR1(M,N)→

HomR[G](M,CoIndGH N) = HomR2(M,HomR1(R2, N))

sending u : M → N to the map Ψ(u) : m 7−→ (a 7−→ u(am)). If u is R1-linear, then
Ψ(u) sends M to HomR1(R2, N), and we check easily that it is R2-linear : indeed, for
every b ∈ R2 and m ∈M , if a ∈ R2, then

Ψ(u)(bm))(a) = u(abm) = (Ψ(u)(m))(ab) = (b · (Ψ(u)(m)))(a).

To prove the statement, we only need to show that Φ and Ψ are inverses of each other.
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Let u be a R1-linear map from M to N . Then Ψ(u) : M → HomR1(R2, N) is the R2-
linear map m 7−→ (a 7−→ u(am)), and ΦΨ(u) : M → N is the R1-linear map sending
m ∈M to (Ψ(u)(m))(1) = u(m). So ΨΦ(u) = u.

Let v be a R2-linear map from M to HomR1(R2, N). Then Φ(v) is the R1-linear map
m 7−→ v(m)(1), and, for every m ∈M and a ∈ R2,

(ΨΦ(v)(m))(a) = Φ(v)(am) = (v(am))(1) = (a · v(m))(1) = v(m)(a).

So ΨΦ(v) = v.

2. Consider the map

Ψ′ : HomR[H](N,ResGHM) = HomR1(N,M)→

HomR[G](IndGH N,M) = HomR2(R2 ⊗R1 N,M)

sending a R1-linear map u : N → M to the R2-linear map Ψ′(u) : R2 ⊗R1 N → M ,
a⊗n 7−→ au(n). (This map Ψ′(u) is well-defined because (a, n) 7−→ au(n) is additive in
each variable, and because we have ϕ(a)u(n) = u(ϕ(a)n) if a ∈ R1.)

To prove the statement, we only need to show that Φ′ and Ψ′ are inverses of each other.

Let u be a R1-linear map from N to M . Then for every n ∈ N ,

Φ′Ψ′(u)(n) = Ψ′(u)(1⊗ n) = u(n).

So Φ′Ψ′(u) = u.

Let v be a R2-linear map from R2 ⊗R1 N to M . Then for every a ∈ R2 and n ∈ N ,

Ψ′Φ′(v)(a⊗ n) = aΦ′(v)(n) = av(1⊗ n) = v(a⊗ n).

So Ψ′Φ′(v) = v.

I.5.5 Comparing induction and coinduction

Proposition I.5.5.1. Suppose that α : H → G is injective, and let M be a R[H]-module.
Then we have a canonical isomorphism of R[G]-modules between IndGHM and the set of
f : G → M such that f is supported on a finite union of right cosets of H in G and that
∀h ∈ H,∀g ∈ G, f(α(h)g) = hf(g).

The action of G on the second module is given in the following way : If f : G → M and if
x ∈ G, then x · f : G→M is defined by (x · f)(g) = f(gx), for every g ∈ G.

Proof. See problem VII.1.12.
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Corollary I.5.5.2. Suppose that α : H → G is injective. Then, for every R[H]-module M , we
have a canonical R[G]-linear injective map IndGHM → CoIndGHM .

If moreover the image of α has finite index in G, this map is an isomorphism.

Proof. This follows immediately from remark I.5.1.5 and proposition I.5.5.1.

Proposition I.5.5.3. Suppose that α : H → G is surjective. Then, for every R[H]-module M ,
we have a canonical R[G]-linear map

CoIndGHM = MKerα → IndGHM = MKerα,

induced by the identity of M .

If moreover R is a semisimple ring, Ker(α) is finite and |Ker(α)| is invertible in R, then this
morphism is always an isomorphism.

Proof. We have CoIndGHM = MKerα and IndGHM = MKerα by lemmas I.5.3.4 and I.5.2.5,
which gives the map.

Suppose that R is a semisimple ring, that K := Ker(α) is finite and that |K| is invertible in
R. Then R[K] is a semisimple ring by theorem I.3.2, so there exists a R[K]-submodule N of M
such that M = MK ⊕N . Hence MK = (MK)K ⊕NK = MK ⊕NK , which show that the map
u : MK →MK induced by idM is surjective.

To show that u is injective, we construct its inverse. Consider the R-linear map v′ : M →MK

sending m ∈M to 1
|K|
∑

g∈K gm. This makes sense because |K| is invertible in R, and it clearly
lands in MK . Also, v′(gm − m) = 0 for every g ∈ K and m ∈ M , so v′ induces a map
v : MK →MK , and it is easy to check that v is the inverse of u.

I.5.6 The projection formula

In this section, we assume that the ring R is commutative.

Proposition I.5.6.1. If M is a R[H]-module and N is a R[G]-module, then we have a canonical
R[G]-linear isomorphism

IndGH(M ⊗R (ResGH N)) ' (IndGHM)⊗R N.
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Proof. We write

M1 = IndGH(M ⊗R (ResGH N)) = R[G]⊗R[H] (M ⊗R N)

and
M2 = (IndGHM)⊗R N = (R[G]⊗R[H] M)⊗R N.

Note that there is obvious R-linear isomorphism between M1 and M2, but it is not R[G]-linear
in general.

Instead, consider the R-linear maps

ϕ :

{
M1 → M2

g ⊗ (v ⊗ w) 7−→ (g ⊗ v)⊗ (gw)

and

ψ :

{
M2 → M1

(g ⊗ v)⊗ w 7−→ g ⊗ (v ⊗ (g−1w)).

It’s easy to see that these maps are well-defined and inverses of each other, so we just need to
check that ϕ is G-linear. Let g, h ∈ G and v ∈M and w ∈ N . Then

ϕ(h(g⊗(v⊗w))) = ϕ((hg)⊗(v⊗w)) = ((hg)⊗v)⊗(hgw) = h((g⊗v)⊗w) = hϕ(g⊗(v⊗w)).

Corollary I.5.6.2. Suppose that R is a field k. (So that Rk(G) and Rk(H) are rings.) Then, for
every x ∈ Rk(H) and y ∈ Rk(G), we have

IndGH(xResGH(y)) = (IndGH x)y.

In other words, if we make Rk(G) act on Rk(H) via the morphism of rings ResGH , then
IndGH : Rk(H)→ Rk(G) is Rk(G)-linear.

In particular, the image of IndGH is an ideal of Rk(G).

I.5.7 The case of finite groups

We now suppose that the groups G and H are finite. Then we know that :

1. For every R[H]-module M , there is a canonical R[G]-module map
CoIndGHM → IndGHM . If α is injective, or if R is a semisimple ring and |Kerα|
is invertible in R, this is an isomorphism. (By corollary I.5.5.2, proposition I.5.5.3 and the
transitivity of induction and of coinduction.)

2. ResGH preserves exact sequences. If α is injective or if R and semisimple and |Kerα| is
invertible in R, so do IndGH and CoIndGH . (By remark I.5.1.2 and theorems I.5.2.4 and
I.5.3.3.)
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In this chapter, unless otherwise specified, k will be a field of characteristic 0 and all the groups
are finite. So for any group G, the k-algebra k[G] is semisimple (see theorem I.3.2 of chapter I).

A representation of a group G will be a representation of G on a finite-dimensional k-vector
space, i.e. a finite length k[G]-module, and we’ll usually write HomG instead of Homk[G]. The
regular representation of G is the representation corresponding to the left regualr k[G]-module.

II.1 Characters

II.1.1 Definition

Let G be a group.

Definition II.1.1.1. A function f : G → k is called central if for all g, h ∈ G, f(gh) = f(hg).
We write C (G, k) for the k-algebra of central functions from G to k.

Definition II.1.1.2. Let (V, ρ) be a representation of G. The character of V is the function

χV :

{
G → k
g 7−→ Tr(ρ(g)).

Proposition II.1.1.3. Let (V, ρV ) and (W, ρW ) be representations of G. Then :

1. χV (1) = dimk V .

2. χV ∈ C (G, k).

3. χV⊕W = χV + χW .

4. χV⊗kW = χV χW .

Remember that the action of G on V ⊗k W is defined by g(v ⊗ w) = (gv)⊗ (gw).

Proof. Only point (iv) is not trivial. Choose k-bases (e1, . . . , en) and (f1, . . . , fm) of V and W .
Let g ∈ G. In the chosen bases of V and W , write ρV (g) and ρW (g) as matrices (xij)1≤i,j≤n and
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(yij)1≤i,j≤m. Then (ei ⊗ fj)1≤i≤n,1≤j≤m is a basis of V ⊗k W , and the matrix of ρV (g)⊗ ρW (g)
in this basis is (xi,i′yj,j′)1≤i,i′≤n,1≤j,j′≤m. Hence

χV⊗kW (g) =
n∑
i=1

m∑
j=1

xi,iyj,j = (
n∑
i=1

xi,i)(
m∑
j=1

yj,j) = χv(g)χW (g).

Corollary II.1.1.4. The map V 7−→ χV induces a morphism of rings Rk(G)→ C (G, k).

Remark II.1.1.5. Let K/k be an extension of fields. Then, for every representation of G over k,
we have χV⊗kK = χV , so we get a commutative diagramm

Rk(G) //

��

C (G, k)

��
RK(G) // C (G,K)

where the horizontal arrows are those of the previous corollary, the left vertical arrow is given by
[V ] 7−→ [V ⊗k K] and the right vertical arrow is the obvious inclusion.

Remark II.1.1.6. If V is a representation ofG, we have a k-algebra map k[G]→ Endk(G), so we
can extend χV to a function χV : k[G] → k, and properties (iii) and (iv) of proposition II.1.1.3
still hold.

Definition II.1.1.7. Let V,W be representations of G.

- The k-vector space Homk(V,W ) becomes a representation of G if we make g ∈ G act by
(g · f)(v) = gf(g−1v), for f ∈ Homk(V,W ) and v ∈ V .

- In particular, V ∗ := Homk(V, k) is a representation of G (we use the trivial action of G on
k), and we have (g · f)(v) = f(g−1v) for all g ∈ G, f ∈ V ∗ and v ∈ V .

Definition II.1.1.8. (See definition I.5.3.1 of chapter I.) For every representation V of G, we set

V G = {v ∈ V |∀g ∈ G, gv = v}.

This is the space of invariants of G in V .

Remark II.1.1.9. If V and W are representations of G, then

HomG(V,W ) = Homk(V,W )G.

Proposition II.1.1.10. Let V,W be representations of G. Then the map{
V ∗ ⊗k W → Homk(V,W )

v ⊗ w 7−→ (v 7−→ f(v)w)

is a G-equivariant isomorphism.
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Proof. Let’s call this map ϕ. It is well-defined because the map V × W → Homk(V,W ),
(v, w) 7−→ (v 7−→ f(v)w), is k-bilinear.

First we show that ϕ is G-equivariant. Let f ∈ V ∗, w ∈ W , g ∈ G and v ∈ V . Then

(ϕ(g(f ⊗ w)))(v) = (ϕ((gf)⊗ (gw)))(v) = (gf)(v)gw = f(g−1v)gw,

and
(gϕ(f ⊗ w))(v) = g(ϕ(f ⊗ w)(g−1v)) = gf(g−1v)w.

Let’s show that ϕ is bijective. Let (ei)i∈I be a basis of W as a k-vector space. Then
we have a k-linear isomorphism u :

⊕
i∈I Homk(V, k)

∼→ Homk(V,W ) sending (fi)i∈I to
v 7−→

∑
i∈I fi(v)ei, and a k-linear isomorphism v :

⊕
i∈I V

∗ ∼→ V ∗ ⊗k W sending (fi)i∈I
to
∑

i∈I fi ⊗ ei. Now we just have to notice that ϕ = u ◦ v−1.

Proposition II.1.1.11. Let V,W be representations of G. Then, for every g ∈ G :

1. χV ∗(g) = χV (g−1);

2. χHomk(V,W ) = χV (g−1)χW (g).

Proof. Point (ii) follows from (i) and from propositions II.1.1.3 and II.1.1.10. Let’s prove (i).
Write ρ for the action morphismG→ Endk(V ). Choose a basis B of V as a k-vector space, and
let M be the matrix of ρ(g)−1 in B. Then g acts by the matrix tM on V ∗, so the result follows
from the fact that Tr(M) = Tr(tM).

II.1.2 Orthogonality of characters

Let’s first reformulate Schur’s lemma in our situation.

Theorem II.1.2.1 (Schur’s lemma). Let V,W be irreducible representations of G. Then
Homk(V,W ) = 0 unless V ' W , and Endk(V ) is a finite-dimensional k-division algebra.
If moreover k is algebraically closed, then Endk(V ) = k.

Also, remember (definition I.3.5 of chapter I) that Sk(G) is a set of representatives of the
isomorphism classes of irreducible representations of G over k.

Proof. Everything but the last sentence follows from theorem I.1.4.1 of chapter I and the fact
that dimk(V ) is finite. The last statement follows from problem VII.1.3.
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Theorem II.1.2.2. Let V,W be representations of G. Then

1

|G|
∑
g∈G

χV (g−1)χW (g) =
1

|G|
∑
g∈G

χV ∗(g)χW (g) = dimk(HomG(V,W )).

We will use the following two lemmas, which are particular cases of the theorem.

Lemma II.1.2.3. Suppose that k is algebraically closed, and let (V, ρ) be an irreducible repre-
sentation of V . Then ∑

g∈G

χV (g) =

{
0 if V 6' 11
|G| if V ' 11.

Proof. Extend ρ : G → Endk(V ) to ρ : k[G] → Endk(V ), and let c =
∑

g∈G g ∈ k[G]. Then c
is central in k[G] (in fact, hc = ch = c for every h ∈ G), so ρ(c) ∈ Endk(G) is a G-equivariant
endomorphism of V . By Schur’s lemma, there exists λ ∈ k such that ρ(c) = λidV , and so we
have ∑

g∈G

χV (c) = Tr(ρ(c)) = λ dimV.

Moreover, for every h ∈ G,

λρ(h) = ρ(c)ρ(h) = ρ(ch) = ρ(c) = λidV .

So, if λ 6= 0, then V ' 11, and then of course∑
g∈G

χV (g) =
∑
g∈G

1 = |G|.

Lemma II.1.2.4. Let V be a representation of G. Then∑
g∈G

χV (g) = |G| dimk(V
G).

Proof. By remark II.1.1.5 and problem VII.2.1(1), we may assume that k is algebraically closed.
Write V =

⊕
W∈Sk(G) W

⊕nW . Then∑
g∈G

χV (g) =
∑

W∈Sk(G)

nW
∑
g∈G

χW (g).

By lemma II.1.2.3, this is equal to n11|G|.

On the other hand, if W ∈ Sk(G) and W ' 11, then WG = 0 (because WG is a subrepresen-
tation of W ). So V G = 11n11 , and dimk(V

G) = n11.
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Proof of the theorem. By propositions II.1.1.3 and II.1.1.11,

1

|G|
∑
g∈G

χV (g−1)χW (g) =
1

|G|
∑
g∈G

χV ∗(g)χW (g) =
1

|G|
∑
g∈G

χHomk(V,W )(g).

By lemma II.1.2.4 and remark II.1.1.9, this is equal to

dimk(Homk(V,W )G) = dimk(HomG(V,W )).

Corollary II.1.2.5. If V and W are irreducible and nonisomorphic, then∑
g∈G

χV ∗(g)χW (g) = 0.

Proof. This follows from the theorem and from Schur’s lemma.

Corollary II.1.2.6. Suppose that k is algebraically closed, and let V be a representation of G.
Then V is irreducible if and only if

∑
g∈G χV ∗(g)χV (g) = |G|.

Proof. The theorem says that
∑

g∈G χV ∗(g)χv(g) = |G| dimk(EndG(V )).

If V is irreducible, then Endk(V ) = k by Schur’s lemma.

Conversely, suppose that
∑

g∈G χV ∗(g)χv(g) = |G|. Write v =
⊕

i∈I V
⊕ni
i , where the Vi are

irreducible and pairwise nonisomorphic. Then by corollary II.1.2.5 and what we just saw above,∑
g∈G

χV ∗(g)χV (g) =
∑
i,j∈I

ninj
∑
g∈G

χV ∗i (g)χVj(g) = |G|
∑
i∈I

n2
i .

So only one of the ni can be nonzero, and moreover it has to be equal to 1. Hence V is irreducible.

Remark II.1.2.7. If we don’t assume that k is algebraically closed, then the same proof shows
that any representation V of G satisfying

∑
g∈G χV ∗(g)χv(g) = |G| has to be irreducible.

Corollary II.1.2.8. The family (χV )V ∈Sk(G) is linearly independent in C (G, k).

Proof. Suppose that
∑

W∈Sk(G) αWχW = 0, with αW ∈ k. Then, for every V ∈ Sk(G), we have

0 =
∑
g∈G

(
∑

W∈Sk(G)

αWχW (g))χV ∗(g) =
∑

W∈Sk(G)

αW
∑
g∈G

χW (g)χV ∗(g) = αV |G|,

hence αV = 0.
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Corollary II.1.2.9. For any representations V, V ′ ofG, we have V ' V ′ if and only if χV = χV ′ .

In particular, the map Rk(G)→ C (G, k) is injective.

Proof. Write V =
⊕

W∈Sk(G) W
⊕nW and V ′ =

⊕
W∈Sk(G) W

⊕n′W . Then
χV =

∑
W∈Sk(G) nWχW and χV ′ =

∑
W∈Sk(G) n

′
WχW .

By corollary II.1.2.8, χV = χV ′ if and only if nW = n′W for every W ∈ Sk(G), which is also
equivalent to V ' V ′.

II.1.3 Characters and representation ring

Theorem II.1.3.1. Suppose that the field k is algberaically closed. Then the family (χW )W∈Sk(G)

is a basis of C (G, k).

Lemma II.1.3.2. If f ∈ C (G, k) is such that∑
g∈G

f(g)χW ∗(g) = 0

for every W ∈ Sk(G), then f = 0.

Proof. If ρ : G→ Endk(V ) is a representation of G, we set

ρ(f) =
∑
g∈G

f(g)ρ(g) ∈ Endk(V ).

Then, for every g ∈ G,

ρ(g)ρ(f) =
∑
h∈G

f(g)ρ(gh) =
∑
h∈G

f(g)ρ(ghg−1g) =
∑
h∈G

f(ghg−1)ρ(ghg−1)ρ(g) = ρ(f)ρ(g),

because f is a central function. So, if V is irreducible, then ρ(f) ∈ EndG(V ) = k (by Schur’s
lemma), hence we can write ρ(f) = λidV with λ ∈ k, and we have

λ dim(V ) = Tr(ρ(f)) =
∑
g∈G

f(g)χV (g) = 0,

which gives λ and finally ρ(f) = 0.

By semisimplicity of k[G], we get that ρ(f) = 0 for any representation ρ of G. Applying this
to the regular representation ρreg gives

0 = ρreg(f)1 =
∑
g∈G

f(g)g
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in k[G], i.e., f(g) = 0 for every g ∈ G.

Proof of the theorem. We already know that this family is linearly independent, so we just need
to show that it generates C (G, k).

Let f ∈ C (G, k). For every W ∈ Sk(G), let

αW =
1

|G|
∑
g∈G

f(g)χW ∗(g).

If we knew (χW )W∈Sk(G) was a basis C (G, k), this αW would be the coefficient of f correspond-
ing to χW , by corollaries II.1.2.5 and II.1.2.6. So we set

f ′ = f −
∑

W∈Sk(G)

αWχW ,

and we try to prove that f ′ = 0. For every W ∈ Sk(G), using corollary II.1.2.5 gives∑
g∈G

f ′(g)χW ∗(g) =
∑
g∈G

f(g)χW ∗(g)− αW
∑
g∈G

χW (g)χW ∗(g) = 0,

so the result follows from the lemma.

Corollary II.1.3.3. Suppose that k is algberaically closed. Then we have
|Sk(G)| = dimk C (G, k), and this is also equal to the number of conjugacy classes in
G.

Corollary II.1.3.4. Suppose that k is algebraically clsoed. Then the map Rk(G) → C (G, k),
[V ] 7−→ χV , of corollary II.1.1.4 induces an isomorphism of k-algebras Rk(G)⊗Zk

∼→ C (G, k).

Remark II.1.3.5. Many of the results of the previous three sections are true for any field k (whose
characteristic does not divide |G|). The most important results that require k to be algebraically
closed are II.1.2.6 and theorem II.1.3.1 (more precisely, the fact that the characters of irreducible
representations generate C (G, k)) and its corollaries II.1.3.3 and II.1.3.4.

II.1.4 The case k = C

Proposition II.1.4.1. Let k be any field, and let (V, ρ) be a representation of a group G. Then
for every g ∈ G, all the eigenvalues of ρ(g) are |G|th roots of 1 in k.
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Proof. Let g ∈ G. We have ρ(g|G|) = ρ(g)|G| = idV , hence the characteristic polynomial of ρ(g)
divides T |G| − 1.

Corollary II.1.4.2. Let (V, ρ) be a representation of V over C. Then, for every g ∈ G,
χV ∗(g) = χV (g).

Proof. Let g ∈ G, and let λ1, . . . , λn be the eigenvalues of ρ(g) (with multiplicities). Then

χV ∗(g) = χV (g−1) = λ−1
1 + · · ·+ λ−1

n = λ1 + · · ·+ λn.

Corollary II.1.4.3. Define a Hermitian inner product on the finite-dimensional C-vector space
C (G,C) by

f1 · f2 =
1

|G|
∑
g∈G

f1(g)f2(g).

Then (χW )W∈SC(G) is an orthonomal basis of C (G,C).

II.2 Representations of a product of groups

Let G1 and G2 be two groups. If V1 (resp. V2) is a representation of G1 (resp. G2), then V1⊗k V2

becomes a representation of G1 ×G2 with the action (g1, g2)(v1 ⊗ v2) = (g1v1)⊗ (g2v2).

It is easy to show (see proposition II.1.1.3) that

χV1⊗kV2(g1, g2) = χV1(g1)χV2(g2).

Theorem II.2.1. Suppose that k is algebraically closed, and let V1 (resp. V2) be a representation
of G1 (resp. G2).

1. The representation V1 ⊗k V2 of G1 × G2 is irreducible if and only if both V1 and V2 are
irreducible.

2. Every irreducible representation of G1 ×G2 is of the form V1 ⊗k V2.

This theorem is proved in problem VII.2.4. This same problem also contains a counterexample
to point (i) if k is not algebraically closed.
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II.3 Characters and induced representation

Remember that in the present setting, the induction and the coinduction coincide (see section
I.5.7 of chapter I).

We fix a finite group G, and we assume again that k is any field whose characteristic does not
divide |G|.
Notation. If f1, f2 ∈ C (G, k), write 〈f1, f2〉G (or just 〈f1, f2〉 if G is clear from the context) for

1

|G|
∑
g∈G

f1(g)f2(g−1) =
∑
g∈G

f1(g−1)f2(g).

Note that 〈f1, f2〉 = 〈f2, f1〉, and that this differs slightly from the inner product of section II.1.4
if k = C.

With this notation, theorem II.1.2.2 becomes : For any representations V and W of G, we
have

〈χV , χV 〉 = dimk(HomG(V,W )).

II.3.1 Character of an induced representation

Let H be a subgroup of G.

Definition II.3.1.1. If f ∈ C (H, k), define IndGH f : G→ k by

IndGH f(g) =
1

|H|
∑

s∈G|s−1gs∈H

f(s−1gs).

Theorem II.3.1.2. 1. For every f ∈ C (H, k), IndGH f ∈ C (G, k).

2. If V is a representation of H , then IndGH χV = χIndGH V . 1

Proof. It’s easy enough to prove (i) directly, and we can also deduce it from (ii). (Indeed, we
may assume that k is algebraically closed, and then any f ∈ C (V, k) is a linear combination of
characters of representations.)

Let’s prove (ii). Let (V, ρV ) be a representation of H , and write (W, ρW ) = IndGH(V, ρV ). Let
g1, . . . , gr be a system of representatives of G/H . Then k[G] =

⊕r
i=1 gik[H], so

W = k[G]⊗k[H] V =
r⊕
i=1

Wi,

1See problem VII.2.16 for a generalization to a morphism H → G that is not necessarily injective.
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with
Wi = gik[H]⊗k[H] V.

Let g ∈ G. Then we have σ ∈ Sr and h1, . . . , hr ∈ H such that ggi = gσ(i)hi, for every
i ∈ {1, . . . , r}. Then ρW (g)(Wi) = Wσ(i) for every i. Choose a basis (e1, . . . , en) of V . Then
for every i ∈ {1, . . . , r}, (gi ⊗ e1, . . . , gi ⊗ en) is a basis of Wi, and we have

ρW (g)(gi ⊗ es) = gσ(i) ⊗ ρV (hi)es.

So
Tr(ρW (g)

∑
i|σ(i)=i

Tr(ρV (hi)) =
∑

i|g−1
i ggi∈H

f(g−1
i ggi).

But we have G =
∐r

i=1 giH and, if s ∈ giH , then :

(a) s−1gs ∈ H if and only if g−1
i ggi ∈ H;

(b) f(s−1gs) = f(g−1
i ggi).

This finishes the proof.

Remark II.3.1.3. If f ∈ C (G, k), we write ResGH f for f|H . Then ResGH χV = χResGH V for every
representation V of G.

II.3.2 Frobenius reciprocity with characters

We still assume that H is a subgroup of G.

Theorem II.3.2.1. If f1 ∈ C (H, k) and f2 ∈ C (G, k), then

〈f1,ResGH f2〉H = 〈IndGH f1, f2〉G.

Compare with theorem I.5.4.3 of chapter I.

Proof. We can deduce this theorem from theorem I.5.4.3 of chapter I : We may assume that k is
algebraically closed, and then C (G, k) and C (H, k) are generated by characters of representa-
tions, so we may assume that f1χV and f2 = χW , with V (resp. W ) a representation of H (resp.
G). Then, by theorem II.1.2.2, the left hand side is equal to dimk(HomH(V,ResGHW )) and the
right hand side to dimk(HomG(IndGH V,W )).

But it is also very easy to prove the theorem directly. Indeed, we have

〈f1,ResGH f2〉H =
1

|H|
∑
h∈H

f1(h)f2(h).
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On the other hand,

〈IndGH f1, f2〉G =
1

|G|
∑
g∈G

1

|H|
∑

s∈G|s−1gs∈H

f1(s−1gs)f2(g)

=
1

|G|
∑
g∈G

1

|H|
∑

s∈G|s−1gs∈H

f1(s−1gs)f2(s−1gs)

=
1

|G|
1

|H|
∑
h∈H

∑
s∈G

f1(h)f2(h) =
1

|H|
∑
h∈H

f1(h)f2(h).

II.3.3 Mackey’s formula

Let R be a ring, let G be a finite group, and let H,K be subgroups of G. In this section, we will
consider representations of these groups over R.

Let (V, ρ) be a representation of H . The question we want to answer is : What does
ResGK IndGH V look like ?

Let g1, . . . , gr be a system of representatives of the double classes inK \G/H . In other words,
we have

G =
r∐
i=1

KgiH.

For every i ∈ {1, . . . , r}, let Hi = giHg
−1
i ∩K, and let (Vi, ρi) be the representation of Hi on V

given by ρi(h) = ρ(g−1
i hgi).

Theorem II.3.3.1 (Mackey’s formula). We have an isomorphism of R[K]-modules

ResGK IndGH V '
r⊕
i=1

IndKHi Vi.

Proof. For every j ∈ {1, . . . , r}, let (xi)i∈Ij be a system of representatives of K/Hj . Then
{xigj, 1 ≤ j ≤ r, i ∈ Ij} is a system of representatives of G/H . Indeed,

G =
r∐
j=1

KgjH =
r∐
j=1

∐
i∈Ij

xiHjgjH =
r∐
j=1

∐
i∈Ij

xigj(g
−1
j Hjgj)H =

r∐
j=1

∐
i∈Ij

xigjH

(because g−1
j Hjgj ⊂ H for every j).

So W := IndGH V =
⊕r

j=1Wj , where Wj =
⊕

i∈Ij xigjk[H] ⊗k[H] V . Note that Wj ⊂ W is
stable by K.
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Fix j ∈ {1, . . . , r}. Let’s show that the R[K]-modules Wj and IndKHj Vj are isomorphic. (This
will finish the proof.) Consider the R-linear map ϕ : IndKHj Vj → Wj sending

∑
i∈Ij xi ⊗ vi to∑

i∈Ij(xigj)⊗ vi. Consider the R-linear map ψ : Wj → IndKHj Vj sending
∑

i∈KIj(xigj)⊗ vi to∑
i∈Ij xi ⊗ vi. It is clear that ϕ and ψ are inverses of each other. So we just need to show that ϕ

is K-linear. Let y ∈ K. Then we have σ ∈ SIj and hi ∈ Hj , i ∈ Ij , such that yxi = xσ(i)hi for
every i ∈ Ij . Then

ϕ(y(
∑
i∈Ij

xi ⊗ vi)) = ϕ(
∑
i∈Ij

(yxi)⊗ vi) = ϕ(
∑
i∈Ij

(xσ(i)hi)⊗ vi) = ϕ(
∑
i∈Ij

xσ(i) ⊗ (ρj(hi)vi))

= ϕ(
∑
i∈Ij

xσ(i) ⊗ (ρ(g−1
j higj)vi)) =

∑
i∈Ij

(xσ(i)gj)⊗ (ρ(g−1
j higj)vi)

=
∑
i∈Ij

(xσ(i)higj)⊗ vi =
∑
i∈Ij

(yxigj)⊗ vi = yϕ(
∑
i∈Ij

xi ⊗ vi)

(we use the fact that g−1
j higj ∈ H to move it from the right to the left of a tensor product).

II.3.4 Mackey’s irreducibility criterion

Fix a finite group G. We come back to our field of coefficients k, and we suppose that char(k)
does not divide G and that k is algebraically closed.

Notation. If V and W are representations of G, we write

〈V,W 〉G = 〈χV , χW 〉G = dimk HomG(V,W ).

Let H be a subgroup of G and (V, ρ) be a repersentation of H . Even if V is irreducible, it is
not always true that IndGH V is irreducible. (For example, IndG{1} 11 = k[G] is only irreducible if
G = {1}.) So we want a criterion to decide when IndGH V is irreducible.

For every g ∈ G, write Hg = gHg−1 ∩H , and define two representations ρg and Resg(ρ) of
Hg on V by

- ρg(h) = ρ(g−1hg);

- Resg(ρ)(h) = ρ(h).

Theorem II.3.4.1. The following are equivalent :

1. W := IndGH V is irreducible.

2. V is irreducible, and for every g ∈ G−H , HomHg(ρ
g,Resg(ρ)) = 0 (i.e. ρg and Resg(ρ)

have no common irreducible subrepresentation).
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Proof. We use the fact that W is irreducible if and only if 〈W,W 〉G = 1. (This is corollary
II.1.2.6.) Let’s calculate 〈W,W 〉G. The Frobenius reciprocity formula (theorem II.3.2.1) gives

〈W,W 〉G = 〈V,ResGHW 〉H .

Mackey’s formula (theorem II.3.3.1) gives

ResGHW '
⊕

g∈H\G/H

IndHHg(ρ
g),

hence
〈W,W 〉G =

∑
g∈H\G/H

〈V, IndHHg(ρ
g)〉H =

∑
g∈H\G/H

〈IndHHg(ρ
g), V 〉H .

Using the Frobenius reciprocity formula again show that this is equal to∑
g∈H\G/H

〈ρg,Resg(ρ)〉H .

Note that all the terms in this sum are ≥ 0. Also, if g ∈ H , then Hg = H and ρg ' Resg(ρ) = ρ,
so 〈ρg,Resg(V )〉H = 〈V, V 〉H .

Finally, we see that W is irreducible if and only if 〈W,W 〉G = 1, if and only if
〈V, V 〉H = 1 and 〈ρg,Resg(ρ)〉H = 0 for every g ∈ G − H , if and only V is irreducible
and HomHg(ρ

g,Resg(ρ)) = 0 for every g ∈ G−H .

II.4 Artin’s theorem

Let k and G be as before. We write R(G) = Rk(G).

We still use the notation 〈V,W 〉G of section II.3.4. As this number is an integer and only
depends on χV and χW , it induces a symmetric Z-bilinear map

〈., .〉G : R(G)× R(G)→ Z.

Proposition II.4.1. Write R(G)Q = R(G)⊗Z Q.

1. The Z-bilinear map 〈., .〉G : R(G)× R(G)→ Z induces a Q-linear isomorphism

R(G)Q
∼→ R(G)∗Q := HomQ(R(G)Q,Q)

sending x to y 7−→ 〈x, y〉G.

2. Let H be a subgroup of G. If we use the isomorphism of (i) to identify R(G)Q and R(H)Q
with their duals, then the transpose of IndGH is ResGH .
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Proof. 1. Denote by (eV )V ∈Sk(G) the basis ([V ])V ∈Sk(G) of R(G)Q, and by (e∗V ) the dual
basis. By theorem II.1.2.2 and corollary II.1.2.5, the map of (i) sends each eV to a nonzero
multiple of e∗V .

Note that, if k is algebraically closed, then this map sends each eV to e∗V itself by corollary
II.1.2.6, and it actually induces an isomorphism R(G)

∼→ HomZ(R(G),Z).

2. This is just a reformulation of the Frobenius reciprocity formula (theorem II.3.2.1.)

Theorem II.4.2 (Artin). In this theorem, we don’t assume that k is algebraically closed (but we
do suppose that char(k) = 0).

Let X be a set of subgroups of G. Consider the map

IndX =
⊕
H∈X

IndGH :
⊕
H∈X

R(H)→ R(G).

Then the following are equivalent :

1. G =
⋃
H∈X

⋃
g∈G gHg

−1;

2. IndX ⊗ZQ is surjective, that is, for every x ∈ R(G), there exists an integer d ≥ 1 and
elements xH ∈ R(H), H ∈ X , such that

dx =
∑
H∈X

IndGH xH .

Proof.

(ii)⇒(i) We use the hypothesis that char(k) = 0 to identify R(G)Q and R(H)Q to subrings
of C (G, k) and C (H, k) (via characters, see corollary II.1.1.4).

Let S =
⋃
H∈X

⋃
g∈G gHg

−1. Then if H ∈ X and xH ∈ R(H)Q, IndGH xH is zero on
G − S. By (ii), this implies that x = 0 on G − S for every x ∈ R(G)Q. By theorem
II.1.3.1, this implies that, for every f ∈ C (G, k), fG−S = 0. Hence G− S = ∅.

(i)⇒(ii) To show that IndX ⊗ZQ is surjective, we just need to show that it transpose (a
Q-linear map between the dual spaces) is injective. By (ii) of the proposition above, the
transpose of IndX ⊗ZQ is ⊕

H∈X

ResGH : R(G)Q →
⊕
H∈X

R(H)Q.

To show that this map is injective, it suffices to show that the sum of the restriction maps

C (G, k)→
⊕
H∈X

C (H, k)

68



II.5 Brauer’s theorem

is injective. (As in the first part of the proof, for every subgroup H of G, R(H)Q injects
naturally in C (H, k) because char(k) = 0.) But this follows directly from condition (i).

Corollary II.4.3. Take for X the set of cyclic subgroups of G. Then IndX ⊗ZQ is surjective.

If k is algebraically closed, we can reformulate this result as follows : For every representation
V of G, there exist cyclic subgroups C1, . . . , Cr of G, 1-dimensional representations Vi of Ci and
rational numbers α1, . . . , αr such that

[V ] =
r∑
i=1

αi IndGCi [Vi].

Proof. The family X satisfies the condition of Artin’s theorem, because every g ∈ G is an
element of the cyclic subgroup that it generates.

The reformulation when k is algebraically closed follows from the fact that every irreducible
representation of a commutative group is 1-dimensional in that case (by proposition I.3.9 of
chapter I).

II.5 Brauer’s theorem

In this section, we assume that G is a finite group and that k is an algebraically closed field of
characteristic 0. 2 We write R(G) = Rk(G), and we use characters to identify R(G) to a subring
of C (G, k) (by corollary II.1.1.4).

Definition II.5.1. Let p be a prime number. A finite group H is called p-elementary if
H = C × P , with C a cyclic group of order prime to p and P a p-group.

For every prime number p, let X(p) be the set of p-elementary subgroups of G. Let X be the
union of all the X(p) for p prime.

Theorem II.5.2 (Brauer’s theorem). Let

IndX =
⊕
H∈X

IndGH :
⊕
H∈X

R(H)→ R(G).

Then IndX is surjective.
2There is a generalization of Brauer’s theorem for characteristic 0 fields that are not algebraically closed; see

section 12.6 of Serre’s book [29].
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Theorem II.5.3. Let p be a prime number, write |G| = prm with p prime to m, and let Vp be the
image of

Indp :=
⊕

H∈X(p)

IndGH :
⊕

H∈X(p)

R(H)→ R(G).

Then m ∈ Vp. In particular, R(G)/Vp is a finite group of order prime to p.

Proof that theorem II.5.3 implies theorem II.5.2. We have Im(IndX) =
∑

p prime Vp, so
R(G)/ Im(IndX) is a finite group of order prime to every prime number, i.e., the trivial group.

Proof of theorem II.5.3.

(1) Let n = |G| and O = Z[1, ζn, . . . , ζ
n−1
n ] ⊂ k, where ζn is a primitive nth root of 1 in k.

Then :

• For every x ∈ R(G), x (seen as a function on G) takes values in O . Indeed, for every
representation (V, ρ) of G and every g ∈ G, ρ(g) has eigenvalues in O by proposition
II.1.4.1, and so χV (g) ∈ O .

• We have O ∩ Q = Z. Indeed, let α ∈ O ∩ Q, and let f ∈ Q[T ] be its minimal
polynomial over Q. Then f ∈ Z[T ] as α is integral over Z (as an element of O), and
deg(f) = 1 as α ∈ Q.

• By the previous point, the map O/Z→ (O ⊗Z Q)/Q is injective, so O/Z is torsion-
free, so it is free as a Z-module, so O itself has a Z-basis of the form (1, α1, . . . , αc).

• The image of O ⊗ Indp :
⊕

H∈X(p) O ⊗Z R(H) → O ⊗Z R(G) is O ⊗Z Vp, and we
have (O ⊗Z Vp) ∩ R(G) = Vp. Indeed, we have

O ⊗Z Vp = Vp ⊕
c⊕
i=1

αiVp ⊂ O ⊗Z R(G) = R(G)⊕
c⊕
i=1

αiR(G),

and, if y = x +
∑

i=1 αixi ∈ O ⊗Z Vp (with x, xi ∈ Vp), then x ∈ R(G) if and only
if all the xi are 0.

By the last point above, it suffice to prove that m ∈ O ⊗Z Vp.

(2) The character θC

If C is a cyclic group of G of order c, then let

θC :


C → Z

x 7−→
{
c if C = 〈x〉
0 otherwise.

Claim : |G| =
∑

C⊂G cyclic IndGC(θC).
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Proof. Let θ′C = IndGC θC . Let x ∈ G. Then

θ′C(x) =
1

c

∑
s∈G|sxs−1∈C

θC(sxs−1) =
∑

s∈G|〈sxs−1〉=C

1.

For for every s ∈ G, sxs−1 generates exactly one cyclic subgroup of G. Hence∑
C⊂G cyclic

θ′C(x) =
∑
s∈G

1 = |G|.

Claim : For every cyclic subgroup C of G, θC ∈ R(C).

Proof. By induction on c := |C|. The result is obvious if c = 1. If c > 1, then the previous
claim gives

c =
∑

B⊂C cyclic

IndCB θB = θC +
∑

B(C cyclic

IndCB θB.

We have c ∈ R(C), and all the θB ∈ R(B) for every B ( C by the induction hypothesis,
so this gives θC ∈ R(C).

(3) Claim : Let f ∈ C (G,Z) such that f(G) ⊂ nZ. (Remember that n = |G|.) Then we can
write

f =
∑

C⊂G cyclic

αc IndGC xC ,

with αC ∈ O and xC ∈ R(C).

In particular, f ∈ O ⊗Z R(G).

Proof. Write f = nf ′, with f ′ ∈ C (G,Z). We have n =
∑

C⊂G cyclic IndGC θC , hence

f =
∑

C⊂G cyclic

IndGC(θC)f ′ =
∑

C⊂G cyclic

IndGC(θC ResGC f
′)

by corollary I.5.6.2 of chapter I. Write fC = θC ResGC f
′.

Let’s show that fC ∈ O ⊗Z R(C) for every C ⊂ G cyclic. (This will finish the proof.)
Note that fC ∈ C (C,Z), and fC(C) ⊂ |C|Z. So for every χ ∈ R(C), then

〈fC , χ〉C =
1

|C|
∑
x∈C

fC(x)χ(x) ∈ O,

and hence
fC =

∑
W∈Sk(C)

〈fC , χW 〉CχW ∈ O ⊗Z R(C).
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(4) An element x ∈ G is called p-unipotent (resp. p-regular if its order is a power of p (resp.
prime to p).

Claim : For every x ∈ G, there exists a unique pair (xr, xu) of elements of G satisfying
the following conditions :

(a) xr is p-regular and xu is p-unipotent;

(b) x = xrxu = xuxr.

Moreover, xr and xu are powers of x.

Proof. First, if xr and xu satisfy (a) and (b), then they have to be powers of x. Indeed,
let a (resp. b) be the order of xr (resp. xu). Then (a, b) = 1, so there exists an integer
N ≥ 1 such that a divides N and N = 1 mod b, and then xN = xNr x

N
u = xu, and

x1−N = xx−1
u = xr.

Let’s show the uniqueness statement. So suppose that we have two paits (xr, xu) and
(x′r, x

′
u) satisfying (a) and (b). By (a), we can find an integer N ≥ 1 such that

xp
N

u = (x′u)
pN = 1 and xpNr = xr, (x′r)

pN = x′r. Then using (b), we get xpN = xr = x′r,
and this also gives xu = x′u.

Let’s show the existence statement. By the first part of the proof, we may assume that
G is generated by x, hence that G is cyclic. So we may assume that G = Z/nZ and
x = 1. Write n = prm with p not dividing m. By the Chinese remainder theorem,
G ' Z/prZ× Z/mZ, and we can take xr = (0, 1) and xu = (1, 0).

Claim : Let χ ∈ O ⊗Z R(G) be such that χ(G) ⊂ Z, let x ∈ G, and write x = xrxu as
above. Then χ(x) = χ(xr) mod p.

Proof. We may assume that G = 〈x〉. Let χ1, . . . , χn be the characters of the irreducible
representations of G over k, which are all 1-dimensional by proposition I.3.9 of chapter I.
We write χ =

∑n
i=1 aiχi, with ai ∈ O . Let q = pr be the order of xu. Then xq = xqr, so,

for every i ∈ {1, . . . , n}, χi(x)q = χi(xr)
q (χi is compatible with multiplication because

it is the character of a 1-dimensional representation). So

χ(x)q = (
n∑
i=1

aiχi(x))q =
n∑
i=1

aqiχi(x)q =
r∑
i=1

aqiχi(xr)
q = χ(xr)

q mod pO.

As χ(x), χ(xr) ∈ Z and pO ∩ Z = pZ, we get χ(x)q = χ(xr)
q mod p. Finally, as we

know that ap = a mod p for every a ∈ Z, this implies that χ(x) = χ(xr) mod p.

(6) If x ∈ G, we write
ZG(x) = {g ∈ G|gx = xg}.
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II.5 Brauer’s theorem

(This is the centralizer of x in G.)

Claim : Let x ∈ G be p-regular. Let H = C × P be p-elementary, with C = 〈x〉 and
P ⊂ ZG(c) a Sylow p-subgroup (i.e. such that p does not divide |ZG(x)/P |). Then there
exists ψ ∈ O ⊗Z R(H) such that ψ(H) ⊂ Z and that, if ψ′ = IndGH ψ, then :

(i) ψ′(x) 6= 0 mod p;

(ii) ψ′(s) = 0, for every s ∈ G a p-regular element that is not conjugate to x.

Proof. Let c = |C| and pr = |P |. Let

ψC :


C → Z

y 7−→
{
c if y = x
0 otherwise.

As ψC(C) ⊂ cZ, ψC ∈ O ⊗Z R(C) by (3). Let

ψ :

{
H = C × P → Z

(x, y) 7−→ ψC(x)

Then ψ ∈ O ⊗Z R(H). (Indeed, if ψC =
∑

V ∈Sk(C) aV χV with aV ∈ O , then
ψ =

∑
V ∈Sk(C) aV χV⊗11H .)

Let s ∈ G be p-regular. Then

ψ′(s) =
1

cpr

∑
y∈G|ysy−1∈H

ψ(ysy−1).

Let y ∈ G. If ysy−1 ∈ H , then ysy−1 ∈ C (because ysy−1 is p-regular), so ψ(ysy−1) 6= 0
if and only ysy−1 = x. Hence ψ′(s) = 0 if s is not conjugate to x. Also,

ψ′(x) =
1

cpr

∑
y∈G|yxy−1=x

ψ(x) =
1

pr

∑
y∈Zg(x)

1 =
1

pr
|ZG(x)| 6= 0 mod p.

(7) Claim : There exists ψ ∈ O ⊗Z Vp such that ψ(G) ⊂ Z and ψ(x) 6= 0 mod p for every
x ∈ G.

Proof. Let (xi)i∈I be a system of representatives of the p-regular conjugacy classes in G.
For every i ∈ I , we can find by (6) a ψi ∈ O ⊗Z Vp such that ψi(G) ⊂ Z, ψi(xi) 6= 0
mod p and ψi(xj) = 0 for every j 6= i. Let ψ =

∑
i∈I ψi. Then ψ ∈ O ⊗Z Vp and

ψ(G) ⊂ Z. If x ∈ G, write x = xrxu as in (4). Then there exists a unique i ∈ I such that
xr is conjugate to xi, and we have (again by (4))

ψ(x) = ψ(xr) = ψ(xi) = ψi(xi) 6= 0 mod p.
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II Characteristic 0 theory

(8) As before, write n := |G| = prm with p prime to m. Let’s prove that m ∈ Vp,
which is the statement of the theorem. For this, choose a ψ ∈ O ⊗Z Vp as in (7). Let
N = ϕ(pr) = |(Z/prZ)×|. Then for every ` ∈ Z prime to p, `N = 1 mod pr. So for every
x ∈ G, ψ(x)N = 1 mod pr. So m(ψN − 1) ∈ C (G,Z) takes its values in nZ, and by (3)
this implies that m(ψN −1) ∈ O⊗ZVp. As O⊗ZVp is an ideal of O⊗Z R(G) by corollary
I.5.6.2 of chapter I, mψN ∈ O⊗Z Vp. Finally, we get m = mψN −m(ψN −1) ∈ O⊗Z Vp.

Definition II.5.4. A representation V of G is called monomial if there exists a subgroup H of G
and a 1-dimensional representation W of H such that V = IndGH V .

The following corollary is often called “Brauer’s theorem” too.

Corollary II.5.5. For every representation V of G, there exist monomial representations
V1, . . . , Vr of G and integers n1, . . . , nr ∈ Z such that, in R(G), we have an equality

[V ] =
r∑
i=1

ni[Vi].

Thanks to theorem II.5.2, this corollary is immediate once we have the following proposition.

Proposition II.5.6. Let p be a prime number and H be a p-elementary group. Then every irre-
ducible representation of H is monomial.

Lemma II.5.7. Let P be a p-group, and suppose that P is not abelian. Denote by Z(P ) the
center of P . Then there exists an abelian normal subgroup A of P such that Z(P ) ( A.

Proof. The quotient P/Z(P ) is a nontrivial p-group, so its center is nontrivial. Choose
A′ ⊂ Z(P/Z(P )) cyclic of order p, and let A be its inverse image in P . Clearly Z(P ) ( A, and
A is normal in P because it’s the inverse image of a normal subgroup of P/Z(P ). Also, A is
abelian because it is generated by Z(P ) and by a lift of a generator of A′.

Proof of the proposition. Write H = C × P , with C cyclic of order prime to p and P a p-
group. By theorem II.2.1, irreducible representations of H are all of the form V1 ⊗k V2, where
V1 (resp. V2) is an irreducible representation of C (resp. P ). By proposition I.3.9 of chapter
I, V1 is 1-dimensional, so we just need to show that V2 is monomial (If V2 = IndPP ′W2, then
V1 ⊗k V2 = IndHC×P ′(V1 ⊗k V2.)

So we may assume that H = P is a p-group. We prove the result by induction on |P |. If P
is abelian (for example if |P | = p), then every irreducible representation of P is 1-dimensional
by proposition I.3.9 of chapter I. So assume that P is not abelian. Let (V, ρ) be an irreducible
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II.6 First application of Brauer’s theorem : field of definition of a representation of G

representation of P . If Ker ρ 6= {1}, then applying the induction hypothesis to P/Ker ρ,3 we
see that ρ is monomial. So we may assume that ρ is faithful.

By the lemma, there exists a normal abelian subgroup A of P such that Z(P ) ( A, where
Z(P ) is the center of P . Let V = V1 ⊕ · · · ⊕ Vn be the isotypic decomposition of ResPA V . (See
section I.1.7 of chapter I.) Because A is abelian, proposition I.3.9 of chapter I implies that A
acts on each Vi through a morphism of groups ρi : A → k×. We can’t have V1 = V , because
otherwise ρ(A) would be contained in the center of ρ(P ), so A would be contained in the center
of P (as ρ is faithful), which contradicts the choice of A.

Let g ∈ P and i ∈ {1, . . . , n}. Then, if v ∈ Vi and y ∈ A,

ρ(y)ρ(g)v = ρ(g)ρ(g−1yg)v = ρ(g)ρi(g
−1yg)v = ρi(g

−1yg)ρ(g)v

(because A is normal in G and ρi(g−1yg) ∈ k). So ρ(g) sends Vi bijectively to the isotypic
component of ResPA V corresponding to the map H → k×, y 7−→ ρi(g

−1yg). In other words, the
action of P on V permutes the Vi, so we get an action of P on the set {V1, . . . , Vn}. As V is
irreducible, this action is transitive. Hence all the Vi are isomorphic as k-vector space, and so

dimk V1 = · · · = dimk Vn =
1

n
dimk V.

Let
H = {g ∈ G|ρ(g)V1 = V1},

then H is a subgroup of G and |G/H| = n > 1, that is, H 6 G. As H stabilizes V1, we
get a representation of H on V1, which we will denote by VH . Define ϕ : IndGH VH → V by
ϕ(g⊗v) = ρ(g)v. This map ϕ is well-defined by definition of H , and it is clearly G-equivariant.
It is surjective because V =

∑
g∈G ρ(g)V1. Moreover, we have

dimk IndGH VH = |G/H| dimk VH = n dimk V1 = dimk V,

so ϕ is an isomorphism, and V ' IndGH VH as representations of G. Also, as V is irreducible,
VH is irreducible. Applying the induction hypothesis to H (and the transitivity of induction), we
see that V is monomial.

II.6 First application of Brauer’s theorem : field of
definition of a representation of G

In this section, we assume that k is a field of characteristic 0 and denote by k an algebraic closure
of k. Remember that the map Rk(G)→ Rk(G) is injective (by corollary II.1.2.9).

3And using problem VII.1.14.
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II Characteristic 0 theory

Theorem II.6.1. Letm be the least common multiple of the orders of all the elements ofG. Then,
if k contains all the mth roots of 1 in k, the map Rk(G)→ Rk(G) is an isomorphism.

Using problem VII.2.7, we get the following reformulation.

Corollary II.6.2. Under the hypothesis of the theorem, every representation of G over k is real-
izable over k. (That is, is of the form V ⊗k k, where V is a representation of G over k.)

Proof of the theorem. Let x ∈ Rk(G). By Brauer’s theorem (in the form of corollary II.5.5),
there exist subgroups H1, . . . , Hr of G, 1-dimensional representations (V1, ρ1), . . . , (Vr, ρr) of
H1, . . . , Hr over k and integers n1, . . . , nr ∈ Z such that

x =
r∑
i=1

ni IndGHi [Vi].

Let i ∈ {1, . . . , r}. For every g ∈ Hi, ρi(g) ∈ k× is a mth root of 1, so it is actually in k, and so
[Vi] is in the image of Rk(Hi)→ Rk(Hi). Hence x is in the image of Rk(G)→ Rk(G).
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III Comparison between characteristic
0 theory and characteristic p theory

If k is a field of characteristic p and G is a finite group of order not prime to p, then the ring k[G]
is not semisimple anymore, but it is still left Artinian.

So to understand what happens a bit better, we’ll start with some generalities about modules
on not necessarily semisimple rings.

III.1 Indecomposable modules

In this section, R is a ring. Unless otherwise specified, any R-module will be assumed to be of
finite length, hence to have a Jordan-Hölder series. See sections I.1.5 and I.1.6 of chapter I for
definitions of all these terms.

Remember that we defined the Jacobson radical rad(R) of R in definition I.2.1 of chapter I
as the intersection of all the maximal left ideals of R. By corollaries I.2.6 and I.2.12 of chapter
I, rad(R) is an ideal of R, the quotient R/ rad(R) has the same simple modules as R, and it is a
semisimple ring if R is left Artinian.

III.1.1 Definitions

Definition III.1.1.1. If M is a R-module, we write rad(M) = rad(R)M . This is a submodule
of M .

Remark III.1.1.2. Suppose that R is left Artinian. Then a R-module M is semisimple if and only
if rad(M) = 0.

Proof. If rad(M) = 0, then M is a R/ rad(R)-module, so it is semisimple because R/ rad(R)
is a semisimple ring.

If M is a semisimple R-module, then M =
⊕

i∈IMi with all the Mi simple , by theorem
I.1.3.4 of chapter I. On each Mi, R acts through R/ rad(R) by proposition I.2.5 of chapter I, so
rad(R)M = 0.
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III Comparison between characteristic 0 theory and characteristic p theory

Definition III.1.1.3. A R-module M is called indecomposable if for every direct sum decompo-
sition M = M ′ ⊕M ′′, we have M ′ = 0 or M ′′ = 0.

Remark III.1.1.4. If M is simple, then M is indecomposable. The converse is false.

For example, take R = Fp[Z/pZ] and M = RR. Then M is indecomposable but not simple.

III.1.2 Noncommutative local rings

Definition III.1.2.1. A (possibly noncommutative) ring S is called local if S 6= {0} and S has a
unique maximal left ideal.

Remark III.1.2.2. If S is a commutative ring, then it is local in the sense of definition III.1.2.1 if
and only if it is local in the usual sense.

Theorem III.1.2.3. Let S be a ring. The following conditions are equivalent :

1. S is local.

2. S has a unique maximal right ideal.

3. rad(S) is a maximal left ideal of S.

4. rad(S) is a maximal right ideal of S.

5. S 6= {0} and, for every x ∈ S, either x or 1− x is invertible.

6. S/ rad(S) is a division algebra.

7. S 6= {0}, and every x ∈ S − rad(S) is invertible.

Note that if S is local, then rad(S) is the unique maximal left ideal and the unique maximal
right ideal of S. It is also the unique maximal ideal of S, but in the noncommutative case, a ring
that has a unique maximal ideal is not necessarily local. 1

Proof. The equivalence of (i) and (iii) follows from the definition of rad(S), and the equivalence
of (ii) and (iv) follows from corollary I.2.9 of chapter I. Also, (vii) implies (v) by corollary I.2.8
of chapter I (which implies that 1− x is invertible if x ∈ rad(S)), and it’s clear that (vii) implies
(vi).

Let’s prove that (iii) implies (vii). Let x ∈ S − rad(S). We want to show that x is invertible.
We have Rx 6⊂ rad(S). As rad(S) is a maximal left ideal of R, this implies that Rx = R, so
there exists y ∈ R such that yx = 1. If xy ∈ rad(S), then, by corollary I.2.8 of chapter I,
1− yxy = 0 is invertible, which is impossible because S 6= {0}; so xy 6∈ rad(S). Reasoning as

1This condition is actually equivalent to the fact that S/ rad(S) is a simple ring, so a counterexample is a simple
ring that is not a division algebra. See problem VII.1.9 for an example of such a ring.
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before, we see that there exists z ∈ S such that zxy = 1. So y is left and right invertible, hence
invertible, and x = y−1 is also invertible.

A similar reasoning shows that (iv) implies (vii).

Let’s prove that (v) implies (iii), (iv) and (vi). Let x ∈ S − rad(S). By corollary I.2.8 of
chapter I, there exist y, z ∈ S such that 1 − yxz is not invertible. By condition (v), this implies
that yxz is invertible, hence that x = y−1z−1 is also invertible. So any left (resp. right) ideal of S
that strictly contains rad(S) contains an invertible element, hence is equat to S. This gives (iii)
and (iv). For (vi), we have just seen that any element of S that is not in rad(S) is invertible, so
every nonzero element of S/ rad(S) is invertible.

Let’s prove that (vi) implies (iii). Let x ∈ S − rad(S). By (vi), there exists y ∈ S such that
yx ∈ 1 + rad(S) and xy ∈ 1 + rad(S). By corollary I.2.8 of chapter I, this implies that xy and
yx are invertible, hence that x (and y) are invertible. So any left ideal strictly containing rad(S)
contains an invertible element, which gives (iii) as before.

Let’s consider the particular case of left Artinian rings.

Proposition III.1.2.4. Let S be a left Artinian ring. Then rad(S)N = 0 for N big enough. In
fact, if n = lg(SS), then rad(S)n = 0.

In particular, every element of rad(S) is nilpotent.

Proof. Let S = I0 ⊃ I1 ⊃ · · · ⊃ In = 0 be a Jordan-Hölder series for SS. The Ii are
left ideals of S, and Ii/Ii+1 is a simple S-module for every i ∈ {0, . . . , n − 1}. As rad(S)
annihilates every simple S-module, we have rad(S)Ii ⊂ Ii+1 for every i ∈ {0, . . . , n − 1}, and
so rad(S)n = rad(S)nI0 ⊂ In = 0.

Corollary III.1.2.5. Let S be a left Artinian ring. Then the following are equivalent :

1. S is local.

2. Every element of S is nilpotent or invertible.

Proof.

(i)⇒(ii) Let x ∈ S, and suppose that x is not nilpotent. Then x 6∈ rad(S) by the proposi-
tion, so x is invertible by theorem III.1.2.3.

(ii)⇒(i) If x ∈ S is nilpotent, then the sum
∑

n≥0 x
n is finite, hence defines an element of

S, and this element is an inverse of 1 − x. So (ii) implies that x or 1 − x is invertible for
every x ∈ S, and theorem III.1.2.3 says that S is local.
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III.1.3 Fitting’s lemma

Proposition III.1.3.1 (Fitting’s lemma). Let R be a ring and M be a R-module of finite length.
Let f ∈ EndR(M). Then, for n big enough,

M = Ker(fn)⊕ Im(fn).

Proof. As M has finite length, every non-increasing (or non-decreasing) sequence of R-
submodules of M has to stabilize, by proposition I.1.6.2. Applying this to the non-decreasing
sequence (Ker(fn))n≥0 and the non-increasing sequence (Im(fn))n≥0, we find an integerN ≥ 0
such that, for every n ≥ N , Ker(fn) = Ker(fn+1) and Im(fn) = Im(fn+1).

Let n ≥ N , and let’s show that M = Ker(fn)⊕ Im(fn).

First, if x ∈ M , then fn(x) ∈ Im(f 2n), so there exists y ∈ M such that fn(x) = f 2n(y), and
so x− fn(x) ∈ Ker(fn) and x = fn(x) + (x− fn(x)) ∈ Im(fn) + Ker(fn). This proves that
M = Im(fn) + Ker(fn).

Now take x ∈ Ker(fn) ∩ Im(fn). Write x = fn(y) with y ∈ M . Then
y ∈ Ker(f 2n) = Ker(fn), so x = fn(y) = 0. This proves that Ker(fn) ∩ Im(fn) = 0.

Corollary III.1.3.2. Let R and M be as in the proposition. Then M is indecomposable if and
only if EndR(M) is local.

Proof. Suppose that M is indecomposable, and let f ∈ EndR(M). Then there exists an integer
n ≥ 1 such that M = Ker(fn) ⊕ Im(fn). As M is indecomposable, either Im(fn) = 0, and
then f is nilpotent, or Ker(fn) = 0 and Im(fn) = M , and then fn is invertible, and so is f .

Suppose that M is not indecomposable, and write M = M ′ ⊕ M ′′, with M ′,M ′′ 6= 0.
Let π : M → M ′ be the projection with kernel M ′′. Then π is not invertible because
Ker π = M ′′ 6= 0, and 1 − π is not invertible because Ker(1 − π) = M ′ 6= 0. So EndR(M) is
not local.

III.1.4 Krull-Schmidt-Remak theorem

Theorem III.1.4.1. Let M be a R-module (of finite length). Then we have M = M1⊕· · ·⊕Mr,
with the Mi indecomposable. Morover, the Mi are uniquely determined up to reordering.

Proof. Existence of the decomposition : We do an induction on lg(M). If lg(M) = 1, then
M is simple and the result is obvious. If lg(M) ≥ 2 and M is not indecomposable, write
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III.1 Indecomposable modules

M = M ′ ⊕ M ′′ with M ′,M ′′ 6= 0. Then lg(M ′), lg(M ′′) < lg(M), so we can apply the
induction hypothesis to M ′ and M ′′ to get the result.

Uniqueness of the decomposition : Assume that M = M1⊕ · · · ⊕Mr = M ′
1⊕ · · · ⊕M ′

S with
all the Mi and M ′

j indecomposable. We do an induction on r. If r = 1, M is indecomposable
and the result is obvious. Suppose that r ≥ 2. For every j ∈ {1, . . . , s}, let uj ∈ EndR(M1)
be the composition M1 ↪→ M � M ′

j ↪→ M � M1, where all the maps are obvious injections
or projections. Then idM1 =

∑s
j=1 uj , so there exists j such uj 6∈ rad(EndR(M1)). We may

assume that j = 1.

As M1 is indecomposable, EndR(M1) is local by corollary III.1.3.2, so u1 is invertible by the-
orem III.1.2.3. Write u1 = vw, wherew is the compositionM1 ↪→M �M ′

1 and v is the compo-
sitionM ′

1 ↪→M �M1. Then (u−1
1 v)w = idM1 , sow is injective andM ′

1 = w(M1)⊕Ker(u−1
1 v).

As M ′
1 is indecomposable and w(M1) 6= 0, Ker(u−1

1 v) = 0, hence w is an isomorphism, and so
is v.

Let x ∈M1∩ (
⊕

j≥2M
′
j). Then the projection of x on M ′

1 is 0, so w(x) = 0, so x = 0 since w
is injective. HenceM1 and

⊕
j≥2M

′
j are in direct sum. Moreover, if x ∈M , then the surjectivity

of w implies that there exists x1 ∈ M1 such that x − x1 ∈
∑

j≥2M
′
j . So M = M1 +

∑
j≥2M

′
j .

Finally, we get M = M1 ⊕
⊕

j≥2M
′
j and M1 'M ′

1. The result now follows from the induction
hypothesis, applied to M/M1 '

⊕r
i=2Mj '

⊕s
j=2M

′
j .

III.1.5 Projective indecomposable modules

Remember that projective modules are defined in definition I.1.3.10 of chapter I.

Proposition III.1.5.1. Let P be a projective R-module, M be a R-module and I be an ideal of
R. Then the reduction modulo I map

HomR(P,M)→ HomR(P/IP,M/IM) = HomR/I(P/IP,M/IM)

is surjective.

Proof. Denote by π : P → P/IP and π′ : M → M/IM the projections. Let
u ∈ HomR(P/IP,M/IM). We have a commutative diagram

P

π
����

uπ

%%

u′ //M

π′����
P/IP u

//M/IM

As π′ is surjective and P is projective, there exists a map u′ : P →M such that π′u′ = uπ.
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Corollary III.1.5.2. Assume that R is left Artinian. Let P be a projective R-module of finite
length. Then P is indecomposable if and only if P/ rad(P ) is simple.

Lemma III.1.5.3. If M is a nonzero R-module of finite length, then rad(M) 6= M .

Proof. Let M ′ ( M be a maximal proper submodule. Then M/M ′ is simple, so rad(R) acts
trivially on M/M ′, so rad(M) = rad(R)M ⊂M ′.

Proof of the corollary. If P is not indecomposable, write P = P1⊕P2 with P1, P2 nonzero. Then
P/ rad(P ) = P1/ rad(P1) ⊕ P2/ rad(P2), and P1/ rad(P1), P2/ rad(P2) 6= 0 by the lemma, so
P/ rad(P ) is not simple.

Now assume thatM := P/ rad(P ) is not simple. AsR is left Artinian, R/ rad(R) is semisim-
ple, so M is a semisimple module, and so we can write M = M1 ⊕M2 with M1,M2 6= 0. Let
π1 ∈ EndR(M1) be the compositionM �M1 ↪→M , where the maps are the obvious projection
and inclusion. By the proposition, there exists π ∈ EndR(P ) such that π mod rad(P ) = π1.
Then neither π nor 1 − π are invertible (because neither π1 nor 1 − π1 are), so EndR(P ) is not
local, so P cannot be indecomposable by corollary III.1.3.2.

Notation III.1.5.4. We write PI(R) for the set of isomorphism classes of finite length projective
indecomposable R-modules, and S(R) for the set of isomorphism classes of simple R-modules.

Proposition III.1.5.5. Suppose that R is left Artinian and left Noetherian.2 Then the map
P 7−→ P/ rad(P ) induce a bijection PI(R)→ S(R).

Proof. This map is well-defined by corollary III.1.5.2.

Let’s show that it is surjective. Let M be a simple R-module. Any x ∈ M − {0} gives a
surjective map R � M (sending a ∈ R to ax). As RR is a R-module of finite length, we
can apply the Krull-Schmidt-Remark theorem to it and write R = P1 ⊕ · · · ⊕ Pn, where the
Pi are indecomposable module that are automatically projective as direct summands of a free
module. Then R/ rad(R) =

⊕n
i=1 Pi/ rad(Pi) surjects to M , and every Pi/ rad(Pi) is simple by

corollary III.1.5.2, so M is isomorphic to one of Pi/ rad(Pi) by Schur’s lemma (theorem I.1.4.1
of chapter I).

Let’s show that the map of the proposition is injective. Let P, P ′ be two projective in-
decomposable modules of finite length, and suppose that we have a R-module isomorphism
u : P/Ker(P )

∼→ P ′/Ker(P ′). By proposition III.1.5.1, there exists a R-module map
u′ : P → P ′ such that u = u′ mod rad(R). Let N ⊂ P ′ be a proper maximal submodule.
Then P ′/N is simple, so rad(R)(P ′/N) = 0, so rad(P ′) = rad(R)P ′ ⊂ N . As P ′/ rad(P ′) is

2Note that “left Artinian” implies “left Noetherian”, see theorem (4.15) of Lam’s book [20].
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simple, this implies thatN = rad(P ′), and that rad(P ′) is the unique proper maximal submodule
of P . As u′(P ) 6⊂ rad(P ′) (because u is surjective), u′(P ) = P ′, and so u′ is surjective. As P ′

is projective, we have P ' P ′ ⊕ Ker(u′). But P is indecomposable, so Ker(u′) = 0, and u′ is
an isomorphism.

Remark III.1.5.6. If M is a simple R-module, its inverse image in PI(R) is a “minimal” pro-
jective R-module such that P � M . This is called a projective envelope or projective cover of
M . In fact, projective envelopes exist for any finite length R-module, and they are unique up
to isomorphism. For more about them, see section 24 of Lam’s book [20] (projective covers are
introduced in definition (24.9).)

III.1.6 Lifting of idempotents

Definition III.1.6.1. Let S be a ring. An element e ∈ S is called idempotent if e2 = 2.

Theorem III.1.6.2. Let S be a ring, and let I be an ideal of S such that every element of I is
nilpotent. 3 Let e ∈ S/I be idempotent. Then there exists e ∈ S idempotent such that e = e
mod I .

Proof. Note that f := 1−e is also idempotent, and that we have ef = fe = 0. (We say that e and
f are orthogonal idempotents.) The idea is to try to lift both e and f to orthogonal idempotents
of S.

Let e be any lift of S, and let f = 1 − e. Then ef = fe ∈ I , and e + f = 1 mod I . By the
assumption on I , there exists k ≥ 1 such that (ef)k = ekfk = 0. Note that ek = ek = e mod I .
Let e′ = ek and f ′ = fk. Then e′f ′ = f ′e′ = 0, and e′ + f ′ = ek + fk = e+ f = 1 mod I . Let
x = 1− (e′+f ′). As x ∈ I , there exists n ≥ 1 such that xn = 0. So u := 1+x+x2 + · · ·+xn−1

is an inverse of 1− x = e′ + f ′, and it commutes with e′ and f ′ (because x does). Let e′′ = ue′

and f ′′ = uf ′. Then e′′ = e mod I (because u = 1 mod I), we have e′′f ′′ = f ′′e′′ = 0, and
e′′ + f ′′ = u(e′ + f ′) = 1. So (e′′)2 = (e′′)2 + e′′f ′′ = e′′(e′′ + f ′′) = e′′, and we have our
idempotent lift of e.

Corollary III.1.6.3. Let S be a ring and I be an ideal of S. Suppose that the obvious map
S → Ŝ := lim←−n S/I

n is an isomorphism. Then any idempotent of S/I lifts to an idempotent of
S.

Proof. Let e ∈ S/I be idempotent. By the theorem, we can construct by induction on n ≥ 1 a
sequence of idempotents en ∈ S/In such that e1 = e and that en+1 lifts en for every n. Then
e := (en)n≥1 is an element of Ŝ, and its preimage in S is an idempotent lifting e.

3This is called a nil ideal, and is not the same as a nilpotent ideal.
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III.2 Application to representation rings in positive
characteristic

Let R be a ring. Remember that we defined (in definition I.4.1 of chapter I) PK(R) to be the
quotient of the free abelian group on the basis elements [P ], for P a finite length projective R-
module, by all the relations of the form [P ] = [P ′] + [P ′′], where 0→ P ′ → P → P ′′ → 0 is an
exact sequence of R-modules.

Corollary III.2.1. 1. PK(R) is a free Z-module with basis ([P ])P∈PI(R).

2. If P and P ′′ are projective R-modules of finite length, then P ' P ′ as R-modules if and
only if [P ] = [P ′] in PK(R).

Proof. Point (i) is proved just as for K(R) (see the proof of proposition I.4.4 of chapter I).

To prove (ii), take P and P ′ as in the statement, and write P = P1⊕· · ·⊕Pr, P ′ = P ′1⊕· · ·⊕P ′s,
with the Pi and the P ′j indecomposable (by theorem III.1.4.1). The Pi and P ′j are also automati-
cally projective, so they are in PI(R).

By theorem III.1.4.1 again, P ' P ′ if and only if there exists a bijection
σ : {1, . . . , r} ∼→ {1, . . . , s} such that Pi ' P ′σ(i) for every i ∈ {1, . . . , r}. By point (i),
this is equivalent to [P ] = [P ′].

We now suppose that k is a field and that G is a group.

We write Pk(G) for KP (k[G]) (as in definition I.4.6 of chapter I), and we also write PIk(G)
for PI(k[G]).

Remark III.2.2. We have seen in corollary I.4.9 of chapter I that the tensor product over k defines
a Rk(G)-module structure on Pk(G), and that the obvious map Pk(G)→ Rk(G) isRk(G)-linear.

Remark III.2.3. By proposition I.4.4 of chapter I, proposition III.1.5.5 and corollary III.2.1,
Rk(G) and Pk(G) are free Z-modules of the same rank. But we still do not know what the
map Pk(G)→ Rk(G) is like ! (Unless G is finite and char(k) 6 ||G|, then it is just the identity.)

In fact, we can prove that this map is injective and that Rk(G)/Pk(G) is a finite p-group, where
p = char(k), but this is far from obvious. See theorem III.8.2.
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III.3 Representations over discrete valuation rings

Let Λ be a commutative ring and G be a finite group. We assume that every Λ[G]-module is of
finite type over Λ (unless otherwise specified).

Definition III.3.1. We denote by PΛ(G) the quotient of the free Z-module on all the [P ], for P
a projective Λ[G]-module that is of finite type as a Λ-module, by the relations [P ] = [P ′] + [P ′′],
for every exact sequence 0→ P ′ → P → P ′′ → 0.

Remark III.3.2. If Λ → Λ′ is a morphism of commutative rings, then P 7−→ P ⊗Λ Λ′ induces a
morphism of groups PΛ(G)→ PΛ′(G).

Indeed, if P is a projective Λ[G]-module, then it is a direct summand of some free Λ[G]-
module F , and then P ⊗Λ Λ′ is a direct summand of the free Λ′[G]-module F ⊗Λ Λ′.

Proposition III.3.3. Let P be a Λ[G]-module. Then the following are equivalent :

1. P is a projective Λ[G]-module.

2. P is projective as a Λ-module, and there exists u ∈ EndΛ(P ) such that

∀x ∈ P,
∑
g∈G

gu(g−1x) = x.

Proof. We write P0 for P seen as a Λ-module. Let Q = Λ ⊗Λ P0. We have a surjective Λ[G]-
linear map q : Q� P , x⊗ y 7−→ xy.

I claim that the map ϕ : EndΛ(P0) → HomΛ[G](P,Q) sending u to∑
g∈G g ⊗ ug−1 : x 7−→

∑
g∈G g ⊗ u(g−1x) is well-defined and an isomorphism of

Λ-mdules.

Indeed, it is easy to see that ϕ(u) is Λ[G]-linear for every u ∈ EndΛ(P0), so ϕ is well-defined.

Let’s show that ϕ is injective. Let u ∈ EndΛ(P0). Note that Q =
⊕

g∈G g⊗P0 as a Λ-module.
So, if x ∈ P is such that

0 = ϕ(u)(x) =
∑
g∈G

g ⊗ u(g−1x),

we have u(g−1x) = 0 for every g ∈ G, and in particular u(x) = 0. Hence we have u = 0 if
ϕ(u) = 0.

Let’s show that ϕ is surjective. Let v ∈ HomΛ[G](P,Q). Then we can write
v(x) =

∑
g∈G g ⊗ ug(x) for every x ∈ P , with the ug in EndΛ(P0). By Λ[G]-linearity of v,

for every h ∈ G and x ∈ P ,

v(h−1x) =
∑
g∈G

g ⊗ ug(h−1x) =
∑
g∈G

(h−1g)⊗ ug(x),
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III Comparison between characteristic 0 theory and characteristic p theory

so ug(x) = uh−1g(h
−1g) for every g, h ∈ G and x ∈ P . In particular, ug(x) = u1(g−1x) for

every g ∈ G and x ∈ P , and so v = ϕ(u1).

Now we come back to the proof of the proposition.

(i)⇒(ii) If P is projective, it’s a direct factor of some free module Λ[G](I). As Λ[G] is a
free Λ-module, Λ[G](I) is also free as a Λ-module, so P0 is projective. Also, as q : Q→ P
is surjective and Λ-linear, there exists a Λ-linear map s : P → Q such that qs = idP . Write
s = ϕ(u), with u ∈ EndΛ(P0). Then idP = qs =

∑
g∈G gug

−1, which gives (ii).

(ii)⇒(i) If P0 is a projective Λ-module, then Q is a projective Λ[G]-module. Also,
s := ϕ(u) : P → Q satisfies qs = idP , so P is a direct summand of Q, hence is also
a projective Λ[G]-module.

Now we will specialize to the case that Λ is a discrete valuation ring. Remember that discrete
valuation rings were defined in problem VII.3.1.

Theorem III.3.4. Suppose that Λ is a discrete valuation ring with residue field k and maximal
ideal m.

1. If P is a Λ[G]-module that is free of finite type4 over Λ, then P is a projective Λ[G]-module
if and only if P := P ⊗Λ k is a projective k[G]-module.

2. If P and P ′ are projective Λ[G]-modules, then P ' P ′ as Λ[G]-modules if and only if
P ⊗Λ k ' P ′ ⊗Λ k as k[G]-modules.

3. Suppose that the discrete valuation ring Λ is complete. (See problem VII.3.3.) If P is a
projective k[G]-module, then there exists a unique (up to isomorphism) projective Λ[G]-
module P such that P ' P ⊗Λ k.

Proof. 1. We already know that P is a projective k[G]-module if P is a projective Λ[G]-
module. Let’s prove the converse. Suppose that P is a projective k[G]-module. By
proposition III.3.3, there exists u ∈ Endk(P ) such that

∑
g∈G gug

−1 = idP . As P is a
projective Λ-module, there exists by proposition III.1.5.1 a u ∈ EndΛ(P ) lifting u. Then
u′ :=

∑
g∈G gug

−1 ∈ EndΛ[G](P ) is equal to idP modulo m. So det(u′) = 1 mod m, so
det(u′) ∈ Λ′, so u′ is invertible, and we have

∑
g∈G g(u(u′)−1)g−1 = idP . By proposition

III.3.3 again, P is a projective Λ[G]-module.

2. Let u : P ⊗Λ k
∼→ P ′⊗Λ k be an isomorphism of k[G]-modules. By propositions III.1.5.1,

there exists a Λ[G]-module map u : P → P ′ lifting u. We want to show that u is invertible,
and for this it suffices to show that it is an isomorphism of Λ-modules. This follows from
Nakayama’s lemma, but we can also do it directly : We know that P and P ′ are projective
Λ-modules of finite type, hence they are free Λ-modules of finite type. Their ranks are

4Equivalently, projective of finite type.
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equal, because they are equal to the dimension over k of P ⊗Λ k ' P ′ ⊗Λ k. If we choose
Λ-bases of P and P ′, then the matrix A of u in these bases is square, and det(A) 6= 0
mod m because u is invertible. Hence det(A) ∈ Λ×, and u is an isomorphism of Λ-
modules.

3. The uniqueness follows from (ii). For the existence, using the fact that P is projective (and
of finite type as a k-module), write F = P ⊗ P ′, with F = k[G]⊕n, let F = Λ[G]⊕n, and
letB = EndΛ[G](F ). Then the mapB → Endk[G](F ) is surjective by proposition III.1.5.1,
so it identifies Endk[G](F ) with B/mB. Let e ∈ Endk[G](F ) be the projection on P with
kernel P

′
. By corollary III.1.6.3 (which applies because B is a free Λ-module of finite

type, so its ideal mB satisfies the condition of the corollary), there exists an idempotent
e ∈ B lifting e. Then we have F = Im(e) ⊕ Ker(e), and P := Im(e) is a projective
Λ[G]-module such that P ⊗Λ k = Im(e) = P .

Corollary III.3.5. If Λ is a discrete valuation ring with residue field k, then P → P⊗Λk induces
an injective map ψ : PΛ(G)→ Pk(G). This map is bijective if Λ is a complete discrete valuation
ring.

Proof. We have already seen that the map exists. Let’s show that it is injective. Every element
of PΛ(G) can be written as [P ]− [P ′] where P, P ′ are two projective Λ[G]-modules. So let P, P ′

be projective Λ[G]-modules such that [P ⊗Λ k] = [P ′ ⊗Λ k]. By corollary III.2.1, this implies
that P ⊗Λ k ' P ′ ⊗Λ k as k[G]-modules. By (ii) of the theorem, this implies that P ' P ′ as
Λ[G]-modules. Finally, the last sentence follows directly from (iii) of the theorem.

III.4 The cde triangle

In this section, we fix a complete discrete valuation ring Λ with uniformizing element $, maxi-
mal ideal m = ($), residue field k and fraction field K, and we assume that char(K) = 0.

We want to construct a commutative triangle

Pk(G) c //

e

$$

Rk(G)

RK(G)

d
::

The map c is the obvious map, and e is the composition

Pk(G)
ψ−1

→ PΛ(G)
.⊗ΛK→ PK(G) = RK(G).
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Let’s now define d. Let V be a K[G]-module. Let M1 ⊂ V be a Λ-lattice, i.e. a finite type
Λ-submodule of V such that KM1 = V . After replacing M1 by

∑
g∈G gM1, we may assume

that M1 is stable by G. Then M1 := M1 ⊗Λ k is a k[G]-module. This k[G]-module obviously
depends on the choice of M1, but we have the following :

Theorem III.4.1. With notation as in the paragraph above, [M1] ∈ Rk(G) only depends on V .

Hence we can define d by setting d([V ]) = [M1] (notation as above) and extending by addi-
tivity.

Remark III.4.2. Suppose that G ⊂ G′, with G′ another finite group. If M1 is a G-stable Λ-lattice
in V , then M ′

1 := IndG
′

G M1 is a G′-stable Λ-lattice in IndG
′

G V , and so we have

d([IndG
′

G V ]) = [(IndG
′

G M ′
1 ⊗Λ k)] = [IndG

′

G (M ′
1 ⊗Λ k)] = IndG

′

G d([V ]).

In other words, d is compatible with induction.

Proof of the theorem. Let M2 be another G-stable Λ-lattice of V .

Case where $M1 ⊂M2 ⊂M1 : Let N = M1/M2. This is a k[G]-module (because
$M1 ⊂M2). From $M2 ⊂ $M1 ⊂M2 ⊂M1, we get an exact sequence of k[G]-modules

0→ N →M2 := M2 ⊗Λ k = M2/$M2 →M1 → N → 0.

So, in Rk(G), we get [N ]− [M2] + [M2]− [N ] = 0, hence [M1] = [M2].

General case : Multiplying M2 by a high enough power of $, we may assume that M2 ⊂M1.
There also exists n ≥ 1 such that $nM1 ⊂ M2. We prove the result by induction on n. We
already did the case n = 1, so suppose that n ≥ 2, and let M3 = $n−1M1 +M2. Then :

- $n−1M1 ⊂M3 ⊂M1, so [M3 ⊗Λ k] = [M1] by the induction hypothesis;

- $M3 ⊂M2 ⊂M3, so [M3 ⊗Λ k] = [M2 ⊗Λ k] by the case n = 1.

Putting these two together, we are done.

III.5 Representations over a field of characteristic p 6 ||G|

We keep the notation of the previous section, and we also assume that p := char(k) does not
divide |G|.

Theorem III.5.1. 1. Every k[G]-module is semisimple.

2. Every Λ[G]-module that is projective as a Λ-module is projective as a Λ[G]-module.
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3. The map d : RK(G) → Rk(G) is an isomorphism, and so are c and e. Also, d induces a
bijection SK(G)

∼→ Sk(G).

Proof. Point (i) follows from theorem I.3.2 of chapter I, and point (ii) follows from (i) and theo-
rem III.3.4. By (i), Pk(G) = Rk(G), and c is just the identity morphism. Obviously, de = idRk(G)

and e([Sk(G)]) ⊂ SK(G).

So we just need to show that d is injective. Let V, V ′ be two K[G]-modules such that
d([V ] − [V ′]) = 0, let M ⊂ V , M ′ ⊂ V ′ be G-stable Λ-lattices, and let M = M ⊗Λ k,
M
′

= M ′ ⊗Λ k. We have d([V ] − [V ′]) = [M ] − [M
′
] = 0 in Rk(G). As p 6 ||G|, this implies

that M ' M
′
as k[G]-modules, hence M ' M ′ as Λ[G] by theorem III.3.4, and so V ' V ′ and

[V ]− [V ′] = 0.

III.6 Brauer’s theorem in positive characteristic

Keep the notation and assumptions of section III.4, and assume that k is algebraically closed and
K contains all |G|th roots of 1 in K. (See section 17.2 of Serre’s book [29] for a version of this
theorem that doesn’t assume k algebraically closed.)

By theorem II.6.1 of chapter II, the map RK(H) → RK(H) is an isomorphism for every
subgroup H of G. We do not assume anymore that p := char(k) is prime to |G|.

Theorem III.6.1. The maps

Ind :=
⊕
`prime

⊕
H∈X(`)

IndGH :
⊕

`6=p prime

⊕
H∈X(`)

Rk(H)→ Rk(G)

and
Ind :=

⊕
`prime

⊕
H∈X(`)

IndGH :
⊕

`6=p prime

⊕
H∈X(`)

Pk(H)→ Pk(G)

are both surjective.

(See section II.5 of chapter II for the definitions of all the terms.)

Proof. Let 11K (resp. 11k) be the unit element in RK(G) (resp. Rk(G)). Obviously, d(11K) = 11k.

By Brauer’s theorem (theorem II.5.2 of chapter II, which applies thanks to theorem II.6.1 of
the same chapter), we can write

11K =
∑
` prime

∑
H∈X(`)

IndGH xH ,
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III Comparison between characteristic 0 theory and characteristic p theory

for some xH ∈ RK(H). Applying d to this equality gives

11k =
∑
` prime

∑
H∈X(`)

IndGH x
′
H ,

with x′H = d(xH) ∈ Rk(H). So if y ∈ Rk(G) (resp. y ∈ Pk(G)), then corollary I.5.6.2 of
chapter I gives

y = y11k =
∑
` prime

∑
H∈X(`)

IndGH(x′H ResGH y),

and x′H ResGH(y) is in Pk(H) if y ∈ Pk(G), because ResGH sends Pk(G) to Pk(H).

III.7 Surjectivity of d

We keep the notation and assumptions of section III.4.

Corollary III.7.1. If k is algebraically closed and K contains all the |G|th roots of 1 in K, then
d : RK(G)→ Rk(G) is surjective.

Remark III.7.2. This result is actually true without the hypothesis on k and K, see section 16.1
of Serre’s book [29].

Lemma III.7.3. Suppose that G = P ×H , with P a p-group and H of order prime to p. Then
P acts trivially on every semisimple k[G]-module.

Proof. We just need to show that P acts trivially on every simple k[G]-module. Let M be a
simple k[G]-module. As P is a p-group, its only irreducible representation over k is the trivial
representation, by problem VII.1.11. so MP 6= 0. (Choose a minimal nonzero k[P ]-submodule
of M , it has to be a simple k[P ]-module, hence it is the trivial k[P ]-module, and so it is included
in MP .) As G = P ×H (so P is normal in G), the action of G preserves MP . As M is simple,
MP = M , and so P acts trivially on M .

Proof of the corollary. By theorem III.6.1, we may assume that G is `-elementary, for some
prime `. Write G = C × G′, with C cyclic of order prime to ` and G′ a `-group. If ` = p, let
P = G′ and H = C. If ` 6= p, write C = Cp×Cp with Cp a p-group and Cp of order prime to p,
and let P = Cp and H = Cp×G′. In both cases, we have written G = H×P , with P a p-group
and H of order prime to p.

LetM be a simple k[G]-module. By the lemma, P acts trivially onM . SoM is a simple k[H]-
module. By theorem III.5.1, there exists a simple K[H]-module V such that d([V ]) = [M ]. We
see V as a K[G]-module by making P act trivially, and then we still have d([V ]) = [M ].
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III.8 Injectivity of c

Let k be a field of characteristic p > 0, and G be a finite group.

Proposition III.8.1. If G is a p-group, then Pk(G) ' Z, Rk(G) ' Z, and the map
Pk(G)→ Rk(G) corresponds to multiplication by pn := |G|.

Proof. We have seen in problem VII.1.11 that the only simple k[G]-module is 11, so the Z-
rank of Pk(G) and Rk(G) is 1, the isomorphism Rk(G)

∼→ Z sends [M ] to dimkM , and also
k[G]/ rad(k[G]) = k. So k[G] is local (and left Artinian), and every element of k[G] is nilpotent
or invertible by corollary III.1.2.5. In particular, the only idempotents of k[G] are 0 and 1.

We know that k[G] is a projective k[G]-module, let’s show that it is indecomposable. Suppose
that k[G] = M1 ⊕M2, with MI1 and I2 two left ideals of k[G]. By remark I.1.3.16 of chapter
I, we get two idempotents e1, e2 if k[G] such that I1 = k[G]e1 and I2 = k[G]e2. As the only
idempotents of k[G] are 0 and 1, this implies that I1 = 0 or I2 = 0.

So we have found the unique projective indecomposable finite length k[G]-module that sur-
jects to 11, and it is k[G] itself. Now the last assertion follows from the fact that, in Rk(G),
[k[G]] = dimk(k[G])11 = pn11.

Theorem III.8.2. Assume that k is algebraically closed.5 Then c : Pk(G)→ Rk(G) is injective,
and its image contains pnRk(G), where pn is the biggest power of p dividing |G|.

Proof. In the proof, we will use a complete discrete valuation ring Λ with residue field k and
algebraically closed characteristic zero fraction field K. The existence of such a Λ is almost
proved in problem VII.3.4.

We first prove that Im(c) ⊃ pnRk(G). By theorem III.6.1, we may assume that G is `-
elementary for some prime number `. Then, as in the proof of corollary III.7.1, we can write
G = H × P with P a p-group and H of order prime to p. The trivial k[H]-module is projective
(because k[H] is a semisimple ring), so k[P ] (with trivial action of H) is a projective k[G]-
module, and k[P ] = |P |11 ∈ Rk(G) (by proposition III.8.1) is in the image of c. As Im(c) is an
ideal of Rk(G), this gives the conclusion.

Now let’s prove that c is injective. We already know that Rk(G)/ Im(c) is a torsion group. As
Pk(G) and Rk(G) are free Z-modules of the same finite rank, this forces c to be injective.

Corollary III.8.3. The map e : Pk(G)→ RK(G) of section III.4 is injective.

5This is not necessary, see section 16.1 of Serre’s book [29].
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III.9 Image of the map e

We keep the notation and assumptions of section III.4, and we assume that k is algebraically
closed and that K contains all the |G|th roots of 1 in K.6

Definition III.9.1. An element x ∈ G is called p-singular if x is not p-regular, i.e. if p divides
the order of x.

Remember that we have an injective morphism of rings RK(G) → C (G,K), (by corollary
II.1.2.9 of chapter II), and use it to identify RK(G) to a subring of C (G,K).

Theorem III.9.2. An element χ ∈ RK(G) is in the image of e if and only if χ(g) = 0 for every
p-singular element g of G.

Lemma III.9.3. Suppose that G = H × P , with P a p-group and H of order prime to p. Then :

1. k[G] = k[H]⊗k k[P ].

2. rad(k[G]) = k ⊗k rad(k(P )) = k ⊗k Iε, where Iε is the augmentation ideal of k[P ] (see
I.3.1 of chapter I).

3. A k[G]-module M is projective if and only if M ' N ⊗k k[P ], with N a k[H]-module.

4. A Λ[G]-module M is projective if and only if M ' N ⊗Λ[P ], with N a Λ[H]-module that
is free (of finite type) over Λ.

Proof. 1. Obvious.

2. Let I = k ⊗k Iε. Then k[G]/I ' k[H] is semisimple, so I ⊂ rad(k[G]). Also, I acts
trivially on every simple k[G]-module by lemma III.7.3, so I ⊂ rad(k[G]).

3. If M = N ⊗k k[P ] with N a k[H]-module, then N is a projective k[H]-module because
k[H] is semisimple, so it is a direct summand of a free k[H]-module, so M is a direct
summand of a free k[G]-module, hence projective.

To prove the converse, we may assume (by theorem III.1.4.1) that M is a projective
indecomposable k[G]-module. Then N := M/ rad(k[G])M is a simple k[G]-module,
so P acts trivially on N by lemma III.7.3, so N is also a simple k[H]-module. Let
M
′

= N ⊗k k[P ], then M
′

is a projective k[G]-module by what we just saw, it is in-
decomposable because M

′
/ rad(k[G])M

′
= N is simple (use corollary III.1.5.2), and so

it is isomorphic to M by proposition III.1.5.5.

4. If M ' N ⊗Λ Λ[P ] as in the statement, then M is a free Λ-module and M ⊗Λ k is a
projective k[G]-module by (iii), so M is a projective Λ[G]-module by theorem III.3.4.

Conversely, let M be a projective Λ[G]-module. Then M := M ⊗Λ k is a projective k[G]-
module, so, by (iii), we have M ' N ⊗k k[P ] with N a k[H]-module. By theorem III.3.4

6Again, this is not necessary, as explained in section 16.1 of Serre’s book [29].
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III.9 Image of the map e

again, there exists a projective Λ[H]-module N such that N ⊗Λ k. Then M ′ := N ⊗Λ Λ[P ]
is a projective Λ[G]-module by what we just saw, and M ′ ⊗Λ k ' M ⊗Λ k, so M ' M ′

by theorem III.3.4.

Proof of the theorem. Let’s prove that any element in the image of e satisfies the condition of
the theorem. Let M be a projective Λ[G]-module, let V = M ⊗Λ K. We want to show that
χV (g) = 0 if g ∈ G is p-singular. Fix a p-singular g ∈ G. We may assume that G = 〈g〉, so G
is cyclic, so we can write G = H × P with P a p-group and H of order prime to p. Then by the
lemma, M = N ⊗Λ Λ[P ], with N a Λ[H]-module that is free over Λ. If we write g = (g1, g2)
with g1 ∈ H and g2 ∈ P , then we have χV (g) = χM⊗ΛK(g1)χK[P ](g2). As g is p-singular,
g2 6= 1, so χK[P ](g2) = 0 and hence χV (g) = 0.

Now let’s prove that any element of RK(G) satisfying the condition of the theorem is in the
image of e. So let χ ∈ RK(G) be such that χ(g) = 0 for every p-singular g ∈ G. By Brauer’s
theorem (theorem II.5.2 of chapter II, which applies thanks to theorem II.6.1 of the same chapter),
we can write 11 =

∑
H IndGH(ψH), where we take the sum over elementary (=`-elementary for

some prime `) subgroups H of G and ψH ∈ RK(H). Using corollary I.5.6.2 of chapter I, we get

χ = χ11 =
∑
H

IndGH IndGH(χH),

with χH = ψH ResGH χ. Clearly, for every H and every g ∈ H , chiH(g) = 0 if g is p-singular. It
suffices to show that χH is in the image of e : Pk(H) → RK(H) for every H . In other words,
we may assume that G is elementary.

As in the proof of corollary III.7.1, write G = H ×P , with P a p-group and H of order prime
to p. If g1 ∈ H and g2 ∈ P − {1}, we have χ(g1, g2) = 0 by assumption. So there is a function
f ∈ C (H,K) such that χ(g1, g2) = f(g1)χK[P ](g2) for every (g1, g2) ∈ H × P = G. If W is a
representation of H over K, then

Z 3 〈χ, χW⊗11P 〉G = 〈f, χW 〉H〈χK[P ], χ11P 〉P = 〈f, χW 〉H ,

so 〈f, χW 〉H ∈ Z, hence f is in RK(H) and not just C (H,K). (Because
f =

∑
W∈SK(H)〈f, χW 〉HχW ∗ by corollaries II.1.2.5 and II.1.2.6 and theorem II.1.3.1 of

chapter II.) Write f =
∑

W∈SK(H) nW [W ], with nW ∈ Z. By theorem III.5.1, for every
W ∈ SK(H), there exists a projective Λ[H]-module MW such that W ' MW ⊗Λ K. So if
x =

∑
W∈SK(H) nW [MW ⊗Λ Λ[P ]] ∈ PΛ(G), we have d(x) = χ.
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IV Irreducible representations of the
symmetric group Sn over C

The goal of this chapter is to explain the classical description of irreducible representations of
Sn in terms of partitions of n and to give a formula for their characters.

IV.1 Partitions

Fix a positive integer n.

Definition IV.1.1. A partition of n is a finite sequence λ = (λ1, . . . , λr) such that

- λ1 ≥ · · · ≥ λr;

- λ1 + · · ·+ λr = n.

We write P(n) for the set of partitions of n.

Definition IV.1.2. The lexicographic order on P(n) is the total order relation given by :
(λ1, . . . , λr) > (µ1, . . . , µs) if and only if there exists i ≤ min(r, s) such that λj = µj for
1 ≤ j < i and λi > µi. lexicographic order on partitions

The following result is clear.

Proposition IV.1.3. Using the decomposition into cycles with disjoint supports of elements of
Sn, we get a bijection

{conjugacy classes in Sn}
∼→ P(n)

σ 7−→ sequence of the lengths of the cycles in the decomposition
of σ, ordered in decreasing order.

In particular, there is a bijection P(n) ' SC(Sn), where SC(Sn) is the set of isomorphism
classes of irreducible representations of Sn over C. We will see that there is actually a canonical
bijection P(n) ' SC(Sn), so we get a canonical bijection between SC(Sn) and the set of
conjugacy classes in Sn; this is special to Sn and is not the case for a general finite group.
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IV Irreducible representations of the symmetric group Sn over C

IV.2 Young tableaux and Young projectors

Definition IV.2.1. Let λ = (λ1, . . . , λr) ∈ P(n). The Young diagram Yλ attached to λ is the

following diagram

...
...

...
...

where there are r rows and the ith row has λi cases.

A Young tableau Tλ corresponding to λ is a filling of the cases of the Young diagram Yλ with
the number 1, . . . , n without repetitions. (Note that Yλ has exactly n cases.)

If Tλ is a Young tableau corresponding to λ, the row subgroup PTλ (resp. the column subgroup
QTλ) of Sn is the subgroup of σ such that σ maps every element of {1 . . . , n} to an element in
the same row (resp. in the same column) of Tλ.

Example IV.2.2. If Tλ is equal to

1 2 3 . . . . . . λ1

λ1+1 λ1+2 . . . . . . λ1+λ2

...
...

...
...

n−1 n

then PTλ = Sλ is the subgroup of σ ∈ Sn stabilizing the sets
{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {λ1 + · · ·+ λr−1 + 1, . . . , λ1 + . . . , λr}.
Remark IV.2.3. We have PTλ ∩QTλ = {1}.

Indeed, if σ ∈ PTλ ∩ QTλ , then for every i ∈ {1, . . . , n}, σ(i) is in the same row and in the
same column of Tλ as i, which forces σ(i) = i.
Remark IV.2.4. Let λ ∈ P(n). If Tλ is a Young tableau corresponding to λ and σ ∈ Sn, then,
applying σ to all the entries of Tλ, we get another Young tableau corresponding to λ. This gives
an action of Sn on Young tableaux corresponding to λ. If T ′λ = σTλ, then PT ′λ = σPTλσ

−1 and
QT ′λ

= σQTλσ
−1

Definition IV.2.5. Let λ ∈P(n), and let Tλ be a Young tableau corresponding to λ. We define
two elements aλ, bλ ∈ Q[Sn] by

aλ =
1

|PTλ |
∑
σ∈PTλ

σ
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IV.2 Young tableaux and Young projectors

and
bλ =

1

|QTλ |
∑
σ∈PTλ

sgn(σ)σ.

The Young projector corresponding to Tλ is

cλ = aλbλ.

Note that these elements depend on Tλ, but we only indicate the dependence on λ.

Remark IV.2.6. An easy calculation shows that a2
λ = aλ and b2

λ = bλ. Also, because
PTλ ∩Qλ = {1} (see remark IV.2.3), we have no cancellations in the sum

cλ =
∑

σ∈PTλ ,τ∈QTλ

sgn(τ)στ,

so cλ 6= 0.

Now we prove some basic properties of these elements.

Proposition IV.2.7. Let λ, µ ∈P(n), and choose corresponding Young tableaux Tλ and Tµ.

Then, for every σ ∈ Sn, we have

aλσbµ =


0 if λ > µ
0 if λ = µ and σ 6∈ PTλQTλ

sgn(q)aλbλ if λ = µ and σ = pq, with p ∈ PTλ and q ∈ QTλ .

Proof. We start with the following easy observation (that was already used implicitely in remark
IV.2.6): if p ∈ PTλ and q ∈ QTµ , then

aλp =
∑
σ∈PTλ

(σp) = aλ

and
qbµ =

∑
σ∈QTµ

sgn(σ)(qσ) = sgn(q)
∑
σ∈QTµ

sgn(qσ)(qσ) = sgn(q)bµ.

In particular, if s = pq with p ∈ PTλ and q ∈ QTλ , then

aλsbλ = (aλp)(qbλ) = sgn(q)aλbλ.

Now suppose that we can prove that PTλ ∩ sQTµs
−1 contains a transposition τ . Then we have

aλsbµ = (aλτ)s(s−1τsbµ) = aλssgn(s−1τs)bµ = −aλsbµ,
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IV Irreducible representations of the symmetric group Sn over C

hence aλsbµ = 0. So we just need to prove that PTλ ∩ sQTµs
−1 contains a transposition if µ < λ,

or if λ = µ and s 6∈ PTλQTλ .

First note that, thanks to remark IV.2.4, we can find a Young tableau T ′µ corresponding to µ
such that QT ′µ = sQTµs

−1. Also, if we make an element of QT ′µ act on the Young tableau T ′µ,
this won’t change its column group. Now let’s suppose that PTλ ∩ sQTµs

−1 = PTλ ∩QT ′µ doesn’t
contain a transposition. Write aij for the entries of Tλ, where aij means the entry on the ith row
and jth column. Let σ be the element of Sn such that σ(Tλ) = T ′µ. Then, for 2 ≤ j ≤ λ1,
σ(a1j) is not in the same column as σ(a11) (otherwise the transposition τ = (a11, a1j) would be
in PTλ ∩QT ′µ). After making an element of QT ′µ act on T ′µ (which doesn’t change the problem, as
we saw), we can also assume that all the σ(a1j), 1 ≤ j ≤ λ1, are in the first row of T ′µ. And so
in particular, λ1 ≤ µ1.

Next, for 2 ≤ j ≤ λ2, σ(a2j) is not in the same column as σ(a21) (otherwise the transposition
τ = (a21, a2j) would be in PTλ∩QT ′µ). After making an element ofQT ′µ act on T ′µ, we can assume
that all the σ(a2j), 1 ≤ j ≤ λ2, are in the first two rows of T ′µ.

Applying the same reasoning to all the rows of Tλ, we conclude that, after making an element
of QT ′µ act on T ′µ, the images by σ of the entries in the ith row of Tλ are all in the first i rows of
T ′µ, for every i. In particular, λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi for every i.

Suppose that λ = µ. Then using the reasoning above, we can actually make it so that the
images by σ of the entries in the ith row of Tλ are all in the ith row of T ′µ, for every i. In other
words, σ ∈ PTλ .

This already proves that PTλ ∩ QT ′µ contains a transposition if λ > µ. Suppose that
PTλ ∩ sQTλs

−1 = PTλ ∩ QsTλ doesn’t contain a transposition. By what we saw above,
sQTλ ∩ PTλ 6= ∅, i.e. s ∈ PTλQTλ .

Corollary IV.2.8. Let λ, µ ∈ Sn, and choose corresponding Young tableaux Tλ and Tµ.

1. We have aλC[Sn]bµ = 0 if µ < λ.

2. Let ` : C[Sn]→ C be the C-linear function defined by

`(σ) =

{
0 if σ 6∈ PTλQTλ

sgn(q) if σ = pq, with p ∈ PTλ and q ∈ QTλ .

Then, for every x ∈ C[Sn], we have

aλxbλ = `(x)aλbλ = `(x)cλ.

3. We have
c2
λ =

n!

dimC(Vλ)
cλ,

where Vλ = C[Sn]cλ.
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IV.3 Partitions and irreducible representations

Proof. Point (i) and (ii) are obvious consequences of the proposition. Let’s prove (iii). By (ii),
we have

c2
λ = aλ(bλaλ)bλ = `(bλaλ)cλ.

Let α = c(bλaλ) ∈ C, and let u be the C-linear endomorphism of C[Sn] given by right multi-
plication by cλ. We have u2 = αu by the calculation above, so the eigenvalues of u are all in
{0, α}, hence

Tr(u) = αrk(u) = α dimC(Vλ).

On the other hand, we have, by remark IV.2.6,

cλ = 1 +
∑

σ∈PλQλ−{1}

±σ,

so, using the basis of C[Sn] given by Sn, we see that Tr(cλ) = n!, hence α = n!
dimC Vλ

.

IV.3 Partitions and irreducible representations

Definition IV.3.1. Let λ = (λ1, . . . , λn) ∈P(n). Let Sλ ⊂ Sn be the subgroup of elements σ
stabilizing the sets {1, . . . , λ1}, {λ1 +1, . . . , λ1 +λ2}, . . . , {λ1 + · · ·+λr−1 +1, . . . , λ1 + . . . , λr}
(as in example IV.2.2).

We also set
Uλ = IndSn

Sλ
11Sλ = C[Sn]⊗C[Sλ] C = C[Sn /Sλ],

where Sn acts on the last C-vector space through its action by left translations on Sn /Sλ.

Proposition IV.3.2. Choose a Young tableau Tλ corresponding to λ. Then we have
Uλ ' C[Sn]aλ as C[Sn]-modules.

Proof. By remark IV.2.4 and example IV.2.2, we may assume that PTλ = Sλ. Then, if
σ, σ′ ∈ Sn, we have σaλ = σ′aλ if and only σSλ = σ′Sλ. Let (σi)i∈I be a system of rep-
resentatives of Sn /Sλ. Then the σiaλ have support in pairwise disjoint subsets of Sn, so they
are linearly independent over C. (Where the support of an element x =

∑
σ∈Sn ασσ ∈ C[Sn] is

the set of σ ∈ Sn such that ασ 6= 0.) So the (σiaλ)i∈I form a C-basis of C[Sn]aλ.

In particular, we can define a C[Sn]-linear map u : Uλ = C[Sn /Sλ]→ C[Sn]aλ by sending
σSλ to σaλ, for every σ ∈ Sn. This sends the basis (σiSλ)i∈I of C[Sn /Sλ] to the basis
(σiaλ)i∈I of C[Sn]aλ that we just defined, and so it’s an isomorphism.
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IV Irreducible representations of the symmetric group Sn over C

Theorem IV.3.3. For every λ ∈ P(n), we choose a Young tableau Tλ corresponding to λ, and
we set, as in corollary IV.2.8, Vλ = C[Sn]cλ.

Then Vλ is an irreducible representation of Sn, and we have

Uλ = Vλ ⊕
⊕
µ>λ

V
Kµλ
µ ,

for some Kµλ ∈ N. (This integers Kµλ are called the Kostka numbers.)

Moreover, the isomorphism class of the representation Vλ only depends on λ (and not on the
choice of Tλ), and the map P(n)→ SC(Sn), λ 7−→ Vλ, is a bijection.

The representations Vλ are called the Specht modules.

Example IV.3.4.

- Take λ = (n) (the biggest element of P(n)). Then Sλ = Sn and QTλ = {1} for every
choice of Tλ, so

aλ = cλ =
∑
σ∈Sn

σ

and Uλ = Vλ = 11Sn .

- Take λ = (n − 1, 1). Then Sλ = Sn−1×S1 ⊂ Sn, and Uλ is the representation of Sn

on Cn that permutes the coordinates. The only element of P(n) bigger than λ is (n),
so Uλ = Vλ ⊕ 11, and Vλ is isomorphic to the subrepresentation of Uλ = Cn equal to
{(x1, . . . , xn) ∈ Cn|x1 + · · ·+ xn = 0}.

- Take λ = (1, . . . , 1) (the smallest element of P(n)). Take Sλ = {1} and QTλ = Sn for
every choice of Tλ. So Uλ is equal to the regular representation C[Sn]. We know that

C[Sn] '
⊕

V ∈SC(Sn)

V ⊕dimC V

as C[Sn]-modules. The only irreducible representations that appear with multiplicity 1
are the 1-dimensional representation, that is, 11 and sgn. As 11 = V(n), we must have
sgn = V(1,...,1).

Lemma IV.3.5. Let R be a ring, and let e, f ∈ R be two idempotents. (That is, e2 = e
and f 2 = f .) Then the map eRf → HomR(Re,Rf) sending x ∈ eRf to the R-linear map
fx : a 7−→ ax is an isomorphism of groups.

Proof. Let’s prove that this map is injective. Let x, y ∈ eRf such that fx = fy. Then
0 = fx(e) − fy(e) = e(x − y). As x − y ∈ eRf and e2 = e, we have e(x − y) = x − y,
and so x− y = 0.
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Now we prove that the map x 7−→ fx is surjective. Let f ∈ HomR(Re,Rf), let x = f(e).
Then x = f(e2) = ef(e) ∈ eRf . Also, for every a ∈ Re, f(a) = f(ae) = af(e) = ax. Hence
f = fx.

Proof of the theorem. Let λ, µ ∈ P(n). Then, by the lemma and (iii) of corollary IV.2.8 (that
says that βcλ is idempotent for some β ∈ C×), we have

HomC[Sn](Vλ, Vµ) = cλC[Sn]cµ.

By (i) and (ii) of corollary IV.2.8, this is equal to 0 if λ > µ, and, if λ = µ, it is
equal to `(bλC[Sn]aλ)cλ ⊂ Ccλ. Note also that c2

λ = n!
dimC Vλ

cλ 6= 0 is in cλC[Sn]cλ, so
cλC[Sn]cλ = `(bλC[Sn]aλ)cλ is not equal to {0}, and so it is equal to Ccλ.

In particular, we have shown that dimC EndC[Sn](Vλ), and this implies that Vλ si irreducible.
Also, the ffirst part of the calculation above implies that Vλ 6' Vµ if λ > µ or λ < µ. As the
lexicographic order is a total order, this means that Vλ 6' Vµ is λ 6= µ.

So we see that the map P(n) → SC(Sn), λ 7−→ Vλ, is an injection. As its source and target
have the same cardinality, this map is bijective, and every irreducible representation of Sn is
isomorphic to one of the Vλ.

Now let’s prove the decomposition of Uλ given in the theorem. By what we just saw (and the
semsimplicity of C[Sn]), we have Uλ =

⊕
µ∈P(n) V

⊕Kµλ
µ , for some Kµλ ∈ N. Using the lemma

and corollary IV.2.8 again, we get

HomC[Sn](Uλ, Vµ) = aλC[Sn]cµ = aµ(C[Sn]aλ)bλ =

{
0 if λ > µ
Ccλ if λ = µ.

(If λ = µ, we have aλC[Sn]cλ 6= 0 because it contains aλcλ = cλ 6= 0.) So Kλλ = 1 and
Kµλ = 0 if µ < λ.

It just remains to show that the isomorphism class of Vλ doesn’t depend on the choice of the
Young tableau Tλ. Thanks to the decomposition of Uλ that we just proved, we can prove this
by descending induction on λ ∈ P(n). Also, the case of the biggest element (n) of P(n) is
obvious (see example IV.3.4). So we are done. 1

Corollary IV.3.6. Every irreducible representation of Sn is realizable over Q. (See corollary
II.6.2 of chapter II.)

1We could also use remark IV.2.4, which shows that changing the Young tableau conjugates cλ by an element of
Sn.

101



IV Irreducible representations of the symmetric group Sn over C

IV.4 Characters of the irreducible representations Vλ

The strategy to calculate the character of Vλ is similar to the strategy that we will use to calculate
characters of irreducible representations of sln(C) in section VI.14.4-VI.14.6 of chapter VI :
First we calculate the chatacter of the induced representation Uλ, which is much easier. Then we
deduce tha character of Vλ, using the fact that Uλ is the direct sum of Vλ and some factors Vµ
with µ > λ, the fact that Vλ is irreducible and some dark magic.

Definition IV.4.1. If σ ∈ Sn, we write C(σ) for the conjugacy class of σ in Sn and let
ZSn(σ) = {τ ∈ Sn |τσ = στ} be the centralizer of σ of Sn.

Proposition IV.4.2. Let σ ∈ Sn. Then

|ZSn(σ)| =
∏
r≥1

cr!r
cr

and

|C(σ)| = n!∏
r≥1 cr!r

cr
,

where, for every r ≥ 1, cr is the number of cycles of length r in the decomposition of σ into a
product of cycles with disjoint supports.

Proof. Let τ ∈ ZSn(σ). Then τ has to send the support of each cycle of σ to the support of
any other cycle of the same length, and it must also respect the cyclical order given by σ on the
support of these cycles. This gives an isomorphism

ZSn(σ) '
∏
r≥1

((Z/rZ)cr oSr)

(where Sr acts on (Z/rZ)cr by permuting the entries of the r-uples), hence

|ZSn(σ)| =
∏
r≥1

cr!r
cr .

Now note that C(σ) = Sn /ZSn(σ). So we get

C(σ) =
n!∏

r≥1 cr!r
cr
.

We fix some N ≥ n. For every r ≥ 0, let
Pr(T ) = Pr(T1, . . . , TN) = T r1 + · · ·+ T rN ∈ Z[T1, . . . , TN ].
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IV.4 Characters of the irreducible representations Vλ

Theorem IV.4.3. Let λ = (λ1, . . . , λd) ∈P(n) and σ ∈ Sn. Set λi = 0 for d+ 1 ≤ i ≤ N .

Then χUλ(σ) is the coefficient of T λ :=
∏N

i=1 T
λi
i in the polynomial

∏
r≥1 Pr(T )cr , where, for

every r ≥ 1, cr is the number of cycles of length r in the decomposition of σ as a product of
cycles with disjoint supports.

Proof. Remember that Uλ = IndSn
Sλ

11. We use the formula for the character of an induced
representation (theorem II.3.1.2 of chapter II). It gives :

χUλ(σ) =
1

|Sλ |
∑

τ∈Sn |τ−1στ∈Sλ

1 =
1

|Sλ |
|ZSn(σ)||Sλ ∩C(σ)|,

where ZSn(σ) and C(σ) are as in definition IV.4.1.

First, we have Sλ ' Sλ1 × · · · ×Sλd , so |Sλ | =
∏d

i=1 λi! =
∏N

i=1 λi!. Second, by proposi-
tion IV.4.2,

|ZSn(σ)| =
∏
r≥1

cr!r
cr .

Finally, we have to calculate |Sλ ∩C(σ)|. The conjugacy class C(σ) is the set of permutations
in Sn that have cr cycles of length r for every r ≥ 1. So its intersection with Sλ is a finite
disjoint union of the following conjugacy classes in Sλ ' Sλ1 × . . .Sλd : The product for
i = 1, . . . , d of the conjugacy class in Sλi of permutations with ci,r cycles of length r for every
r ≥ 1, for every family (ci,r)1≤d≤r,r≥1 such that, for every r ≥ 1, cr =

∑d
i=1 ci,r and for every

i ∈ {1, . . . , d}, λi =
∑

r≥1 rci,r. The cardinality of this product of conjugacy classes is

d∏
i=1

λi!∏
r≥1 ci,r!r

ci,r
,

by proposition IV.4.2. We can actually take i in {1, . . . , N} without changing the result, because
λi = 0 for i > d.

Putting all this together, we get

χUλ(σ) =
1∏N

i=1 λi!

∏
r≥1

cr!r
cr
∑
(cr,i)

N∏
i=1

λi!∏
r≥1 ci,r!r

cr,i
,

where the sum is over families (ci,r) as above. This is equal to

∑
(cr,i)

N∏
i=1

cr!∏
r≥1 cr,i

.

On the other, for every r ≥ 1, we have

Pr(T )cr =

(
N∑
i=1

T ri

)cr

=
∑

cr=c1,r+···+cN,r

cr!∏N
i=1 ci,r!

N∏
i=1

T
rci,r
i .
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IV Irreducible representations of the symmetric group Sn over C

So the coefficient of
∏N

i=1 T
λi
i in

∏
r≥1 Pr(T )cr is indeed equal to

∑
(cr,i)

∏N
i=1

cr!∏
r≥1 cr,i

, where
the sum is over families (ci,r) as above.

Let ∆(T ) = ∆(T1, . . . , TN) =
∏

1≤i<j≤N(Ti − Tj). This is also equal to the Vandermonde
determinant

det


TN−1

1 TN−1
2 . . . TN−1

N
...

...
...

T1 T2 . . . TN
1 1 . . . 1

 .

Theorem IV.4.4. Let λ = (λ1, . . . , λd) ∈P(n) and σ ∈ Sn. Set λi = 0 for d+ 1 ≤ i ≤ N .

Then χVλ(σ) is the coefficient of
∏N

i=1 T
λi+N−i
i in the polynomial ∆(T )

∏
r≥1 Pr(T )cr , where,

for every r ≥ 1, cr is the number of cycles of length r in the decomposition of σ as a product of
cycles with disjoint supports.

Lemma IV.4.5. Let λ = (λ1, . . . , λN) ∈ ZN be such that λ1 ≥ · · · ≥ λN . Let τ ∈ SN , and let µ
be theN -uple of integers (λ1+τ(1)−1, . . . , λN+τ(N)−N), rearranged to be in non-increasing
order. Then µ ≥ λ, and we have µ = λ if and only if τ = 1.

Proof. Let i0 ∈ {0, . . . , N} be an integer such that λi = µi for every 1 ≤ i ≤ i0. Let’s show that
τ(i) = i for every 1 ≤ i ≤ i0 and that, if i0 ≤ N − 1, then µi0+1 ≥ λi0+1. This clearly implies
the lemma (applying the result to the biggest i0 with the above property.)

We reason by induction on i0. If i0 = 0, then the first statement is obvious, and the sec-
ond statement is true because µ1 is the biggest of all the λi + τ(i) − i, so 1 ≤ i ≤ N , so
µ1 ≥ λ1 + τ(1)− 1 ≥ λ1. Suppose that i0 ≥ 1 and that we know the result for i0 − 1. First we
have to prove that τ(i0) = i0. We have µi0 ≥ λi+τ(i)−i for i0 ≤ i ≤ N , so µi0 ≥ λi0+τ(i0)−i0.
As µi0 = λi0 , this gives τ(i0) ≤ i0. But τ(i0) ∈ {i0, . . . , N} (because τ(i) = i for 1 ≤ i < i0,
so τ(i0) = i0. Next, if i0 ≤ N − 1, then

µi0+1 = sup
i0+1≤i≤N

(λi + τ(i)− i) ≥ λi0+1 + τ(i0 + 1)− (i0 + 1) ≥ λi0+1,

because τ(i0 + 1) ∈ {i0 + 1, . . . , N} as τ|{1,...,i0} = id.

Lemma IV.4.6 (Cauchy determinant). Consider the N × N matrix AN with coefficients in
Q(x1, . . . , xN , Y1, . . . , yN) given by AN = ( 1

xi−yj )1≤i,j≤N .

Then we have

det(AN) =

∏
1≤i<j≤n(xi − xj)(yj − yi)∏n

i,j=1(xi − yj)
.
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IV.4 Characters of the irreducible representations Vλ

The matrix AN is called the Cauchy matrix, and its determinant is called the Cauchy determi-
nant.

Proof. We prove the result by induction on N . It’s obvious for N = 1, so suppose that N ≥ 2
and that we know the result for N − 1.

We have det(AN) =
∑

τ∈Sn sgn(τ)
∏N

i=1(xi − yτ(i))
−1, so

fN(xi, yj) := det(A)
∏N

i,j=1(xi − yj) is a homogeneous polynomial of degree N(N − 1). Also,
if we have xr = xs (resp. yr = ys) for two distinct r, s ∈ {1, . . . , N}, then A has two equal rows
(resp. columns), so det(A) = 0. Hence fN(xi, yj) = c

∏
1≤i<j≤N(xj − xi)(yj − yi), for some

c ∈ Q×. Now multiply the first column of AN by x1 − y1 and set x1 = y1. We get a matrix B
whose determinant is equal to (x1−y1) det(AN)

∣∣
x1=y1

and also to fN−1(x2, . . . , xN , y2, . . . , yN).
The first expression for this determinant is equal to

c

(∏N
j=2(xj − x1)(yj − x1)

)(∏
2≤i<j≤N(xj − xi)(yj − yi)

)
∏N

i=2(xi − x1)
∏N

j=2(x1 − yj)
∏N

i,j=2(xi − yj)

By the induction hypothesis, this is equal to

c(−1)N−1(−1)(N−1)/(N−2)/2fN(x2, . . . , xN , y2, . . . , yN) = c(−1)N(N−1)/2fN(x2, . . . , xN , y2, . . . , yN),

and so c = (−1)N(N−1)/2, which finishes the proof.

Proof of the theorem. Write χλ = χVλ , and let χ′λ be the function on conjugacy classes in Sn

defined in the statement of the theorem. First we want to show that

χ′λ = χλ +
∑
µ>λ

bλµχµ,

for some integers bλµ ∈ Z.

Let σ and the cr be as in the statement of the theorem. By definition, χ′λ(σ) is the coefficient
of
∏N

i=1 T
λi+N−i
i in ∆(T )

∏
r≥1 Pr(T )cr . As ∆(T ) is equal to the Vandermonde determinant

written above, we have

∆(T ) =
∑
τ∈SN

sgn(τ)
N∏
i=1

T
N−τ(i)
i .

So χ′λ(σ) is equal to the sum over τ ∈ SN of sgn(τ) times the coefficient of
∏N

i=1 T
λi+N−i
i

in
∏N

i=1 T
N−τ(i)
i

∏
r≥1 Pr(T )cr , i.e. of sgn(τ) times the coefficient of

∏N
i=1 T

λi−i+τ(i)
i in∏

r≥1 Pr(T )cr .

Let τ ∈ SN , and denote by µτ = (µτ,1, . . . , µτ,N) the N -uple of integers
(λ1 + τ(1) − 1, · · · + λN + τ(N) − N), rearranged to be in non-increasing order. Observe

105



IV Irreducible representations of the symmetric group Sn over C

that the polynomial
∏

r≥1 Pr(T )cr is symmetric in the variables Ti, because all the Pr(T ) are. So
the coefficient of

∏N
i=1 T

λi−i+τ(i)
i in

∏
r≥1 Pr(T )cr is equal to the coefficient of

∏N
i=1 T

µτ,i
i . Also,

if one of µτ,i is negtaive, then this coefficient is 0, because there are no negative powers of the Ti
in
∏

r≥1 Pr(T )cr . Note that saying that none of the µτ,i is negative is the same as saying that µτ
is a partition of n (because of course

∑N
i=1 µτ,i =

∑N
i=1(λi + τ(i)− i) =

∑N
i=1 λi).

So we get that χ′λ(σ) is equal to the sum over all τ ∈ SN such that µτ is a partition of
n of sgn(τ) times the coefficient of

∏N
i=1 T

µτ,i
i in

∏
r≥1 Pr(T )cr . By theorem IV.4.3, χ′λ(σ)

is equal to the sum over all τ ∈ SN such that µτ is a partition of n of χUµ(σ). Note also
that, by lemma IV.4.5, for every µ ∈ SN , we have µτ ≥ λ, and that µτ = λ if and only if
τ = 1. Hence χ′λ = χUλ +

∑
µ>λ aλµχUµ , for some integers aλµ ∈ Z. Using the decomposition

Uµ = Vµ ⊕
⊕

ν>µ V
⊕Kνµ
ν of theorem IV.3.3, we get that

χ′λ = χλ +
∑
µ>λ

bλµχµ,

for some integers bλµ ∈ Z.

Remember the Hermitian inner product · on C (Sn,C) defined in corollary II.1.4.3 of chapter
II. By that same corolllary,

χ′λ · χ′λ = 1 +
∑
µ>λ

b2
λµ.

So, to finish the proof, we just need to show that χ′λ · χ′λ, i.e. (by definition of ·) that∑
σ∈Sn

|χ′λ(σ)|2 = n!.

By the decomposition of elements of Sn into products of cycles of disjoint supports, conjugacy
classes in Sn are given by family (cr)≥1 of nonnegative integers such that n =

∑
r≥1 rcr (cr is

the number of cycles of length r in the decomposition of any element of the conjugacy class). If
c = (cr)r≥1 is any such family and Cc, then, by proposition IV.4.2,

|Cc| =
n!∏

r≥1 cr!r
cr
.

So χ′λ · χ′λ is the sum over all such families (cr)r≥1 of 1∏
r≥1 cr!r

cr times the square of the co-

efficient of
∏N

i=1 T
λi+N−i
i in ∆(T )

∏
r≥1 Pr(T )cr . Note that, if we take an arbitrary family

(cr)r≥0 of nonnegative integers that are almost all 0, then the coefficient of
∏N

i=1 T
λi+N−i
i in

∆(T )
∏

r≥1 Pr(T )cr is 0 unless
∑

r≥1 rcr =
∑N

i=1 λi for degree reasons. So, in the formula for
χ′λ · χ′λ that we just got, we can take the sum over all families (cr)r≥0 of nonnegative integers
that are almost all 0, and we get that χ′λ · χ′λ is the coefficient of

∏N
i=1

∏N
j=1 T

λi+N−i
i U

λj+N−j
j in

∆(T )∆(U)S(T, U), where

S(T, U) =
∑

(cr)r≥1∈N
Z≥1

∏
r≥1

Pr(T )crPr(U)cr

cr!rcr
,
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IV.4 Characters of the irreducible representations Vλ

where the sum is over families (cr)≥1 of nonnegative integers that are almost all 0.

But we have

S(T, U) =
∑
(cr)

∏
r≥1

1

cr!

(
N∑

i,j=1

TiUj
r

)cr

=
∏
r≥1

exp

(
N∑

i,j=1

TiUj
r

)
= exp

(∑
r≥1

N∑
i,j=1

TiUj
r

)
=

exp

(
−

N∑
i,j=1

log(1− TiUj)

)
=

N∏
i,j=1

1

1− TiUj
.

So by lemma IV.4.6, ∆(T )∆(U)S(T, U) is the determinant of theN×N matrix ( 1
1−TiUj )1≤i,j≤N ,

and we have

∆(T )∆(U)S(T, U) =
∑
τ∈SN

sgn(τ)
N∏
i=1

1

1− TiUσ(i)

.

Remember that χ′λ · χ′λ is the coefficient of
∏N

i=1

∏N
j=1 T

λi+N−i
i U

λj+N−j
j in this formal series. If

τ 6= 1, then there exists r ∈ {1, . . . , N} such that s := τ(r) > r. In the formal power series
expansion of

∏N
i=1

1
1−TiUσ(i)

, Tr and Us must have the same exponent in each term. In particular,∏N
i=1

∏N
j=1 T

λi+N−i
i U

λj+N−j
j does not appear in this expansion, because the exponent λr+N−r

of Tr in this product is greater than the exponent λs +N − s of Us. So χ′λ · χ′λ is the coefficient
of
∏N

i=1

∏N
j=1 T

λi+N−i
i U

λj+N−j
j in

∏N
i=1

1
1−TiUi , i.e. 1, and we are done.
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V Representations of compact groups

V.1 Topological groups, Haar measures,
representations

Definition V.1.1. A topological group is a topological space G with a group structure such that
the maps G2 → G, (x, y) 7−→ xy, and G→ G, X 7−→ x−1, are both continuous.

When we talk about a measure on a topological group G, we will always mean a measure on
the σ-algebra of Borel sets in G, i.e. the σ-algebra generated by the open subsets of G.

Theorem V.1.2. 1 Let G be a compact Hausdorff topological group. Let C (G,C)
be the C-algebra of continuous functions from G to C, with the norm ‖.‖∞ given by
‖f‖∞ = supx∈G |f(t)|.

Then there exists a unique C-linear map λ : C (G,C)→ C such that :

1. λ is positive, i.e. λ(f) ≥ 0 if f(G) ⊂ R≥0.

2. λ is left invariant, i.e. λ(f) = λ(f(g.)), for every f ∈ C (G,C) and every g ∈ G (where
f(g.) is the function x 7−→ f(gx)).

3. λ is right invariant, i.e. λ(f) = λ(f(.g)), for every f ∈ C (G,C) and every g ∈ G (where
f(g.) is the function x 7−→ f(xg)).

4. λ(1) = 1.

Moreover, λ is continuous, there exists a unique probability measure dg on G such that, for
every f ∈ C (G,C),

λ(f) =

∫
G

f(g)dg,

and this measure also satisfies ∫
G

f(g)dg =

∫
G

f(g−1)dg,

for every measurable function f : G→ C.
1See theorem 5.14 of Rudin’s book [26] for compact groups and chapter VI of Loomis’s book [21] for the general

case. See also problems VII.5.1, VII.5.2 and VII.5.3.
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V Representations of compact groups

We say that dg is a bi-invariant (or left and right-invariant) probability Haar measure on G.

In the rest of this chapter, if we have a compact Hausdorff topological group G, the notation
dg will always mean a bi-invariant probability Haar measure on G.

Remark V.1.3. If we only assume that G is locally compact, then we can find nonzero C-linear
maps satisfying (i) and (ii) (resp. (i) and (iii)), and they are unique up to multiplication by a
nonnegative real number. These functions are also continuous, and the corresponding measures
on G are called left-invariant (resp. right-invariant) Haar measures. If dlg is a left-invariant Haar
measure on G, then there is a unique right-invariant Haar measure drg on G such that∫

G

f(g)drg =

∫
G

f(g−1)dlg,

for every measurable function f : G→ C.

Example V.1.4.

- A finite groupGwith the discrete topology is a topological group. A left and right-invariant
Haar measure on G is given by dg(A) = |A|/|G|.

- Let G = U(1) := {z ∈ C||z| = 1}, with the topology induced by that of C. This is
a topological group, and we have an isomorphism of topological groups R/Z ϕ→ U(1),
t 7−→ e2iπt (where R/Z is given the quotient topology). We get a Haar measure on G by
taking, for every measurable f : G→ C,∫

G

f(g)dg =

∫ 1

0

(f ◦ ϕ)(t)dt =

∫ 1

0

f(e2iπt)dt,

where dt is the usual Lebesgue measure on R. By the way, not that dt itself is a Haar
measure on the topological group (R,+).

Definition V.1.5. Let G be a topological group and V be a normed C-vector space. Then a
(continuous) representation of G on V is an abstract representation of G on V such that the
action map G× V → V , (g, v) 7−→ gv, is continuous.

Remark V.1.6.

- The definition makes sense if V is any topological vector (over a topological field).

- With notation as in the definition, let End(V ) be the C-algebra of continuous endomor-
phisms of V . We put the operator norm on End(V ), and consider a continuous representa-
tion of G on V . Then the action of every g ∈ G on V is a continuous endomorphism of V ,
so we get a map G → End(V ). But this map is not continuous in general. (See problem
VII.5.7 for a counterexample.)

- With notation as in the previous remark, if ρ : G → End(V ) is an abstract represen-
tation of G on V that is continuous for the weak* topology on End(V ), then it is not
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V.2 Finite-dimensional representations

necessarily a continuous representation. (For example, take for G the group of invertible
elements of End(V ), with the topology induced by the weak* topology on End(V ), and
for ρ : G→ End(V ) the inclusion. This is not a continuous representation of G on V .)

So we see that we have to be a bit careful with the notion of continuous representation in
general. In the following two sections, we will see what happens in the particular case of finite-
dimensional vector spaces, and in that of unitary representations on Hilbert spaces.

V.2 Finite-dimensional representations

Definition V.2.1. If V is a normed C-vector space, we denote by End(V ) the C-algebra of
continuous endomorphisms of V , and we put on it the topology given by the operator norm. We
write GL(V ) for End(V )×, with the topology induced by that of End(V ).

Remember that, if V is a finite-dimensional C-vector space, then all norms on V are equiva-
lent. So V has a canonical topology, and so does End(V ) (as another finite-dimensional vector
space).

Proposition V.2.2. Let V be a normed C-vector space and ρ : G → GL(V ) be a morphism of
groups. Consider the following conditions.

(i) The map G × V → V , (g, v) 7−→ ρ(g)(v), is continuous (i.e. ρ is a continuous represen-
tation of G on V ).

(ii) For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v), is continuous.

(iii) The map ρ : G→ GL(V ) is continuous.

Then we have (iii)⇒(i)⇒(ii). If moreover V is finite-dimensional, then all three conditions
are equivalent.

Proof.

(i)⇒(ii) is obvious.

(ii)⇒(iii) : Suppose that V is finite-dimensional, and let (e1, . . . , en) be a basis of V , and let
‖.‖ be the norm on V defined by ‖

∑x
i=1 xiei‖ = sup1≤i≤n |xi|. We use the corresponding

operator norm on End(V ) and still denote it by ‖.‖. Let g0 ∈ G and let ε > 0; we are
looking for a neighborhoord U of g0 ∈ G such that : g ∈ U ⇒ ‖ρ(g)− ρ(g0)‖ ≤ ε.

For every i ∈ {1, . . . , n}, the function G → V , g 7−→ ρ(g)(ei), is contin-
uous by assumption, so there exists a neighborhood Ui of g0 in G such that :
g ∈ U ⇒ ‖ρ(g)(ei) − ρ(g0)(ei)‖ ≤ ε/n. Let U =

⋂n
i=1 Ui. Then if g ∈ U , for ev-
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V Representations of compact groups

ery v =
∑n

i=1 xiei ∈ V , we have

‖ρ(g)(v)− ρ(g0)(v)‖ ≤
n∑
i=1

‖xi‖‖ρ(g)(ei)− ρ(g0)(ei)‖ <
n∑
i=1

|xi|ε/n ≤ ε‖v‖,

which means that ‖ρ(g)− ρ(g0)‖ ≤ ε.

(iii)⇒(i) : Let g0 ∈ G, v0 ∈ V , and ε > 0. We want to find a neighborhood U of g and G
and a δ > 0 such that : g ∈ U and ‖v − v0‖ < δ⇒ ‖ρ(g)(v)− ρ(g0)(v0)‖ < ε.

Choose a δ such that 0 < δ ≤ ε
2‖ρ(g0)‖ , and let U be a neighborhood of g0 in G such that

: g ∈ G ⇒ ‖ρ(g) − ρ(g0)‖ < ε
2(‖v0‖+δ) . Then, if g ∈ U and ‖v − v0‖ < δ, we have

‖v‖ ≤ ‖v0‖+ δ, and hence

‖ρ(g)(v)− ρ(g0)(v0)‖ ≤ ‖ρ(g)(v)− ρ(g0)(v)‖+ ‖ρ(g0)(v)− ρ(g0)(v0)‖
≤ ‖ρ(g)− ρ(g0)‖‖v‖+ ‖ρ(g0)‖‖v − v0‖
<

ε

2(‖v0‖+ δ)
(‖v0‖+ δ) + ‖ρ(g0)‖δ

≤ ε/2 + ε/2 = ε.

For finite-dimensional continuous representations of continuous groups, we can define subrep-
resentations, irreducible representations, direct sums, semisimple representations, tensor prod-
ucts, Homs and duals just as in the case of finite groups. Also, Schur’s lemma (in the form of
theorem II.1.2.1 of chapter II) still holds with exactly the same proof. We will see in the next
section what happens to Schur orthogonality (theorem II.1.2.2 of chapter II), after we introduce
unitary representations : in the case of compact Hausdorff groups, once we formulate it correctly,
it still holds.

V.3 Unitary representations

V.3.1 Definition and first properties

Remember that a (complex) Hilbert space is a C-vector space V with a Hermitian inner product2

such that V is complete for the corresponding norm. If V is a finite-dimensional C-vector space
with a Hermitian inner product, then it is automatically complete, hence a Hilbert space.

Notation V.3.1.1. Let V and W be Hermitian inner product spaces. For every continuous C-
linear map T : V → W , we write T ∗ : W → V for the adjoint of T , if it exists. (It always does
if V and W are Hilbert spaces.) If V ′ is a subspace of V , we write V ′⊥ for the orthogonal of V ′.
Finally, we write U(V ) for the group of unitary endomorphisms of V .

2We will always assume Hermitian inner products to be C-linear in the first variable.
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Proposition V.3.1.2. If V is a Hilbert space and ρ : G → U(V ) is a morphism of groups, then
the following are equivalent :

1. The map G× V → V , (g, v) 7−→ ρ(g)(v), is continuous.

2. For every v ∈ V , the map G→ V , g 7−→ ρ(g)(v), is continuous.

Definition V.3.1.3. If V is a Hilbert space, a unitary representation of G on V is a morphism of
groups ρ : G→ U(V ) satisfying the conditions of the proposition above.

Remark V.3.1.4. Note that ρ is not a continuous map in general. (Unless dimC V < +∞, in
which case ρ is continuous by proposition V.2.2.)

Also, note that we don’t need the completeness of V in the proof, so the proposition is actually
true for any Hermitian inner product space.

Proof of the proposition. We already seen in proposition V.2.2 that (i) implies (ii). Let’s prove
that (ii) implies (i). Let g0 ∈ G, v0 ∈ V , and ε > 0. We want to find a neighborhood U of g in G
and a δ > 0 such that : g ∈ U and ‖v − v0‖ < δ⇒ ‖ρ(g)(v)− ρ(g0)(v0)‖ < ε.

Choose a neighborhood U of g in G such that : g ∈ U ⇒ ‖ρ(g)(v0)− ρ(g0)(v0)‖ < ε/2, and
take δ = ε/2. Then, if g ∈ U and ‖v − v0‖ < δ, we have

‖ρ(g)(v)− ρ(g0)(v0)‖ ≤ ‖ρ(g)(v)− ρ(g)(v0)‖+ ‖ρ(g)(v0)− ρ(g0)(v0)‖
< ‖ρ(g)‖‖v − v0‖+ ε/2
< ε/2 + ε/2 = ε,

because ρ(g) ∈ U(V ), so ‖ρ(g)‖ = 1.

Remark V.3.1.5. If ρ : G → U(V ) is a unitary representation of G on a Hilbert space (V, 〈., .〉),
then, for every G-invariant subspace W of V , the subspace W⊥ is also G-invariant. Indeed, if
w ∈ V ⊥ and g ∈ G, then, for every v ∈ W ,

〈v, ρ(g)w〉 = 〈ρ(g)−1v, w〉 = 0,

so ρ(g)w ∈ V ⊥.

In particular, if W is a closed G-invariant subspace of V , then we have V = W ⊕W⊥ with
W⊥ a closed G-invariant subspace. If V is finite-dimensional, then every subspace is closed and
this shows that every unitary representation of G on V is semisimple.

Theorem V.3.1.6. Assume that the group G is compact Hausdorff. Let V be a finite-dimensional
C-vector space and ρ : G → GL(V ) be a continuous representation of G on V . Then there
exists a Hermitian inner product on V that makes ρ a unitary representation.

Remark V.3.1. If V is irreducible, we can also prove that this inner product is unique up to a
constant. See problem VII.5.9.
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V Representations of compact groups

Proof of the theorem. Let 〈., .〉0 a Hermitian inner product on V . We define 〈., .〉 : V × V → C
by the following formula : for all v, w ∈ V ,

〈v, w〉 =

∫
G

〈ρ(g)v, ρ(g)w〉0dg

(remember that dg is a bi-invariant probability Haar measure on G). We clearly have
〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for every v, w ∈ V and g ∈ G, so we just need to show that 〈., .〉
is a Hermitian product on V . It’s clearly a Hermitian product, so we just need to show that it is
positive definite. Let v ∈ V −{0}. Then the function G→ R, g 7−→ 〈ρ(g)v, ρ(g)v〉0, is continu-
ous and takes positive values. As G is compact, there exists ε > 0 such that 〈ρ(g)v, ρ(g)v〉0 > ε
for every g ∈ G, and then we have 〈v, v〉 ≥ ε > 0.

Corollary V.3.1.7. If G is compact Hausdorff, then every finite-dimensional continuous repre-
sentation of G is semisimple.

V.3.2 The operators T 0
v,w

The following construction will be used several times in proofs below.

Definition V.3.2.1. Let V and W be Hermitian inner product spaces; we denote both inner
products by 〈., .〉. If v ∈ V and w ∈ W , we define the C-linear map T 0

v,w : V → W by
T 0
v,w(x) = 〈x, v〉w.

Note that the map V → HomC(V,W ), v 7−→ T 0
v,w, is semi-linear.

Proposition V.3.2.2. 1. For every v ∈ V and w ∈ W , T 0
v,w
∗

= T 0
w,v.

From now, we suppose that V and W are finite-dimensional.

2. The T 0
v,w, for v ∈ V and w ∈ W , generate HomC(V,W ) as a C-vector space.

3. If V = W , then for every v, w ∈ V , Tr(T 0
v,w) = 〈w, v〉.

4. For every v1, v2 ∈ V and w1, w2 ∈ W , we have

Tr(T 0
v1,w1

T 0
v2,w2

∗
) = 〈w1, w2〉〈v2, v1〉.

Proof. 1. Let x ∈ V and y ∈ W . Then

〈T 0
v,w(x), y〉 = 〈〈x, v〉w, y〉 = 〈x, v〉〈w, y〉 = 〈x, v〉〈y, w〉 = 〈x, 〈y, w〉v〉 = 〈x, T 0

w,v(y)〉.

2. If we choose orthonomal bases (ei)1≤i≤n of V and (fj)1≤j≤m of W , then, for every
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the matrix of T 0

ei,fj
in these bases is the m × n with

(i, j)-entry equal to 1 and all other entries equal to 0. These clearly generate the C-vector
space Mmn(C).
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3. Let (v1, . . . , vn) be an orthogonal basis of V such that v1 = v. Then

T 0
v,w(vi) =

{
〈v1, v1〉w if i = 1
0 otherwise.

As w =
∑n

i=1
〈w,vi〉
〈vi,vi〉vi, this gives the result.

4. For every y ∈ W ,

T 0
v1,w1

T 0
v2,w2

∗
(y) = T 0

v1,w1
T 0
w2,v2

(y) = T 0
v1,w1

(〈y, w2〉v2) = 〈y, w2〉〈v2, v1〉w1.

Choose an orthogonal basis (y1, . . . , yn) of W such that y1 = w2. Then

T 0
v1,w1

T 0
v2,w2

∗
(yi) =

{
〈y1, y1〉〈v2, v1〉w1 if i = 1
0 otherwise.

As w1 =
∑n

i=1
〈w1,yi〉
〈yi,yi〉 yi, this gives the result.

V.3.3 Schur orthogonality

In this section,G is a compact Hausdorff group, and we will only use finite-dimensional complex
continuous representations of G.

Definition V.3.3.1. Let ρ : G → GL(V ) be a continuous representation of G on a finite-
dimensional complex vector space. Remember that the map χV : G → C, g 7−→ Tr(ρ(g)),
is called the character of the representation (V, ρ).

By proposition V.2.2, χV : G→ C is a continuous map.

Theorem V.3.3.2. Let V,W be continuous representations of G on finite-dimensional complex
vector spaces. Assume that V and W are both irreducible. Choose G-invariant Hermitian
inner products on V and W , that will both be denoted by 〈., .〉. Then for every v1, v2 ∈ V and
w1, w2 ∈ W , ∫

G

〈gv1, v2〉〈gw1, w2〉dg =

{
1

dimC V
〈v1, w1〉〈v2, w2〉 if V ' W

0 otherwise.

Proof. If v ∈ V and w ∈ W , let

Tv,w =

∫
G

gT 0
v,wg

−1dg ∈ HomC(V,W ),

where T 0
v,w is as in definition V.3.2.1. Then Tv,w isG-equivariant, so, by Schur’s lemma, Tv,w = 0

if V 6' W , and, if V = W , then Tv,w = c(v, w)idV with c(v, w) ∈ C..
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Suppose that V = W , and let’s calculate c(v, w). We have

c(v, w) dimC V = Tr(Tv,w) =

∫
G

Tr(gT 0
v,wg

−1)dg = Tr(T 0
v,w),

so, by proposition V.3.2.2, c(v, w) = 1
dimC V

〈w, v〉.

Now let I =
∫
G
〈gv1, v2〉〈gw1, w2〉dg. We have

I =

∫
G

〈gv1, v2〉〈g−1w2, w1〉dg

=

∫
G

〈〈g−1w2, w1〉gv1, v2〉dg

=

∫
G

〈gT 0
w1,v1

g−1w2, v2〉dg

= 〈Tw1,v1(w2), v2〉

,

so I = 0 if V ' W , and

I = c(w1, v1)〈w2, v2〉 =
1

dimC V
〈v1, w1〉〈v2, w2〉

if V ' W .

Corollary V.3.3.3 (Schur orthogonality). Let V,W be continuous representations of G on finite-
dimensional complex vector spaces. Assume that V and W are both irreducible. Then∫

G

χV (g)χW (g)dg =

{
0 if V ' W
1 if V ' W.

Proof. Choose G-invariant Hermitian inner products on V and W , and fix orthonomal bases
(v1, . . . , vn) of V and (w1, . . . , wm) of W , that we should to be equal if V = W . Then we know
that, for any C-linear endomorphism u of V (resp. W ), we have Tr(u) =

∑n
i=1〈u(vi), vi〉 (resp.

Tr(u) =
∑m

j=1〈u(wi), wi〉). In particular, for every g ∈ G,

χV (g) =
n∑
i=1

〈gvi, vi〉

and

χW (g) =
m∑
j=1

〈gwj, wj〉.

Hence ∫
G

χV (g)χW (g)dg =
n∑
i=1

m∑
j=1

∫
G

〈gvi, vi〉〈gwj, wj〉dg.
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By the theorem, this is equal to 0 if V 6' W , and, if V = W , it’s equal to

1

dimC V

n∑
i=1

m∑
j=1

〈vi, vj〉〈vi, vj〉 = 1.

Corollary V.3.3.4. If V is a finite-dimensional continuous representation of G, write
V =

⊕
i∈I V

⊕ni
i , where the Vi are irreducible. (This is possible by corollary V.3.1.7.) Then∫

G

|χV (g)|2dg =
∑
i∈I

n2
i .

In particular, V is irreducible if and only if
∫
G
|χV (g)|2dg = 1.

V.4 The space L2(G)

From now on, we take G to be a compact Hausdorff group and dg to be a bi-invariant probability
Haar measure on G.

V.4.1 Definition and actions of G

Definition V.4.1.1. We write L2(G) for the quotient

{f : G→ C measurable|
∫
G

|f(g)|2dg < +∞}/{f : G→ C measurable|
∫
G

|f(g)|2dg = 0}.

This is a Hilbert space for the Hermitian inner product given by

〈f1, f2〉 =

∫
g∈G

f1(g)f2(g)dg.

If f ∈ L2(G), we write ‖f‖2 =
√
〈f, f〉.

Definition V.4.1.2. If x ∈ G and f if a function from G to C, define Rxf, Lxf : G → C by
Lx(g) = L(xg) and Rx(g) = R(gx).

Proposition V.4.1.3. Let x, y ∈ G.

1. The operators defined above induced endomorphisms Lx and Rx of L2(G), with the fol-
lowing properties :
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2. LxRy = RyLx, RxRy = Rxy and LxLy = Lyx.

3. R∗x = R−1
x = Rx−1 , and L∗x = L−1

x = Lx−1 . In particular, Rx and Lx are unitary
endomorphisms of L2(G).

Proof.

Let f1, f2 : G→ C be measurable functions. Then, using the right and left invariance of dg, we
get

〈Rxf1, Rxf2〉 =

∫
G

〈f1(gx)f2(gx)dg =

∫
G

f1(g)f2(g)dg = 〈f1, f2〉

and

〈Lxf1, Lxf2〉 =

∫
G

〈f1(xg)f2(xg)dg =

∫
G

f1(g)f2(g)dg = 〈f1, f2〉.

So Rx and Lx preserve both spaces in the quotient defining L2(G), and hence they induce en-
domorphisms of L2(G). Also, the equalities above show that these endomorphisms are unitary,
which gives half of (iii). The other half of (iii) will follow from (ii), so let’s prove (ii). Let
f ∈ L2(G) and g ∈ G. Then we have

(LxRyf)(g) = (Ryf)(xg) = f(xgy) = (Lxf)(gy) = (RyLxf)(g),

(LxLyf)(g) = (Lyf)(xg) = f(yxg) = (Lxyf)(g)

and
(RxRyf)(g) = (Ryf)(gx) = f(gxy) = (Rxyf)(g),

which proves (ii).

Definition V.4.1.4. If f is a functionG→ C, we define a function f̃ : G→ C by f̃(g) = f(g−1).

Proposition V.4.1.5. This defines a unitary endomorphism f 7−→ f̃ of L2(G).

Proof. Let f : G→ C be a measurable function. Then∫
G

|f(g−1)|2dg =

∫
G

|f(g)|2dg

(because the group G is compact, so the Haar measure dg is equal to its own pullback by
g 7−→ g−1, see theorem V.1.2), which implies every statement in the proposition.
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V.4.2 The convolution product

Definition V.4.2.1. If f1, f2 ∈ L2(G), define f1 ∗ f2 : G→ C by

(f1 ∗ f2)(g) =

∫
G

f1(gx)f2(x−1)dx.

This function is called the convolution product of f1 and f2.

Remark V.4.2.2. If we want this definition to make sense, we should be more careful. First, if
f1, f2 : G→ C are measurable and L2, then we can define f1∗f2 : G→ C by the formula above.
Then, if one of f1 and f2 happens to be negligible (i.e. if

∫
G
|f1(g)|2dg = 0 or

∫
G
|f2(g)|dg = 0),

then it is easy to see that the function f1 ∗ f2 is identically zero. So the convolution indeed goes
to the quotient and makes sense for f1, f2 ∈ L2(G). Note that, unlike f1 and f2, the function
f1 ∗ f2 is well-defined everywhere.

Proposition V.4.2.3. 1. For any f1, f2 ∈ L2(G), f1 ∗ f2 is a bounded function on G, and we
have ‖f1 ∗ f2‖∞ ≤ ‖f1‖2‖f2‖2, where ‖.‖∞ is the supremum norm.

In particular, f1 ∗ f2 ∈ L2(G), and ‖f1 ∗ f2‖2 ≤ ‖f1‖2‖f2‖2.

2. The convolution product is associative, and distributive with respect to addition.

In other words, it makes L2(G) into an associative C-algebra (with no unit, unless G is
finite).

Proof. 1. Let g ∈ G. Then

|f1∗f2(g)| = |
∫
G

f1(gx)f2(x−1)dx| = |
∫
G

(Lgf1)f̃2(x)dx| ≤ ‖Rgf1‖2‖f̃2‖2 = ‖f1‖2‖f2‖2

by the Cauchy-Schwarz inequality and propositions V.4.1.3 and V.4.1.5. This gives (i).
(The second part of (i) follows from the fact that dg is a probability measure.)

2. The distributivity is obvious. Let f1, f2, f3 ∈ L2(G), and let g ∈ G. Then :

((f1 ∗ f2) ∗ f3)(g) =

∫
G

(f1 ∗ f2)(gx)f3(x−1)dx =

∫
G

(

∫
G

f1(gxy)f2(y−1)dy)f3(x−1)dx,

while

(f1 ∗ (f2 ∗ f3))(g) =

∫
G

f1(gz)(f2 ∗ f3)(z−1)dz =

∫
G

f1(gz)(

∫
G

f2(z−1t)f3(t−1)dt)dz.

Using Fubini’s theorem, the change of variables z 7−→ y and t 7−→ y−1x, and the fact that
dg is a bi-invariant Haar measure on G, we see that these two expressions are equal.
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Remark V.4.2.4. It is also true that f1 ∗ f2 is continuous for every f1, f2 ∈ L2(G), but we will
not need it here. To prove this, note that, by (i) of the proposition (and the bilinearity of ∗), if
f1 (resp. f2) is the limit in L2(G) of a sequence (f1,n)n≥0 (resp. (f2,n)n≥0), then the sequence
(f1,n ∗ f2,n)n≥0 converges to f1 ∗ f2 in L∞(G). Now use the fact that continuous functions
are dense in L2(G) (see theorem 3.14 of Rudin’s book [25]), and that the convolution of two
continuous functions is continuous.

Definition V.4.2.5. Let f ∈ L2(G). We define endomorphisms Lf , Rf of L2(G) by
Lf (f1) = f ∗ f1 and Rf (f1) = f1 ∗ f .

By proposition V.4.2.3, we get :

Corollary V.4.2.6. 1. These operators are well-defined and continuous, and we have
‖Lf‖ ≤ ‖f‖2, ‖Rf‖ ≤ ‖f‖2. 3

2. For any f1, f2 ∈ L2(G), Lf1Rf2 = Rf2Lf1 , Rf1Rf2 = Rf1∗f2 and Lf1Lf2 = Lf2∗f1 .

Moreover :

Proposition V.4.2.7. 1. For every f ∈ L2(G), R∗f = Rf̃ and L∗f = Lf̃ .

2. For every f ∈ L2(G) and x ∈ G, RxLf = LfRx and RfLx = LxRf .

Proof. 1. We only prove the first equality, the second one is similar. Let f1, f2 ∈ L2(G).
Then :

〈Rf (f1), f2〉 =

∫
G

(f1 ∗ f)(g)f2(g)dg =

∫
G

∫
G

f1(gx−1)f(x)f2(g)dxdg.

After the change of variables y = gx−1, we see that this is equal to∫
G

∫
G

f1(y)f2(yx)f(x)dxdy.

After the change of variables z = x−1, we see that this is equal to∫
G

∫
G

f1(y)f2(yz−1)f̃(z)dzdy =

∫
G

f1(y)(f2 ∗ f̃)(y)dy = 〈f1, Rf̃f2〉.

2. We only prove the first equality, the second one is similar. Let h ∈ L2(G) and g ∈ G.
Then

(RxLf (h))(g) = (f ∗ h)(gx) =

∫
G

f(gxy)h(y−1)dy,

while
(LfRx(h))(g) = (f ∗ (Rxh))(g) =

∫
G

f(gz)h(z−1x)dz.

3In fact these are equalities, see remark V.4.2.9.
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The change of variables z = xy (and the fact that the measure on G is right-invariant)
show that these two expressions are equal.

Theorem V.4.2.8. For every f ∈ L2(g), there exists a sequence (fn)n≥0 of functions in L2(G)
such that :

1. f̃n = fn for every n ≥ 0.

2. ‖fn‖2 = 1 for every n ≥ 0.

3. f ∗ fn → f in L2(G) as n→ +∞.

Proof. Let ε > 0. Choose a neighborhood U of 1 in G such that U = U−1 and that, for
any x, y ∈ U , ‖Rxf − f‖2 < ε. (This is possible by corollary V.4.2.6.) Let hε = 1

vol(U)
11U .

Obviously, h̃ε = hε and ‖hε‖2 = 1. Moreover, we have

(f ∗ hε)(g) =

∫
G

f(gx−1)hε(x)dx =
1

vol(U)

∫
U

f(gx−1)dx

for every g ∈ G, so

(f ∗ hε)(g)− f(g) =
1

vol(U)

∫
U

(Rx−1(f)(g)− f(g))dx,

and

‖(f ∗ hε)− f‖2
2 =

∫
G

|(f ∗ hε)(g)− f(g)|2dg

=
1

vol(U)2

∫
G×U×U

(Rx−1f − f)(g)(Ry−1f − f)(g)dxdydg

=
1

vol(U)2

∫
U×U
〈Rx−1f − f,Ry−1f − f〉dxdy

≤ 1

vol(U)2

∫
U×U
‖Rx−1f − f‖2‖Ry−1f − f‖2dxdy

≤ 1

vol(U)2

∫
U×U

ε2dxdy = ε2

(by the Cauchy-Schwarz inequality and the choice of U ).

Now take fn = h1/2n .

Remark V.4.2.9. In particular, this implies that ‖Rf‖ = ‖f‖2. We have a similar result where
we take the convolution by f on the left (the proof is exactly the same), and it implies that
‖Lf‖ = ‖f‖2.
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Theorem V.4.2.10. For every f ∈ L2(G), the endomorphisms Rf and Lf of L2(G) are compact.
4

Lemma V.4.2.11. If f1, f2 : G → C, define a function f1 ⊗ f2 : G × G → C by
(f1 ⊗ f2)(g1, g2) = f1(g1)f2(g2). This induces a C-linear map L2(G)⊗C L

2(G)→ L2(G×G),
which is injective with dense image.

Proof. Take a Hilbert basis (ei)i∈I of L2(G). Then the family (ei ⊗ ej)i,j∈I of L2(G × G) is
clearly orthonormal, and we see easily that any function on L2(G × G) that is orthogonal to all
the ei ⊗ ej is 0 almost everywhere, hence 0.

Lemma V.4.2.12. For every K ∈ L2(G × G), define a TK : L2(G) → L2(G) by
(TK(h))(x) =

∫
G
K(x, y)f(y)dy. Then ‖TK‖ ≤ ‖K‖2.

Proof. This is an easy calculation.

Proof of the theorem. We prove the result for Lf ; the proof for Rf is similar.

Consider the function K : G × G → C, (x, y) 7−→ f(xy−1). Then K ∈ L2(G × G), so,
by the lemma, there exists families of functions (gi)i∈I and (hi)i∈I in L2(G) such that the sum∑

i∈I gi ⊗ hi converges to K in L2(G×G). Note also that TK = Lf .

For every finite subset J of I , let SJ =
∑

i,j∈J gi ⊗ hj ∈ L2(G×G) and TJ = TSJ . Then, for
every h ∈ L2(G), for every x ∈ G,

(TJh)(x) =
∑

(i,j)∈J2

∫
G

h(y)gi(x)hj(y)dy =
∑
i∈J

(
∑
j∈J

∫
G

h(y)hj(y)dy)gi(x).

In other words, for every h ∈ L2(G), TJh is in the finite-dimensional subspace of L2(G) spanned
by the gi, i ∈ J . Hence the operator TJ has finite rank.

To show that Lf is compact, it suffices by theorem V.6.2 to show that it is the limit of the
operators TJ as J becomes bigger. But this follows from the second lemma and from the fact
that K is the limit of the SJ .

V.4.3 The regular representations

Definition V.4.3.1. We make G × G act on L2(G) by (x, y) · f = Lx−1Ryf = RyLx−1f , i.e.
((x, y) · f)(g) = f(x−1gy) for every g ∈ G.

4See definition V.6.1.
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The restriction of this action to the first (resp. second) factor of G×G is called the left (resp.
right) regular representation of G.

Proposition V.4.3.2. The representation of G×G on L2(G) defined above is continuous, and so
it’s a unitary representation.

Proof. We already know that Lx−1Ry is a unitary endomorphism of L2(G) for any x, y ∈ G
by proposition V.4.1.3, so we just need to show that the representation is continuous, and to
check this, by proposition V.3.1.2, it suffices to show that, for every f0 ∈ L2(G), the map
G×G→ L2(G), (x, y) 7−→ Lx−1Ryf0, is continuous.

So fix f0 ∈ L2(G), and let x0, y0 ∈ G and ε > 0. Choose f : G → C continuous such
that ‖f0 − f‖2 ≤ ε/3. 5 As G is compact and f is continuous, f is uniformely continu-
ous, so their exists a neighborhood U of 1 in G such that, for any x, y ∈ U , for any g ∈ G,
|f(x−1gy)− f(g)| ≤ ε/3.

If x ∈ x0U and y ∈ y0U , then

‖Lx−1Ryf − Lx−1
0
Ry0f‖2 =

√∫
G

|f(x−1gy)− f(x−1
0 gy0)|dg ≤ ε/3,

so

‖Lx−1Ryf0 − Lx−1
0
Ry0f0‖2 ≤ ‖Lx−1Ryf0 − Lx−1Ryf‖2+

‖Lx−1Ryf − Lx−1
0
Ry0f‖2 + ‖Lx−1

0
Ry0f − Lx−1

0
Ry0f0‖2

≤ ‖f − f0‖2 + ε
3

+ ‖f − f0‖2

≤ ε.

V.5 The Peter-Weyl theorem

We still assume that G is a compact Hausdorff group.

Definition V.5.1. We write Ĝ for the set of isomorphism classes of irreducible continuous repre-
sentations of G on finite-dimensional complex vector spaces. 6

Let (Vρ, ρ) ∈ Ĝ. We fix once and for all a G-invariant Hermitian inner product 〈., .〉
on Vρ. Note that G × G acts on EndC(Vρ) ' V ∗ρ ⊗C Vρ

7 in the usual way,8 that is, by
(g1, g2) · u = ρ(g1)uρ(g2)−1.

5See theorem 3.14 of Rudin’s book [25].
6If G is a finite group, this was denoted by SC(G) in chapters I and II.
7By proposition II.1.1.10 of chapter II.
8See section II.2 of chapter II.
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The Hilbert-Schmidt inner product on EndC(Vρ) is given by the formula 〈u, v〉HS = Tr(uv∗),
where v∗ is the adjoint of v for the chosen G-invariant inner product 〈., .〉 on Vρ. It’s a Hermitian
inner product, and we check easily that it is G × G-invariant (because ρ(g) is unitary for every
g ∈ G).

We define ιρ : EndC(Vρ)→ L2(G) by ιρ(u)(g) = Tr(ρ(g)−1 ◦ u), for any u ∈ EndC(Vρ) and
g ∈ G. For every u ∈ EndC(Vρ), the function g 7−→ Tr(ρ(g)−1 ◦ u) is continuous on G, hence
L2 because G is compact. So ιρ is well-defined.

Theorem V.5.2. 1. For every (Vρ, ρ) ∈ Ĝ, EndC(Vρ) is an irreducible representation of
G×G. Also, if (Vρ, ρ) 6' (Vρ′ , ρ

′), then EndC(Vρ) 6' EndC(Vρ′).

2. For every (Vρ, ρ) ∈ Ĝ, the map ιρ : EndC(Vρ) → L2(G) is G × G-equivariant, the map
dim(Vρ)

1/2ιρ is an isometry, and (dimC Vρ)ιρ sends the composition in EndC(Vρ) to the
convolution product in L2(G).

3. The map ι =
⊕

ρ∈Ĝ ιρ :
⊕

ρ∈Ĝ EndC(Vρ)→ L2(G) is injective and has dense image.

In other words, as a representation of G×G and as C-algebra (without a unit),

L2(G) ' ̂⊕
ρ∈Ĝ

EndC(Vρ),

where ̂ means “completion”.

Lemma V.5.3. Let V be a Hilbert space wih a unitary representation ofG, and let V1, V2 ⊂ V be
finite-dimensional irreducible subrepresentations of G. Then either V1 ' V2 as representations
of G, or 〈v1, v2〉 = 0 for any v1 ∈ V1 and v2 ∈ V2 (i.e. V1 and V2 are orthogonal in V ).

Proof. We know that V ⊥2 is stable by G and that V = V2 ⊕ V ⊥2 (remark V.3.1.5). So the or-
thogonal projection π : V → V2 is G-equivariant, hence the composition V1 ⊂ V

π→ V2 is
G-equivariant. If V1 6' V2, then this G-equivariant map V1 → V2 has to be 0 by Schur’s lemma,
which means that V1 ⊂ V ⊥2 .

Proof of the theorem. Let’s prove (i). Let ρ ∈ Ĝ. Then χEndC(Vρ)(g1, g2) = χVρ(g1)χVρ(g2),
by the definition of the action of G × G on EndC(Vρ), section II.2 of chapter II and corollary
II.1.4.2 of the same chapter. By the Schur orthogonality formula (corollary V.3.3.3) and corollary
V.3.3.4, we have∫

G×G
|χEndC(Vρ)(g1, g2)|2dg1dg2 =

(∫
G

|χVρ(g1)|2dg1

)(∫
G

|χVρ(g2)|2dg2

)
= 1,

and so EndC(Vρ) is irreducible. Moreover, if (Vρ′ , ρ
′) is not isomorphic to (Vρ, ρ), then, by

corollary V.3.3.3 again,

〈χEndC(Vρ), χEndC(Vρ′ )
〉L2(G×G) = 〈χVρ , χVρ′ 〉L2(G)〈χVρ , χVρ′ 〉L2(G) = 0,
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V.5 The Peter-Weyl theorem

and so EndC(Vρ) and EndC(Vρ′) are not isomorphic.

Let’s prove (ii). Fix (Vρ, ρ) ∈ Ĝ. First we prove that ιρ is G × G-equivariant. Let x, y ∈ G
and u ∈ EndC(Vρ). Then, for every g ∈ G,

ιρ(ρ(x)uρ(y)−1)(g) = Tr(ρ(g)−1ρ(x)uρ(y)−1) = Tr(ρ(x−1gy)−1u) = (Lx−1Ryιρ(u))(g).

Then we prove that (dimC Vρ)
1/2 is an isometry. Let u1, u2 ∈ EndC(Vρ). We wan tto show

that
(dimC Vρ)〈ιρ(u1), ιρ(u2)〉L2(G) = 〈u1, u2〉HS.

Remember the operators T 0
v,w from definition V.3.2.1. By proposition V.3.2.2(ii), EndC(Vρ) is

spanned by the T 0
v,w, for v, w ∈ Vρ, so we may assume that u1 = T 0

v1,w1
and u2 = T 0

v2,w2
, with

v1, v2, w1, w2 ∈ Vρ. Using proposition V.3.2.2(iii) and the obvious fact that ρ(g)T 0
v,w = T 0

v,gw for
every g ∈ G and v, w ∈ V , we get

〈ιρ(u1), ιρ(u2)〉 =

∫
G

Tr(ρ(g)−1T 0
v1,w1

)Tr(ρ(g)−1T 0
v2,w2

)dg

=

∫
G

〈g−1v1, w1〉〈g−1w2, v2〉dg

=

∫
G

〈gv2, w2〉〈gv1, w1〉dg

=
1

dimC Vρ
〈v2, v1〉〈w1, w2〉,

where the last equality comes from theorem V.3.3.2. Finally, by proposition V.3.2.2(iv), this
equal to 1

dimC Vρ
〈u1, u2〉HS .

Now we prove that (dimC Vρ)ιρ sends the composition in EndC(Vρ) to the convolution product
in L2(G). Again, by proposition V.3.2.2(ii), we only need to check this for two elements of
EndC(Vρ) of the form u1 = T 0

v1,w1
and u2 = T 0

v2,w2
, with v1, v2, w1, w2 ∈ Vρ. Let g ∈ G. By

proposition V.3.2.2(iv) and (i), we have

ιρ(u1u2)(g) = Tr(ρ(g)−1T 0
v1,w1

T 0
w2,v2

∗
) = 〈ρ(g)−1w1, v2〉〈w2, v1〉.

On the other hand, by proposition V.3.2.2(iii) and theorem V.3.3.2, we have

(ιρ(u1) ∗ ιρ(u2))(g) =

∫
G

Tr(ρ(x)−1ρ(g)−1T 0
v1,w1

)Tr(ρ(x)T 0
v2,w2

)dx

=

∫
G

〈ρ(x)−1ρ(g)−1w2, v1〉〈ρ(x)w2, v2〉dx

=

∫
G

〈ρ(x)w2, v2〉〈ρ(x)v1, ρ(g)−1w1〉dx

=
1

dimC(Vρ)
〈ρ(g)−1w1, v2〉〈w2, v1〉.
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V Representations of compact groups

Let’s prove (iii). First we prove that ι is injective. Let u = (uρ)ρ∈Ĝ ∈
⊕

ρ∈Ĝ EndC(Vρ) be such
that ι(u) = 0. Then

∑
ρ∈Ĝ ιρ(uρ) = 0. By lemma V.5.3 and part (i), the subspaces ιρ(EndC(Vρ))

are pairwise orthogonal to each other, so, for every ρ ∈ Ĝ,

0 = 〈ιρ(uρ), ι(u)〉 = 〈ιρ(uρ), ιρ(uρ)〉 =
1

dimC Vρ
〈uρ, uρ〉,

where the last equality comes from (ii). This implies that all the uρ are 0, and so u = 0.

It remains to show that the image of ι is dense in L2(G). First we prove that every finite-
dimensionalG-subrepresentation ofL2(G) is contained in Im(ι), where we makeG act onL2(G)
by the left regular action. As finite-dimensional representations of G are semisimple (corollary
V.3.1.7), it suffices to show that, for every ρ ∈ Ĝ and every G-equivariant map u : Vρ → L2(G),
we have Im(u) ⊂ Im(ι). Fix ρ ∈ Ĝ and u : Vρ → L2(G) a G-equivariant map. Let v ∈ Vρ.
Then for every f ∈ L2(G) and every g ∈ G,

(u(v) ∗ f)(g) =
∫
G
u(v)(gx)f(x−1)dx

=
∫
G
Lg(u(v))(x)f̃(x)dx

= 〈Lg(u(v)), f̃〉L2(G)

= 〈u(ρ(g)−1v), f̃〉L2(G)

= 〈ρ(g)−1v, u∗(f̃)〉Vρ
= Tr(ρ(g)−1T 0

u∗(f̃),v
)

= ιρ(T
0
u∗(f̃),v

)(g),

where we used the G-equivariant of u in the 4th equality, and we are using again the operators
T 0
v,w if definition V.3.2.1. This shows that u(v) ∗ f ∈ Im(ιρ) for every f ∈ L2(G). By theorem

V.4.2.8, we can find a sequence (fn)n≥0 in L2(G) such that u(v) ∗ fn → u(v) as n→ +∞. This
shows that u(v) ∈ Im(ιρ). As Im(ιρ) is a finite-dimensional subspace of L2(G), it is closed in
L2(G), and so u(v) ∈ Im(ιρ) ⊂ Im(ι).

Now we show that Im(ι) is dense in L2(G). This is equivalent to saying that Im(ι)⊥ = 0.
So let f ∈ Im(ι)⊥. By what we just proved, f is orthogonal to every finite-dimensional G-
subrepresentation of L2(G). Let h ∈ L2(G) be such that h = h̃. By proposition V.4.2.7 and
theorem V.4.2.10, the endomorphism Rh of L2(G) is self-adjoint and compact. Hence, by the
spectral theorem (theorem V.6.5), Ker(Rh) is the orthogonal of the closure of the direct sum of
the eigenspaces Ker(Rh − λidL2(G)), λ ∈ R×, which are all finite-dimensional. As Rh is G-
equivariant by proposition V.4.2.7, these eigenspaces are all stable by G, and so f is orthogonal
to all of them, hence f ∈ Ker(Rh), i.e. f ∗h = 0. Now theorem V.4.2.8 gives a sequence (hn)n≥0

of elements of L2(G) such that h̃n = hn for every n ≥ 0 and f ∗hn → f as n→ +∞. Applying
what we just saw gives f ∗ hn = 0 for every n ≥ 0, and finally f = 0.

Corollary V.5.4. As both the left and the right regular representation of G, L2(G) is isomorphic
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to
̂⊕

ρ∈Ĝ

V
⊕ dimC Vρ
ρ .

Remark V.5.5. Let G be a finite. Then, by theorems I.3.2 and I.3.4 of chapter I, we have an
isomorphism of C-algebras

C[G] '
∏

V ∈SC(G)

EndC(V ),

where SC(G) is the set of isomorphisms classes of irreducible representations of G on C-vector
spaces. We also have, by the Peter-Weyl theorem, an isomorphism of C-algebras

L2(G) '
∏
ρ∈Ĝ

EndC(Vρ).

Of course, Ĝ = SC(G), and the two isomorphisms are related by the C-algebra isomorphism

L2(G)
∼→ C[G], f 7−→ 1

|G|
∑
g∈G

f(g)g.

V.6 The spectral theorem

This section contains some reminders about compact operators and the spectral theorem.

Definition V.6.1. If V1, V2 are two Hilbert spaces over C and T : V1 → V2 is a contin-
uous C-linear map, we say that T is compact if the set T (B) ⊂ V2 is compact, where
B = {v ∈ V1|‖v‖ = 1}.

Theorem V.6.2. Let V1, V2 be Hilbert spaces. We write Hom(V1, V2) for the space of continuous
C-linear maps from V1 to V2, and we consider the topology on it defined by the operator norm.
Then, for every T ∈ Hom(V1, V2), the following conditions are equivalent :

1. T is compact.

2. T is a limit of finite rank elements of Hom(V1, V2).

Lemma V.6.3. 1. Every finite-rank operator is compact.

2. The space of compact operators T : V1 → V2 is closed in Hom(V1, V2).

Proof. Point (i) follows from the fact that the closed unit ball of a finite-dimensional C-vector
space is compact. Let’s prove (ii). Let (Tn)n≥0 be a sequence of compact operators in
Hom(V1, V2), and suppose that it converges to T ∈ Hom(V1, V2). Let (xn)n≥0 be a sequence
in B. We want to find a subsequence (yn)n≥0 such that (T (yn))n≥0 converges in V2; as V2
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is complete, it suffices to find (yn)n≥0 such that (T (yn))n≥0 is a Cauchy sequence. We con-
struct a sequence x(r) = (x

(r)
n )n≥0 of subsequences of (xn)n≥0 in the following inductive way

: Take x(0) = (xn)n≥0. If r ≥ 1, suppose x(r−1) constructed, and take for x(r) a subsequence
of x(r−1) such that (Tr(x

(r)
n ))n≥0 is a Cauchy sequence. (This is possible because Tr is a com-

pact operator.) Finally, set yn = x
(n)
n . Let’s show that (T (yn))n≥0 is a Cauchy sequence. Let

ε > 0. Choose m ≥ 1 such that ‖T − Tm‖ ≤ ε, and N ≥ m such that, for any r, s ≥ N ,
‖Tm(x

(r)
r )− Tm(x

(s)
s )‖ ≤ ε (this is possible because (x

(r)
n )n≥0 is a subsequence of (x

(m)
n )n≥0 for

every r ≥ m). Then, if r, s ≥ N , we have

‖T (yr)− T (ys)‖ ≤ ‖(T − Tm)(yr)‖+ ‖Tm(yr − ys)‖+ ‖(Tm − T )(ys)‖ ≤ 3ε,

because ys, yr ∈ B.

Proof of the theorem. The implication (ii)⇒(i) follows directly from the lemma. Let’s show that
(ii) implies (i). Let T ∈ Hom(V1, V2) be a compact operator. Let (Wn)n≥0 be a sequence of finite-
dimensional subspace of V2 such that V2 =

⋃
n≥0Wn, and, for every n ≥ 0, let πn : V2 → Wn be

the orthogonal projection. Set Tn = πn ◦T . Then, for every x ∈ V1, Tn(x)→ T (y) as n→ +∞.
Let’s show that we actually have Tn → T in Hom(V1, V2). Let ε > 0. As T (B) is compact,
we can find x1, . . . , xr ∈ B such that, for every y ∈ B, there exists i ∈ {1, . . . , r} such that
‖T (xi)− T (y)‖ ≤ ε; note that, for every n ≥ 0, we then have

‖Tn(y)− Tn(xi)‖ = ‖πn(T (y)− T (xi))‖ ≤ ‖T (y)− T (xi)‖ ≤ ε.

ChooseN ≥ 0 such that, for every i ∈ {1, . . . , r} and every n ≥ N , ‖Tn(xi)−T (xi)‖ ≤ ε. Let’s
show that, for n ≥ N , we have ‖Tn − T‖ ≤ 3ε. Fix n ≥ N . If y ∈ B, choose i ∈ {1, . . . , r}
such that ‖T (y)− T (xi)‖ ≤ ε. Then we have

‖T (y)− Tn(y)‖ ≤ ‖T (y)− T (xi)‖+ ‖T (xi)− Tn(xi)‖+ ‖Tn(xi)− Tn(y)‖ ≤ 3ε.

Note that the proof of (ii)⇒(i) in the theorem above still works of V1 and V2 are general
Banach space, but the proof of (i)⇒(ii) does not. (And in fact, it is not true that a compact
operator between Banach spaces is always the limit of a sequence of finite rank operators. See
Enflo’s paper [11] for a counterexample.)

Definition V.6.4. Let V be a Hilbert space, and let T be a continuous endomorphism of V . We
say that λ ∈ C is an eigenvalue of T if Ker(T − λidV ) 6= {0}. We denote by Spec(T ) ⊂ C the
set of eigenvalues of T , and call it the spectrum of T .

Theorem V.6.5 (Spectral theorem). Let V be a Hilbert space over C, and let T : V → V
be a continuous endomorphism of V . Assume that T is compact and self-adjoint, and write
Vλ = Ker(T − λidV ) for every λ ∈ C.

Then :
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1. Spec(T ) ⊂ R.

2. If λ, µ ∈ Spec(T ) and λ 6= µ, then Vµ ⊂ V ⊥λ .

3. If λ ∈ Spec(T )− {0}, then dimC Vλ < +∞.

4. Spec(T ) is finite or countable, and its only possible limit point is 0.

5.
⊕

λ∈Spec(T ) Vλ is dense in V .

Proof. Points (i) and (ii) follow from the fact that T is self-adjoint just as in the finite-dimensional
case.

Let r > 0. Let W =
⊕
|λ|≥r Vλ. Choose a Hilbert basis (ei)i∈I of W made up of eigenvectors

of T , i.e. such that, for every i ∈ I , we have T (ei) = λiei with |λi| ≥ r. If I is infinite, then
the family (T (ei))i∈I cannot have a convergent (non-stationary) subsequence. Indeed, if we had
an injective map N→ I , n 7−→ in, such that (T (ein))n≥0 converges to some vector v of V , then
λinein → v, so v is in the closure of Span(ein , n ≥ 0). But on the other hand, for every n ≥ 0,
〈v, ein〉 = limm→+∞〈λimeim , ein〉 = 0, so v ∈ Span(ein , n ≥ 0)⊥. This forces v = 0. But
‖v‖ = limn→+∞ ‖λinein‖ ≥ r > 0, contradiction.

As T is compact, this show that I cannot be infinite, and gives (iii) and (iv).

Let’s prove (v). Let W ′ =
⊕

λ∈Spec(T ) Vλ, and W = W ′⊥. We want to show that W = 0.
So suppose that W 6= 0. As T is self-adjoint and W ′ is clearly stable by T , T (W ) ⊂ W .
(If v ∈ W , then for every w ∈ W ′, 〈T (v), w〉 = 〈v, T (w)〉 = 0.) Note that T|W has no
eigenvalue, so in particular Ker(T ) = {0}, hence ‖T|W‖ > 0. Let B = {x ∈ W |‖x‖ = 1}.
As ‖T|W‖ = supx∈B |〈T (x), x〉|, there exists a sequence (xn)n≥0 of elements of B such that
〈T (xn), xn〉 → λ as n→ +∞, where λ = ±‖T|W‖. Then

0 ≤ ‖T (xn)− λxn‖2 = ‖T (xn)‖2 + λ2‖xn‖2 − 2λ〈T (xn), xn〉 ≤ 2λ2 − 2λ〈T (xn), xn〉

converges to 0 as n → +∞, so T (xn) − λxn itself converges to 0. As T is compact, we may
assume that the sequence (T (xn))n≥0 has a limit in W , say w. Then T (w)− λw = 0. But T has
no eigenvalue in W , so w = 0. But then T (xn)→ 0, so 〈T (xn), xn〉 → 0, so λ = 0 = ‖T|W‖, a
contradiction.
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VI Representations of Lie algebras :
the case of sln(C)

The goal of this chapter is to explain the representation theory of the semisimple complex Lie
algebra sln(C), and its relation to the representation theory of the compact group SU(n). We will
start with a few general definitions and quickly specialize.

VI.1 Definitions

Let k be a commutative ring with unit. In this chapter, by an associative k-algebra, we will
always mean an associative k-algebra with unit unless otherwise specified.

Definition VI.1.1. A Lie algebra over k (or k-Lie algebra) is a k-module g with a k-bilinear map
[., .] : g× g→ g satisfying the following conditions /

1. for every X ∈ g, [X,X] = 0;

2. (Jacobi identity) for all X, Y, Z ∈ g, [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

The operation [., .] is called the Lie bracket of g.

Remark VI.1.2. If we apply condition (i) to X + Y , we get [X, Y ] + [Y,X] = 0, i.e. : (i’)
[X, Y ] = −[X, Y ], for any X, Y ∈ g. This condition is equivalent to (i) if 2 is invertible in k, but
not in general.

Definition VI.1.3. Let g be a Lie algebra over k.

1. A (k-)Lie subalgebra of g is a k-submodule h of g such that [h, h] ⊂ h.

2. An ideal of g is a k-submodule a such that [g, a] ⊂ a.

3. If h is another Lie algebra over k, a morphism of (K-)Lie algebras is a k-linear map
u : g→ h such that u([X, Y ]) = [u(X), u(Y )] for all x, Y ∈ g.

Remark VI.1.4. If g is a k-Lie algebra and a is an ideal of g, then condition (i’) implies that
[a, g] = [g, a] =⊂ a. So for Lie algebras, there is not distinction between left and right ideals.

The following proposition is obvious.
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Proposition VI.1.5. 1. If g is a k-Lie algebra and a is an ideal of g, then the Lie bracket of g
defines a bracket on the quotient k-module g/a, and this makes g/a into a k-Lie algebra.

2. If u : g → h is a morphism of k-Lie algebras, then Keru is an ideal of g, Imu is a Lie
subalgebra of h, and u induces an isomorphism of Lie algberas g/Keru

∼→ Imu.

Example VI.1.6.

- Any k-module V becomes a Lie algebra with the trivial Lie bracket [., .] = 0. Such a Lie
algebra is called a commutative Lie algebra.

- If A is an associative k-algebra (with or without unit), we define the commutator bracket
[., .] : A×A→ A by [a, b] = ab− ba, for every a, b ∈ A. This makes A into a Lie algebra
(condition (i), condition (ii) follows from the associativity of A).

Note that the Lie algebra (A, [., .]) is commutative if and only if the associative algebra A
is commutative.

- Let V be a k-module. Then the associative algebra Endk(V ) together with its commutator
bracket is a Lie algebra, which will be denoted by glk(V ) (or gl(V ) if k is clear from the
context).

If V = kn, we write gln(k) = gln(V ).

- Here are some Lie subalgebras of gln(k) :

sln(k) = {X ∈ gln(k)|Tr(X) = 0}

bn(k) = {X ∈ gln(k)|X is upper triangular}
un(k) = {X ∈ gln(k)|X is strictly upper triangular}

tn(k) = {X ∈ gln(k)|X is diagonal}
on(k) = {X ∈ gln(k)|X + tX = 0}

Note that un(K) is an ideal of bn(k), and that the quotient bn(k)/un(k) is isomorphic to
the commutative Lie algebra tn(k).

Definition VI.1.7. A representation of a k-Lie algebra g on a k-module V is a morphism of Lie
algebras u : g→ gl(V ). We use V , u of (V, u) to refer to the representation. Sometimes we omit
u from the notation and write Xv for u(X)(v) (X ∈ g, v ∈ V ).

Moreover :

- We say that the representation is faithful if u is injective.

- A subrepresentation of (V, u) is a submodule W of V such that for every X ∈ g,
u(X)(W ) ⊂ W .

- The representation (V, u) is called irreducible if V 6= 0 and if the only subrepresentations
of V are 0 and V .
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- The representation (V, u) is called semisimple if for every subrepresentation W of V , there
exists another subrepresentation W ′ of V such that V = W ⊕W ′.

Remark VI.1.8. By using a Zorn lemma argument as in theorem I.1.3.4 of chapter I, we could
show that a representation of g is semisimple if and only if it is a sum of irreducible subrepre-
sentations. 1 But in the case of most interest to us, which is the case where k is a field and both g
and V are finite-dimensional over k, we can prove this fact by an easy induction on dimk V and
so we don’t need Zorn’s lemma.

Example VI.1.9.

- The trivial representation of g is the map u = 0 : g→ k.

- Tr : gln(k)→ k is a nontrivial representation of gln(k) on k.

- The adjoint representation : Consider the map ad : g→ gl(g) sending X to the endomor-
phism Y 7−→ [X, Y ] of g. Then this is a map of Lie algebras, i.e. a representation of g on
itself, and we call it the adjoint representation.

Indeed, if X1, X2, Y ∈ g, then

ad([X1, X2])(Y ) = [[X1, X2], Y ] = −[Y, [X1, X2]],

while

[ad(X1), ad(X2)](Y ) = [X1, [X2, Y ]]− [X2, [X1, Y ]] = [X1, [X2, Y ]] + [X2, [Y,X1]],

and these are equal by the Jacobi identity (condition (ii) of definition VI.1.1).

Remark VI.1.10. The adjoint representation has many interesting properties. For example :

(1) For every X ∈ g, ad(X) is actually a derivation of g. That is,
ad(X)([Y, Z]) = [Y, ad(X)(Z)] + [ad(X)(Y ), Z] for all Y, Z ∈ g. (This is just a
reformulation of the Jacobi identity.)

(2) The set of derivations of g is a Lie subalgebra of gl(g), and the image of ad is an ideal of
this Lie subalgebra. 2

Remark VI.1.11. If k is a field of characteristic 0, then Ado’s theorem3 says that every finite-
dimensional Lie algebra over k admits a faithful representation on a finite-dimensional k-vector
space.

1In fact, once we see in corollary VI.2.2.3 that representations of g are the same as modules over its universal
enveloping algebra, we can just apply theorem I.1.3.4 of chapter I directly.

2See problem VII.6.4.
3See Ado’s paper [1].
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VI.2 Universal enveloping algebra

VI.2.1 The tensor algebra of a k-module

Let V be a k-module.

Definition VI.2.1.1. The nth tensor power of V (over k) is

T nV = V ⊗k · · · ⊗k V︸ ︷︷ ︸
n times

,

with the convention that T 0V = k.

The tensor algebra of V is
T ∗V =

⊕
n≥0

T nV.

The k-linear maps T nV ⊗k TmV → T n+mV sending (v1 ⊗ · · · ⊗ vn) ⊗ (w1 ⊗ · · · ⊗ wn) to
(v1⊗· · ·⊗ vn⊗w1⊗· · ·⊗wn) gives T ∗V the structure of a (graded) associative k-algebra, with
unit 1 ∈ k = T 0V .

We denote by ι the obvious k-module inclusion V = T 1V ↪→ T ∗V .

These objects satisfy the following universal properties.

Proposition VI.2.1.2. 1. Let W be another k-module. Then we have a canonical bijection

Homk(T
nV,W ) = {n-linear maps V n → W}.

2. Let A be an associative k-algebra (with unit). Then the map

Homk−algebras(T
∗V,A)→ Homk−modules(V,A)

sending ϕ : T ∗V → A to ϕι is a bijection.

Proof. Point (i) is just the universal property of the tensor product.

Let’s prove point (ii). First, letϕ1, ϕ2 : T ∗V → A be two k-algebras maps such thatϕ1ι = ϕ2ι.
As T 1V generates the k-algebra T ∗V , this implies ϕ1 = ϕ2. Next, let u : V → A be a map of
k-modules. For every n ≥ 1, the k-multilinear map V n → A, (v1, . . . , vn) 7−→ u(v1) . . . u(vn)
induces a k-linear map varphin : T nV → A. We also write ϕ0 : k → A for the structural map.
Then ϕ :=

⊕
n≥0 ϕn : T ∗V → A is a k-algebra map (by definition of the product on T ∗V ), and

ϕι = u.
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VI.2.2 The universal enveloping algebra of a Lie algebra

Definition VI.2.2.1. Let g be a Lie algebra over k. A universal enveloping algebra of g is a pair
(ι, U(g)), where U(g) is an associative k-algebra with unit and ι : g → U(g) is a morphism of
Lie algebras from g to U(g) with its commutator bracket, such that :

For every other pair (α,A) with A an associative k-algebra with unit and α : g → A a mor-
phism of Lie algebras from g to A with its commutator bracket, there exists a unique morphism
of k-algebras ϕ : U(g)→ A such that α = ϕι.

g
ι

}}

α

��
U(g)

∃!ϕ
// A

Theorem VI.2.2.2. Let g be a Lie algebra over k. Then :

1. A universal enveloping algebra of g exists.

2. If (ι1, U1(g)) and (ι2, U2(g)) are two universal enveloping algebras of g, then there exists
a unique isomorphism of k-algebras ϕ : U1(g)→ U2(g) such that ϕι1 = ι2.

Moreover, if (ι, U(g)) is a universal enveloping algebra of g,then ι(g) generates U(g) as a
k-algebra.

Because of point (ii), we usually talk about the universal enveloping algebra of g. We also
often omit ι from the notation.

Proof. Let’s prove (ii). With the notation of the theorem, there exist a unique morphisms of
k-algebras ϕ : U1(g) → U2(g) and ψ : U2(g) → U2(g) such that ϕι1 = ι2 and ψι2 = ι1. We
just need to show that they isomorphisms. But ϕψ and idU2(g) are two morphisms of k-algebra
satisfying ϕψι2 = idU2(g)ι2 = ι2, so ϕψ = idU2(g). Similarly, ψϕ = idU1(g).

Let’s prove (i). We have defined in definition VI.2.1.1 the tensor algebra T ∗g of g (seen as a
k-module) together with a k-linear map ι : g→ T ∗g, and, by proposition VI.2.1.2, composition
with ι induces a bijection, for every associative k-algebra with unit A,

Homk−algebras(T
∗g, A)→ Homk−modules(g, A).

Let I be the two-sided ideal of T ∗ ∗g generated by the elements X⊗Y −Y ⊗X− [X, Y ], for
X, Y ∈ T 1g = g. Take U(g) = T ∗g/I . We still write ι for the composition g

ι→ T ∗g � U(g).
Let A be an associative k-algebra with unit. Then, for every k-module map u : g → A, if
ϕ : T ∗g→ A is the corresponding k-algebra map, we have

u is a Lie algebra map ⇔ ∀X, Y ∈ g, u([X, Y ]) = u(X)u(Y )− u(Y )u(X)
⇔ ∀X, Y ∈ g, ϕ([X, Y ]) = ϕ(X)ϕ(Y )− ϕ(Y )ϕ(X)
⇔ ϕ(I) = 0
⇔ ϕ induces a k-algebra morphism U(g)→ A.
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In other words, composition with ι induces a bijection

Homk−Liealgebras(U(g), A)→ Homk−modules(g, A).

So (ι, U(g)) is a universal enveloping algebra of g.

The last sentence follows directly from the construction of U(g).

Corollary VI.2.2.3. Let g is a Lie algebra over k, and let (ι, U(g)) be its universal enveloping
algebra.

1. For every k-module V , the map

Homk−algebras(U(g),Endk(V ))→ Homk−Lie algebras(g, glk(V ))

sending ϕ to ϕ ◦ ι is a bijection.

In other words, giving a representation of g on V is the same as giving a U(g)-module
structure on V (compatible with the k-module structure).

2. If V and W are representations of g, hence also U(g)-modules by (i), and if u : V → W
is a k-linear map, then u is a morphism of representations if and only if it is U(g)-linear.

We can reformulate this corollary informally by saying that representations of g are “the same”
as U(g)-modules. 4 So all the general results of section I.1 of chapter I apply to representations
of Lie algebras.

Proof. 1. This is just the universal property of U(g).

2. If u is U(g)-linear, then it is a morphism of representations because g acts on V and W
through ι : g→ U(g).

Conversely, suppose that u is a morphism of representations. Then it is linear under the
k-subalgebra of U(g) generated by ι(g). But that subalgebra is equal to U(g) itself.

VI.3 The matrix exponential

From now on, we will mostly specialize to the case k = C.

Fix an integer n ≥ 1, put the usual Euclidian norm ‖.‖, on Cn and denote by ‖.‖ the corre-
sponding operator norm on Mn(C). That is, for every A ∈Mn(C), we have

‖A‖ = sup
X∈Cn, ‖X‖=1

‖AX‖.

4In more precise terms, we have an equivalence of categories between the two.
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Then we clearly have ‖AB‖ ≤ ‖A‖‖B‖, for any A,B ∈Mn(C).

Definition VI.3.1. The matrix exponential is the map exp : Mn(C)→Mn(C) defined by

exp(A) = eA =
∑
r≥0

1

r!
Ar.

Proposition VI.3.2. 1. The series defining exp(A) converges absolutely for every
A ∈Mn(C), and exp is a C∞ map.5

2. For every A ∈Mn(C), we have

d

dt
etA = AetA = etAA.

In particular, the differential of exp at 0 is given by

d exp0 = idMn(C).

3. If A,B ∈Mn(C) commute, then eA+B = eAeB = eBeA.

In particular, for every A ∈Mn(C), eAe−A = In, so eA ∈ GLn(C).

4. For every A ∈ Mn(C) and S ∈ GLn(C), we have eSAS
−1

= SeAS−1, e
tA = teA and

eA
∗

= (eA)∗.

5. For every A ∈Mn(C), det(eA) = eTrA.

Proof. 1. Let A ∈ Mn(C) and every r ≥ 0, we have ‖Ar‖ ≤ ‖A‖r. So the series defining
exp converges absolutely on every closed ball of Mn(C) centered at 0. This implies that it
defines a C∞ map.

2. Thanks to (i), we can calculate the derivative of etA =
∑

r≥0
tr

r!
Ar term by term, and then

the result is obvious.

To deduce the formula for d exp0, note that, for every A ∈Mn(C),

d exp0(A) =
d

dt
etA
∣∣∣
t=0
.

3. This is proved just like the similar formula for real (or complex) numbers.

4. This is obvious.
5It is even complex analytic.
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5. By (iv), we may assume that A is upper triangular. Let λ1, . . . , λn be the diagonal entries
ofA. Then eA is upper triangular with diagonal entries eλ1 , . . . , eλn , which gives the result.

We will need a generalization of point (ii) for later use.

Proposition VI.3.3. Let X ∈Mn(C). Then d expX (the differential of the matrix exponential at
X) is given by

d expX(A) =

∫ 1

0

esXAe(1−s)Xds

for every A ∈Mn(C), and d expX is invertible (as a linear map from Mn(C) to itself).

Proof. Let’s first prove the formula for d expX . Let A ∈Mn(C). By definition, we have

d expX(A) = lim
t→0

1

t
(eX+tA − eX).

For every k ≥ 0, define an endomorphism Lk of Mn(C) by

Lk(B) =
k∑
i=0

X iBXk−i.

Then, for every k ≥ 0,
(X + tA)k+1 = X + tLk(A) +O(t2).

So
eX+tA = eX + t

∑
k≥0

1

(k + 1)!
Lk(A) +O(t2),

which gives

d expX(A) =
∑
k≥0

1

(k + 1)!
Lk(A).

On the other hand, using the (easy) fact that∫ 1

0

sk1sk2ds =
k1!k2!

(k1 + k2 + 1)!

for all k1, k2 ≥ 0, we see that∫ 1

0

esXAe(1−s)Xds =
∑

k1,k2≥0

1

k1!k2!

∫ 1

0

sk1Xk1A(1− s)k2Xk2ds

=
∑

k1,k2≥0

1

(k1 + k2 + 1)!
Xk1AXk2 ,
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and this is clearly equal to d expX(A).

Now let’s show that d expX is invertible. We write X = Y + N , with Y diagonalizable, N
nilpotent and Y N = NY . Then, by the first part,

d expX =
∑
k,l≥0

1

k!l!
Tk,l,

where

Tk,l(A) = Nk(

∫ 1

0

sk(1− s)lesYAe(1−s)Y ds)N l.

Using the fact that Y and N commute (and Fubini’s theorem), we see that the operators Tk,l
commute with each other. Because N is nilpotent, the map Tk,l is nilpotent as soon as k ≥ 1
or l ≥ 1. Putting these two facts together, we see that d expX is invertible if and only if T0,0 is
invertible. As T0,0 = d expY , this means that are reduced to the case where X is diagonalizable.

So let’s assume that X is diagonalizable and prove that d expX is invertible. As
d expSXS−1 = Sd expX S

−1, we may assume that X is diagonal. Let x1, . . . , xn be its diag-
onal entries. Let A ∈Mn(C), and write A = (aij). Then the (i, j)th entry of d expX(A) is∫ 1

0

esxiaije
(1−s)xjds =

{
aije

xj if xi = xj
aij

exj

xi−xj (e− 1) otherwise.

So, if d expX(A) = 0, then A = 0. As d expX is an endomorphism of Mn(C), this suffices to
prove that it is invertible.

The matrix logarithm : For B ∈Mn(C), if ‖B‖ < 1 or B is nilpotent, let

log(In +B) =
∑
r≥1

(−1)r−1 1

r
Br.

This series converges absolutely in every closed ball of {B ∈Mn(C)|‖B‖ < 1}, hence defines
a C∞ function log : B →Mn(C), where B = {A ∈Mn(C)|‖A− In‖ < 1}.

Proposition VI.3.4. For anyA ∈Mn(C) such that log(A) is defined, we have exp(log(A)) = A.

Note however that log(exp(A)) = A does not hold in general, even if n = 1, simply because
there are many matrices A such that exp(A) = In.

Proof. Consider the formal power series f(t) =
∑

r≥0
tr

r!
and g(t) =

∑
r≥1(−1)r−1 tr

r
in C[[t]].

Then we have f(g(t)) = t in C[[t]], because f(g(t)) = t because this equality holds for any
t ∈ C such that |t| = 1.
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If A ∈Mn(C), we can deduce from this that exp(log(A)) = A as long as all the double series
log(exp(A)) converges absolutely. If A = In + B with B nilpotent, then this double series is a
finite sum. If A = In + B with ‖B‖ < 1, then the proof is the same as in the case n = 1, using
the fact that ‖Br‖ ≤ ‖B‖r for every ≥ 0.

VI.4 The Lie algebra of a closed subgroup of GLn(C)

The open subset GLn(C) of Mn(C) (with the induced topology) is a topological group. We will
show how to associate a Lie algebra to any closed subgroup G of GLn(C). What is really going
is thatG has a canonical Lie group structure, and the Lie algebra ofGwill be the tangent space of
G at 1. But we can prove this directly, without knowing anything about Lie groups or manifolds.

Definition VI.4.1. Let G be a closed subgroup of GLn(C). Then the Lie algebra Lie(G) of G
is the set of X ∈ gln(C)(= Mn(C)) such that there exists a C∞ function c : R → Mn(C) with
c(R) ⊂ G, c(0) = In and c′(0) = X .

Note that Lie(GLn(C)) = gln(C).

Theorem VI.4.2. Let G be a closed subgroup of GLn(C). Then Lie(G) is a R-Lie subalgebra
of gln(C) and, for every g ∈ G and X ∈ Lie(X), gXg−1 ∈ Lie(G).

Proof. Let X, Y ∈ Lie(G), and let cX , cY : R → Mn(C) be C∞ functions such that
cX(R), cY (R) ⊂ G, cX(0) = cY (0) = In and c′X(0) = X , c′Y (0) = Y . Let λ ∈ R and
g ∈ G. Then :

(1) Consider c1 : R → Mn(C), t 7−→ cX(λt). Then c is C∞, c1(R) = cX(R) ⊂ G,
c1(0) = cX(0) = In, and c′1(0) = λc′X(0) = λX . So λX ∈ G.

(2) Consider c2 : R → Mn(C), t 7−→ cX(t)cY (t). Then c2 is C∞, c2(R) =⊂ G
(because G is a subgroup of GLn(C)), c2(0) = cX(0)cY (0) = In, and
c′2(0) = c′X(0)cY (0) + cX(0)c′Y (0) = X + Y . So X + Y ∈ G.

(3) Consider c3 : R → Mn(C), t 7−→ gcX(t)g−1. Then c3 is C∞, c3(R) = gGg−1 = G,
c3(0) = gcX(0)g−1 = In, and c′3(0) = gc′X(0)g−1 = gXg−1. So gXg−1 ∈ G.

(4) Finally, consider c4 : R → Mn(C), t 7−→ cY (t)XcY (t)−1. Then c4 is C∞ and
c4(R) ⊂ Lie(G) by (3). As Lie(G) is a R-subvector space of Mn(C) by (1) and (2), it
is closed in Mn(C), and c′4(0) ∈ Lie(G). Let’s calculate c′4(0). First, using the fact that

d

dt

(
cY (t)cY (t)−1

)
=

d

dt
In = 0,

we see that
d

dt
(cY (t)−1) = −cY (t)−1c′Y (t)cY (t)−1.
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So
c′4(t) = c′Y (t)XcY (t)−1 − cY (t)XcY (t)−1c′Y (t)cY (t)−1,

and Lie(G) 3 c′4(0) = Y X −XY .

If we want to actually calculate Lie algebras of closed subgroups of GLn(C), we need a char-
acterization that’s easier to use. This is the goal of the following theorem.

Theorem VI.4.3. Let G be a closed subgroup of GLn(C). Then

Lie(G) = {X ∈ gln(C)|∀t ∈ R, etX ∈ G}.

Lemma VI.4.4. Let c : R → Mn(C) be a C∞ map such that c(0) = In, and let X = c′(0).
Then, for every t ∈ R,

lim
k→+∞

c( t
k
)k = etX .

Proof. Remember from section VI.3 that we have the C∞ function log, defined in a neighbor-
hood U of In in Mn(C), and satisfying exp(log(A)) = A for every A ∈ U . Fix ε > 0 such that
c(t) ∈ U if |t| < ε. Let d :]− ε, ε[→Mn(C), t 7−→ log(c(t)). This is a C∞ map, and we have

d′(0) = d log0(c′(0)) = (d expIn)−1(X) = X.

By Taylor’s formula, d(t) = tX +O(t2).

Now let t ∈ R. Choose an integer N ≥ 1 such that |t/N | < ε. Then if k ≥ 1 and
` ∈ {0, . . . , N − 1}, we have

d(
t

Nk + `
) =

tX

Nk + `
+O(

t2

(Nk + `)2
=

tX

Nk + `
+O(

1

k2
).

So (Nk + `)d( t
Nk+`

) = tX +O( 1
k
), and

c(
t

Nk + `
)Nk+` = exp((Nk + `)d(

t

Nk + `
)) = exp(X +O(

1

k
)).

Making k tend to +∞, we get limr→+∞ c(
t
r
)r = exp(X).

Remark VI.4.5. Applying this lemma to the function c : R → R, t 7−→ 1 + t, we recover the
classical result that

lim
k→+∞

(1 + t
k
)k = et.
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Proof of the theorem. If X ∈ gln(C) is such that etX ∈ G for every t ∈ R, then the C∞ map
c : R→Mn(C), t 7−→ etX , has image contained in G, sends 0 to In, and satisfies c′(0) = X . So
X ∈ Lie(G).

Conversely, let X ∈ Lie(G), and let’s prove that etX ∈ G for every t ∈ R. Choose a C∞ map
c : R → Mn(C) such that c(R) ⊂ G, c(0) = In and c′(0) = X . Let t ∈ R. By the lemma,
etX = limk→+∞ c(

t
k
)r. We have c( t

k
)k ∈ G for every k ≥ 1. As G is a closed subgroup of

GLn(C), this implies that their limit etX is also in G.

Example VI.4.6.

- Take G = SLn(C) := {g ∈ GLn(C)| det(g) = 1}. As det(etX) = eTr(tX) for every t ∈ R
and X ∈ gln(C), we immediately get

Lie(G) = sln(C) = {X ∈ gln(C)|Tr(X) = 0}.

- Take G = GLn(R). I claim that Lie(G) = gln(R). Indeed, if X ∈ gln(R), then
etX ∈ GLn(R) for every t ∈ R. Conversely, let X ∈ gln(C) be such that etX ∈ GLn(R)
for every t ∈ R. Then 1

t
(etX − In) ∈ gln(R) for every t ∈ R, so

X =
d

dt
etX
∣∣∣
t=0

= lim
t∈R,t→0

1

t
(etX − In) ∈ gln(R).

- Take G = U(n) := {g ∈ GLn(C)|gg∗ = In}. (This is called the unitary group.) I claim
that

Lie(G) = u(n) := {X ∈ gln(C)|X +X∗ = 0}.

Indeed, if X ∈ u(n), then X∗ = −X , so X and X∗ commute, so, for every t ∈ R,

In = et(X+X∗) = etXetX
∗

= (etX)(etX)∗,

and therefore etX ∈ U(n). Hence u(n) ⊂ Lie(G).

Conversely, let X ∈ Lie(G). Then etXetX∗ = In for every t ∈ R, hence

0 =
d

dt
(etXetX

∗
)
∣∣∣
t=0

= X +X∗,

and X ∈ u(n). So Lie(G) ⊂ u(n).

- Take G = SU(n) := U(n) ∩ SLn(C). (This is called the special unitary group.) Then

Lie(G) = u(n) ∩ sln(C) = {X ∈ gln(C)|X +X∗ = 0 and Tr(X) = 0}.

This Lie algebra is denoted by su(n).
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- Similarly, if O(n) = {g ∈ GLn(R)|X tX = In} and SO(n) = O(n) ∩ SLn(R), then

Lie(O(n)) = Lie(SO(n)) = so(n) := {X ∈ gln(R)|X + tX = 0}.

Note that O(n) and SO(n) have the same Lie algebra, unlike U(n) and SU(n). This is
because SO(n) is the connected component of In in O(n).

- For every commutative ring k, let Bn(k) (resp. Un(k), resp. Tn(k)) be the group of upper
triangular matrices (resp. upper triangular matrices with 1s on the diagonal, resp. diagonal
matrices) in GLn(k). Then, if k = R or C,

Lie(Bn(k)) = bn(k)

Lie(Un(k)) = un(k)

Lie(Tn(k)) = tn(k)

(see example VI.1.6 for the notation).

- If G is a finite subgroup of GLn(C), then Lie(G) = {0}.

The next theorem is the down-to-earth version of the statement “Lie(G) is the tangent space
of G at In”.

Theorem VI.4.7. Let G be a closed subgroup of GLn(C), and let g = Lie(G). Then there
exist neighborhoods V of In in GLn(C) and U of 0 in gln(C) such that exp : U → V is a
diffeomorphism (= C∞ and bijective with C∞ inverse) and that exp(U ∩ g) = V ∩G.

Proof. Let W be a R-subspace of gln(C) such that g ⊕ W = gln(C). Consider the map
ϕ : gln(C) → GLn(C) sending A + B to eAeB if A ∈ g and B ∈ W . Then, for A ∈ g
and B ∈ W , we have

ϕ(A+B) = (In + A+O(A2))(In +B +O(B2)) = In + A+B +O(AB,BA,A2, B2),

so dϕ0 = idMn(C). By the inverse function theorem, there exists neighborhoods U1 of 0 in g, U2

of 0 in W and V of 1 in GLn(C) such that ϕ : U1 × U2 → V is a diffeomorphism.

Now let’s show that, after shrinking U2 (and consequently V ), we have exp−1(V ∩ G) = U1,
i.e. exp : U1 → G ∩ V is a diffeomorphism. Suppose that this is not the case. Then we can find
a decreasing sequence W0 = U2 ⊃ W1 ⊃ W2 ⊃ . . . of neighborhoods of 0 in W such that every
neighborhood of 0 in W contains one of the Wr, and that, for every r ≥ 0, there exist Ar ∈ U
and Br ∈ Wr − {0} such that ϕ(Ar, Br) = eAreBr ∈ G.

As
⋂
r≥0Wr = {0}, Br → 0 as r → +∞. Let Yr = 1

‖Br‖Br; then ‖Yr‖ = 1. As the unit
sphere of W is compact (because W is finite-dimensional), we may assume that the sequence
(Yr)r≥0 has a limit, say Y . Then Y ∈ W and Y 6= 0 (because ‖Y ‖ = 1). We want to show that
etY ∈ Lie(G) for t ∈ R, which will imply that Y ∈ g and contradict the fact that g ∩W = {0}.
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Let t ∈ R. For every r ≥ 0, if mr = b t
‖Br‖c, then we have mr‖Br‖ ≤ t ≤ (mr + 1)‖Br‖.

So mr‖Br‖ → t as r → +∞. Now note that, for every r ≥ 0, eBr ∈ G (because
ϕ(Ar, Br) ∈ eAreBr ∈ G, and eAr ∈ G), so emrBr ∈ G. As emrBr = emr‖Br‖Yr , we get
emr‖Br‖Yr ∈ G. Making r → +∞ and using the fact that G is closed in GLn(C), we get
etY ∈ G.

VI.5 From groups representations to Lie algebra
representations

This is the analogue of problem VII.6.5, but for closed subgroups of GLn(C) instead of linear
algebraic groups.

Everything works thanks to the following proposition, which generalizes problem VII.5.5(2).

Proposition VI.5.1. Let c : R → GLn(C) be a continuous morphism of groups. Then there
exists a unique B ∈Mn(C) such that c(t) = etB, ∀t ∈ R.

Proof. The uniqueness of B follows from the fact that d
dt
etB|t=0 = B.

For the existence, choose δ > 0 such that ‖g − In‖ ≤ δ‖ ⇒ det(g) 6= 0. As c is continuous,
there exists ε > 0 such that |t| ≤ ε ⇒ ‖c(t)− c(0)‖ ≤ δ. Let A =

∫ ε
0
c(t)dt. Then

‖εIn − A‖ = ‖
∫ ε

0

(c(0)− c(t))dt‖ ≤
∫

0

εδdt = εδ,

so ‖In − ε−1A‖ ≤ δ, so det(ε−1A) 6= 0, so A is invertible.

As c is a morphism of groups, c(t+ s) = c(t)c(s) for all t, s ∈ R. Let t ∈ R. Then∫ t+ε

t

c(s)ds = c(t)

∫
0

εc(s)ds = c(t)A,

so

c(t) =

(∫ t+ε

t

c(s)ds

)
A−1.

Hence c is C1, and
c′(t) = (c(t+ ε)− c(t))A−1 = c(t)B,

where B = (c(ε)− In)A−1. As c(0) = In, we finally get c(t) = etB.
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Theorem VI.5.2. Let G be a closed subgroup of GLn(C) and H be a closed subgroup of
GLm(C). Let ρ : G → H be a continuous morphism of groups. For every X ∈ Lie(G), the
map cX : R → GLm(C), t 7−→ ρ(etX), is a continuous morphism of groups, hence, by propo-
sition VI.5.1, it is of the form t 7−→ etY for a uniquely determined Y ∈ Mm(C). We write
Y = dρ(X). Then

1. For every X ∈ LieG, we have

dρ(X) =
d

dt
ρ(etX)|t=0.

2. For every X ∈ LieG, dρ(X) ∈ LieH .

3. dρ : LieG→ LieH is a morphism of Lie algebras.

4. For every X ∈ LieG and g ∈ G, ρ(eX) = edρ(X) and dρ(gXg−1) = ρ(g)dρ(X)ρ(g)−1.

Remark VI.5.3. If we knew differential geometry, we would say that dρ is the differential of the
map ρ at 1 ∈ G.

Remark VI.5.4. As exp(LieG) contains a neighbourhood of 1 in G (by theorem VI.4.7), dρ
determines ρ on G0 (the connected component of In in G).

Proof. Point (i) follows immediately from the definition of dρ(X), and (ii) follows immediately
from the definition of LieH and the fact that cX(R) ⊂ H .

The first assertion of (iv) just follows from the formula ρ(etX) = etdρ(X) (which is the def-
inition of dρ(X)), taking t = 1. For the second assertion of (iv), consider c : R → H ,
t 7−→ ρ(g)ρ(etX)ρ(g)−1. Then

c(t) = ρ(getXg−1) = ρ(etgXg
−1

),

so
ρ(g)dρ(X)ρ(g)−1 = c′(0) = dρ(gXg−1).

We prove (iii). Let X, Y ∈ LieG and λ ∈ R.

(a) We have
cλX(t) = ρ(eλtX) = cX(λt),

so
etdρ(λX) = etλdρ(X).

Taking derivatives at 0 gives dρ(λX) = λdρ(X).

(b) Let c : R → H ⊂ GLm(C), t 7−→ ρ(etX)ρ(etY )ρ(et(X+Y ))−1. As c = cXcY c−(X+Y ), the
map c is C∞, and we have c′(0) = dρ(X) + dρ(Y )− dρ(X + Y ).

145



VI Representations of Lie algebras : the case of sln(C)

By lemma VI.4.4, for every t ∈ R,

lim
k→+∞

c

(
t

k

)k
= etc

′(0).

So we just need to prove that, for t fixed,

lim
k→+∞

c

(
t

k

)k
= Im.

Fix t ∈ R. Then

c

(
t

k

)
= ρ

(
e
t
k
Xe

t
k
Y e−

t
k

(X+Y )
)

= ρ(In +O(
1

k2
)),

so

c

(
t

k

)k
= ρ((In +O(

1

k2
))k) = ρ(In +O(

1

k
)),

and this tends to ρ(In) = Im as k → +∞, by continuity of ρ.

(c) Let c : R → LieH , t 7−→ dρ(etXY e−tX). As dρ is a R-linear map between finite-
dimensional R-vector spaces, it is C∞ and equal to its own differential at every point. So
the chain rule gives c′(0) = dρ([X, Y ]).

On the other hand, by (iv), c(t) = ρ(etX)dρ(Y )ρ(e−tX), so

c′(0) = dρ(X)dρ(Y )− dρ(Y )dρ(X) = [dρ(X), dρ(Y )].

In particular, every continuous representation ρ : G → GLm(C) of G gives rises to a repre-
sentation dρ : LieG → glm(C) of the Lie algebra of G. Note that dρ is a much simpler objet
than ρ (we don’t have to worry about continuity or derivability conditions, for example, as they
follow automatically from R-linearity). So we would like to understand the representations of G
through the representations of its Lie algebra. This raises two questions :

Question 1 : Does dρ determine ρ ?

Answer : We have already seen the answer : dρ determines ρ on G0. So it’s a good tool to
understand ρ if G is connected, not so much if G is finite.

Question 2 : Is every Lie algebra map u : LieG → glm(C) equal to dρ, for some continuous
group morphism ρ : G→ GLm(C) ?

Answer : Not in general. Compare the cases G = S1 ⊂ C× and H = R>0 ⊂ C× (both
connected). Every representation of Lie(H) (on a finite-dimensional C-vector space) comes
from a representation of H , but this is not true for representations of Lie(G). For example, the
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VI.5 From groups representations to Lie algebra representations

R-linear map R → C, x 7−→ x
2
, is not the differential of a continuous morphism of groups

ρ : S1 → C×, because every such ρ is of the form z 7−→ zn for some n ∈ Z by problem
VII.5.5(2) (or proposition VI.5.1).

The difference is that H is simply connected and G is not. In general, we can tell which
u : LieG→ glm(C) lift (or integrate) to G, but the formulation of the answer uses the language
of root systems. In the particular case where G is simply connected and connected, every u lifts.

In section VI.8, we will do by hand the case of G = SU(n) (which is connected and simply
connected).

Remark VI.5.5. If g ∈ G and X ∈ LieG, let Ad(g) and ad(X) be the endomorphisms of Lie(G)
defined by Ad(g)(Y ) = gY g−1 and ad(X)(Y ) = [X, Y ]. Then Ad : G → GL(LieG) is a
continuous morphism of groups.

We have seen that
d

dt
(etXY e−tX)|t=0 = [X, Y ],

that is,
d

dt
(Ad(etX))|t=0 = ad(X).

In other words, ad = dAd (which gives again the fact that ad : LieG→ gl(LieG) is a morphism
of Lie algebras), and so we get

ead(X) = Ad(eX).

Remark VI.5.6. If g is a k-Lie algebra and (V1, u1) and (V2, u1) are representations of g, we
define representations of g on V1 ⊗k V2 and Homk(V1, V2) by :

X(v1 ⊗ v2) = (u1(X)v1)⊗ v2 + v1 ⊗ (u2(X)v2)

and

Xϕ = u2(X) ◦ ϕ− ϕ ◦ u1(X),

for X ∈ g, v1 ∈ V1, v2 ∈ V2 and ϕ ∈ Homk(V1, V2). In particular, taking V2 = k with the trivial
representation, we get a representation of g on V ∗1 = Homk(V1, k) given by Xϕ = −ϕ ◦ u1(X).

The justification for this is the following (apart from the fact that these formulas do indeed
define representations) : If g is the Lie algebra of a closed subgroup G of GLn(C) and we have
u1 = dρ1 and u2 = dρ2 with ρ1 : G → GL(V1) and ρ2 : G → GL(V2) continuous finite-
dimensional representations of G on complex vector spaces, then the representation of g on
V1 ⊗C V2 (resp. HomC(V1, V2)) defined above is obtained by deriving the representation of G on
this space. (See problem VII.6.20.) Also, the trivial representation of g is clearly the differential
of the trivial representation of G.
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VI.6 The Baker-Campbell-Hausdorff formula

This is is formula that allows us to express the multiplication inG in terms of the sum and bracket
of LieG (at least in a neighbourhood of 1).

It has many proofs,6 but here we’ll follow a quick and purely algebraic proof due to Eichler.
(See the paper [10].)

Here is the setup : Let Q{t1, . . . , tN} ⊂ Q{{t1, . . . , tN}} be the rings of polynomials resp.
power series in N noncommuting indeterminates t1, . . . , tN . The degree of an element of
Q{t1, . . . , tN} is defined in the obvious way.

Let L ⊂ Q{t1, . . . , tN} be the Lie subalgebra generated by t1, . . . , tN . Elements of L are
sometimes called Lie polynomials. (Note : L is called the free Lie algebra on the set {t1, . . . , tN}.
Also, it’s easy to see that Q{t1, . . . , tN} is the universal envelopping algebra of L, but we won’t
need that fact.) 7

Proposition VI.6.1. We have L =
⊕

n∈Z≥0
Ln, where Ln is the space of homogeneous degree n

polynomials in L (by convention, 0 is in every Ln).

In other words, if f ∈ Q{t1, . . . , tN} is a Lie polynomial, then its homogeneous degree n part
is also a Lie polynomial.

Proof. Obviously, we have t1, . . . , tN ∈
⊕

n≥0 Ln ⊂ L, so we just need to show that
⊕

n≥0 Ln is
a Lie subalgebra of Q{t1, . . . , tN}, i.e. is stable by [., .]. But we clearly have [Ln, Lm] ⊂ Lm+m.

Now let t, s be two noncommuting indeterminates, and consider the formal power series

et =
∑
n≥0

tn

n!
∈ Q[[t]]

log(t) =
∑
n≥1

(−1)n−1

n
(t− 1)n ∈ Q[[t− 1]].

Because the constant term of etes ∈ Q{{t, s}} is equal to 1, the formal power series
log(etes) ∈ Q{{t, s}} makes sense. Write

log(etes) =
∑
n≥0

Fn(t, s),

with Fn(t, s) homogeneous of degree n. It’s easy enough to calculate the first few terms :

F0(t, s) = 0, F1(t, s) = t+ s, F2(t, s) =
1

2
[t, s].

6See for example theorem 7.4 of chapter IV of part I of Serre’s book [31].
7See theorem 4.2 of chapter IV of part I of Serre’s book [31] for a proof.
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VI.6 The Baker-Campbell-Hausdorff formula

Theorem VI.6.2 (Baker-Campbell-Hausdorff formula). For every n ≥ 0, Fn(t, s) ∈ L, i.e.
Fn(t, s) is a Lie polynomial, i.e. Fn(t, s) is obtained from t and s using only vector space
operations and the commutator bracket.

Proof. By induction on n. We have already checked the cases n = 0, 1, 2. Let n ≥ 3, and
suppose that we know the theorem for any m ≤ n − 1. Introduce a third noncommuting inde-
terminate u. We have (etes)eu = et(eseu) in Q{{t, s, u}}, hence log((etes)eu) = log(et(eseu)),
hence

(∗)
+∞∑
i=1

Fi(
+∞∑
j=1

Fj(t, s), u) =
+∞∑
i=1

Fi(t,
+∞∑
j=1

Fj(s, u)).

If i ≥ n + 1, then Fi(
∑+∞

j=1 Fj(t, s), u) and Fi(t,
∑+∞

j=1 Fj(s, u)) only have homogeneous
components in degree ≥ n+ 1. As for Fn(

∑+∞
j=1 Fj(t, s), u) and Fn(t,

∑+∞
j=1 Fj(s, u)), they only

have homogeneous components of degree≥ n, and their degree n homogeneous components are
Fn(t+ s, u) and Fn(t, s+ u) respectively.

By the induction hypothesis, if i ≤ n− 1, then Fi(
∑n−1

j=1 Fj(t, s), u) and Fi(t,
∑n−1

j=1 Fj(s, u))
are Lie polynomials, and their homogeneous components also are Lie polynomials by proposition
VI.6.1. Also, if i ≥ 2, the difference Fi(

∑+∞
j=1 Fj(t, s), u) − Fi(

∑n−1
j=1 Fj(t, s), u) only has

homogeneous components in degree ≥ n + 1. If i = 1, Fi(t, s) = t + s, so the difference
above is just

∑+∞
j=n Fj(t, s), it only has homogeneous components in degree ≥ n, and its degree

n homogeneous component is Fn(t, s). Similarly, we see that

n−1∑
i=1

Fi(t,
+∞∑
j=1

Fj(s, u))−
n−1∑
i=1

Fi(t,
n−1∑
j=1

Fj(s, u))

only has homogeneous components in degree ≥ n, and its degree n homogeneous component is
Fn(s, u).

And so finally, if we look at the degree n homogeneous components in the equality (*) above,
and omit the parts that we know are Lie polynomials by the induction hypothesis, we are left
with

Fn(t+ s, u) + Fn(t, s)

on the left-hand side and
Fn(t, s+ u) + Fn(s, u)

on the right-hand side. So these two polynomials are equal modulo L. We also know that
Fn(t, s) is homogeneous of degree n, and that Fn(λt, µt) = 0 for every λ, µ ∈ Q (because λt
and µt commute, so log(eλteµt) = (λ+ µ)t, and because n ≥ 2).

Now we just have to prove the following fact : Let f ∈ Q{{t, s}} be such that :

(1) f(t+ s, u) + f(t, s) = f(t, s+ u) + f(s, u) mod L;

(2) f(λt, λs) = λnf(t, s) for every λ ∈ Q;
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VI Representations of Lie algebras : the case of sln(C)

(3) f(λt, µt) = 0 for every λ, µ ∈ Q.

Then f ∈ L.

Here is the proof of this fact :

Substituting u = −s in (1) (and using (3)) gives :

(4) f(t, s) = −f(t+ s,−s) mod L.

Substituting s = −t in (1) (and using (3)) gives

(5) f(s, u) = −f(−s, s+ u) mod L.

Hence (5), then (4), then (5), then (2), we get

(6) f(t, s) = −f(−t, t+ s) = f(s,−(t+ s)) = −f(−s,−t) = (−1)n+1f(s, t) mod L.

Now substituting u = −1
2
s in (1) gives :

(7) f(t, s) = f(t, s/2)− f(t+ s,−s/2) mod L.

And substituting t = −1
2
s in (1) gives :

(8) f(s, u) = f(s/2, u)− f(−s/2, s+ u) mod L.

We apply (7) to both terms in the right-hand side of (8) (and use (2)) to get :

f(s, u) = 2−nf(s, u)−2−nf(−s, s+u)−f(s/2+u,−u/2)+f(s/2+u,−s/2−u/2) mod L.

Applying (4) to the last two terms of the right-hand side of the equality above and (5) to the
second term gives :

f(s, u) = 2−nf(s, u) + 2−nf(s, u) + 2−nf(s+ u, u)− 2−nf(u, s+ u) mod L,

which by (6) becomes

f(s, u) = 21−nf(s, u) + 2−n(1 + (−1)n)f(s+ u, u) mod L,

and finally

(9) f(s, u) =
2−n

1− 21−n (1 + (−1)n)f(s+ u, u) mod L.

If n is odd, this gives f(s, u) ∈ L. If n is even, replacing t by t− s in (4) and applying (9) gives

−f(t,−s) = f(t− s, s) =
2−n

1− 21−n (1 + (−1)n)f(t, s) mod L,
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VI.7 Representations of sl2(C)

hence :

(10) f(t,−s) = − 2−n

1− 21−n (1 + (−1)n)f(t, s) mod L.

Now if we use (10) twice, we get :

f(t, s) = (
2−n

1− 21−n (1 + (−1)n))2f(t, s) mod L,

hence f(t, s) ∈ L, because 2−n

1−21−n (1 + (−1)n) 6= 1.

VI.7 Representations of sl2(C)

The following results are proved in problem VII.6.10 :

Theorem VI.7.1. (i) For every n ≥ 0, there is exactly one irreducible (n + 1)-dimensional
representation Wn+1 of sl2(C) (up to isomorphism), and it is given by the following for-
mulas : There is a basis (v0, . . . , vn) of Wn+1 such that(

0 1
0 0

)
· vi =

{
(n+ 1− i)vi−1 if i ≥ 1
0 otherwise(

0 0
1 0

)
· vi =

{
(i+ 1)vi+1 if i ≤ n− 1
0 otherwise(

1 0
0 −1

)
· vi = (n− 2i)vi.

(ii) For every finite-dimensional representation u of sl2(C), u
(

1 0
0 −1

)
is semisimple (= di-

agonalizable).

Corollary VI.7.2. For every C-Lie algebra map u : sl2(C)→ gln(C), u
(

1 0
0 −1

)
is a semisim-

ple (= diagonalizable) element of gln(C) = Mn(C), and its eigenvalues are in Z.

Proof. We get the integrality of the eigenvalues of u
(

1 0
0 −1

)
by considering a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vd = Cn by subrepresentations such that each Vi/Vi−1 is irreducible.

Corollary VI.7.3. For every R-Lie algebra map u : su(2)→ gln(C), u
(
i 0
0 −i

)
is a semisimple

(= diagonalizable) element of gln(C) = Mn(C), and its eigenvalues are in iZ.
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VI Representations of Lie algebras : the case of sln(C)

Proof. Note that sl2(C) = Csu(2) ⊂ gl2(C), and this induces sl2(C) ' C ⊗R su(2). Define a
C-Lie algebra map v : sl2(C)→ gln(C) by v(a⊗X) = au(X) if a ∈ C, X ∈ su(2), and apply
corollary VI.7.2 to v.

VI.8 Lifting representations of su(n)

Notation VI.8.1. If a1, . . . , an ∈ C, we write diag(a1, . . . , an) for the diagonal matrix with
diagonal entries a1, . . . , an.

Theorem VI.8.2. Let u : su(n) → glm(C) be a morphism of R-Lie algebras. Then there exists
a unique continuous group morphism ρ : SU(n)→ GLm(C) such that u = dρ.

Remember that this means that, for every X ∈ su(n), eu(X) = ρ(eX).

Proof. First, we have already seen that ρ is unique (because SU(n) is connected, hence generated
by a neighbourhood of In, and exp(su(n)) contains a neighbourghood of 1). 8

(1) Let’s show that, for every X, Y ∈ su(n),

u(eXY e−X) = eu(X)u(Y )e−u(X).

Indeed
eXY e−X = Ad(eX)(Y ) = ead(X)(Y ) =

∑
n≥0

1

n!
(ad(X))n(Y ).

As u ◦ ad(X) = ad(u(X)) ◦ u (because u sends brackets to brackets), this show that
u(eXY e−X) is equal to∑

n≥0

1

n!
(ad(u(X)))n(u(Y )) = ead(u(X))(Y ) = Ad(eu(X))(u(Y )) = eu(X)u(Y )e−u(X).

(2) Now let’s show that every element of SU(n) and every element of su(n) is conjugate by an
element of SU(n) to a diagonal matrix. Indeed, if A ∈ su(n) or SU(n), then A is normal
(ie commutes with A∗), so, by the spectral theorem, A is diagonalizable in an orthonormal
basis (e1, . . . , en), ie there exists S ∈ U(N) (the change of basis matrix) such that SAS−1

is diagonal. But after replacing en by some det(S)−1en (which doesn’t change the fact
that the basis is orthonormal, because | det(S)| = 1), we may assume that det(S) = 1, ie
S ∈ SU(n).

8Actually, we’ll see during the proof that exp(su(n)) = SU(n).
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(3) The map exp : su(n) → SU(n) is surjective. Indeed, let g ∈ SU(n). By (2), there exists
S ∈ SU(n) such that SgS−1 = diag(a1, . . . , an). As SgS−1 ∈ SU(n), a1, . . . , an ∈ U(1)
and their product is 1. So we can find µ1, . . . , µn ∈ iR such that eµi = ai for every i
and

∑n
i=1 µi = 0. Let X = diag(µ1, . . . , µn), then X ∈ su(n), so S−1XS ∈ su(n), and

eS
−1XS = S−1eXS = g.

(4) Let X, Y ∈ su(n) such that eX = eY . We want to show that eu(X) = eu(Y ). By (2), X and
Y are diagonalizable. Let a1, . . . , an (resp. b1, . . . , bn) be the eigenvalues of X (resp. Y ).
After changing the order of the br, we may assume that ear = ebr for every r ∈ {1, . . . , n}.
As the ar and br are in iR and

∑n
r=1 ar =

∑n
r=1 br = 0, this implies that ar = br + 2iπkr,

with kr ∈ Z and
∑n

r=1 kr = 0.

For every r ∈ {1, . . . , n− 1}, let hr = diag(0, . . . , 0, 1,−1, 0, . . . , 0), and let sr be the set
of elements A = (aij) of su(n) such that aij = 0 unless i, j ∈ {r, r+1}. Then sr ' su(2),
and ihr ∈ sr. By corollary VI.7.3 (applied to u|sr), u(ihr) is semisimple (in Mm(C)) and
all its eigenvalues are in iZ. In particular, eu(2iπhr) = Im.

Now let g ∈ SU(n) be such that gXg−1 = diag(a1, . . . , an). By the previous paragraph,
for every l1, . . . , ln−1 ∈ Z,

exp(u(gXg−1 +
n−1∑
r=1

2ilrπhr)) = exp(u(gXg−1)),

so

exp(u(X +
n−1∑
r=1

2ilrπg
−1hrg)) = exp(u(X)).

(We also have similar equalities withtout the “u”, but they are obvious.)

This means that we can, without changing eX and eu(X), replace a1, . . . , an with
a1 + 2iπc1, . . . , an + 2iπcn for any c1, . . . , cn ∈ Z such that c1 + · · · + cn = 0. Also,
we have a similar result for Y .

In particular, we may assume that X and Y have the same eigenvalues, ie that they are
conjugate. Write Y = SXS−1 with S ∈ SU(n). We have SeXS−1 = eY = eX , so we can
write S = eZ with Z ∈ su(n) and Z centralizing eX . (Writing Cn as a sum of eigenspaces
of eX and choosing a basis adapted to that, we may assume that S is a matrix diagonal by
blocks, and we just need Z to be diagonal by blocks with the same block sizes, which can
clearly be accomplished.)

We have eXZe−X = Z, so using (1) gives eu(X)u(Z)e−u(X) = u(Z), so u(Z) centralizes
eu(X), so eu(Z) also centralizes eu(X).

Next, using Y = eZXe−Z and using (1) again gives u(Y ) = eu(Z)u(X)e−u(Z), hence
eu(Y ) = eu(Z)eu(X)e−u(Z). As eu(Z) centralizes eu(X), we get eu(X) = eu(Y ).

(5) By (3) and (4), we can define ρ : SU(n)→ GLm(C) using the formula ρ(eX) = eu(X), for
every X ∈ su(n).
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VI Representations of Lie algebras : the case of sln(C)

(6) Let X, Y ∈ su(n) be small enough (i.e. close enough to 0) so that log(eXeY ) and
log(eu(X)eu(Y )) make sense. By the Baker-Campbell-Hausdorff formula (theorem VI.6.2),
we have

log(eXeY ) =
∑
n≥1

Fn(X, Y ),

with the Fn Lie polynomials in two noncommuting indeterminates. As u is a map of Lie
algebras, u(Fn(X, Y )) = Fn(u(X), u(Y )) for every n. So

u(log(eXeY )) = log(eu(X)eu(Y )),

so ρ(eXeY ) = ρ(eX)ρ(eY ). In other words, if g and h are in a small enough neighbourhood
of In in SU(n), then ρ(gh) = ρ(g)ρ(h).

(7) Let γ : R→ GLn(C) be an analytic map (i.e. locally given by a converging power series),
and assume that γ(R) ⊂ SU(n). Then I claim that ρ ◦ γ : R→ GLm(C) is also analytic.

To prove this, let t0 ∈ R, write g0 = γ(t0) and pick X0 ∈ su(n) such that eX0 = g0. Then,
because d expX0

is invertible (see proposition VI.3.3), there exist neighbourhoods U (resp.
V ) of X0 (resp. g0) in su(n) (resp. SU(n)) such that exp induces a bijection U ∼→ V ,
and because exp is analytic and has invertible differential everywhere on U , the inverse
` : V

∼→ U of exp : U
∼→ V is also analytic. Also, by the same proof as in theorem VI.4.7,

after shrinking U and V , we have `(V ∩ SU(n)) = U ∩ su(n).

Now choose ε > 0 such that γ(]t0− ε, t0 + ε[) ⊂ V . Then on ]t0− ε, t0 + ε[, ρ ◦ γ is equal
to exp ◦u ◦ ` ◦ γ, which is analytic.

(8) Let X, Y ∈ su(n). Consider the maps c1, c2 : R → GLm(C) defined by
c1(t) = ρ(etXetY ) and c2(t) = ρ(etX)ρ(etY ). By (7), c1 and c2 are both analytic.
By (6), c1(t) = c2(t) if |t| is small enough. By the identity theorem, c1 = c2, 9 so
ρ(eXeY ) = c1(1) = c2(1) = ρ(eX)ρ(eY ).

Finally, by (3), we see that ρ is a morphism of groups.

(9) In a neighbourhood of In in SU(n), ρ is equal to exp ◦u ◦ log, hence it is continuous. As ρ
is a morphism of groups, it is continuous everywhere.

Remark VI.8.3. Let G be a closed connected subgroup of GLn(C) and g = Lie(G). Let
ρ : G → GLm(C) be a continuous representation of G on Cm, and let u = dρ : g → glm(C).
Let W be a complex subspace of Cm. Then W is stable by G if and only if it is stable by g.

Proof. Suppose that W is stable by g. Let X ∈ g. Then u(X)d(W ) ⊂ W for every d ∈ Z≥0, so,
as W is closed in Cm, eu(X)(W ) ⊂ W , i.e. ρ(eX)(W ) ⊂ W . As exp(g) generates G, this shows
that W is stable by G.

9See corollary 1.2.6 of Krantz and Parks’s book [19]. Another way to prove this is to observe that c1 and c2, as
real analytic functions on R, both extend to complex analytic functions on a neighbourhood of R in C and to use
the identity theorem for complex analytic functions.
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Conversely, suppose that W is stable by G. Let X ∈ g. Then ρ(etX)(W ) ⊂ W for every
t ∈ R, as t−1(ρ(etx) − In)(W ) ⊂ W for every t 6= 0. As X = limt→0 t

−1(ρ(etX) − In) and W
is closed in Cm, u(X)(W ) ⊂ W .

Corollary VI.8.4. We have bijections

HomC−Lie alg(sln(C), glm(C))
∼→ HomR−Lie alg(su(n), glm(C))

∼← HomGr,cont(SU(n),GLm(C)),

where the first map is given by restriction along the inclusion su(n) ⊂ sln(C) and the second
map is ρ 7−→ dρ.

In particular, using corollary V.3.1.7 of chapter V, we get that every representation of sln(C)
or su(n) on a finite-dimensional complex vector space is semisimple.

Proof. The only thing that we have not yet proved is the fact that the first map is bijective.
This follows from the fact that the obvious map su(n) ⊗R C → sln(C), X ⊗ a 7−→ aX , is an
isomorphism.

Indeed, this map is surjective because if X ∈ sln(C), then X = 1
2
(X −X∗) + i

2
((X +X∗)/i)

with X − X∗, (X − X∗)/i ∈ su(n), and then it is an isomorphism because
dimR(su(n)) = dimC(sln(C)) = n2 − 1.

VI.9 Some irreducible representations of SU(n)

VI.9.1 The exterior algebra

Definition VI.9.1.1. Let k be a commutative ring and V be a k-module. Remember from def-
inition VI.2.1.1 the tensor algebra T ∗V =

⊕
n≥0 T

nV , where T nV = V ⊗n for n ≥ 1 and
T 0V = k. For every n ≥ 0, let In be the submodule of T nV generated by all elements of the
form v1 ⊗ · · · ⊗ vn such that there exists i ∈ {1, . . . , n − 1} with vi = vi+1. Let I =

⊕
n≥0 In.

It is clear that the product of T ∗V sends In ⊗ TmV and T nV ⊗ Im to In+m, for every n,m ≥ 0.
So I is a two-sided ideal of T ∗V , and we can form the quotient

∧∗ V = T ∗V/I , which is called
the exterior algebra of V . We have

∧∗ V =
⊕

n≥0 ∧nV , where ∧nV = T nV/In. For every n,
∧nV is called the nth exterior power of V .

We usually denote the product in
∧∗ V by ∧ (instead of ⊗).

Remark VI.9.1.2. Note that if x, y ∈ V , then x ∧ x = y ∧ y = (x+ y) ∧ (x+ y) = 0 (in
∧∗ V ),

so x ∧ y = −y ∧ x. As the symmetric group Sn is generated by the transpositions (i, i+ 1), we
conclude that, for all v1, . . . , vn ∈ V and σ ∈ Sn,

(∗) vσ(1) ∧ · · · ∧ vσ(n) = sgn(σ)v1 ∧ · · · ∧ vn.
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Let W be another k-module.

Definition VI.9.1.3. We say that a multilinear map u : V n → W is alternating if, for every
v = (v1, . . . , vn) ∈ V n, if there exists i ∈ {1, . . . , n− 1} such that vi = vi+1, then f(v) = 0.

Remember that Homk(T
nV,W ) is the k-module of multilinear maps V n → W . By the very

definition of ∧nV , Homk(∧nV,W ) ⊂ Homk(T
nV,W ) is the submodule of alternating maps.

Now suppose that V is free of finite rank over k, and choose a basis (e1, . . . , ed) of V .

Proposition VI.9.1.4. For every n ≥ 0, the k-module ∧nV is free of finite rank, and a basis of
∧nV is given by the family ei1 ∧ · · · ∧ ein , with 1 ≤ i1 < · · · < in ≤ d.

In particular, ∧nV = 0 if n ≥ d+ 1.

Proof. Fix n ≥ 0, let A be the set of (i1, . . . , in) ∈ Zd such that 1 ≤ i1 < · · · < in ≤ d, and, for
every α = (i1, . . . , in) ∈ A, let eα = ei1 ∧ · · · ∧ ein .

(A) The family (eα)α∈A is generating : We know that the family (ei1 ⊗ · · · ⊗ ein)i1,...,in∈{1,...,d}
is a basis of T nV , so the family (ei1 ∧ · · · ∧ ein)i1,...,in∈{1,...,d} generates ∧nV . By formula
(*) above, the family (ei1 ∧ · · · ∧ ein)i1,...,in∈{1,...,d},i1≤···≤in also generates ∧nV . But by the
definition of ∧nV , ei1 ∧ · · · ∧ ein = 0 if there exists r ∈ {1, . . . , n− 1} such that ir = ir+1.
So we are left with only the eα, α ∈ A.

(B) The family (eα)α∈A is linearly independent : Let (e∗1, . . . , e
∗
d) be the basis of V ∗ dual to

(e1, . . . , ed). Let α = (i1, . . . , in) ∈ A. We define a multilinear map e∗α : V n → k by the
following formula : For every (v1, . . . , vn) ∈ V n,

e∗α(v1, . . . , vn) =
∑
σ∈Sn

sgn(σ)
n∏
r=1

e∗ir(vσ(r)).

This is obviously multilinear, and I claim that it is alternating. Indeed, let
(v1, . . . , vn) ∈ V n, suppose that we have r ∈ {1, . . . , n − 1} such that vr = vr+1, and let
τ be the transposition (r, r + 1) ∈ Sn. Choose a subset S of Sn such that Sn = S t Sτ .
For every σ ∈ Sn, we have

n∏
s=1

e∗is(vσ(s)) =
n∏
s=1

e∗is(vστ(s)),

hence

e∗α(v1, . . . , vn) =
∑
σ∈S

sgn(σ)
n∏
s=1

e∗is(vσ(s))−
∑
σ∈S

sgn(σ)
n∏
s=1

e∗is(vσ(s)) = 0.

As e∗α is alternating, it gives a linear map ∧nV → k, that we still denote by e∗α. Now note
that by definition of e∗α, we have e∗α(eα) = 1 and e∗α(eβ) = 0 for every β ∈ A− {α}.

This shows that the family (eα)α∈A is linearly independent.
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Remark VI.9.1.5. Suppose that g is a Lie algebra over k and that we have a representation of g
on V . Then the induced representation on T nV (defined in remark VI.5.6) obviously has In as a
subrepresentation, so we get a representation of g on ∧nV .

VI.9.2 Exterior power representations

Definition VI.9.2.1. The standard representation of sln(C) is by definition the inclusion
sln(C) ⊂ gln(C). The corresponding representation of SU(n) is the inclusion SU(n) ⊂ GLn(C),
and it is also called the standard representation. For every d ∈ Z≥0, consider the induced repre-
sentations of SU(n) and sln(C) on Ed := ∧d(Cn).

Note that the standard representation of sln(C) also integrates to a continuous representation of
SLn(C) (given by the inclusion SLn(C) ⊂ GLn(C)), so the representation SU(n) on Ed extends
to a continuous representation of SLn(C), whose differential is the representation of sln(C) that
we just defined.

Proposition VI.9.2.2. For every 0 ≤ d ≤ n, the representation Ed is irreducible.

Remark VI.9.2.3. We know that Ed = 0 for d > n.

Proof. Let (e1, . . . , en) be the standard basis of Cn. For 1 ≤ i ≤ n − 1, we denote by Xi the
matrix in Mn(C) defined by

Xiej =

{
ei if j = i+ 1
0 otherwise

(that is, Xi is the elementary matrix often denoted by Ei,i+1). Then Xi ∈ sln(C) (because
Tr(Xi) = 0). If 1 ≤ i1 < · · · < id ≤ n, then

Xi(ei1∧· · ·∧eid) =

{
ei1 ∧ · · · ∧ eir−1 ∧ eir−1 ∧ eir+1 ∧ · · · ∧ eid if i = ir − 1 and ir−1 < ir − 1
0 otherwise.

So if
X = (XdXd+1 . . . Xn−1)(Xd+1Xd+2 . . . Xn−2) . . . (X1X2 . . . Xn−d),

where we take the product in the universal enveloping algebra U of sln(C) (which also acts on
Ed), then, for 1 ≤ i1 < · · · < id ≤ n,

X(ei1 ∧ . . . eid) =

{
e1 ∧ · · · ∧ ed if ir = n− d+ r for every r
0 otherwise.

Now let’s prove that Ed is irreducible. Let V be a nonzero subrepresentation of Ed, choose
v ∈ V − {0}, write

v =
∑

1≤i1<···<id≤n

ai1,...,idei1 ∧ · · · ∧ eid ,
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and choose 1 ≤ j1 < · · · < jd ≤ n such that aj1,...,jd 6= 0. Let g ∈ SLn(C) such that, for every
r ∈ {1, . . . , d}, g(ejr) = ±en−d+r. Then gv ∈ V , and the coefficient of en−d+1 ∧ · · · ∧ en in gv
is nonzero, so we may assume that jr = n− d+ r. We may also assume that an−d+r,...,n−d = 1.
If we apply X to v, we also get an element of V . By the calculation above, Xv = e1 ∧ · · · ∧ ed,
so e1 ∧ · · · ∧ ed ∈ V . Now take 1 ≤ i1 < · · · < id ≤ n. Pick an element g of SLn(C) such that
g(er) = ±eir for every r ∈ {1, . . . , d}. Then g(e1 ∧ · · · ∧ ed) = ±ei1 ∧ · · · ∧ eid ∈ V . We have
seen that V contains a basis of Ed, so V = Ed.

VI.10 Characters

We now introduce a new incarnation of the character of a representation.

Definition VI.10.1. If G is a topological group, let Rc(G) be the quotient of the free module on
the generators [V ], where V is a continuous representation of G on a finite-dimensional C-vector
space, by the relations [V ] = [V ′] + [V ′′], for every exact sequence 0→ V ′ → V → V ′′ → 0 of
continuous finite-dimensional representations of G. We put a multiplication on Rc(G) by setting
[V ][W ] = [V ⊗W ]. This is a commutative ring, called the (continuous) representation ring of
G.

The proof of the following proposition is exactly the same as the proof of the similar proposi-
tion I.4.4 of chapter I for finite length modules over a ring.

Proposition VI.10.2. As in definition V.5.1, let’s denote by Ĝ the set of isomorphism classes of
continuous irreducible representations of G on finite-dimensional C-vector spaces.

Then Rc(G) is the free Z-module on the [V ], V ∈ Ĝ.

Let Tc be the subgroup of diagonal matrices in SU(n). So Tc is canonically isomorphic
to {(u1, . . . , un) ∈ U(1)n|u1 . . . un = 1}. We make the group W := Sn act on Tc by
σ(u1, . . . , un) = (uσ(1), . . . , uσ(n)).

Let D = {(a, . . . , a) ∈ Zn, a ∈ Z}, and let X∗ = Zn/Z. We make W act on Zn by
σ(a1, . . . , an) = (aσ(1), . . . , aσ(n)). Note that W preserves D, hence we get an action of W on
X∗.

Note that, as Tc is a commutative compact group, T̂c 10 is just the set of continuous group
morphisms Tc → C× by problem VII.5.5.

Then the usual multiplication of functions makes T̂c a commutative (discrete) group.

10The set of isomorphism classes of continuous irreducible representations of Tc, see definition V.5.1.
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Define a map Zn → T̂c by sending (a1, . . . , an) ∈ Zn to (u1, . . . , un) 7−→ ua1
1 . . . uann . This is

a morphism of groups and it sends D to 1, so it descends to a morphism of groups ι : X∗ → T̂c,
which is clearly an isomorphism. Also, for every a ∈ X∗, u ∈ Tc and σ ∈ W ,

ι(σa)(u) = ι(a)(σu).

Set G = SU(n).

For every continuous finite-dimensional representation V of G, the restriction of V to Tc is a
continuous finite-dimensional representation of Tc, hence a direct sum of elements of T̂c. Using
the isomorphism T̂c ' X∗, we can see χV |Tc as an element of Z[X∗] (the group algebra of X∗)
with nonnegative coefficients. This construction goes to the quotient in Rc(G) and induces a
morphism of groups χ : Rc(G)→ Z[X∗].

Theorem VI.10.3. (i) χ is a morphism of rings.

(ii) χ is injective.

(iii) The image of χ is contained in Z[X∗]W , where W acts on Z[X∗] through its action on X∗

(and Z[X∗]W is the space of invariants of W ).11

Proof. Point (i) just follows from the formula χV⊗W = χV χW (see proposition II.1.1.3 of chap-
ter II).

Point (ii) follows from the Schur orthogonality relations (corollary V.3.3.3 of chapter V) as
in the case of finite groups. Indeed, these relations imply that (χV )V ∈Ĝ is an orthonormal
family in L2(G), hence linearly independent. Note that all the elements in this family are
in C (G)G (where C (G) is the set of continuous functions G → C, and G acts on C (G) by
(g · f)(x) = f(gxg−1)). As every element of G is conjugate in G to an element of Tc,12 the re-
striction map C (G) → C (Tc) induces an injection C (G)G → C (Tc), so the family (χV |Tc)V ∈Ĝ
is linearly independent in C (Tc). Now using the linear independence of characters of irreducible
representations of Tc, which follows from the Schur orthogonality relations, and the isomorphism
ι : X∗

∼→ T̂c, we can identify Z[X∗] to a subring of C (Tc), and all the χV |Tc , V ∈ Ĝ, are in this
subring, and of course they still form a linearly independent family. As χV |Tc ∈ Z[X∗] is just
χ([V ]), and as ([V ])V ∈Ĝ is a basis of Rc(G) over Z, this gives the result.

To prove (iii), take a finite-dimensional representation V of G and an element σ of W = Sn.
Then the corresponding permutation matrix A ∈ GLn(C) (defined by Aij = 1 if j = σ(i) and
0 otherwise) is in U(n), so there exists c ∈ U(1) such that g := cA ∈ G. By definition of the
permutation matrix, for every u = diag(u1, . . . , un) ∈ Tc, gug−1 = AuA−1 = σu, hence

χV (σu) = χV (gug−1) = χV (u).

By the compatibility of ι : X∗
∼→ T̂c with the action of W (established above), this shows that

χ([V ]) ∈ Z[X∗]W .
11It’s actually a subring.
12See (2) of the proof of theorem VI.8.2, but this should be a lemma.
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Example VI.10.4. Let (e1, . . . , en) be the canonical basis of Zn, and denote by (e1, . . . , en) its
image in X∗. (Not a basis anymore.) To avoid horrible confusions, for every λ ∈ X∗, we denote
by cλ the corresponding element of Z[X∗].

If V is the representation Ed of section 9.2, then

χ([V ]) =
∑

1≤i1<···<id≤n

cei1+···+eid .

This just follows from proposition VI.9.1.4.

VI.11 Weights

In this section, we still take G = SU(n), and we use the notation of the previous section. All the
representations of G are on complex vector spaces.

Definition VI.11.1. The Bruhat order on Zn is the (partial) order relation defined by : If
a = (a1, . . . , an) and b = (b1, . . . , bn) are in Zn, then a 4 b if and only if a1 ≤ b1,
a1 + a2 ≤ b1 + b2, . . . , a1 + . . . an−1 ≤ b1 + · · ·+ bn−1 and a1 + · · ·+ an = b1 + · · ·+ bn. (Note
the last relation !)

This obviously goes to the quotient and induces an order relation on X∗, still denote by 4.
Also, for every λ1, λ2, µ ∈ X∗,

λ1 4 λ2 ⇒ λ1 + µ 4 λ2 + µ.

Definition VI.11.2. Let V be a continuous finite-dimensional representation of G. Then the set
of weights of V , denoted by Λ(V ), is the subset of λ ∈ X∗ such that the coefficient of cλ in
χ([V ]) is nonzero. That coefficient is called the multiplicity of the weight λ in V .

If V is irreducible, we say that λ ∈ Λ(V ) is a highest weight of V if it’s maximal in Λ(V ) for
the Bruhat order. 13

Finally, we let Λ+ ⊂ X∗ be the subset of elements that have a lift (a1, . . . , an) in Zn such that
a1 ≥ · · · ≥ an. (Then this is true for every lift.)

Remark VI.11.3. The root system Φ of G (or LieG) is by definition the set of nonzero weights
of the adjoint representation of G on LieG (i.e. the representation of G corresponding to
ad : Lie(G) → gl(LieG)). It plays an important role in understanding weights in general
and has nice properties. For example, every weight in Φ has multiplicity 1 and Φ contains a basis
of X∗.
13This is not the correct definition of highest weights for general (possibly infinite-dimensional) representations

of sln(C), but it is equivalent to the correct definition for irreducible finite-dimensional representations. See
definition VI.14.1.1 for the correct definition.
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Example VI.11.4. If V = Ed, then the element e1 + · · ·+ ed = (1, . . . , 1, 0, . . . , 0) (with d 1’s)
is the biggest element of Λ(V ) (for the Bruhat order), so it’s the highest weight of V . We denote
this element of Λ+ by $d. (This is called a fundamental weight of G or LieG.)

Theorem VI.11.5. (i) For every λ ∈ Λ+, there exists a unique (up to isomorphism) irre-
ducible (continuous finite-dimensional) representation Wλ of LieG (or G) such that λ is
the highest weight of Wλ, and every irreducible representation of LieG is of that form.
This gives a bijection Λ+ ∼→ Ĝ.

(ii) The morphism χ : Rc(G)→ Z[X∗]W is an isomorphism.

Remark VI.11.6. This theorem (mutatis mutandis) stays true in more general situations (for rep-
resentations of the Lie algebra), but we have to use things like the action of the universal en-
velopping algebra of LieG on a representation of G (and the Poincaré-Birkhoff-Witt theorem
about this universal enveloping algebra) to show that every irreducible representation V has a
unique highest weight, which is bigger than all the other weights of V . And then it takes quite
a bit of work to construct the Wλ (and especially to show they’re finite-dimensional), and then
we still have to say for which λ the representation Wλ lifts to a representation of the group.
But here, because everything is explicit, we can just cheat (and we’ve already seen that lifiting
representations to the group is automatic in our case).

Proof. First let’s prove that, for every λ ∈ Λ+, there exists some irreducible representation Wλ

of G that has λ as its unique highest weight. Choose a lift (a1, . . . , an) of λ in Zn, and set
di = ai − ai+1 for every i ∈ {1, . . . , n}. Note that the di are nonnegative (because λ ∈ Λ+)
and do not depend on the lift. Consider the representation V = E⊗d1

1 ⊗C · · · ⊗C E
⊗dn−1

n−1 of G.
Then the weights of V are the d1λ1 + · · ·+ dn−1λn−1, where λi is a weight of Edi for every i. In
particular, Λ(V ) has a biggest element, which is d1$1+· · ·+dn−1$n−1 = λ, and this element has
multiplicity 1. Now if V =

⊕
i∈I Vi is the decomposition of V into irreducible representations,

then Λ(V ) =
⋃
i∈I Λ(Vi), so one (and only one) of the Vi must have λ as a weight. We take Wλ

equal to this Vi. Note that all the weights of Wλ are 4 λ (because this is true for elements of
Λ(V ), and Λ(Wλ) ⊂ Λ(V )). In particular, if λ 6= µ, we cannot have Wλ ' Wµ.

For every λ ∈ X∗, we define an element dλ ∈ Z[X∗] by

dλ =
∑

σ∈W/Wλ

cσλ =
∑
µ∈Wλ

cµ,

where Wλ = {σ ∈ W |σ(λ) = λ}. Then dλ is obviously in Z[X∗]W , and the family (dλ)λ∈Λ+ is
a basis of Z[X∗]W over Z. (Simply because Λ+ is a set of representatives of X∗/W .)

Let R be the subgroup of Rc(G) generated by the [Wλ], λ ∈ Λ+. This is a free group
with basis ([Wλ])λ∈Λ+ , because Wλ 6' Wµ if λ 6= µ. Let ϕ be the restriction of the injection
χ : Rc(G)→ Z[X∗]W to R. For every λ ∈ Λ+, we have

ϕ([Wλ]) = dλ +
∑
µ≺λ

aλµdµ,
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with aλµ ∈ Z. This means that, in the given bases of R and Z[X∗]W , the (infinite) matrix of ϕ is
lower triangular with 1’s one the diagonal, and this implies that ϕ is invertible. In particular, ϕ is
surjective. As ϕ is the composition of the injective maps χ and R ⊂ Rc(G), this means that χ is
also surjective, hence an isomorphism (giving (ii)), and that R = Rc(G) (giving (i)).

Remark VI.11.7. It follows easily from the construction ofWλ given in the theorem that we have,
for all λ, µ ∈ Λ+,

Wλ ⊗Wµ = Wλ+µ ⊕
⊕
ν≺λ+µ

W⊕cν
ν .

Indeed, this is already true for the tensor product of the bigger representations of the form
V = E⊗d1

1 ⊗C · · · ⊗C E
⊗dn−1

n−1 that are used in the proof.

Remark VI.11.8. In general, it is not so easy to write the irreducible representation of G with
highest weight λ explicitely. 14 But if λ = (d, 0, . . . , 0), then Wλ is simply the dth symmetric
power of the standard representation. (See problem VII.6.14.)

VI.12 More about roots and weights

VI.12.1 Weights of infinite-dimensional representations

Let t denote the subspace of diagonal matrices in g := sln(C); it’s a commutative Lie subalgebra,
equal to {(x1, . . . , xn) ∈ Cn|x1 + · · · + xn = 0}. We write t∗ for the dual space of t. Note
that the obvious map Lie(Tc) ⊗R C → t (sending X ⊗ a to aX) is an isomorphism. So for
every element ρ of T̂c, the complexification of dρ is a map of Lie algebras t → C; as t is
commutative, this is just an element of t∗. Remember that we identified T̂c toX∗ (before theorem
VI.10.3). Using this, the map above sends the class of (a1, . . . , an) ∈ Zn in X∗ to the linear map
(x1, . . . , xn) 7−→ a1x1 + . . . anxn on t. In particular, it is injective, and we will use it to identify
t∗ and X∗ ⊗Z C.

Let V be a representation of sln(C) on a C-vector space. In this section, we do not automati-
cally assume that representations are finite-dimensional.

Definition VI.12.1.1. Let λ ∈ t∗. The weight space of λ in V is

V (λ) = {v ∈ V |∀X ∈ t, X · v = λ(X)v}.

Any nonzero element of V (λ) is said to be of weight λ. We say that λ is a weight of V if
V (λ) 6= 0, and then its multiplicity is dimC V (λ).

Remark VI.12.1.2. If λ ∈ X∗ and V is a finite-dimensional, these definitions agree with the ones
in definition VI.11.2.
14But see problem VII.7.4.
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VI.12.2 Roots

Remember that the set Φ of roots of g is the set of nonzero weights of g in its adjoint representa-
tion on itself. An easy calculation shows that, for λ ∈ t∗,

g(λ) =


t if λ = 0
CEij if λ = ei − ej with i 6= j
0 otherwise,

where Eij ∈Mn(C) is the matrix with (i, j)-entry equal to 1 and all the other entries equal to 0.

So Φ = {ei−ej, i 6= j}. The set of positive roots is by definition Φ+ := {ei−ej, i < j} (these
are the weights with weight space contained in the space of strictly upper triangular matrices),
and the set of simple roots is ∆ = {ei − ei+1, 1 ≤ i ≤ n− 1}. Note that Φ = Φ+ t (−Φ+) and
that ∆ is a basis of t∗.

If α = ei − ej ∈ Φ, we write Xα = Eij (it’s a generator of the weight space of α), Yα = X−α
and Hα = Eii − Ejj , and we let sα be the C-subspace of g generated by Xα, Yα and Hα. It’s
clear that sα is actually a Lie subalgebra, and that it is isomorphic to sl2(C).

VI.13 The Weyl character formula

For every λ ∈ Λ+, let χλ = χ([Wλ]) ∈ Z[X∗]W . We write X∗Q = X∗ ⊗Z Q and
ρ = 1

2

∑
α∈Φ+ α ∈ X∗Q. Using the isomorphism X∗ = Zn/Z(1, . . . , 1) defined above, we get

ρ = (
n− 1

2
,
n− 3

2
, . . . ,

1− n
2

).

Definition VI.13.1. The Weyl denominator is

∆ = cρ
∏
α∈Φ+

(1− c−α) ∈ Z[X∗Q].

It follows easily from the definition that ∆ is not a zero divisor in Z[X∗Q] (in fact, it is invertible
in a suitable “completion” of Z[X∗Q], see example VI.14.4.3 below), and that

∆ =
∏
α∈Φ+

(cα/2 − c−α/2).

Theorem VI.13.2. In Z[X∗Q], we have an equality

∆χλ =
∑
σ∈W

sgn(σ)cσ(λ+ρ).
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VI.14 Proof of the Weyl character formula

This requires a little bit more knowledge of the theory of highest weights.

VI.14.1 Highest weights

Let V be a representation of g (not necesarily finite-dimensional). An easy calculation shows
that, if λ ∈ t∗ and α ∈ Φ, then Xα · V (λ) ⊂ V (α + λ).

Definition VI.14.1.1. We say that v ∈ V is a highest weight vector if it’s a weight vector of
some weight (in particular, v 6= 0) and Xα · v = 0 for every positive root α. We say that λ ∈ t∗

is a highest weight of V if V has a highest weight vector of weight λ. Finally, we say that V
is a highest weight representation of g if there exists a highest weight vector v ∈ V such that
V = g · v.

Let b (resp. n) be the subspace of upper triangular (resp. strictly upper triangular) matrices
in g. These are both Lie subalgebras, n is an ideal of b, and the quotient b/n is canonically
identified to t. Note that the Xα for α ∈ Φ+ form a basis of n. So a weight vector v of V is a
highest weight vector if and only n ·v = 0. In other words, a nonwero element v of V is a highest
weight vector of weight λ ∈ t∗ if and only if, for every X ∈ b, X · v = λ(X)v, where we used
the isomorphism b/n = t to see λ as a Lie algbera morphism b→ C.

This observation (and the fact that g is generated by t and the Xα, α ∈ Φ, and that
Xα · V (λ) ⊂ V (α + λ) for every α ∈ Φ and λ ∈ t∗) immediately implies the following re-
sult :

Proposition VI.14.1.2. If V is a highest weight representation of highest weight λ, then V is
generated by weight vectors, the weights of V are all of the form λ −

∑
α∈Φ+ nαα with the

nα ≥ 0, and the multiplicity of λ in V is 1.

VI.14.2 The Poincaré-Birkhoff-Witt theorem and the Casimir
element

Let (x1, . . . , xN) (N = n2 − 1) be any basis of g as a C-vector space. By problem VII.6.15,
the monomials xr11 . . . xrNN , r1, . . . , rN ∈ Z≥0, generate the universal enveloping algebra Ug as
a C-vector space. By problem VII.6.16, these elements are actually linearly independent in Ug
(because their images in Ugln(C) are linearly independent), so they form a basis of Ug. This
fact, which is true for a general Lie algebra over any field (or even over a commutative ring, as
long as we assume that the Lie algebra is free as a module over this ring) is called the Poincaré-
Birkhoff-Witt theorem and proved, for example, in theorem 4.3 of chapter III of part I of Serre’s
book [31].
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Let n− be the subspace of strictly lower triangular matrices in g. If we apply the Poincaré-
Birkhoff-Witt theorem to the basis {Yα, α ∈ Φ+} ∪ {Hα, α ∈ ∆} ∪ {Xα, α ∈ Φ+} of g, ordered
so that the elements of the first set (who form a basis of n−) are smaller than those of the two
other sets (whose union forms a basis of b), then we see that we have an isomorphism of C-vector
spaces Ug/Ub ' Un−.

Definition VI.14.2.1. The Casimir element of g is the element c of Ug defined by

c =
1

2

∑
α∈∆

H2
α +

∑
α∈Φ

XαYα.

The following fact can be checked by a direct calculation (see problem VII.6.21).

Proposition VI.14.2.2. The element c is central in Ug.

In particular, by Schur’s lemma, the Casimir element acts by a scalar on every irreducible
finite-dimensional representation of g.

Here is another result that makes the Casimir element very useful :

Proposition VI.14.2.3. Let V be a representation of g (not necessarily finite-dimensional) and
v be a highest weight vector of V of weight λ ∈ t∗. Then

c · v = ((λ+ ρ, λ+ ρ)− (ρ, ρ))v,

where ρ = 1
2

∑
α∈Φ+ α as before and (., .) is the symmetric bilinear map t∗ × t∗ → C corre-

sponding to the quadratic form (λ1, . . . , λn) 7−→ 1
2

∑n−1
i=1 (λi − λi+1)2. (Remember that we have

identified t∗ to the quotient Cn/C(1, . . . , 1) = X∗ ⊗Z C by making (λ1, . . . , λn) correspond to
the linear map (x1, . . . , xn) 7−→ λ1x1 + . . . λnxn.)

Proof. Let (λ1, . . . , λn) ∈ Cn be a representative of λ.

If α = ei − ei+1 ∈ ∆, then H2
α · v = (λi − λi+1)2.

If α ∈ −Φ+, then Yα ∈ n, so Yα · v = 0 and XαYα · v = 0.

If α = ei − ej ∈ Φ+, then Xα · v = 0, so

XαYα · v = [Xα, Yα] · v − YαXα · v = Hα · v = (λi − λj)v.

So we get

c · v =

(
1

2

n−1∑
i=1

(λi − λi+1) +
∑

1≤i<j≤n

(λi − λj)

)
v,

which is the desired result.
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VI.14.3 Verma modules

Definition VI.14.3.1. Let λ ∈ t∗. We see λ as a Lie algebra map b → C by using the isomor-
phism b/n = t as before. This gives a representation of b, hence also of Ub, on C, which we ’ll
denote by Cλ. As Ub is a subalgebra of Ug, we can see Ug as a right Ub-module in an obvious
way. The Verma module of highest weight λ is

Vλ = Ug⊗Ub Cλ.

It’s a left Ug-module, hence also a representation of g.

Proposition VI.14.3.2. The representation Vλ is a highest weight representation of g of highest
weight λ.

Let v 6= 0 be vector of Vλ of a weight λ (we know that v is unique up to scaling by the first
sentence). If we chose an ordering α1, . . . , αm of Φ+, then a basis of Vλ (as a C-vector space)
is given by the Y r1

α1 . . . Y
rm
αm v with r1, . . . , rm ∈ Z≥0, and the vector Y r1

α1 . . . Y
rm
αm v has weight

λ− (r1α1 + . . . rmαm).

Proof. The vector 1⊗1 ∈ Ug⊗UbCλ = Vλ is clearly a highest weight vector of weight λ, unless
it is 0. It also generates the Ug-module Vλ, so it cannot be 0, because Vλ 6= 0. This proves the
first sentence. The rest follows from the Poincaré-Birkhoff-Witt theorem, applied to the same
basis of g as in VI.14.2.

Proposition VI.14.3.3. Let V be a highest weight representation of g of highest weight λ. Then
we have a surjective g-equivariant map Vλ → V .

It’s easy to see that this map is unique up to scaling. (Using the fact that λ has multiplicity 1
in V .) So in a way the Verma module is the universal highest weight representation of highest
weight λ.

Proof. Let v be a weight λ vector of V . By the discussion of highest weights in VI.14.1, b acts
on v through the map λ : b → C, so we have a Ub-linear map Cλ → V sending 1 to v. This
extends to a Ug-linear map Vλ → V by the universal property of the tensor product, and this map
is surjective because V = g · v.

In particular, if λ ∈ Λ+, we get a surjective map Vλ → Wλ. In fact :

Proposition VI.14.3.4. (i) If V is a highest weight representation of g, then it has a unique
irreducible quotient.
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(ii) If V is an irreducible highest weight representation of highest weight λ ∈ t∗, then it is
isomorphic to the quotient of Vλ given by (i).

We denote the unique irreducible quotient of Vλ by Wλ, even when λ 6∈ Λ+. By (ii), this does
not conflict with the notation introduced previously in the case λ ∈ Λ+.

In fact, this construction generalizes to other semisimple Lie algebras and gives a way to
construct the irreducible highest weight representations. The hard part in general is showing that
Wλ is finite-dimensional if and only if λ ∈ Λ+.

Proof. Note that, by the previous two propositions, V (hence also all its subquotients) is gener-
ated by weight vectors.

Let λ be the highest weight of V , and let W be the sum of all the subrepresentations of V that
don’t contain a vector of weight λ. If W ′ is any proper subrepresentations of V , it’s generated by
weight vectors by the observation above, and none of the weights of W ′ is λ (because λ has mul-
tiplicity 1 in V ), and so W ′ ⊂ W . So W is actually the sum of all the proper subrepresentations
of V .

This implies easily that V/W is irreducible. Indeed, let Z be a proper subrepresentation of
V/W . Then so the inverse image of Z in V is a proper subrepresentation, hence contained in W ,
so Z = 0.

Now letW ′ be another subrepresentation of V such that V/W ′ is irreducible. Then V/W ′ 6= 0,
so W ′ is proper, so W ′ ⊂ W . As V/W ′ is irreducible, this implies that W ′ = W (otherwise
W/W ′ would be a nonzero proper subrepresentation).

Finally, let’s prove (ii). If V is as in (ii), then, by the previous proposition, there exists a
surjective g-equivariant map Vλ → V , so V is isomorphic to an irreducible quotient of Vλ. Then
the uniqueness in (i) implies the conclusion.

VI.14.4 Characters of Verma modules

If V is a (possibly infinite-dimensional) representation of g, we would like to define its charac-
ter as

∑
λ∈t∗ dim(V (λ))cλ, which would recover the definition of χ([V ]) for finite-dimensional

representations. But that sum won’t be in Z[X∗] or even Z[t∗] in general because the weight
spaces V (λ) could be infinite-dimensional, and the sum could also be infinite. We can make the
first problem go away by imposing conditions on V (for example, that it be a highest weight
representation), and we make the second problem go away by enlarging the target ring.

First, let’s extend the Bruhat order from X∗ to t∗.

Definition VI.14.4.1. If λ, µ ∈ t∗, we say that λ 4 µ if µ − λ =
∑

α∈Φ+ nαα, with the nα in
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Z≥0. (This is of course a very restrictive condition.) It’s easy enough to see that this gives back
the previous definition if λ and µ are in X∗.

Definition VI.14.4.2. For every λ ∈ t∗, let

Cλ = {µ ∈ t∗|µ 4 λ} = {λ−
∑
α∈Φ+

nαα, nα ∈ Z≥0}.

We define A to be the set of formal sums
∑

λ∈t∗ aλcλ, where aλ ∈ Z, such that there exists
λ1, . . . , λr ∈ t∗ such that, if λ 6∈ Cλ1 ∪ · · · ∪ Cλr , then aλ = 0. This contains Z[X∗], and it’s
easy to see that the formulas defining the addition and multiplication on Z[X∗] still make sense
for elements of A, and that this makes A into a commutative ring.

Example VI.14.4.3. If α ∈ Φ+, then
∑

r≥0 c−rα is an element of A. As it is obviously the
inverse of 1 − c−α, this show that 1 − c−α is invertible in A for every α ∈ Φ+, hence so is the
Weyl denominator ∆ introduced in section 13. In particular, this gives a proof of the fact that ∆
is not a zero divisor in Z[X∗Q].

Proposition VI.14.4.4. (i) Let V be a highest weight representation of g. Then
χV :=

∑
λ∈t∗ dimC(V (λ))cλ is an element of A.

(ii) If V = Vλ, then
χV = cλ

∏
α∈Φ+

(1− c−α)−1 = ∆−1cλ+ρ.

Note that we are asserting in particular that all the weight spaces of V are finite-dimensional.

Definition VI.14.4.5. If V is a highest weight representation of g, we call the χV defined above
the character of V . (Hence the notation.)

Remark VI.14.4.6. The character χV does not determine V in general, because V has no reason
to be a semisimple representation.

Proof of the proposition. Let λ be the highest weight of V . We have seen that there exists a
surjective g-equivariant map Vλ → V . Since (ii) implies that dimC(V (µ)) is finite and equal to 0
unless µ 4 λ, it is enough to prove (ii).

So let’s assume that V = Vλ. We have seen in proposition VI.14.3.2 that the Poincaré-
Birkhoff-Witt theorem gives a basis of Vλ : Choose a highest weight vector v in Vλ, and an
ordering α1, . . . , αm of Φ+. Then the Y r1

α1
. . . Y rm

αm v for r1, . . . , rm ∈ Z≥0 form a basis of Vλ, and
each Y r1

α1
. . . Y rm

αm v is of weight λ−
∑m

i=1 riαi. This means that for every µ ∈ t∗,

dimC(V (µ)) = |{(r1, . . . , rm) ∈ Zm≥0|µ = λ− (r1α1 + · · ·+ rmαm)}|.
This is precisely the coefficient of cλ−µ in∏

α∈Φ+

(1− c−α)−1 =
∏
α∈Φ+

∑
r≥0

c−rα,

which proves the result. (The second equality follows directly from the definition of ∆.)
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VI.14.5 Jordan-Hölder series of Verma modules

We would now like to relate the characters of Vλ and Wλ, at least when λ ∈ X∗.
Proposition VI.14.5.1. Let V be a highest weight representation of g of highest weight λ. Sup-
pose that λ ∈ X∗.

Then V has a filtration V = V0 ⊃ V1 ⊃ V2 ⊃ . . . such that, for every r, Vr/Vr+1 is of the
form Wµ, with µ 4 λ and (µ + ρ, µ + ρ) = (λ + ρ, λ + ρ). (The pairing (., .) was defined in
proposition VI.14.2.3.)

Actually this result is still true without the assumption on λ, but it’s a bit harder to prove. 15

Proof. Let S be the set of µ ∈ X∗ such that (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ). The last condition
defines a compact subset of X∗ ⊗Z R (since (., .) is positive definite on X∗ ⊗Z R). Since X∗ is
discrete in X∗ ⊗Z R, the set S is finite. Let

d(V ) =
∑
µ∈S

dimC V (µ).

We have seen that the V (µ) are finite-dimensional, so d(V ) is finite. We prove the proposition
by induction on d(V ).

If V is irreducible,we are done. Otherwise, it contains a proper nonzero g-subrepresentation
W . Since V is generated by weight vectors, so is W , so W contains at least one highest weight
vector v. 16 Let µ be the weight of v. After shrinking W , we may assume that W = g · v, so that
W is a highest weight representations of highest weight µ. Now by proposition VI.14.2.3, the
Casimir element c ∈ Ug acts by (λ+ ρ, λ+ ρ)− (ρ, ρ) on V , and by (µ+ ρ, µ+ ρ)− (ρ, ρ) on
W . Since W ⊂ V , (λ+ ρ, λ+ ρ) = (µ+ ρ, µ+ ρ). Hence W and V/W are both highest weight
representations, and d(V/W ) and d(W ) are both < d(V ). If d(V ) = 1, this gives a contradiction
and shows that V had to be irreducible (and hence we’re done). If d(V ) > 1, this shows that we
can conclude by applying the induction hypothesis to V/W and W .

Let’s write χλ = χWλ
and χ′λ = χVλ .

Corollary VI.14.5.2. There exist integers aλµ ∈ Z such that

χλ = χ′λ +
∑
µ≺λ

(µ+ρ,µ+ρ)=(λ+ρ,λ+ρ)

aλµχ
′
µ,

for every λ ∈ X∗.
15See section 24.2 of Humphreys’s book [15].
16Take any weight vector v in W , say of weight µ. If Xα · v = 0 for every α ∈ Φ+, then v is a highest weight

vector and we are done. Otherwise, replace v by a nonzero Xα · v. This will be a weight vector of weight µ+α,
and we apply the same procedure to it. This has to end after a finite number of steps, because all the weights of
W are 4 λ.
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Proof. Let’s write Dλ for the set of µ ∈ t∗ such that µ ≺ λ and (µ+ ρ, µ+ ρ) = (λ+ ρ, λ+ ρ).
We have seen in the proof of proposition VI.14.5.1 that this is a finite set if λ ∈ X∗. By this
proposition (and the fact that λ has multiplicity 1 in Vλ), we know that there exists nonnegative
integers bλµ such that

χ′λ = χλ +
∑
µ∈Dλ

bλµχµ.

Inverting these relations gives the result.

VI.14.6 End of the proof of the Weyl character formula

Let λ ∈ Λ+. By corollary VI.14.5.2 and the calculation of the χ′µ in proposition VI.14.4.4, we
know that there exists relatives integers aµ such that aλ = 1 and

∆χλ =
∑
µ∈Dλ

aµcµ+ρ,

where Dλ is the set of µ ∈ X∗ such that µ 4 λ sand (µ + ρ, µ + ρ) = (λ + ρ, λ + ρ). As in the
proof of proposition VI.14.5.1, Dλ is finite (because it’s the intersection of a compact subset and
a discrete subset of X∗ ⊗Z R).

Let σ ∈ W . We already know that σ(χλ) = χλ. On the other hand, if α = ei− ej is a positive
root (i.e. if i < j), then σ(α) = eσ(i) − eσ(j) is a root, and it’s positive if and only if σ(i) < σ(j).
As

∆ =
∏
α∈Φ+

(cα/2 − c−α/2),

this shows that σ(∆) = sgn(σ)∆, hence σ(∆χλ) = sgn(σ)∆χλ, hence, for every µ ∈ Dλ, if
σ(µ+ ρ) = µ′ + ρ, then aµ = sgn(σ)aµ′ .

In particular,
∆χλ =

∑
σ∈W

sgn(σ)cσ(λ+ρ) +R,

with R ∈ Z[X∗Q]. To finish the proof, we have to show that R = 0.

If R 6= 0, there exists µ ∈ Dλ such that aµ 6= 0 and µ+ ρ 6∈ W (λ+ ρ). After replacing µ+ ρ
by σ(µ+ ρ) for some σ ∈ W , we may assume that µ+ ρ is dominant and not equal to λ+ ρ. As
µ 4 λ, we can write

(λ+ ρ)− (µ+ ρ) =
∑
α∈Φ+

nαα,

with nα ∈ Z≥0. As (λ+ ρ, λ+ ρ) = (µ+ ρ, µ+ ρ), this gives

0 = 2(µ+ ρ,
∑
α

nαα) + (
∑
α

nαα,
∑
α

nαα) = 2
∑
α

nα(α, µ+ ρ) + (
∑
α

nαα,
∑
α

nαα).
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As µ + ρ is dominant, (µ + ρ, α) ≥ 0 for every α ∈ Φ+. So we get (
∑

α nαα,
∑

α nαα) = 0,
hence

∑
α nαα = 0. But then λ = µ, a contradiction.
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VII Exercises

VII.1 Chapter I exercises

VII.1.1 Review of tensor products

Let M be a right R-module and N be a left R-module. Their tensor product over R, denoted by
M⊗RN , is the quotient of the free abelian group with basisM×N by the subgroup I generated
by the elements :

- (x+ x′, y)− (x, y)− (x′, y), for every x, x′ ∈M and y ∈ N ;

- (x, y + y′)− (x, y)− (x, y′), for every x ∈M and y, y′ ∈ N ;

- (xa, y)− (x, ay), for every x ∈M , y ∈ N and a ∈ R.

If (x, y) ∈M ×N , we write x× y for its image in M ⊗R N .

If A and B are left (resp. right) R-modules, we write HomR(A,B) for the group of R-linear
morphisms from A to B. If R = Z, we write Hom instead of HomR. (In that case, A and B are
just abelian groups, and Hom(A,B) is the set of morphisms of groups from A to B.)

(1). Now let M and N be as above, and let P be an abelian group. We see Hom(N,P ) as a
right R-module by the formula : ∀a ∈ R, ∀f ∈ Hom(N,P ),∀x ∈ N, (f · a)(x) = f(ax).
We define a map ϕ : HomR(M,Hom(N,P )) → Hom(M ⊗R N,P ) by setting, if
f ∈ HomR(M,Hom(N,P )) and (x, y) ∈M ×N , ϕ(f)(x⊗ y) = f(x)(y).

Show that Hom(N,P ) is indeed a right R-module and that the map ϕ is well-defined and
an isomorphism of abelian groups.

(2). Similarly, if N is a right R-module and M is a left R-module, then Hom(N,P ) has a
natural leftR-module structure (given by (a ·f)(x) = f(xa)) and we have an isomorphism
HomR(M,Hom(N,P )) = Hom(N ⊗RM,P ).

(3). Let M and N be as in (2), let S be another ring, and suppose that N is a
(S,R)-bimodule, that is, that there is a left S-module structure on N such that :
∀a ∈ S,∀x ∈ N, ∀b ∈ R, a(xb) = (ax)b.

Show that N ⊗R M has a natural left S-module structure and construct, for every left
S-module P , a natural left R-module structure on HomS(N,P ) and an isomorphism of
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abelian groups HomR(M,HomS(N,P ))
∼→ HomS(N ⊗RM,P ).

(4). Let K be a field and n a positive integer. Set R = Mn(K) (the ring of n×n matrices with
entries in K) and M = Kn. We make Mn(K) act on Kn on the left by seeing Kn as the
space of n× 1 matrices (= column vectors) and using matrix multiplication. Similarly, we
make Mn(K) act on Kn on the right by seeing Kn as the space of 1 × n matrices (= row
vectors) and using matrix multiplication. In that way, M becomes a left R-module and a
right R-module.

Calculate M ⊗RM .

Solution.

(1). Let’s show that Hom(N,P ) is a right R-module. It is clear that the map (f, a) 7−→ f · a
is additive in f ∈ Hom(N,P ) and a ∈ R. Let f ∈ Hom(N,P ) and a, b ∈ R. We have to
show that f · (ab) = (f · a) · b. But, for every x ∈ N ,

(f · (ab))(x) = f((ab)x) = f(a(bx)) = (f · a)(bx) = ((f · a) · b)(x).

Let’s show that ϕ is well-defined. Let f ∈ HomR(M,Hom(N,P )). The formula for ϕ(f)
above gives a function from M × N to P , which extends by linearity to a morphism of
groups from the free abelian group with basis with basis M × N to P ; let’s call it F . We
have to show that F is zero on the ideal I defined above. So let x, x′ ∈ M , y, y′ ∈ N and
a ∈ R. We have :

F ((x+ x′, y)− (x, y)− (x′, y)) = f(x+ x′)(y)− f(x)(y)− f(x′)(y) = 0

by additivity of f ,

F ((x, y + y′)− F (x, y)− F (x, y′) = f(x)(y + y′)− f(x)(y)− f(x)(y′) = 0

by additivity of f(x), and

F (xa, y)− F (x, ay) = f(xa)(y)− f(x)(ay) = (f(x) · a)(y)− f(x)(ay) = 0

by R-linearity of f and the definition of the R-module structure on Hom(N,P ).

It’s clear that ϕ is additive in f .

Let’s show that ϕ is an isomorphism by constructing its inverse, which we’ll call ψ. If
g ∈ Hom(M ⊗R N,P ), define ψ(g) ∈ HomR(M,Hom(N,P )) by setting, for x ∈M and
y ∈ N , (ψ(g)(x))(y) = g(x ⊗ y). The map ψ(g)(x) is a morphism of groups because
elements of the form (x, y + y′) − (x, y) − (x, y′) are in I , and the map ψ(g) is R-linear
because elements of the form (x + x′, y) − (x, y) − (x′, y) and (xa, y) − (x, ay) are in I .
Also, ψ is clearly additive in g.

Let’s show that ϕ and ψ are inverses of each other. For every f ∈ HomR(M,Hom(N,P )),
we have ψ(ϕ(f)) = f by definition. If g ∈ Hom(M ⊗R N,P ), then g and ϕ(ψ(g)) are
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both additive, and equal on elements of M ⊗R N of the form x ⊗ y; as those elements
generated the group M ⊗R N , ϕ(ψ(g)) = g.

(2). This is a particular case of part (3).

(3). Let X be the free abelian group with basis N ×M , so that N ⊗R M = X/I . We make
S act on X by s · (n,m) = (sn,m), if s ∈ S, m ∈ M and n ∈ N , and extending
this by additivity. This is not a left S-module structure, and I is a S-submodule (be-
cause N is a (S,R)-bimodule), so we get a left S-module structure on N ⊗RM such that
s(n⊗m) = (sn)⊗m for every s ∈ S, m ∈M and n ∈ N .

Now let P be a left S-module, and let’s put a left R-module structure on HomS(N,P ). If
f ∈ HomS(N,P ) and r ∈ R, we define r · f by (r · f)(x) = f(xr), for every x ∈ N . This
respects sums, 1 ∈ R acts trivially, and, if r1, r2 ∈ R, f ∈ HomS(N,P ) and x ∈ N , we
have

((r1r2) · f)(x) = f(xr1r2) = (r2 · f)(xr1) = (r1 · (r2 · f))(x).

So we do get a left R-module structure on HomS(N,P ).

Let’s construct inverse isomorphisms

ϕ : HomR(M,HomS(N,P ))
∼→ HomS(N ⊗RM,P )

and
ψ : HomS(N ⊗RM,P )

∼→ HomR(M,HomS(N,P )).

We can use almost the same formulas as in (1). If f ∈ HomR(M,HomS(N,P )) and
(x, y) ∈ M × N , we set ϕ(f)(y ⊗ x) = f(x)(y). If g ∈ HomS(N ⊗R M,P ),
define and (x, y) ∈ M × N , define ψ(g) ∈ HomR(M,HomS(N,P )) by setting
(ψ(g)(x))(y) = g(y ⊗ x). The verification that these are well-defined and inverses of
each other is also almost the same as in (1). We set things up so that everything will
be compatible with the S-actions. For example, say that we wanted to check that, for
f ∈ HomR(M,HomS(N,P )), ϕ(f) is indeed S-linear. We take s ∈ S, x ∈ M and
y ∈ N , and then

ϕ(f)(s(y ⊗ x)) = ϕ(f)((sy)⊗ x) = f(x)(sy) = s(f(x)(y)) = s(ϕ(f)(y ⊗ x)),

as f(x) is S-linear.

(4). Things will be more clear if we write M ⊗R M as M1n(K) ⊗Mnn(K) Mn1(K), where
Mn(K) acts on both sides by the matrix product. (This is the same, by the definition of the
two actions of R on M .)

Let e =
(
1 0 . . . 0

)
∈ M1n(K) and f =


1
0
...
0

 ∈ Mn1(K). If b =

b1
...
bn

 ∈ Mn(K)

is such that b1 = 1, then there exists X ∈Mn(K) such that eX = e and Xb = f , and then
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e⊗ b = e⊗ f . As these elements b generate the K-vector space Mn1(K), we see that e⊗ b
is in the line spanned by e ⊗ f for every b ∈ Mn1(K). We show similarly that, for every
a ∈M1n(K), a⊗ f is in the line spanned by e⊗ f . Finally, we get dimK(M ⊗RM) ≤ 1.

Consider the map ϕ : M1n(K) ⊗Mnn(K) Mn1(K) → M11(K) = K defined by
ϕ(a ⊗ b) = ab. This map is well defined, because (a, b) 7−→ ab is additive and a and
b, and because, for every a ∈ M1n(K), b ∈ Mn1(K) and X ∈ Mnn(K), we have
(aX)b = a(XB). Note also that ϕ(e⊗f) = 1, so ϕ is surjective. As dimK(M⊗RM) ≤ 1
and dimK(K) = 1, this implies that ϕ is an isomorphism.

�

VII.1.2 Some properties of projective modules

(1). If 0 → M ′ → M → M ′′ → 0 is an exact sequence of left modules over a
ring R, with M ′′ projective, and if N is a right R-module, prove that the sequence
0→ N ⊗RM ′ → N ⊗RM → N ⊗RM ′′ → 0 is still exact.

(2). If 0 → M ′ → M → M ′′ → 0 is an exact sequence of left modules
over a ring R, and if N is a projective right R-module, prove that the sequence
0→ N ⊗RM ′ → N ⊗RM → N ⊗RM ′′ → 0 is still exact.

In fancy terms, this is saying that projective modules are flat. 1

Solution.

(1). As M ′′ is projective, the exact sequence 0 → M ′ → M → M ′′ → 0 splits, so it
is isomorphic to the exact sequence 0 → M ′ → M ′ ⊕ M ′′ → M ′′ → 0 (where

the map are
(
idM ′ 0

)
and

(
0

idM ′′

)
). When we tensor by N , we get the sequence

0 → N ⊗R M ′ → (N ⊗R M ′) ⊕ (N ⊗R M ′′) → N ⊗R M ′′ → 0 (with similar maps),
which is obviously exact.

(2). We only need to check that the mapM ′⊗RN →M⊗RN is injective. (The other exactness
properties are a general property of the tensor product, and are true without any condition
on N .) Choose a right R-module N ′ such that F := N ⊕N ′ is a free R-module. Then we
have a commutative square

M ′ ⊗R N //

��

M ⊗R N

��
M ′ ⊗R F //M ⊗R F

1See 24.20 of Lam’s book [20] for a definition.
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where all the arrows except the top horizontal one are known to be injective. This implies
that the top horizontal arrow is injective too.

�

VII.1.3 Division rings

We say that a ring R is a division ring if it is nonzero and if every nonzero element of R is
invertible (that is, for every a ∈ R − {0}, there exists b ∈ R such that ab = ba = 1). If K
is a commutative ring and R is a ring, we say that R is a K-algebra is R is a K-module and :
∀a, b ∈ K, ∀x, y ∈ R, (ax)(by) = (ab)(xy). If R is a division ring and a K-algebra, we also say
that it is a division algebra over K.

(1). Let K be an algebraically closed field and R be a division algebra over K that is finite-
dimensional as a K-vector space. Show that R = K.

(2). Give an example of a finite-dimensional noncommutative division algebra over R.

(3). Give an example of a noncommutative division algebra over C.

Hint : If K is a field and σ is an automorphism of K, let K((t, σ)) be the ring of Laurent
series with coefficients in K, where we twist the multiplication by setting tna = σn(a)tn,
for every n ∈ Z and every a ∈ K. Show that K((t, σ)) is always a division ring (and it’s
a division algebra over the subfield of K composed of σ-invariant elements).

Solution.

(1). As K is a field, the map of rings K → R, λ 7−→ λ · 1 is injective. Let’s show that
it is surjective. Let a ∈ R. The map ma : R → R, x 7−→ ax is K-linear (be-
cause R is a K-algebra), R is a finite-dimensional K-vector space and K is algebraically
closed, so ma has at least one eigenvalue. In other words, there exists λ ∈ K such that
Ker(ma − λ · id) = Ker(ma−λ) 6 0. This implies that a − λ is not invertible. As R is a
division algebra, we get a− λ = 0, ie a = λ ∈ K.

(2). See problem VII.1.6.

(3). We take the hint. First, let L = {x ∈ K|σ(x) = x}. Then L is a subfield of K, and
elements of L commute with t, so they commute with every element of K((t, σ)) (because
elements of K((t, σ)) are of the form

∑
r≥n art

r,2 for some n ∈ Z and some ar ∈ K). So
K((t, σ)) is a L-algebra.

Now we show that K((t, σ)) is a division ring. Let f ∈ K((t, σ)) − {0}, and write

2This sum, as well as the other sums appearing in this proof, is not assumed to have only a finite number of nonzero
terms.
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f =
∑

r≥n art
r, with an 6= 0. Then

f =
∑
r≥0

an+rt
n+r = tn

∑
r≥0

σ−n(ar+n)tr = tnσ−n(an)
∑
r≥0

σ−n(a−1
n ar+n)tr.

As tnσ−n(an) is invertible (its inverse is σ−n(an)−1t−n, we just have to show that the
second factor is invertible. That is, we may assume that f = 1 + g, with g =

∑
r≥1 brt

r.
Just like in the case of usual power series, we can show that

∑
m≥0(−1)mgm makes sense

and is the inverse of 1 + g.

Now to find a noncommutative division algebra over C, we apply the construction above
with K = C(x, y) and σ defined by σ(x) = y, σ(y) = x.

�

VII.1.4 Ideals of rings of matrices

LetK be a field, n be a positive integer andR = Mn(K) be the set of n×nmatrices with entries
in K.

(1). Give a list of left ideals of R.

(2). Which of these are ideals ?

(3). We say that a ∈ R is a left (resp. right) zero divisor if there exists b ∈ R − {0} such that
ab = 0 (resp. ba = 0). Show that an element of R is a left zero divisor if and only if it’s a
right zero divisor.

(4). We say that a ∈ R is left (resp. right) invertible if there exists b ∈ R such that ba = 1
(resp. ab = 1). For a ∈ R, show that the following are equivalent :

- a is left invertible;

- a is right invertible;

- a is not a zero divisor.

(5). Which of the equivalences of (3) and (4) stay true in Mn(Z) ?

Solution.

(1). For every subspace V of Kn, let

IV = {A ∈Mn(K)|∀v ∈ V Av = 0}.

This is obviously a left ideal of Mn(K). Moreover, the ideal IV determines V , as
V =

⋂
A∈IV Ker(A). Let’s show that every left ideal is of that form.
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So let I be a left ideal of Mn(K). Let

V =
⋂
A∈I

Ker(A),

a subspace of Mn(K). By definition of V , we have I ⊂ IV . Let’s show that I = IV , that
is, that every matrix with kernel cnotaining V is in I . Suppose that we have shown :
(∗) For every v0, w0 ∈ Kn and every subspace W of Kn such that Kn = V ⊕Kv0 ⊕W ,
there exists A ∈ I such that W ⊂ Ker(A) and Av0 = w0.

Let’s show that this implies the result. Let A ∈ IV . Let (v1, . . . , vn) be a basis of Kn such
that (v1, . . . , vi) is a basis of V , where i = dimV . By (∗), for every j ≥ i+ 1, there exists
Aj ∈ I such that Ajvj = Avj and Ajvk = 0 for k 6= j. Then A = Ai+1 + · · · + An, so
A ∈ I .

Now let’s prove (∗). Fix v0, w0,W as in the statement of (∗). If we can find A ∈ I such
that Av0 6∈ A(W ), then we are done; indeed, in thet case we can find B ∈ Mn(K) such
thatBW = 0 andBAv0 = w0, and thenBA ∈ I satisfies the conclusion of (∗). So let’s as-
sume that, for every A ∈ I , Av0 ∈ AW . Let (e1, . . . , en) be the canonical basis of Kn and
i = dimV + 1. Without loss of generality, we may assume that (e1, . . . , ei−1) is a basis of
V , ei = v0 and (ei+1, . . . , en) is a basis of W . Let A ∈ I , and let r be its rank. We can find
a invertible matrix B ∈ Mn(K) such that (BAei+1, . . . , BAen) = (e1, . . . , er, 0, . . . , 0).
Write BAv0 = BAei =

∑n
j=1 λj(A)ej . Then λj(A) = 0 for j > r and

Av0 =
∑n

j=i+1 λj−i(A)Aej (because BAv0 =
∑n

j=i+1 λj−i(A)BAej , and B is invertible).
Now let A′ be another element of I , let r′ be its rank, choose B′ ∈ GLn(K) and define
the λj(A′) as above. We claim that, for every s ≤ min(r, r′), λs(A) = λs(A

′). Indeed, fix
such a s, and consider the elementary matrix Es,s (with entries 1 at the coordinates (s, s)
and 0 everywhere else). Then

Es,sAej =


λs(A)es if j = i
es if j = s+ i
0 otherwise

,

and similarly forA′. So Es,s(A−A′)(ei) = (λs(A)−λs(A′))ei, and Es,s(A−A′) sends all
the other ej to 0. AsEs,s(A−A′) ∈ I ,Es,s(A−A′)ei ∈ Es,s(A−A′)W by our assumption.
So λs(A) = λs(A

′). This means that we can find λ1, . . . , λn−i ∈ K (with λj = 0 for j > r)
such that, for every C ∈ I , Cv0 =

∑n
j=i+1 λj−iCej . But then v0 − (

∑n
j=i+1 λj−iej) is in

the kernel of every element of I , hence in V , which is absurd. This finishes the proof of
(∗).

(2). Only 0 and Mn(K) are ideals in Mn(K). To prove this, we use the notation IV from
the previous question. It follows immediately from the definition of IV that, for every
subspace V of Kn and every invertible A ∈ Mn(K), IVA = IAV . So if IV is a left ideal,
then V = AV for every invertible A ∈ Mn(K). This is only possible if V = 0 (then
IV = Mn(K)) or V = Kn (then IV = 0).
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(3). We say that a ∈ R is a left (resp. right) zero divisor if there exists b ∈ R − {0} such that
ab = 0 (resp. ba = 0). Show that an element of R is a left zero divisor if and only if it’s a
right zero divisor.

Let a ∈ Mn(K) Then a is a left zero divisor if and only if Ker(a) 6= 0, and a right zero
divisor if and only if the rank of a is < n. But that these two conditions are equivalent, and
that they are also equivalent to the fact that a is not invertible.

(4). Let a ∈ Mn(K). Then a is left invertible if and only if Ker(a) = 0, and right invertible
if and only its rank is n. We know that these two conditions are equivalent. The last
equivalence is already proved in the answer of (3).

(5). If a is an element of Mn(Q), then we can write a = λa′, with λ ∈ Q× and a′ ∈ Mn(Z).
From this, it follows easily that elements of Mn(Z) are left (resp.) right zero divisors in
Mn(Z) of and only if they are left (resp. right) zero divisors in Mn(Q). So the equivalence
of (3) stays true.

Let a ∈ Mn(Z). If there exists b ∈ Mn(Z) such that ab = 1 (resp. ba = 1), then a is
invertible in Mn(Q), b = a−1, and we also have ba = 1 (resp. ab = 1). So the first two
conditions of (4) are still equivalent. They imply the last condition by the remark above
about zero divisors, but the converse is not true. For exemple, 2 (ie twice the identity
matrix) is not a zero divisor, but it is also not invertible in Mn(Z).

�

VII.1.5 Commutative semisimple rings

We say that a ring R is simple if it is nonzero and its only ideals are 0 and R. We say
that R is semisimple if for every R-module M and every R-submodule N of M , there ex-
ists another R-submodule N ′ of M such that M = N ⊕ N ′ (that is, such that the map
N ×N ′ →M, (x, y) 7−→ x+ y is an isomorphism).

Now take R a commutative ring.

(1). If R is simple, show that R is a field.

(2). Assume R semisimple, nonzero and Noetherian.3

(a) Show that we have R = R′ ×K (as rings), with K a field.

(b) Show that R is a direct product of fields.

Solution.

(1). Let a ∈ R− {0}. Then Ra is a nonzero ideal of R, so Ra = R, so a is invertible.
3The last hypothesis is unnecessary, and is removed in theorem I.1.10.5 of chapter I.
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(2). (a) Let I be an ideal ofR. AsR is semisimple, there exists another ideal J ofR such that
R = I ⊕ J . If eI (resp. eJ ) is the image of 1 ∈ R by the obvious map R→ R/J = I
(resp. R → R/I = J), then it is a unit element for the multiplication in I (resp. J),
and we have 1 = eI + eJ . So I and J are commutative rings, and we have R = I ×J
as rings. Now if we take I to be a maximal ideal, then J = R/I will be a field. Note
that I is also a semisimple ring, as ideal of I are just ideals of R contained in I .

(b) By the previous question, we can construct a descending sequence of ideals
I0 = R ⊃ I1 ⊃ I2 ⊃ . . . and an ascending chain of ideals J0 = 0 ⊂ J1 ⊂ J2 ⊂ . . .
of R such that R = Ji × Ii for every i ∈ N and each Ii/Ii+1 is a field or zero. As
R is Noetherian, the sequence (Ji)i∈N becomes constant, so R is the product of the
nonzero Ii/Ii+1, which are all fields.

�

VII.1.6 The R-algebra of quaternions

Let H be the R-algebra R⊕ Ri⊕ Rj ⊕ Rk, with the multiplication given by :

• i2 = j2 = k2 = −1;

• ij = −ji = k, jk = −kj = i, ki = −ik = j.

Note that we have an obvious embedding C = R⊕Ri ⊂ H, so H is a C-vector space, but not
a C-algebra.

(1). Why is H not a C-algebra ?

(2). Show that H is a division ring. (Hint : If x = a+ bi+ cj + dk ∈ H with a, b, c, d ∈ R, its
conjugate is defined to be x = a− bi− cj − dk. What is xx ?)

(3). Show that H ⊗R C ' M2(C) as C-algebras. (You can use an embedding H ⊂ M2(C)
given by choosing a C-basis of H.)

(4). Show that C⊗RC ' C×C as C-algebras. (If you’re getting mixed up, try giving different
names to the i in the two factors C of the tensor product.)

Solution.

(1). If H was a C-algebra, then we would have ab = ba for every a ∈ C and b ∈ H. This is not
true (just take a = i and b = j).

(2). If x = a+ bi+ cj + dk, then xx = xx = a2 + b2 + c2 + d2. So xx ∈ R≥0, and it is zero if
and only if x = 0. Now if x 6= 0, then 1

xx
x is an inverse of x (on both sides).

(3). As a C-vector space, H = C ⊕ Cj ' C2. Making H act on itself by left multi-
plication, we get a C-linear map u : H → HomC(H,H) ' M2(C), and this map
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is a map of algebras because the multiplication of H is associative (if a, b, x ∈ H,
u(ab)(x) = (ab)x = a(bx) = u(a)(u(b)(x))).

Consider the C-linear map v : H⊗RC→M2(C) that sends a⊗λ to λa. This a C-algebra
map, because

v((a⊗ λ)(b⊗ µ)) = v((ab)⊗ (λµ)) = (λµ)(ab) = (λa)(µb)

(we use the fact that M2(C) is a C-algebra, ie that scalar matrices commute with every
other matrix).

Let’s calculate the images of 1, i, j, k ∈ H by u. We have

u(1) =

(
1 0
0 1

)
, u(i) =

(
i 0
0 i

)
, u(j) =

(
0 1
−1 0

)
and u(k) =

(
0 i
−i 0

)
.

These four matrices generate M2(C) as a C-vector space, so v is surjective. As H ⊗R C
and M2(C) are both C-vector spaces of dimension 4, v is an isomorphism.

(4). Let R = C ⊗R C and S = C × C. We want to construct C-algebra maps ϕ : R → S and
ψ : S → R.

There are two ways to see ϕ. First we can consider the R-basis (1, i) of the second C in
the tensor product. Then R = C⊗1⊕C⊗ i, and we set ϕ(a⊗1+ b⊗ i) = (a+ ib, a− ib).
Or we just set ϕ(x ⊗ y) = (xy, xy) and extend this by linearity. These clearly give the
same C-linear map, and the fact that it respects multiplication is obvious on the second
description.

Define ψ : S → R by ψ(x, y) = x+y
2
⊗ 1 + x−y

2i
⊗ i. Then ψ is C-linear, and it is clearly

the inverse of ϕ (use the first description of ϕ).

�

VII.1.7 Simple modules over some commutative rings

(1). Write a list of all the simple modules over Z, Q, C[x], Q[x] (up to isomorphism).

(2). Let Γ = Z/pZ and R be the group algebra k[Γ], where k is a field. Write a list of all the
simple modules over R (up to isomorphism).

(3). Identify the group Γ of the previous question with the subgroup
(

1 ∗
0 1

)
of

GL2(Fp) := M2(Fp)×, and use this injection Γ ⊂ M2(Fp) to make Γ act on F2
p. This

gives M := F2
p the structure of a module on R := Fp[Γ]. Find a Jordan-Hölder series for

M . Is M a semisimple R-module ?

Solution.
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(1). Let R be a ring and M be a simple R-module. Choose x ∈ M − {0}. Then the map
RR → M , a 7−→ ax is surjective (its image is a nonzero submodule of M ), so M ' R/I
with I a left ideal of R. As M is simple, I is maximal. Conversely, for every maximal
left ideal I of R, R/I is a simple R-module. So to list all the simple R-module up to
isomorphism, we just have to find all the maximal left ideals of R.

If R = Z, this shows that the simple R-modules are the Z/pZ with p a prime number.
If R = Q, the only simple R-module is Q. If R = C[x], the simple R-modules are all
(up to isomorphism) of the form C[x]/(x − a), with a ∈ C. Note that C[x]/(x − a) is
the C[x]-module C, where x acts by multiplication by a. Finally, if R = Q[x], the simple
R-modules are all of the form Q[x]/(f), with f a monic irreducible polynomial in Q[x].

(2). Note that R ' k[x]/(xp − 1). So any R-module M is also a k[x]-module, and the R-
submodules of M are its k[x]-submodules; in particular, M is simple as a R-module if and
only if it is simple as a k[x]-module. So to find the simple R-modules, we just have to find
the simple k[x]-modules on which xp acts as 1. By the beginning of (a) (and the fact that
k[x] is a PID), every simple k[x]-module is isomorphic to a k[x]/(f) with f ∈ k[x] monic
irreducible. Note that xp acts as 1 on k[x]/(f) if and only if f divides xp − 1. Finally, the
simple R-modules are the k[x]/(f), with f an irreducible factor of xp − 1. (In particular,
there are only finitely many isomorphism classes of simple R-modules.)

(3). The identification is given by x 7−→
(

1 x
0 1

)
. Note that by (b) and the fact that

xp − 1 = (x − 1)p in Fp[x], we know that the only simple R-module is Fp with the
trivial action of Γ.

Let (e1, e2) be the canonical basis of F2
p. Then M1 := Fpe1 is a R-submodule of M , and

both M1 and M/M1 are simple, so we’ve found our Jordan-Hölder series. The R-module
M is not semisimple as we cannot write M = M1 ⊕ M2 with M2 another submodule.
(Otherwise, M2 would be isomorphic to M/M1, so M be isomorphic to F2

p with the trivial
action of Γ, but this is not the case.)

�

VII.1.8 Group algebra of the quaternion group

Remember the R-division algebra H of problem VII.1.6. Let Q be the subgroup
{±1,±i,±j,±k} of H×, and let R = R[Q] and RC = C[Q](= R⊗R C).

(1). Show that there exists a R-algebra R′ such that R ' R′ ×H (as R-algebras).

(2). Find the isotypic components of RR, and the multiplicities of the simple constituents (=
Jordan-Hölder constituents) of M .

(3). Write R as a product of simple R-algebras.
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(4). Write a list of all the simple R-modules (up to isomorphism).

(5). Write RC as a product of simple C-algebras and find all the simple RC-modules (up to
isomorphism).

Solution.

(1). Note that Q is isomorphic to the group Γ generated by the elements c−1, ci, cj , sat-
isfying the relations : c2

−1 = 1, c2
i = c2

j = c−1, c−1ci = cic−1, c−1cj = cjc−1,
cicj = c−1cjci. We get the isomorphism ι : Q → Γ by setting ι(−1) = c−1, ι(i) = ci,
ι(j) = cj , ι(k) = cicj and, for α ∈ {i, j, k}, ι(c−α) = c−1ι(cα). So R is isomorphic
to the quotient of R〈x−1, xi, xj〉 by the ideal generated by x2

−1 − 1, x2
i − x−1, x2

j − x−1,
xix−1 − x−1xi, xjx−1 − x−1xj and xixj − x−1xjxi. A basis of the R-vector space R is
(1, x−1, xi, xj, x−1xi, x−1xj, xixj, x−1xixj) (simply because R = R[Q]).

We construct a R-algebra map ϕ : R → H by sending x−1 to −1, xi to i
and xj to j. This ϕ is obviously surjective, so its kernel is dimension 4. As
1 + x−1, xi + x−1xi, xj + x−1xj, xixj + x−1xixj are all in Kerϕ and linearly indepen-
dent (by the description of the basis of R above), they form a basis of Kerϕ as R-vector
space, and we see also that Kerϕ is the ideal of R generated by 1 + x−1 (as 1 + x−1 is
central, the left (or right) ideal is generates is an ideal). Let I be the R-subspace of R gen-
erated by 1− x−1, xi − x−1xi, xj − x−1xj, xixj − x−1xixj , then we have R = Kerϕ⊕ I
and I is also the ideal of R generated by 1 − x−1 (again, the left, right and two-sided
ideals generated by 1 − x−1 are equal because 1 − x−1 is central). So we have written
R = Kerϕ ⊕ I with Kerϕ and I ideals of R, which implies that R′ := Kerϕ and I
are rings and that R = R′ × I as rings, by remark I.1.3.16 in chapter I. (Also, these are
obviously R-subalgebras of R, because they are R-subspaces.) It remains to notice that
I ' R/Kerϕ ' H.

(2). We already know that H is a simple R-algbera, because it’s a division alge-
bra. So it remains to decompose R′. Note that R′ = R/(x−1 − 1), so
R′ ' R[ti, tj]/(t

2
i − 1, t2j − 1) ' R[ti]/(t

2
i − 1) ⊗R R[tj]/(t

2
j − 1). By the Chinese

remainder theorem, R[t]/(t2 − 1) ' R[t]/(t + 1)× R[t]/(t− 1) ' R× R. So we finally
get

R′ ' (R× R)⊗R (R× R) ' R× R× R× R

(using R⊗R R ' R).

(3). We have see that R ' R × R × R × R × H as R-algebras, and all these factors are
simple R-algebras, so they are the simple submodules of RR. Now we have to calculate
the action of R on them. We already now the action on H. The four other factors are
R[ti]/(ti ± 1) ⊗R R[tj]/(tj ± 1) (with the four possibilities for the signs), with R acting
by sending x−1 to 1, xi to ti and xj to tj . As R-algebras, these are all isomorphic to R. As
R-modules, we get the R-modules corresponding to the following four R-linear actions (=
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representations) of Q on R : the trivial one (sending every element of Q to 1),

ρ12 : −1 7−→ 1, i 7−→ −1, j 7−→ −1 ( k 7−→ 1)

ρ1 : −1 7−→ 1, i 7−→ −1, j 7−→ 1 (k 7−→ −1)

ρ2 : −1 7−→ 1, i 7−→ 1, j 7−→ −1 (k 7−→ −1).

These are pairwise nonisomorphic, so we finally see that RR is the direct sum of the five
simple R-modules described above, with multiplicities 1. In particular, R is semisimple.

(4). We have seen in problem VII.1.7(1) that every simple R-module is of the form R/I for I
a maximal left ideal of R. As R is semisimple, this implies that every simple R-module is
isomorphic to a simple submodule of R. We already gave a list of those in question (2).

(5). We know from problem VII.1.6 that H⊗R C 'M2(C). So question (3) implies that

RC = R⊗R C ' C× C× C× C×M2(C).

All these factors are simple and semisimple C-algebras. In particular, RC is semisimple.
As in (4), the simple RC-modules are all isomorphic to simple submodules of RC. The
first four are the four 1-dimensional simple modules of R with scalars extended to C (they
are simple because they’re one-dimensional C-vector spaces). The last simple R-module
is H, and H⊗RC 'M2(C) is not a simple RC-module, but is the direct sum of two simple
submodules, both isomorphic to C2 with the usual action of M2(C) (and the action of RC
via the surjective map RC →M2(C)).

�

VII.1.9 A simple ring that is not semisimple

The goal of this problem is to construct simple rings that are not matrix rings over division rings
(and hence not semisimple).

Let R be a ring. A derivation of R is an additive map δ : R→ R such that, for every a, b ∈ R,
δ(ab) = aδ(b) + δ(a)b.

(1). If c ∈ R, show that the map δc : R → R, a 7−→ ca− ac is a derivation. Such a derivation
is called inner.

Let δ be a derivation of R. A δ-ideal of R is an ideal I of R such that δ(I) ⊂ I . We say that
R is δ-simple if R 6= 0 and its only δ-ideals are 0 and R.

The differential polynomial ring R[x; δ] is the R-module R[x] with the multiplication given by
xnxm = xn+m and xa = ax+ δ(a), for a ∈ R.

(2). Show that R[x; δ] is indeed a ring.
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(3). If δ = δc with c ∈ R, show that the map R[t] → R[x; δ], t 7−→ x − c, is an isomorphism
of rings.

(4). If δ is inner or R is not δ-simple, show that R[x; δ] is not simple.

(5). Conversely, we want to show that if δ is not inner and R is a δ-simple Q-algebra, then
R[x; δ] is simple. So assume that R is a δ-simple Q-algebra, and that R[x; δ] contains a
nonzero ideal J 6= R[x; δ].

(a) Let n be the minimum degree for the nonzero elements of J . (If f ∈ R[x; δ], write
it as

∑
k≥0 akx

k, and define the degree of f to be the biggest non-negative integer r
such that ar 6= 0.)

Show that n > 0 and that J contains an element g of the form xn+
∑n−1

k=0 akx
k. (Hint

: Use J to cook up a δ-ideal of R.)

(b) Show that δ is inner. (Hint : calculate ga− ag, for a ∈ R.)

(6). If R 6= 0, show that R is not left Artinian.

(7). Find a Q-algebra R and a non-inner derivation δ on R such that R is δ-simple.

Solution.

(1). The map δc is obviously additive. Let a, b ∈ R. Then

δc(ab) = c(ab)− (ab)c = (ca)b− (ac)b+ (ac)b− (ab)c = δc(a)b+ aδc(b).

(2). We have to check that, for every a, b ∈ R, x1 = x, x(ab) = (xa)b and x(a+ b) = xa+xb.

As x1 = x + δ(1), we want to show that δ(1) = 0. But
δ(1) = δ(1 · 1) = 1 · δ(1) + δ(1) · 1 = 2δ(1), do indeed δ(1) = 0.

We have
x(ab) = (ab)x+ δ(ab) = (ab)x+ aδ(b) + δ(a)b

(xa)b = (ax+ δ(a))b = a(bx+ δ(b)) + δ(a)b.

These are equal because δ(ab) = aδ(b) + δ(a)b.

Finally,

x(a+ b) = (a+ b)xδ(a+ b) = ax+ δ(a) + bx+ δ(b) = xa+ xb.

(3). To see that this map, that we’ll call ϕ, is well-defined, we have to show that x−c commutes
with every element of R[x; δ]. It suffices to show that it commutes with elements of R and
with x. So let a ∈ R. We have :

(x− c)a = xa− ca = ax+ δc(a)− ca = ax+ ca− ac− ca = ax− ac = a(x− c)
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and
x(x− c) = x2 − xc = x2 − (cx+ δc(c)) = x2 − cx = x(x− c).

Let’s define a R-module map ψ : R[x; δ] → R[t] by ψ(xn) = (t + c)n, for every n ≥ 0.
This is clearly the inverse of ϕ as a R-module map, so ϕ is an isomorphism (and ψ is a
map of rings).

(4). If δ is inner, then R[x; δ] ' R[t], which is never simple (if R = 0, then R[t] = 0; if R 6= 0,
then (t) is a nonzero proper ideal of R[t]).

IfR is not δ-simple, let I 6= 0, R be a δ-ideal ofR, and let J be theR-submodule ofR[x; δ]
whose elements are the

∑
n≥0 anx

n with an ∈ I for every n. Obviously, J 6= 0, R[x; δ].
We want to show that J is an ideal of R[x; δ]. For this, it suffices to show that xJ ⊂ J . Let
f =

∑
n≥0 anx

n ∈ J . Then

xf =
∑
n≥0

(xan)xn =
∑
n≥0

(anx
n+1 + δ(an)xn).

This is in J because δ(I) ⊂ I .

(5). (a) First we show that, for every g ∈ R[x; δ], deg(xg − gx) ≤ deg(g). It is enough to
show it for g of the form axn with a ∈ R, and then we have

xg − gx = (xa)xn − axn+1 = δ(a)xn.

Next we show that, for every n ≥ 0 and b ∈ R, deg(xnb− bxn) ≤ n− 1. We reason
by induction on n. The result is obvious for n = 0, so let’s assume that n ≥ 1 and
that know the result for n− 1. Then

xnb−bxn = xn−1(xb)−bxn = xn−1(bx+δ(b))−bxn = (xn−1b−bxn−1)x+xn−1δ(b)

is of degree ≤ max(n − 1, 1 + deg(xn−1b − bxn−1), and this is ≤ n − 1 by the
induction hypothesis.

This implies in particular that, for every g ∈ R[x; δ] and b ∈ R,
deg(gb− bg) < deg(g).

Let I ⊂ R be the union of {0} and of the set of all leading coefficients of elements
of J of degree n. It is clearly a left ideal of R. Let a ∈ I , choose f, g ∈ R[x; δ] such
that f = axn + g, deg(g) ≤ n− 1 and f ∈ J . Then for every b ∈ R, fb ∈ J , and we
have

fb = axnb+ gb = (ab)xn + a(xnb− bxn) + gb

with deg(a(xnb−bxn)+gb) ≤ n−1, so ab ∈ I . So I is a right ideal ofR. Moreover,
xf − fx ∈ J , and we have

xf − fx = (xa)xn + xg − axn+1 − gx = δ(a)xn + xg − gx.
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As deg(xg−gx) ≤ n−1, we have δ(a) ∈ I . So I is a δ-ideal of R. As R is δ-simple
and I 6= 0, we have 1 ∈ I , so J contains an element g of the form xn +

∑
k<n akx

k.
As J 6= r, n > 0.

(b) Let’s first show, by induction on n, that, for every n ≥ 1 and every a ∈ R,
xna = axn + nδ(a)xn−1 + h, with deg(h) ≤ n − 2. This is clear for n = 1, so
assume that n ≥ 2 and that the result is known for n− 1. Then

xna = x(xn−1a) = x(axn−1 + (n− 1)δ(a)xn−2 + h),

with deg(h) ≤ n− 3 (by the induction hypothesis). So

xna = axn + nδ(a)xn−1 + (n− 1)δ2(a)xn−2 + xh,

and we have deg((n− 1)δ2(a)xn−2 + xh) ≤ n− 2.

We have seen above that deg(ga − ag) < deg(g) for every a ∈ R. By definition of
n, this implies that ga − ag = 0 for every a ∈ R. Write g = xn + bxn−1 + h, with
deg(h) ≤ n− 2. Then

ga− ag = xna− axn + bxn−1a− abxn−1 + ha− ah
nδ(a)xn−1 + h1 + (ba− ab)xn−1 + h2 + ha− ah,

with deg(h1) ≤ n−2, deg(h2) ≤ n−2 and deg(ha−ah) ≤ n−2. So nδ(a) = ba−ab.
As R is a Q-algebra, this implies that δ = δn−1b, so δ is inner.

(6). The sequence of ideals (x) ⊃ (x2) ⊃ (x3) ⊃ . . . does not stabilize.

(7). Let’s take R = Q(t) and δ the derivation with respect to t. Then R is δ-simple because it
is simple, because it is a field.

�

VII.1.10 Central simple algebras and the Brauer group

If R is a ring and S ⊂ R, the centralizer of S in R is

ZR(S) = {a ∈ R|∀x ∈ S, ax = xa}.

If S = R, we write ZS(R) = Z(R) and we call it the center of R.

In this problem, k will always be a field. We say that a k-algebra A is central if Z(A) = k,
and we say that A is finite is dimk(A) <∞.

(1). Let G be a finite group.

(a) When is k[G] central (over k) ?
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(b) When is k[G] simple ?

(2). If R is a left Artinian simple ring and M is a finitely generated R-module, show that
EndR(M) is a simple ring. If moreover R is a finite k-algebra, show that EndR(M) is also
a finite k-algebra.

(3). If A and B are k-algebras, we make the tensor product A ⊗k B a ring by setting
(a ⊗ b)(a′ ⊗ b′) = (aa′) ⊗ (bb′) and extending this by distributivity. Then A ⊗k B is
also a k-algebra. (Remark : It is NOT true that every element of A ⊗k B is of the form
a⊗ b. You have been warned.)

(a) Let A and A′ be k-algbras, and let B ⊂ A and B′ ⊂ A′ be subalgebras. Show that

ZA⊗kA′(B ⊗k B′) = ZA(B)⊗k ZA′(B′).

(b) If A and B are k-algebras and n is a positive integer, construct an isomorphism

Mn(A⊗k B)
∼→Mn(A)⊗k B.

(c) Let A and B be k-algebras.

(i). If D is a central division k-algebra, show that we have a bijection between the
set of ideals of D⊗k B and the set of ideals of B given by sending an ideal I of
D⊗k B to {b ∈ B|1⊗ b ∈ I} and an ideal J of B to D⊗k J .

(ii). If A is a finite central simple k-algebra and B is simple, show that A ⊗k B is
simple.

(iii). Given an example where A is simple but not central, B is simple and A⊗k B is
not simple.

(4). Let A be a finite central simple k-algebra.

(a) IfK/k is an extension of fields, show thatA⊗kK is a finite central simpleK-algebra.

(b) If k is algebraically closed, show that A is isomorphic to some Mn(k).

(c) Show that dimk(A) is the square of an integer. (Without using question (5).)

(5). Let A be a finite central simple k-algebra, let B be a simple k-subalgebra of A, and write
C = ZA(B).

(a) Show that C is a simple k-algebra. (Hint : Let M be the unique simple A-module,
identify C to the ring of endomorphisms of M that are linear for the action of some
ring to be determined.)

(b) Show that dimk(A) = dimk(B) dimk(C).

(c) If B is central, show that the multiplication map B⊗k C → A (that sends b⊗ c to bc)
is a k-algebra isomorphism.
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(d) Let k ⊂ K ⊂ A be a maximal commutative subfield of A, and suppose that A is a
division algebra. Show that ZA(K) = K and dimk(A) = dimk(K)2.

(6). (a) Let A be a finite central simple k-algebra. Show that the map{
A⊗k Aop → Endk(A)

a⊗ a′ 7−→ (x 7−→ axa′)

(exended by distributivity) is an isomorphism of k-algebras.

(b) Let A be a finite central division k-algebra. If k ⊂ K ⊂ A is a maximal commutative
subfield, show that A ⊗k K ' Mn(K), where n = dimk(K). (Use the previous
question, (5)(d) and (3)(a).)

(c) Let A and A′ be finite central simple k-algebra. Show that the following are equiva-
lent :

(i). There exists integers m,m′ ≥ 1 such that Mm(A) 'Mm′(A
′) (as k-algebras).

(ii). There exists a k-division algebra D and integers n, n′ ≥ 1 such that A 'Mn(D)
and A′ 'Mn′(D).

If those conditions are satisfied, we say that A and A′ are similar and write A ∼ A′.
This is obviously an equivalence relation on the set of isomorphism classes of finite
central simple k-algebras, and we write Br(A) for the quotient of this set by ∼.

(d) If A,A′, B,B′ are finite central simple k-algebras such that A ∼ A′ and B ∼ B′,
show that A⊗k B and A′ ⊗k B′ are similar finite central simple k-algebras.

(e) Put the operation on Br(k) induced by the tensor product over k (this makes sense by
the preceding question). Show that this makes Br(k) into a commutative group (the
Brauer group of k).

(f) Calculate Br(k) for k algebraically closed.

(g) If I tell you that Br(R) = Z/2Z, can you give me a list of all finite R-division algebras
?

(7). Reduced trace :

Let k be a field and A be a finite central simple k-algebra.

(a) Let ϕ : A → A be a an automorphism of k-algebras. Show that there exists x ∈ A×
such that ϕ(a) = xax−1 for every a ∈ A.

Let σ : k → Ω be a morphism of k into an algebraically closed field Ω. By (6)(b), there
exists a positive integer n such that A⊗k Ω 'Mn(Ω).

(b) Fix an isomorphism A ⊗k Ω ' Mn(Ω), and consider the morphism T : A → Ω

obtained by composing A → A ⊗k Ω, a 7−→ a ⊗ 1, and A ⊗k Ω ' Mn(Ω)
Tr→ Ω,
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where Tr is the trace map. Show that this morphism T is independent of the choice
of the isomorphism A⊗k Ω 'Mn(Ω).

(c) Assume that char(k) = 0. Show that we have T = σ ◦ TrA, where TrA : A→ k is a
k-linear central morphism (ie such that TrA(ab) = TrA(ba), for every a, b ∈ A). This
morphism TrA is called the reduced trace of A. (Hint : If a ∈ A, compare T (a) and
the trace of the k-linear endomorphism of A given by left multiplication by a.)

Solution.

(1). (a) Only if G = {1} ! We have seen in class that the element
∑

g∈G g is central in k[G],
and this is in k if and only if G is trivial.

(b) Again, only ifG = {1}. Indeed, the augmentation ideal of k[G] is a proper two-sided
ideal, and is only 0 when G = {1}.

(2). We have R ' Mn(D), with n ≥ 1 and D a division ring, and V := Dn is the only simple
R-module up to isomorphism. As R is semisimple, M is a direct sum of copies of V , and
as M is finitely generated, this direct sum if finite. So we may assume that M = V ⊕m for
some m ≥ 0. Then

EndR(M) 'Mm(EndR(V )) = Mm(Dop).

If R is finite over k, so is D, so M and EndR(M) are finite-dimensional k-vector spaces.

(3). (a) Remember that, if V and V ′ are k-vector spaces and the families (ei)i∈I and (e′j)j∈I′
are bases of V and V ′, then (ei ⊗ e′j)(i,j)∈I×I′ is a basis of V ⊗k V ′. In partic-
ular, if x ∈ V ⊗k V ′, there is unique family (xi)i∈I of elements of V ′ such that
x =

∑
i∈I ei ⊗ xi.

Let’s write C = ZA(B), C ′ = ZA′(B
′) and C ′′ = ZA⊗kA′(B ⊗k B′). We obviously

have C ⊗k C ′ ⊂ C ′′. So we have to show that C ′′ ⊂ C ⊗k C ′. For this, choose a
basis (ei)i∈I of A as a k-vector space. Let x ∈ C ′′, and write x =

∑
i∈I ei ⊗ xi with

xi ∈ V (uniquely determined by x by the remark above). For every b ∈ B′, we have
x(1⊗ b) = (1⊗ b)x, hence ∑

i∈I

ei ⊗ (bxi − xib) = 0,

hence bxi−xib = 0 for every i ∈ I , so all the xi are in C ′ and x ∈ A⊗kC ′. Similarly,
choosing a basis (e′i)i∈I′ of the k-vector space C ′ and writing x =

∑
i∈I′ yi ⊗ e′i with

yi ∈ A, we can show that x ∈ C ⊗k C ′.

(b) We define ϕ : Mn(A) ⊗k B → Mn(A ⊗k B) by sending (aij) ⊗ b to (aij ⊗ b) and
extending this by linearity. As a map of abelian groups (or left A-modules), ϕ is
simply the obvious isomorphism

A⊕n
2 ⊗k B

∼→ (A⊗k B)⊕n
2

.
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But we should not forget to check that ϕ is a morphism of algebras. This is actually
a straightforward check that follows directly from the definitions.

(c) (i). We prove that the two maps defined above are inverses of each other.

Let I be an ideal of D⊗k B, and let J = {b ∈ B|1⊗ b ∈ J}. This is clearly and
ideal ofB, and we want to prove that I = D⊗kJ . The inclusion I ⊃ D⊗kJ is ob-
vious. Suppose that I 6= D⊗k J . Choose a basis (bi)i∈A of B as a k-vector space
and a subset A′ ⊂ A such that (bi)i∈A−A′ is a basis of J . If z ∈ D ⊗k B, write
z =

∑
i∈A ai ⊗ bi with the ai in D, and set n(z) := |{i ∈ A|ai 6= 0}|. Choose

z ∈ I − D ⊗k J such that n(z) is minimal (for z varying among elements of
I−D⊗kJ). For every i ∈ A−A′, ai⊗bi ∈ D⊗kJ ⊂ I , so z−ai⊗bi ∈ J−D⊗kJ .
By minimality of n(z), ai = 0. So z =

∑
i∈A′ ai ⊗ bi. Let i1, . . . , ir be the ele-

ments i of A′ such that ai 6= 0. Multiplying z by a−1
i1

on the left, we may assume
that ai1 = 1. If ais ∈ k for every s, then z = 1 ⊗

(∑r
s=1 a

−1
is
bis
)
, but then∑r

s=1 a
−1
is
bis ∈ J (by definition of J), contradiction. So there exists s such that

ais 6∈ k, and without loss of generality we may assume that s = 2. As the center
of D is k, we can choose a ∈ D such that aai2 − ai2a 6= 0. Then

z′ := (a⊗ 1)z − z(a⊗ 1) =
r∑
s=2

(aais − aisa)⊗ bis ∈ I

and n(z′) < n(z), so, by the minimality of n(z), z′ ∈ D⊗k J . This is impossible
because aai2 − ai2a 6= 0, so we have reached a contradiction.

For the other direction, let J be an ideal of B, let I = D ⊗k J , and let
J ′ = {b ∈ B|1⊗b ∈ I}. Obviously J ⊂ J ′, so we have to show that J ′ ⊂ J . Let
V ⊂ J ′ be a k-subspace such that J ′ = J ⊕ V . By the remark at the beginning
of the solution of (a), we have D ⊗k J ′ = (D ⊗k J) ⊕ (D ⊗k V ). So, if b ∈ V ,
1⊗ b cannot be in I = D⊗k J unless b = 0. So V = 0.

(ii). We have A ' Mn(D), with D a division k-algebra and n ≥ 1. If we embed
D into Mn(D) using x 7−→ xIn (where In is the identity matrix), then this is a
k-algebra map and it sends Z(D) to Z(Mn(D)). As A is central, so is D. By (i),
the set of ideals of D ⊗k B is in bijection with the set of ideals of B; as B is
simple, D ⊗k B is also simple. We write D ⊗k B ' Mm(D′), with m ≥ 1 and
D′ a division k-algebra. By (b),

A⊗k B 'Mn(D⊗k B) 'Mn(Mm(D′)) = Mnm(D′),

so A⊗k B is simple.

(iii). k = R, A = B = C. By PS1 5(d), C⊗R C ' C× C is not a simple R-algebra.

(4). (a) The K-algebra A⊗k K is obviously finite. By (3)(a), we have

Z(A⊗k K) = Z(A)⊗k Z(K) = k ⊗k K = K,

so A⊗k K is a central K-algebra. By 2(c)(ii) (or 2(c)(i)), A⊗k K is simple.
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(b) We know that A ' Mn(D), with n ≥ 1 and D a finite division k-algebra. If k is
algebraically closed, we have D = k by problem VII.1.3.

(c) Let K be an algebraically closed field containing k. By (a), A ⊗k K is a finite
central simple K-algebra, so dimK(A ⊗k K) is a square by (b). But we have
dimk(A) = dimK(A⊗k K).

(5). (a) Write A = Mn(D), with D a division k-algebra. Then M := Dn, with the usual
action of Mn(D), is (up to isomorphism) the only simple A-module. We have seen in
class that M also has a structure of right D-module, and that A = EndD(M). Now
C is the subset of elements of u ∈ EndD(M) such that, for every b ∈ B and x ∈ M ,
u(bx) = bu(x) (this follows from the definition of the isomorphismA

∼→ EndD(M)).

We see the right D-module structure on M as a left Dop-module structure commuting
with the action of A. This makes M into a left A ⊗k Dop-module, and C becomes
the set of B ⊗k Dop linear endomorphisms of M . We have seen in the proof of
(3)(c)(ii) that D is a central k-algebra (because A is central). So Dop is also central.
By (3)(c)(ii) again, this implies that B ⊗k Dop is simple. As M is obviously finitely
generated overB⊗kDop (because dimkM <∞), we can use question (2) to conclude
that C = EndB⊗kDop(M) is a simple k-algebra.

(b) We use the notation of the proof of (a), and we write a = dimk A,
b = dimk B and c = dimk C. Let B′ = B ⊗k Dop. We have seen
that B′ is simple, so B′ = Mm(D′), for some division k-algebra D′. Let
M ′ = (D′)m be its unique simple module. Then, as a B′-module, M is iso-
morphic to some (M ′)r, and we have C ' Mr(EndB′(M

′)) ' Mr(D′op).
Note also that r = dimkM/ dimkM

′ = n dimk(D)/(m dimk(D′)) and
dimk B

′ = (dimk B)(dimk D) = m2 dimk D′. So

bc = br2 dimk(D′)2

= b dimk(D′)
n2(dimk D)2

m2(dimk D′)2

= b
n2(dimk D)2

dimk B′

= n2 dimk D = a.

(c) Let u : B ⊗k C → A be the multiplication map. This is clearly a map of k-algebras.
By (3)(c)(ii), B ⊗k C is simple, so u is injective (otherwise it would be 0, and this is
not true). By (b), dimk(B ⊗k C) = dimk(A) and this is finite, so u is surjective.

(d) Let A′ = ZK(A). It’s a simple k-algebra by (a). As K is commutative, K ⊂ A′,
and in fact K ⊂ Z(A′) by definition of A′, so A′ is simple K-algebra. Note that,
if x ∈ A′ − {0}, then x−1 ∈ A′ : indeed, for every y ∈ K, we have xy = yx,
hence yx−1 = x−1y. So A′ is a K-division algebra. Let x ∈ A′ − {0}. Then K[x]
(the K-subalgebra of A′ generated by x) is commutative, and it’s also a field by the
usual proof. (If y ∈ A′ − {0}, then the elements 1, y, y2, . . . are linearly dependent
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over K because dimK A
′ < ∞, so we have a relation anyn + · · · + a1y + a0 = 0

with an 6= 0. As A′ is a division algebra, after factoring out a power of y, we may
assume that a0 6= 0, and then after divising by a0 we may assume that a0 = 1. Then
y−1 = −(any

n−1 + · · · + a2y + a1) ∈ K[x].) By the maximality of K, we have
K[x] = K for every x ∈ A′ − {0}, which means that ZK(A) = A′ = K.

Now the fact that dimk A = (dimkK)2 follows from (b).

(6). (a) Let’s call this map ϕ. First we check that it’s a morphism of rings (it’s clear that it’s
k-linear) : If a1, a2 ∈ A and a′1, a

′
2 ∈ Aop, then for every x ∈ A,

ϕ((a1 ⊗ a′1)(a2 ⊗ a′2))(x) = ϕ((a1a2)⊗ (a′2a
′
1))(x) = a1a2xa

′
2a
′
2

and
ϕ(a1 ⊗ a′1) ◦ ϕ(a2 ⊗ a′2)(x) = ϕ(a1 ⊗ a′1)(a2xa

′
2) = a1a2xa

′
2a
′
1,

so
ϕ((a1 ⊗ a′1)(a2 ⊗ a′2)) = ϕ(a1 ⊗ a′1) ◦ ϕ(a2 ⊗ a′2).

By (3)(b)(ii), A ⊗k Aop is simple, so ϕ is injective. Moreover,
dimk(Endk(A)) = (dimk(A))2 = dimk(A⊗k Aop), so ϕ is bijective.

(b) By the previous question, we have an isomorphism of k-algebras
ϕ : A⊗k Aop

∼→ Endk(A) sending a⊗ a′ to the map x 7−→ axa′. As K is commuta-
tive, K = Kop, so we also see K as a subfield of Aop, and we have ZAop(K) = K by
(5)(d). By (3)(a), A⊗k K = ZA(k)⊗k ZAop(K) = ZA⊗kAop(k ⊗k K). Using ϕ, this
identifies A ⊗k K with the subalgebra A′ of k-linear endomorphisms u of A such
that u(xb) = u(x)b for every x ∈ A and b ∈ K. This is a K-algebra, where b ∈ K
acts by sending u ∈ A′ to the morphism x 7−→ u(xb) = u(x)b. It follows from the
definition of ϕ that it induces an isomorphism of K-algebras A ⊗k K ' A′. Now
seeing A as a K-vector space by maknig K act by left multiplication, we see that
A′ is isomorphic to Md(K), with d = dimK A = dimk A/ dimkK = dimkK (by
(5)(d) again).

(c) As Mn(Mm(R)) ' Mnm(R) for any ring R and any integers n,m, it’s clear that
(ii) implies (i). Let’s show that (i) implies (ii). Let m,m′ ≥ 1 be integers such that
Mm(A) ' Mm′(A

′). Write A = Mn(D) and A′ = Mn′(D′), with D,D′ division
k-algebras and n, n′ ≥ 1. Then

Mnm(D) 'Mm(A) 'Mm′(A) 'Mn′m′(D′).

We have seem in class that this implies that D ' D′ as k-algebras.

(d) Let m,m′ ≥ 1 be integers such that Mm(B) 'Mm′(B
′). Then, by (3)(b),

Mm(A⊗k B)) ' A⊗k Mm(B) ' A⊗k Mm′(B
′) 'Mm′(A⊗k B′),
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so
A⊗k B ∼ A⊗k B′.

We see similarly that A⊗k B′ ∼ A′ ⊗k B′.

(e) As the tensor product is associative and commutative (up to isomorphism), the oper-
ation we put on Br(k) is associative and commutative. The class of the k-algebra k
is clearly an identity element for this operation. By (a), for every finite central simple
k-algebra,

A⊗k Aop ' Endk(A) 'Mdimk A(k) ∼ k,

which means that the class of A in Brk(A) has an inverse, given by the class of Aop.
So Br(k) is a commutative group.

(f) If k is algebraically closed, the only finite k-division algebra is k by problem VII.1.3,
so every finite central simple k-algebra is similar to k, and Br(k) = {1}.

(g) We already know two nonisomorphic finite central division R-algebras, R and H (see
problem VII.1.6 for H). If Br(R) = Z/2Z, this means that they are the only finite
central division R-algebra. We still have to find the finite non-central division R-
algebras. Let D be a division R-algebra such that Z(D) contains R strictly. Then
Z(D) is a field, so it’s a finite extension of R not equal to R, so Z(D) = C and D is a
finite division C-algebra. As C is algebraically closed, D = C.

(7). (a) The firstA⊗kD-module structure is given by taking (a⊗u) ·1m = au(m) = u(am),
if a ∈ A, u ∈ D andm ∈M . The second A⊗kD-module structure is given by taking
(a⊗ u) ·2 m = ϕ(a)u(m) = u(ϕ(a)m), if a ∈ A, u ∈ D and m ∈ M . By (3)(c)(ii),
A ⊗k D is a simple k-algebra, so it has a unique simple module up to isomorphism.
As the two A⊗k D-module structures on M make it a simple module, there exists an
automorphism ψ : M → M such that ψ((a⊗ u) ·1 m) = (a⊗ u) ·2 ψ(m), for every
a ∈ A, u ∈ D and m ∈ M . As the factor D acts in the same way for both structures,
ψ is in particular a D-linear automorphism of M . But we know that EndD(M) = A,
so there exists x ∈ A× such that ψ(m) = xm for every m ∈ M . We see that
xam = ϕ(a)xm, for every a ∈ A and every m ∈ M . As M is a faithful A-module,
this implies that ϕ(a)x = xa for every a ∈ A, hence ϕ(a) = xax−1.

(b) By (a), if we have two isomorphisms u1 : A ⊗k Ω
∼→ Mn(Ω) and

u2 : A ⊗k Ω
∼→ Mn(Ω), then there exists g ∈ GLn(Ω) such that

u2(x) = gu1(x)g−1 for every x ∈ A ⊗k Ω. In particular, for every a ∈ A,
Tr(u2(a⊗ 1)) = Tr(gu1(a⊗ 1)g−1) = Tr(u1(a⊗ 1)).

(c) We identify k to its image by σ and stop writing σ. Then we just have to show that
the image of TrA is contained in k.

Let a ∈ A, and let ma : A → A be left multiplication by a. This is a k-linear
endomorphism of A, so its Tr(ma) is an element of k. This trace is also equal to the
trace of the Ω-linear endomorphism of A⊗k Ω 'Mn(Ω) given by left multiplication
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by a ⊗ 1. We know that, as a left Mn(Ω)-module, Mn(Ω) is isomorphic to (Ωn)⊕n

(with the usual action of Mn(Ω) on Ωn), so we finally get Tr(ma) = nT (a). As
char(k) = 0, this implies that T (a) ∈ k.

�

VII.1.11 Irreducible representations of p-groups in characteristic p

Let G be a finite group and p a prime number. We say that G is a p-group if |G| is a power of p.
If G is a nontrivial p-group, then its center Z(G) is nontrivial. 4

(1). Suppose that the only irreducible representation of G on a finite-dimensional Fp-vector
space is the trivial representation (i.e. Fp with every g ∈ G acting as identity). Show that
G is a p-group. (Use the left regular F[G]-module F[G].) 5

(2). Conversely, if k is an algebraically closed field of characteristic p, G is a p-group and V
is an irreducible representation of G on a finite-dimensional k-vector space, show that V
is the trivial representation. (Hint : Look at the subspace of vectors that are invariant by
every element of Z(G).)

Solution.

(1). Let V = Fp[G], seen as a left Fp[G]-module. This gives a group morphism
ρ : G → GL(V ), which is obviously injective. Choose a Jordan-Hölder series
V = V0 ⊃ V1 ⊃ · · · ⊃ Vn = 0. Then every Vi/Vi+1 is a simple Fp[G]-module, hence
equal to the trivial representation of G, and so n = dimFp(Fp[G]) = |G|. Choose a basis
(e1, . . . , en) of V as a Fp-vector space such that, for every i ∈ {1, . . . , n}, (e1, . . . , ei) is
a basis of Vn−i. This gives an isomorphism GL(V ) ' GLn(Fp), and the composition of
this with ρ sendsG injectively to the group U(Fp) of upper triangular matrices inGLn(Fp)
with ones on the diagonal. For every integer r ≥ 1, let U(Fpr) = U(Fp) ∩ GLn(Fpr).
Then U(Fp) =

⋃
r≥1 U(Fpr). As G is finite, its image by ρ is contained in U(Fpr) for

r big enough. So there exists r such that G is isomorphic to a subgroup of U(Fpr). But
|U(Fpr)| = (pr)n(n−1)/2 is a power of p, so the order of G is also a power of p.

(2). We show the result by induction on the order of G. Suppose that G is abelian (this is the
case, for example, if |G| = p). Let V be an irreducible representation of V . By Schur’s
lemma (and because k is algebraically closed), Endk[G](V ) = k. But, as G is abelian, k[G]
is commutative, so the action of any element of k[G] on V is in Endk[G](V ), so there exists
a k-algebra map u : k[G] → k such that, for every x ∈ k[G] and v ∈ V , xv = u(x)v. In
particular, every k-subspace of V is a subrepresentation; as V is irreductible, dimV = 1.

4See your favorite algebra textbook. Mine is Perrin’s book [23].
5We could replace Fp by a an arbitrary field of characteristic p in this question, and the result would stay true.
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Giving u is the same as giving a morphism of groups ρ : G → k×. But the only element
of k× that has order a power of p is 1 (because tpr − 1 = (t − 1)p

r in k[t]), so ρ is trivial,
so G acts trivially on V .

Now assume that G is not abelian, and that we know the result for every p-group of order
< |G|. Let Z be the center of G, it’s a nontrivial abelian p-group, so the induction hy-
pothesis applies to it. Let V be an irreducible representation of G. We denote by V Z the
k-subspace of v ∈ V such that gv = v for every g ∈ Z. If g ∈ G and v ∈ V Z , then for
every h ∈ Z,

h(gv) = (hg)v = (gh)v = g(hv) = gv,

so gv ∈ V Z . This show that V Z is actually a subrepresentation of V .

Let V = V0 ⊃ V1 ⊃ · · · ⊃ Vn = 0 be a Jordan-Hölder series for V seen as a k[Z]-module.
Then Vn−1 is a simple k[Z]-module, so it’s the trivial representation of Z by the induction
hypothesis. This means that Vn−1 ⊂ V Z , and so V Z 6= 0. As V is irreducible, V Z = V .
So the action of G on V factors G/Z, and we can see V as an irreducible representation
of G/Z. By the induction hypothesis, this is the trivial representation of G/Z, and so V is
the trivial representation of G.

�

VII.1.12 Another description of induction

LetR be a ring,G be a finite group andH be a subgroup ofG. Choose a system of representatives
g1, . . . , gr of G/H . Let M be a R[H]-module, write

I = {f : G→M |∀h ∈ H,∀g ∈ G, f(hg) = hf(g)}.

We make G act on I by (g · f)(x) = f(xg) if f ∈ I and x, g ∈ G.

Show that the map I → IndGHM , f 7−→
∑r

i=1 gi ⊗ f(g−1
i ), is an isomorphism of R[G]-

modules, and that it is independent of the choice of g1, . . . , gs.

Solution. Let’s call this map u. We first check that u is R[G]-linear. As u is obviously R-linear,
we just need to show that it is compatible with the actions of G on its source and target. So let
f ∈ I and g ∈ G. Then we have

g · u(f) = g

r∑
i=1

gi ⊗ f(g−1
i )

and

u(g · f) =
r∑
i=1

gi ⊗ (g · f)(g−1
i ) =

∑
i∈r

gi ⊗ f(g−1
i g).
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Note that g−1
1 , . . . , g−1

r is a system of representatives of the quotient H\G, and so is
g−1

1 g, . . . , g−1
r g. So we have a (unique) permutation σ ∈ Sr and (unique) elements

h1, . . . , hr ∈ H such that g−1
i g = hig

−1
σ(i) for every i. This gives

u(g · f) =
r∑
i=1

gi ⊗ f(hig
−1
σ(i)) =

r∑
i=1

(gihi)⊗ f(g−1
σ(i))

(using the properties of f and the fact that the tensor product is over R[H]). As gihi = ggσ(i) for
every i, we finally get

u(g · f) = g

r∑
i=1

gσ(i)f(g−1
σ(i)) = g · u(f).

Now we check that u is an isomorphism, by defining an inverse v : IndGHM → I . Remember
from class that, as a right R[H]-module, R[G] is free with basis (g1, . . . , gr). So, as an abelian
group,

IndGHM = R[G]⊗R[H] M '
r⊕
i=1

giR[H]⊗R[H] M '
r⊕
i=1

M.

Using this isomorphism, we’ll define v as a morphism M r → I . If (m1, . . . ,mr) ∈M r, we send
it to the sum f1 + · · ·+ fr ∈ I , where, for every i, fi : G→M is the function defined by

fi(x) =

{
hmi if x = hg−1

i with h ∈ H
0 otherwise .

As the definition of fi is R-linear in mi, we see easily that v is indeed R-linear. We have to
show that it is the inverse of u.

Let f ∈ I . Then u(f) =
∑r

i=1 gi ⊗ f(g−1
i ), which corresponds to the element

(f(g−1
1 ), . . . , f(g−1

r )) of M r. So vu(f) is the sum f1 + · · ·+ fr, where, for every i,

fi(x) =

{
hf(g−1

i ) = f(hg−1
i ) if x = hgi with h ∈ H

0 otherwise .

As G =
∐

i=1r Hg
−1
i , we have indeed f = f1 + · · ·+ fr.

Now let x ∈ IndGHM , write x =
∑r

i=1 gi⊗mi with (m1, . . . ,mr) ∈M r, and write f = v(x).
Then

u(f) =
r∑
i=1

gi ⊗ f(g−1
i ) =

r∑
i=1

gi ⊗mi = x.

To finish, we have to show that the morphism u is independent of the choice of g1, . . . , gr. So
let g′1, . . . , g

′
r be another system of representatives of G/H , and u′ : I → IndGHM be the map

that we get by using the g′i. Up to changing the order of the g′i (which obviously does not affect
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u′), we may assume that there are h1, . . . , hr ∈ H such that g′i = gihi for every i. Then, for every
f ∈ I ,

u′(f) =
r∑
i=1

g′i ⊗ f(g′i
−1

) =
r∑
i=1

gihi ⊗ f(h−1
i g−1

i ) =
r∑
i=1

gihi ⊗ h−1
i f(g−1

i ) = u(f)

(as the tensor product is over R[H]).

�

VII.1.13 Representation ring of Z/prZ in characteristic p

Take G = Z/prZ and k of characteristic p. Show that Pk(G) is the free abelian group generated
by [k[G]] and calculate the map Pk(G) → Rk(G). 6 (Remember that Pk(G) and Rk(G) were
introduced in definition I.4.6 of chapter I.)

Solution. We first show that a finitely generated k[G]-module is projective if and only if it is free.
This will obviously imply that Pk(G) is the free abelian group generated by [k[G]].

We already know that a free k[G]-module is projective. Conversely, let M be a projective
k[G]-module of finite type. Note that k[G] ' R := k[T ]/(T p

r−1), so we can see M as a finitely
generated k[T ]-module. Using the structure theorem for finitely generated modules over PIDs,
we see that, as a k[T ]-module, M is a direct sum of k[T ]s and of modules of the type k[T ]/(fm),
where the f are irreducible polynomials. As M is actually a k[T ]/(T p

r − 1)-module, we must
have s = 0, and all the fm that appear divide T pr − 1. As char(k) = p, T pr − 1 = (T − 1)p

r in
k[T ], so the only f that can appear in the decomposition above is T − 1, and we see that M is
a direct sum of k[T ]/(T p

r − 1)-modules isomorphic to k[T ]/((T − 1)m), with 1 ≤ m ≤ pr. If
m = pr, k[T ]/((T − 1)m) = R ' k[G], so we just have to show that k[T ]/((T − 1)m) is not a
projectiveR-module if 1 ≤ m < pr. Fixm such that 1 ≤ m < pr and letM = k[T ]/((T −1)m),
then we have an obvious surjective R-module map v : R → M (sending T to T ), and its kernel
M ′ := (T − 1)p

r−mR is isomorphic to k[T ]/(T p
r−m − 1). If M were projective, we would have

R = M ⊕M ′ as R-modules. But the element (T − 1)max(pr−m,m) acts as 0 on M and M ′ and
not on R, so this is not possible and M cannot be projective.

Now we have to calculate the map Pk(G) → Rk(G). As Pk(G) is the free group on [k[G]],
Pk(G) ' Z and we just have to calculate the image of this generator in Rk(G). We have seen in
problem 7 of PS3 that the only simple k[G]-module is 11, so Rk(G) ' Z. Also, all the Jordan-
Hölder factors of k[G] are isomorphic to 11, and there are dimk k[G] = |G| = pr of them. Finally,
the map Pk(G)→ Rk(G) is isomorphic to the map Z→ Z, a 7−→ pra.

�

6This will be generalized to all p-groups in proposition III.8.1 of chapter III.
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VII.1.14 Basic properties of induction

Let R be a ring and G a finite group.

(1). If K ⊂ H ⊂ G are subgroups and V is a R[K]-module, show that

IndGH(IndHK V ) ' IndGK V.

(2). If H ′ ⊂ H ⊂ G are subgroups such that H ′ is normal in G, and if W is a R[H]-module on
which H ′ acts trivially (so that we can also view W as a R[H/H ′]-module), show that

IndGHW ' Ind
G/H′

H/H′W.

(3). Let G1 and G2 be two finite groups, and let G = G1 × G2. If R is a commutative ring,
H1 ⊂ G1 and H2 ⊂ G2 are subgroups, and V1 (resp. V2) is a R[H1]-module (resp. a
R[H2]-module), show that

IndG1×G2
H1×H2

(V1 ⊗R V2) ' (IndG1
H1
V1)⊗R (IndG2

H2
V2).

Solution.

(1). We have

IndGH(IndHK V ) = R[G]⊗R[H] (R[H]⊗R[K] V ) ' R[G]⊗R[K] V ' IndGK V.

(If you’re unfamiliar with that property of tensor products : the isomorphism in the middle
is given by a ⊗ (b ⊗ v) 7−→ (ab) ⊗ v, its inverse by c ⊗ v 7−→ c ⊗ (1 ⊗ v). Note that, in
the left hand side, a⊗ (b⊗ v) = (ab)⊗ (1⊗ v).)

(2). We have a R[G]-linear map

u : IndGHW = R[G]⊗R[H] W → R[G/H ′]⊗R[H/H′] W = Ind
G/H′

H/H′W

given by the obvious map R[G] → R[G/H ′]. Let g1, . . . , gr be a system of repre-
sentatives of G/H . Then g′1 := g1H

′, . . . , g′r := grH
′ is a system of representa-

tives of (G/H ′)/(H/H ′). So we have isomorphisms of R-modules W r → IndGHW ,
(w1, . . . , wr) 7−→

∑r
i=1 gi ⊗ wi, and W r → Ind

G/H′

H/H′W , (w1, . . . , wr) 7−→
∑r

i=1 g
′
i ⊗ wi.

By these isomorphisms, u corresponds to the identity of W r. So u is an isomorphism.

(3). First we note that the map R[G1]⊗RR[G2]→ R[G1×G2], a⊗ b 7−→ ab, is a ring isomor-
phism. (Indeed, it is obviously a map of rings and it sends the basis (g1 ⊗ g2)(g1,g2)∈G1×G2

of R[G1] ⊗R R[G2] to the basis ((g1, g2))(g1,g2)∈G1×G2 of R[G1 × G2]. We have a similar
isomorphism R[H1]⊗R R[H2] ' R[H1 ×H2].
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So we get :

IndG1×G2
H1×H2

(V1 ⊗R V2) ' (R[G1]⊗R R[G2])⊗(R[H1]⊗RR[H2]) (V1 ⊗R V2).

We get a map of this into (IndG1
H1
V1) ⊗R (IndG2

H2
V2) by sending (a1 ⊗ a2) ⊗ (v1 ⊗ v2) to

(a1 ⊗ v1) ⊗ (a2 ⊗ v2). (This is well-defined because it’s additive in every variable, and if
bi ∈ R[Hi] for i = 1, 2, then ((a1⊗a2)(b1⊗b2))⊗(v1⊗v2) and (a1⊗a2)⊗((b1⊗b2)(v1⊗v2))
are sent to the same element, ie ((a1b1)⊗v1)⊗((a2b2)⊗v2) = (a1⊗(b1v1))⊗(a2⊗(b2v2)).)
This is an isomorphism, because it has an inverse, given by sending (a1 ⊗ v1)⊗ (a2 ⊗ v2)
to (a1 ⊗ a2)⊗ (v1 ⊗ v2). (Again, this is well-defined, and the verification is similar.)

�

VII.2 Chapter II exercises

VII.2.1 Representation rings and field extensions

In this problem, whenever k is a field and G is a group, we assume that all k[G]-modules are
finite-dimensional over k.

Let G be a group, and let K/k be an extension of fields.

(1). If V and W are k[G]-modules, show that the obvious map

HomG(V,W )⊗k K → HomG(V ⊗k K,W ⊗k K)

(sending u⊗ x to xu if x ∈ K and u ∈ Homk(V,W )) is an isomorphism.

(2). If G is finite and char(k) does not divide |G|, show that the map Rk(G) → RK(G) is
injective. 7

(3). If G is finite and k is algebraically closed of characteristic prime to |G|, show that the map
Rk(G)→ RK(G) is bijective. 8

Solution.

(1). We know that HomG(V,W ) = Homk(V,W )G and
HomG(V ⊗k K,W ⊗k K) = HomK(V ⊗k K,W ⊗k K)G. (See remark II.1.1.9 of
chapter II.) Notice that the map Homk(V,W ) ⊗k K → HomK(V ⊗k K,W ⊗k K),
u 7−→ u ⊗ 1, is an isomorphism. (Choosing a basis (ei)i∈I of V over k identifies

7The result is still true in any characteristic for a separable algebraic extension, for example by theorem 5.17 of
[20]. But what happens in general ?

8The result is still true without the assumption on the characteristic of k, as we can see by using the characteristic
zero case and corollary III.7.1 of chapter III.
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Homk(V,W ) with
∏

i∈IW . But (ei ⊗ 1)i∈I is a basis of V ⊗k K over K and gives an
identification HomK(V⊗k,W ⊗kK) '

∏
i∈I(W ⊗kK), and then the map above becomes

the product over I of the identity maps W ⊗k K = W ⊗k K.) So we just have to prove
the following fact :

If V is a k[G]-module, then the map V G ⊗k K → (V ⊗k K)G, x 7−→ x⊗ 1, is an isomor-
phism. This map is obviously injective, so we have to show that it is surjective. Let (αj)j∈J
be a basis of K as a k-vector space. Let v ∈ (V ⊗k K)G, and write v =

∑
j∈J vj ⊗ αj

with vj ∈ V for every j. Then, for every g ∈ G, gv =
∑

j∈J(gvj)⊗αj = v
∑

j∈J vj ⊗αj ,
which implies that gvj = vj for every j ∈ J . So all the vj are in V G, and v ∈ V G ⊗k K.
(This is very similar to the proof of (3)(a) in problem VII.1.10.)

(2). Note that the hypothesis ensures that all the modules over k[G] and K[G] are semisimple.

We know that Rk(G) is the free abelian group on the [W ], W ∈ Sk(G). So proving
that the map u : Rk(G) → RK(G) is injective is equivalent to proving that the family
(u([W ]))W∈Sk(G) is linearly independent in RK(G). For every W ∈ Sk(G), let S(W ) be
the set of V ∈ SK(G) such that V is isomorphic to a K[G]-submodule of W ⊗k K.

Now we have to prove that, if W and W ′ are non-isomorphic simple k[G]-modules,
then S(W ) ∩ S(W ′) = ∅, that is, W ⊗k K and W ′ ⊗k K have no simple fac-
tors in common. As W ⊗k K and W ′ ⊗k K are semisimple, this is the same
as saying that HomG(W ⊗k K,W ′ ⊗k K) = 0. But we know from (a) that
HomG(W ⊗k K,W ′ ⊗k K) = HomG(W,W ′)⊗k K = 0.

(3). By theorem II.1.3.1 of chapter II, we know that the free abelian groups Rk(G) and RK(G)
have the same rank. (Indeed, the rank Rk(G) is equal to dimk C (G, k), and that of RK(G)
is equal to dimK C (G,K). As C (G, k) ⊗k K = C (G,K), these two dimensions are
equal.) As the [W ] for W ∈ Sk(G) (resp. W ∈ SK(G)) form a basis of Rk(G) (resp.
RK(G)), this means that |Sk(G)| = |SK(G)|. So if we can show thatW⊗kK is irreducible
for every W ∈ Sk(G), this will imply that the map Rk(G) → RK(G) sends a basis of
Rk(G) to a basis of RK(G), hence is an isomorphism.

So let W be a simple k[G]-module. By (1) and Schur’s lemma,
EndG(W ⊗k K) = EndG(W ) ⊗k K = k ⊗k K = K. If W ⊗k K were not irre-
ducible, we could write W ⊗k K = V1 ⊕ V2 with V1, V2 6= 0, and then the K[G]-linear

endomorphisms
(

idV1 0
0 0

)
and

(
0 0
0 idV2

)
would generate a dimension 2 K-subspace of

EndG(W ⊗kK), which would contradict the calculation above. So W ⊗kK is irreducible.

�
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VII.2.2 Some character tables

Let G be a finite group, and let C be a set of representatives of the set of conjugacy classes in G.
Then giving a central function in G→ k is the same as giving a function C → k. The character
table of G is a table showing the values of the characters of the irreducible representations of G
(over k) at every element of C. For example, the character table of S2 ' {±1} (over Q) is

11 sgn
1 1 1
−1 1 −1

Find representatives for the sets of conjugacy classes and write the character tables in the
following situations :

(1). G = S3, k = Q;

(2). G = {±1,±i,±j,±k}, k = R;

(3). G = {±1,±i,±j,±k}, k = C.

Solution.

(1). G = S3, k = Q : We use the decomposition in cycles to determine the conjugacy classes
in Sn : Every element of Sn is a unique way a product c1 . . . cr where the ci are cycles
with pairwise disjoint supports (note that then the ci commute), and two elements c1 . . . cr
and c′1 . . . c

′
s written in this way are conjugate if and only (i) r = s and (ii) up to reordering

the c′i, the cycles ci and c′i have the same length for every i ∈ {1, . . . , r}.

In particular, we have three conjugacy classes inG : the conjugacy class of 1, the conjugacy
class of transpositions (a representative is (12)) and the conjugacy class of 3-cycles (a
representative is (123)).

We have seen in class that the irreducible representations of S3 over Q are 11, sgn and
the space V = {(x1, x2, x3) ∈ Q3|x1 + x2 + x3 = 0} (with S3 acting by permuting the
coordinates).

So the character table is
11 sgn V

1 1 1 2
(12) 1 −1 0
(123) 1 1 −1

(2). G = {±1,±i,±j,±k}, k = R : We see easily that the conjugacy classes in G are the
following : {1}, {−1}, {±i}, {±j}, {±k}. We have seen that the irreducible represen-
tations of G over R are 11, ε1, ε2, ε3 and H (where H has the obvious action of G by left
multiplication, and the others are the 1-dimensional representations defined in class (see
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also the character table for their values)). So the character table is :

11 ε1 ε2 ε3 H
1 1 1 1 1 4
−1 1 1 1 1 −4
i 1 1 −1 −1 0
j 1 −1 1 −1 0
k 1 −1 1 −1 0

(3). G = {±1,±i,±j,±k}, k = C : The only change is that the irreducible representation H
of G over R splits over C as V ⊕ V , with V a simple C[G]-module (ie H⊗R C ' V ⊕ V
as C[G]-module). So we get the following character table :

11 ε1 ε2 ε3 V
1 1 1 1 1 2
−1 1 1 1 1 −2
i 1 1 −1 −1 0
j 1 −1 1 −1 0
k 1 −1 1 −1 0

�

VII.2.3 Calculating representation rings

(1). Let n be a positive integer, and let µn be the group of nth roots of 1 in k. Assume that k is
algebraically closed. Show that, as a Z-algebra, Rk(Z/nZ) is isomorphic to Z[µn].

(2). Let G = {±1,±i,±j,±k}. The theorem quoted at the beginning says that RC(G) is a
subring of C (G,C) ' C5. But do we have RC(G) ' Z5 as a ring ? (Hint : Look for
idempotents.)

Solution.

(1). Write n = mpr, where p = char(k) and p 6 |m (if char(k) = 9, we take n = m). Then µn
is a cyclic group of orderm. Let ζn be a generator of µn. The irreducible representations of
Z/nZ over k are the ε0, . . . , εm−1, where εi : Z/nZ→ k× is the morphism of groups that
sends 1 to ζ in. For every i ∈ {0, . . . ,m−1}, let ci = [εi] ∈ Rk(Z/nZ). Then (c0, . . . , cn−1)
is a basis of Rk(Z/nZ) as a Z-module. Also, for every i, j, cicj = [εi ⊗ εj], and
εi ⊗ εj : Z/nZ → k× sends 1 to ζ i+jn . So the Z-linear isomorphism Rk(Z/nZ) → Z[µn]
that sends ci to ζ in pour tout i ∈ {0, . . . , n− 1} is a map of rings.

(2). With the notation of problem 4, we write cr = [εr] ∈ RC(G) for r ∈ {1, 2, 3}, and d = [V ].
Then (1, c1, c2, c3, d) is a basis of the Z-module RC(G). Using the character table of prob-
lem 4 (remember that the character of a tensor product is the product of the characters),
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we see that c2
1 = c2

2 = c2
3 = 1, c1c2 = c3, c2c3 = c1, c3c1 = c2, c1d = c2d = c3d = d and

d2 = 1 + c1 + c2 + c3.

Now let x be an element of RC(G), write x = α + β1c1 + β2c2 + β3c3 + γd, with
α, β1, β2, β3, γ ∈ Z, and suppose that x2 = x. By the multplication table we established
above, the coefficient of 1 in x2 is α2 + β2

1 + β2
2 + β2

3 + γ2. As x = x2, this is equal to α,
which is only possible if α = 1 and β1 = β2 = β3 = γ = 0. So 1 is the only idempotent
of RC(G), and we cannot have RC(G) ' Z5 as a ring.

�

VII.2.4 Representations of products

Let G1 and G2 be two finite groups, and let G = G1 ×G2. Let k be an algebraically closed field
of characteristic 0.

(1). Let V1 (resp. V2) be an irreducible representation of G1 (resp. G2) (over k). Show that
V1 ⊗k V2 is an irreducible representation of G.

(2). If V1, V
′

1 (resp. V2, V
′

2) are irreducible representations of G1 (resp. G2), show that the
following are equivalent :

(a) the representations V1 ⊗k V2 and V ′1 ⊗k V ′2 of G are isomorphic;

(b) V1 and V ′1 are isomorphic and V2 and V ′2 are isomorphic.

(3). Show that every irreducible representation of G is of the form V1⊗k V2, with V1 (resp. V2)
an irreducible representation of G1 (resp. G2). (There are several ways to do this.)

(4). Is (1) still true if k is not algebraically closed ? (Hint : problem VII.1.6(4).)

Solution.

(1). We have seen in class that the character of V := V1 ⊗k V2 is the map
(g1, g2) 7−→ χV1(g1)χV2(g2). So we have :

〈V, V 〉G =
1

|G1 ×G2|
∑

(g1,g2)∈G1×G2

χV1(g1)χV2(g2) = 〈V1, V1〉G1〈V2, V2〉G2 .

As these three brackets are non-negative integers, we deduce that 〈V, V 〉G = 1 (i.e. V is
irreducible) if and only if 〈V1, V1〉G1 = 〈V2, V2〉G2 = 1 (i.e. both V1 and V2 are irreducible).

(2). It’s obvious that (b) implies (a), so let’s show that (a) implies (b). Assuming (a), let’s
show for example that V1 and V ′1 are isomorphic (the case of V2 and V ′2 is similar). Let
d = dimk V2 and d′ = dimk V

′
2 . Then, for every g ∈ G1,

dχV1(g) = χV1(g)χV2(1) = χV1⊗kV2(g, 1) = χV ′1⊗kV ′2 (g, 1) = χV ′1 (g)χV ′2 (1) = d′χV ′1 (g).
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So χV1 and χV ′1 are proportional. As V1 and V ′1 are irreducible, this is only possible if
V1 ' V ′1 .

(3). By the two previous questions, we have a map Sk(G1)× Sk(G2)→ Sk(G1×G2), and it’s
injective. We want to show that this map is bijective, and for this we can for example show
that its source and target have the same cardinality.

Let X(G1) (resp. X(G2), resp. X(G1 ×G2)) be the set of conjugacy classes in G1 (resp.
G2, resp. G1 × G2). We have an obvious surjective map u : G1 × G2 → X(G1 × G2),
and two elements (g1, g2), (g′1, g

′
2) ∈ G1 × G2 are conjugate in G1 × G2 if and

only gi and g′i are conjugate in Gi for i = 1, 2. So u induces a bijection
X(G1) × X(G2)

∼→ X(G1 × G2). As |Sk(G)| = X(G) for G ∈ {G1, G2, G1 × G2},
this proves that |Sk(G1)× Sk(G2)| = |Sk(G1 ×G2)|.

Here is another way to prove the conclusion of (3). We identify G1 and G2 with the
subgroups G1 × {1} and {1} × G2 of G. Let V an irreducible representation of G. Let
V = W1⊕· · ·⊕Wm be the decomposition of V in isotypic components as a representation
of G1. Then every element of G2 stabilizes all the Wi. (A useful trick : if g ∈ G2, then g
centralizesG1, so the endomorphism of V given the action of g is aG1-equivariant isomor-
phism, and it is clear from the definition of isotypic components that such an isomorphism
must respect them.) So the Wi are k[G]-representations of V . As V is irreducible, we have
V = W1, that is, there is a simple k[G1]-module V1 and r1 ≥ 1 such that V ' V ⊕r11 as
representations of G1. Similarly, as a representation of G2, V is isomorphic to a V ⊕r22 ,
with V2 a simple k[G2]-module. Let i = 1, 2. In the decomposition of k[Gi] as a prod-
uct of simple k-algebras, let Mni(k) be the factor corresponding to Vi; then the action of
k[Gi] on V factors through its quotient Mni(k). So the action of k[G] on V factors through
A := Mn1(k) ⊗ Mn2(k) ' Mn1n2(k). But this k-algebra is simple, so it has a unique
simple module up to isomorphism. As V1 ⊗k V2 and V are simple A-modules, we deduce
that they must isomorphic as A-modules, and hence as k[G]-modules.

(4). No. Take k = R, G1 = G2 = {±1,±i}, and V1 = V2 = C with the obvious action. We
have seen in problem VII.1.6(4) that there is a R-linear isomorphism V1 ⊗R V2

∼→ C⊕ C,
(x, y) 7−→ xy ⊕ xy. If we use this to transport the action of G to C⊕ C, we see that each
summand is stable by G, so the representation V1 ⊗k V2 is not irreducible.

�

VII.2.5 Character of small symmetric and exterior powers

Let G be a group, k be a field of characteristic not diving 6 and V be a representation of G on a
finite-dimensional k-vector space.

For every n ≥ 0, SnV and ∧nV be the representations of G on the nth symmetric and exterior
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powers of V .9 Show that, for every g ∈ G,

χS2V (g) =
χ(g)2 + χ(g2)

2

χ∧2V (g) =
χ(g)2 − χ(g2))

2

χS3V (g) =
χ(g)3 + 3χ(g2)χ(g) + 2χ(g3)

6
and

χ∧3V (g) =
χ(g)3 − 3χ(g2)χ(g) + 2χ(g3)

6
.

Solution. We may assume that k is algebraically closed. Denote the representation by
ρ : G → GL(V ). Let g ∈ G, and choose a basis (e1, . . . , en) of V in which the matrix of
ρ(g) is upper triangular with diagonal entries λ1, . . . , λn. Then the image in S2V (resp. ∧2V ) of
the family (ei ⊗ ej + ej ⊗ ei)1≤i≤j≤n (resp. (ei ⊗ ej − ej ⊗ ei)1≤i<j≤n) of T 2V is a basis. In this
basis and using the lexicographic order on {1, . . . , n}2, S2ρ(g) (resp. ∧2ρ(g)) is upper triangular
with diagonal entries (λiλj)1≤i≤j≤n (resp. (λiλj)1≤i<j≤n). So

χS2V (g) =
∑

1≤i≤j≤n

λiλj =
1

2

( n∑
i=1

λi

)2

+
n∑
i=1

λ2
i

 =
1

2
(χV (g)2 + χV (g2)),

and

χ∧2V (g) =
∑

1≤i<j≤n

λiλj =
1

2

( n∑
i=1

λi

)2

−
n∑
i=1

λ2
i

 =
1

2
(χV (g)2 − χV (g2)).

Similarly, the image in S3V (resp. ∧3V ) of the family (
∑

σ∈S3
eiσ(1)
⊗eiσ(2)

⊗eiσ(3)
)1≤i1≤i2≤i3≤n

(resp. (
∑

σ∈S3
sgn(σ)eiσ(1)

⊗eiσ(2)
⊗eiσ(3)

)1≤i1<i2<i3≤n) of T 3V is a basis. In this basis and using
the lexicographic order on {1, . . . , n}3, S3ρ(g) (resp. ∧3ρ(g)) is upper triangular with diagonal
entries (λi1λi2λi3)1≤i1≤i2≤i3≤n (resp. (λi1λi2λi3)1≤i1<i2<i3≤n).

Note that

∑
1≤i1≤i2≤i3≤n

λi1λi2λi3 =
1

6

( n∑
i=1

λi

)3

+ 3
∑

1≤i,j≤n

λ2
iλj + 2

n∑
i=1

λ3
i


and ∑

1≤i1<i2<i3≤n

λi1λi2λi3 =
1

6

( n∑
i=1

λi

)3

− 3
∑

1≤i,j≤n

λ2
iλj + 2

n∑
i=1

λ3
i

 ,

9Symmetric powers are defined in problem VII.6.7, and exterior powers in section VI.9.1 of chapter VI.
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so
χS3V (g) =

1

6
(χ(g)3 + 3χ(g2)χ(g) + 2χ(g3))

and
χ∧3V (g) =

1

6
(χ(g)3 − 3χ(g2)χ(g) + 2χ(g3)).

�

VII.2.6 Using Mackey’s irreducibility criterion (representations of
GL2(Fq), part 1)

Let F be a finite field, letG = GL2(F), and consider the subgroupB of upper triangular matrices
in G. Let k be an algebraically closed field of characteristic 0 and ω1, ω2 : F× → k× two
morphisms of groups. We consider the representation ρ : B → k× given by

ρ

(
a b
0 d

)
= ω1(a)ω2(d).

(1). When is IndGB ρ irreducible ? (Give a condition on ω1 and ω2.)

(2). Calculate the character of IndGB ρ.

Solution.

(1). First we need a system of representatives for G/B. I claim that the matrix gc :=

(
1 0
c 1

)
for c ∈ F and w :=

(
0 1
1 0

)
form such a system. Indeed, an easy calculation show that

gcB =

{(
x y
z t

)
∈ GL2(F)|x 6= 0 and z = cx

}
for c ∈ F, and

wB =

{(
0 y
z t

)
∈ GL2(F)

}
.

Obviously, GL2(F) is the disjoint union of these subsets.

To see whether IndGB ρ is irreducible, we use Mackey’s irreducibility criterion. First note
that ρ is irreducible.

Let c ∈ F− {0} (if c = 0, gc ∈ B). Then, for every x =

(
a b
0 d

)
∈ B, we have

gcxg
−1
c =

(
a− bc b

c(a− (bc+ d)) bc+ d

)
.
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So

B ∩ gcBg−1
c =

{(
a b
0 a− bc

)
, a ∈ F×, b ∈ F

}
,

and for an element x of B ∩ gcBg−1
c written as above, we have ρ(x) = ω1(a)ω2(a − bc)

and ρ(g−1
c xgc) = ω1(a − bc)ω2(a). These two representations of B ∩ gcB ∩ g−1

c are 1-
dimensional, so they have a simple factor in common if and only if they are isomorphic,
and this is equivalent to ω1 = ω2.

Also, wBw−1 is the set of lower triangular matrices, so B ∩ wBw−1 is the set of diagonal

matrices, and, if x =

(
a 0
0 b

)
, then ρ(x) = ω1(a)ω2(b) and ρ(w−1xw) = ω2(a)ω1(b).

Again, these two representations of B ∩ wBw−1 have a simple factor in common if and
only if they are isomorphic, and this is equivalent to ω1 = ω2.

Finally, Mackey’s irreducibility criterion shows that IndGB ρ is irreducible if and only
ω1 6= ω2.

(2). Let χ be the character of IndGB ρ, and letX = {gc, c ∈ F}∪{w}. According to the formula
for the character of an induced representation, for every x ∈ G,

χ(x) =
∑

g∈X,g−1xg∈B

ρ(g−1xg).

Also, we know that χ(x) depends only on the conjugacy class of x. We have three types
of conjugacy classes in GL2(F) :

(i) If x is diagonalizable over F, then it’s conjugate to a diagonal matrix
(
a 0
0 b

)
, with

a, b ∈ F× (duh).

(ii) If x is not diagonalizable over F but is diagonalizable over an algebraic closure of
F, then the eigenvalues of x are in the unique degree 2 extension F′ of F. This F′ is
generated by the square root of an element u ∈ F× − (F×)2, and x is conjugated to a

matrix of the form
(
a b
ub a

)
, with a ∈ F and b ∈ F× (if b = 0, we are in case (i)).

(iii) If x is not diagonalizable over any extension of F, then it is conjugated to a matrix of

the form
(
a 1
0 a

)
, with a ∈ F×.

In case (i), we have w−1xw ∈ B and ρ(w−1xw) = ω2(a)ω1(b), and

g−1
c xgc =

(
a 0

c(a− b) b

)
∈ B if and only c = 0 or a = b, with ρ(g−1

c xgc) = ω1(a)ω2(b)

in both cases. So

χ(x) =

{
ω1(a)ω2(b) + ω2(a)ω1(b) if a 6= b
(1 + |F|)ω1(a)ω2(a) if a = b

.
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In case (ii), w−1xw =

(
a ub
b a

)
6∈ B, and g−1

c xgc =

(
a+ bc b
b(u− c2) a− bc

)
6∈ B, so

χ(x) = 0.

In case (iii), w−1xw 6∈ B, and g−1
c xgc =

(
a+ c 1
−c2 a− c

)
is in B if and only c = 0, and in

that case ρ(g−1
c xgc) = ω1(a)ω2(a). So

χ(x) = ω1(a)ω2(a).

�

VII.2.7 Rationality problems

In this problem, k is a field of characteristic 0 and G is a finite group. Let k ⊂ Ω be an extension
of k. Remember that we have a commutative square of injective maps

Rk(G) //

��

RΩ(G)

��
C (G, k) // C (G,Ω)

(By corollary II.1.2.9 of chapter 2 and problem VII.2.1.)

We will use this to identify Rk(G) (resp. RΩ(G)) with its image in C (G, k) (resp. C (G,Ω)).

We say that a representation V of G over Ω is realizable over k if there exists a k[G]-module
W and a Ω[G]-linear isomorphism W ⊗k Ω ' V .

(1). If V is a Ω[G]-module, show that V is realizable over k if and only if χV ∈ Rk(G), and
that in that case, any two k[G]-modules W,W ′ such that W ⊗k Ω ' V and W ′ ⊗k Ω ' V
are isomorphic (over k[G]).

Now suppose that Ω is algebraically closed, and write R(G) = RΩ(G). (We have seen in class
that RΩ(G) is independent of the choice of the algebraically closed extension Ω of k, hence the
notation.) Let R′k(G) be the space of elements χ ∈ R(G) that take their values in k (when seen
as central functions on G). We obviously have Rk(G) ⊂ R′k(G), and we want to investigate the
difference between the two.

Let k[G] = A1 × · · · × Ar be the decomposition of k[G] into simple k-algebras. For every i,
write Ai = Mni(Di) with Di a division algebra and ni ≥ 1, let Vi = Dni

i be the unique simple
Ai-module, Ki = Z(Di) (a finite extension of k) and mi =

√
dimKi(Di) (this is an integer by

problem VII.1.10(4), and it’s called the Schur index of the simple k[G]-module Vi). We also set
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χi = χVi ∈ C (G, k) and denote by ψi ∈ C (G,Ki) the function that takes g ∈ G to the reduced
trace of its image in Ai (see problem VII.1.10(7)). Finally, let Σi be the set of k-linear field
morphisms Ki → Ω.

(2). Show that every |Σi| = [Ki : k].

(3). Show that (χ1, . . . , χr) is a basis of Rk(G).

(4). If i ∈ {1, . . . , r} and σ ∈ Σi, we write Ai,σ = Ai ⊗Ki Ω, where we use the morphism
σ : Ki → Ω to form the tensor product. (Note that Ai is naturally a Ki-algebra.) Show
that this is a simple Ω-algebra of dimension n2

im
2
i , where mi =

√
dimKi Di (an integer by

(4) of problem VII.1.10), and that we have

Ω[G] '
r∏
i=1

∏
σ∈Σi

Ai,σ.

(5). For every i ∈ {1, . . . , r} and σ ∈ Σi, let Wi,σ be the unique simple Ai,σ-module and let
ψi,σ be its character.

Show that ψi,σ = σ ◦ψi, that every irreducible representation of G over Ω is isomorphic to
a unique Wi,σ, and that χi = mi

∑
σ∈Σi

ψi,σ for every i ∈ {1, . . . , r}.

(6). Let χ ∈ R(G). By (d), we can write χ =
∑r

i=1

∑
σ∈Σi

ai,σψi,σ, with ai,σ ∈ Z. Show that
χ ∈ R′k(G) if and only if, for every i ∈ {1, . . . , r} and every σ, τ ∈ Σi, ai,σ = ai,τ .

(7). Show that (m−1
1 χ1, . . . ,m

−1
r χr) is a basis of R′k(G). (In particular, the quotient

R′K(G)/Rk(G) is finite of order m1 . . .mr, and Rk(G) = R′k(G) if and only if all the
Di are commutative.)

Solution.

(1). If χV ∈ Rk(G), then we have χV =
∑

W∈Sk(G) nWχW , with the nW in Z. IfW andW ′ are
in Sk(G), then Homk[G](W,W

′)⊗k Ω = HomΩ[G](W ⊗k Ω,W ′ ⊗k Ω) (by (1) of problem
VII.2.1), which is zero unless W ' W ′. So if W 6' W ′, the Ω[G]-modules W ⊗k Ω and
W ′ ⊗k Ω have no simple factor in common. For every W ∈ Sk(G), let SW be the set of
M ∈ SΩ(G) that are simple factors of W ⊗k Ω and write [χW ] =

∑
M∈SW nW,MχM in

RΩ(G), with the nW,M non-negative integers (and at least one of them nonzero).

As the SW are pairwise disjoint in SΩ(G), there are no cancellations in the expression

χV =
∑

W∈Sk(G)

nW
∑
M∈SW

nW,MχM ,

so all the nW are nonnegative integers. Hence we can form the k[G]-module
V ′ =

⊕
W∈Sk(G) W

⊕nW . We have χV = χV ′ = χV ′⊗kΩ, so V ' V ′ ⊗k Ω, so V is
defined over k.
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Let W,W ′ be two k[G]-modules such that W ⊗k Ω ' W ′ ⊗k Ω ' V . Then
χW = χW⊗kΩ = χW ′⊗kΩ = χW ′ , so W ' W ′.

(2). By the primitive element theorem, there exists x ∈ Ki such that Ki = k[x]. Let f ∈ k[T ]
be the minimal polynomial of x over k. Then Ki ' k[T ]/(f), so f is irreducible,
deg(f) = [Ki : k], and σ 7−→ σ(x) is a bijection between Σi and the set of roots of f
in Ω.

(3). We have seen in class that the classes of the simple k[G]-modules form a basis of the
Z-module Rk(G). So there is nothing to do.

(4). The Ω-algebra Ai,σ is simple by problem VII.1.10(3)(c)(ii). (We can apply this because Ki

is the center of Ai, as Ki = Z(Di) and Ai = Mni(Di), and

dimΩ(Ai,σ) = dimKi(Ai) = n2
i dimKi(Di).

Fix i. By the primitive element theorem, there is a x ∈ Ki such that Ki = k[x]. Let
f ∈ k[T ] be the minimal polynomial of x, then we have an isomorphism k[T ]/(f)

∼→ Ki

given by T 7−→ x. The set of roots of f in Ω is {σ(x), σ ∈ Σi}, and we get an isomorphism

Ki ⊗k Ω ' k[T ]/(f)⊗f Ω ' Ω[T ]/(f) ' ΩΣi

by sending a⊗ b ∈ Ki ⊗ Ω to (σ(a)b)σ∈Σi . This gives an isomorphism

Ai ⊗k Ω ' Ai ⊗Ki (Ki ⊗k Ω) '
∏
σ∈Σi

Ai,σ,

and we finally get

Ω[G] ' (
r∏
i=1

Ai)⊗k Ω '
∏
i=1

∏
σ∈Σi

Ai,σ.

(5). By the previous question, the irreducible representations ofG over Ω are exactly the simple
Ai,σ-modules, for i ∈ {1, . . . , r} and σ ∈ Σi. There is exactly one for each i and σ as
above, an it’s Wi,σ.

For every i and σ ∈ Σi, let Vi,σ = Vi ⊗Ki Ω, where we use σ : Ki → Ω to form the tensor
product. Then as above, we get an isomorphism

Vi ⊗k Ω '
∏
σ∈Σi

Vi,σ,

and the factorAi,σ ofAi⊗kΩ acts on Vi⊗kΩ through Vi,σ. The unique simpleAi,σ-module
if of dimension nimi over Ω, and dimΩ(Vi,σ) = dimKi Vi = nim

2
i (because we know that

Vi ' D⊕nii ), so Vi,σ ' W⊕mi
i,σ . Finally, we get

χVi =
∑
σ∈Σi

χVi,σ = mi

∑
σ∈Σi

ψi,σ.
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It remains to calculate the ψi,σ. Fix i ∈ {1, . . . , r} and σ ∈ Σi. Let a ∈ Ai. Then by
definition of the reduced trace, σ(ψi(a)) is the trace of a ⊗ 1 ∈ Ai,σ, where the trace is
defined by identifyingAi,σ with the matrix algebraMnimi(Ω). In other words, it’s the trace
of a⊗ 1 on the unique simple Ai,σ-module Wi,σ, that is, ψi,σ(a).

(6). For every g ∈ G, we have

χ(g) =
r∑
i=1

∑
σ∈Σi

ai,σσ(ψi(g)).

We know that χ(g) ∈ k if and only if, for every τ ∈ Gal(Ω/k), τ(χ(k)) = χ(k). For such
a τ , we have

τ(χ(g)) =
r∑
i=1

∑
σ∈Σi

ai,στ(σ(ψi(g))) =
r∑
i=1

∑
σ∈Σi

ai,τ−1σσ(ψi(g)),

because ai,σ ∈ Z (so τ(ai,σ) = ai,σ) and right multiplication by τ (and τ−1) preserves
Σi. To finish the proof, we just have to note that, for every σ, σ′ ∈ Σi, there exists
τ ∈ Gal(Ω/k) such that τσ = σ′.

(7). By (3) and (6), a basis of R′k(G) is given by the elements
∑

σ∈Σi
ψi,σ, for i ∈ {1, . . . , r}.

By (5), those are equal to the m−1
i χi.

�

VII.2.8 Hecke algebra

Let k be an algebraically closed field of characteristic 0.

Let H ⊂ G be finite groups, and let χ : H → k× be a morphism of groups (i.e. a 1-
dimensional representation of H over k).

Let H be the space of functions f : G → k such that, for every h, h′ ∈ H and g ∈ G,
f(hgh′) = χ(hh′)f(g). The convolution of two functions f1 and f2 of H is the function f1 ∗ f2

defined by :

(f1 ∗ f2)(g) =
1

|H|
∑
x∈G

f1(x)f2(x−1g).

Using Frobenius reciprocity (theorem I.5.4.3 of chapter I) and problem VII.1.12, construct an
isomorphism (of k-vector spaces) Endk[G](IndGH χ)

∼→ H , and show that it sends the multipli-
cation of Endk[G](IndGH χ) to the convolution on H . 10

10In particular, the convolution of two functions of H is still in H , and the convolution makes H into a k-algebra.
Both these facts can also easily be checked directly.
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Solution. Let E = Endk[G](IndGH kχ). Frobenius reciprocity gives an isomorphism of k-vector
spaces ϕ : E

∼→ Homk[H](kχ,ResGH IndGH kχ), and problem VII.1.12 gives an isomorphism of
k[G]-modules IndGH

∼→ F , where

F = {f : G→ k|∀h ∈ H, g ∈ G, f(hg) = χ(h)f(g)},

with the action of G given by (gf)(x) = f(xg) for any g, x ∈ G and f ∈ F . Putting these two
results together, we get an injective k-linear map ψ : E → F , u 7−→ ϕ(u)(1). (This map is
injective because ϕ(u) ∈ Homk[H](kχ,ResGH IndGH kχ) is k-linear, hence uniquely determined by
the image of 1.) Note that H ⊂ F (as k-vector spaces).

I claim that the image of ψ is H . Indeed, let u ∈ E . Then ϕ(u) is H-linear, so, if f = ψ(u),
then for every h ∈ H ,

hf = h(ϕ(u)(1)) = ϕ(u)(h · 1) = ϕ(u)(χ(h)) = χ(h)ϕ(u)(1) = χ(h)f,

and hence for every g ∈ G,
(hf)(g) = f(gh) = χ(h)f(g).

So f = ψ(u) is indeed in H . Conversely, let f ∈ H , and define a k-linear map
u : kχ → ResGH IndGH kχ by setting u(1) = f . Then for every h ∈ H , for every g ∈ G,

u(h · 1)(g) = (χ(h)u(1))(g) = χ(h)f(g) = f(gh) = (hf)(g) = (hu(1))(g),

so that u is actually k[H]-linear. We obviously have ψ(u) = f .

Finally, we have to check that ψ sends the composition on E to the convolution on H . Let
u1, u2 ∈ E , and let f1 = ψ(u1), f2 = ψ(u2). First we identify ϕ(u1u2). Remember that we have
an injective map of k[H]-modules

kχ = k[H]⊗k[H] kχ → k[G]⊗k[H] kχ = ResGH IndGH kχ,

and that ϕ is given by restriction to kχ ⊂ ResGH IndGH kχ. So ϕ(u1u2) is the composition

kχ
ϕ(u2)−→ ResGH IndGH kχ

ResGHu1−→ ResGH IndGH kχ.

Next we identify the endomorphism of F corresponding to u1. Remember that the morphism

a : IndGH kχ → F sends g⊗v to the function x 7−→
{
χ(h)v if x = hg, h ∈ H
0 otherwise . In the other

direction, if (gi)i∈I is a system of representatives of G/H , then the morphism F → IndGH kχ
sends f to

∑
i∈I gi ⊗ f(g−1

i ). (This is from problem VII.1.12.) So the endomorphism of F
corresponding to u1 sends f ∈ F to

au1

(∑
i∈I

gi ⊗ f(g−1
i )

)
= a

(∑
i∈I

giu1(1⊗ f(g−1
i ))

)
= a

(∑
i∈I

gi(1⊗ ϕ(u1)(f(g−1
i ))

)
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=
∑
i∈I

gif1(f(g−1
i )) =

∑
i∈I

f(g−1
i )(gif1).

We get ψ(u1u2) by applying this endomorphism to f2. So

ψ(u1u2) =
∑
i∈I

f2(g−1
i )(gif1),

and, for every x ∈ G,

ψ(u1u2)(x) =
∑
i∈I

f2(g−1
i )f1(xgi) =

1

|H|
∑
g∈G

f1(xg)f2(g−1).

On the other hand, for every x ∈ G,

(f1 ∗ f2)(x) =
1

|H|
∑
g′∈G

f1(g′)f2((g′)−1x).

Making the change of variables g′ = xg, we see that these two sums are equal.

�

VII.2.9 Multiplicity-free modules

We say that a k[G]-module V is multiplicity-free if the multiplicity of every simple k[G]-module
in V is at most 1 (i.e. V = W1 ⊕ · · · ⊕Wr, where the Wi are pairwise non-isomorphic simple
k[G]-modules).

Show that V is multiplicity-free if and only if Endk[G](V ) is commutative.

Solution. Write V =
⊕

W∈Sk(G) W
⊕n(W ). Then

Endk[G](V ) =
∏

W∈Sk(G)

Mn(W )(k),

and this is commutative if and only n(w) ≤ 1 for every W ∈ Sk(G).

�
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VII.2.10 Hecke algebra and multiplicities

11

We use the notation of problem VII.2.8 For every g ∈ G, we write Hg = H ∩ gHg−1 and
χg : Hg → k×, h 7−→ χ(g−1hg). Let α : G→ G be a bijection such that :

- α(gh) = α(h)α(g), ∀h, g ∈ G;

- α(H) = H , and χ ◦ α|H = χ;

- for every g ∈ G, if HomHg(χ|Hg , χ
g) 6= 0, then there exists g′ ∈ HgH such that α(g′) = g′.

We define a k-linear automorphism α̃ of H by sending f to α̃(f) = f ◦ α.

(1). Show that α̃ does indeed any f in H to an element of H , and that
α̃(f1 ∗ f2) = α̃(f2) ∗ α̃(f1), ∀f1, f2 ∈H .

(2). Show that α is the identity map on H . (Hint : Can you find a basis of H ?)

(3). Show that IndGH χ is multiplicity-free.

Solution. We first note that α(1) = α(12) = α(1)2, so α(1) = 1. Consequently, for every g ∈ G,

1 = α(1) = α(gg−1) = α(g−1)α(g),

so that α(g−1) = α(g)−1.

(1). The first part follows easily from the first two conditions on α.

Let x ∈ G. Then

α̃(f1 ∗ f2)(x) = (f1 ∗ f2)(α(x)) =
1

|H|
∑
g∈G

f1(g)f2(g−1α(x)).

On the other hand,

(α̃(f2) ∗ α̃(f1))(x) =
1

|H|
∑
g∈G

f2(α(g))f1(α(g−1x))

=
1

|H|
∑
g∈G

f2(α(g))f1(α(x)α(g)−1)

=
1

|H|
∑
g′∈G

f1(g′)f2((g′)−1α(x)) = α̃(f1 ∗ f2)(x)

(using the change of variables g′ = α(x)α(g)−1).

11this due to somebody ?
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(2). For every g ∈ G, let eg be the characteristic function of HgH . Note that this function
depends only on the class of g in H\G/H , and that

∑
g∈H\G/H eg = 1 (the constant

function 1 on G). If f ∈ H , then f =
∑

g∈H\G/H feg, and feg ∈ H for every g. To
show that α̃(f) = f , it suffices to show that α̃(feg) = feg for every g ∈ G. In other
words, we may assume that f is supported on some double class HgH , with g ∈ G. By
the first two conditions on α, α(HgH) = Hα(g)H , so α̃(f) is supported on the double
class Hα(g)H . There are two possibilities :

(a) If there exist h, h′ ∈ H such that hgh′ = g, this means that Hg = H ∩ gHg−1 6= {1}.
If f(g) 6= 0, then χ(hh′) = 1 (because f(g) = f(hgh′) = χ(hh′)f(g)), so
χg(h) = χ((h′)−1) = χ(h), so HomHg(χHg , χ

g) 6= 0. By the third assumption on α,
there exists g′ ∈ HgH such that α(g′) = g′. We have α̃(f)(g′) = f(α(g′)) = f(g′).
As α̃(f) and f are both in H and supported on Hg′H , this implies that α̃(f) = f .

(b) Otherwise, Hg = {1}, so HomHg(χ|Hg , χ
g) = k 6= 0, so there exists g′ ∈ HgH such

that α(g′) = g′. As in the first case, this implies that α̃(f) = f .

(3). By (1) and (2), f1∗f2 = f1∗f1 for every f1, f2 ∈H . By problem VII.2.8, Endk[G](IndGH χ)
is commutative. By problem VII.2.9, this implies that IndGH χ is multiplicity-free.

�

VII.2.11 Characters of a finite field

Let Fq be a finite field. We write F̂q for the set of group morphisms ψ : (Fq,+)→ k×. Let ψ 6= 1

be an element of F̂q. Show that the map{
Fq → F̂q
a 7−→ (x 7−→ ψ(ax))

is a bijection.

Solution. Let’s call this map u. First we show that u is injective. Let a, b ∈ Fq such that
u(a) = u(b). Then, for every x ∈ Fq, ψ((a − b)x) = ψ(ax)ψ(bx)−1 = 1. As Fq is a field, if
a − b 6= 0, we get that ψ(y) = 1 for every y ∈ Fq, which contradicts the fact that ψ 6= 1. So
a− b = 0, ie a = b.

Now note that the group Fq is commutative, so all its irreducible representations over k are of
dimension 1, so F̂q is actually Sk(Fq). Also, the conjugacy classes in Fq are singletons (again us-
ing the commutativity of the additive group Fq), so there are |Fq| of them, and we get |F̂q| = |Fq|.
As the map u : Fq → F̂q is injective, it is automatically bijective.

�

217



VII Exercises

VII.2.12 Representations of GL2(Fq), part 2

Let Fq be a finite field, letG = GL2(Fq), letN =

(
1 ∗
0 1

)
⊂ G. We identifyN with the additive

group Fq by sending x ∈ Fq to
(

1 x
0 1

)
. For every ψ ∈ F̂q − {1} (see problem VII.2.11), we

write Vψ = IndGN ψ.

(1). Show that, if ψ, ψ′ ∈ F̂q − {1}, then Vψ ' Vψ′ .

This representation Vψ is called the Gelfand-Graev representation of GL2(Fq).

We fix ψ ∈ F̂q − {1}.

(2). Show that Vψ is multiplicity-free. (Hint : α
(
a b
c d

)
=

(
d b
c a

)
.)

(3). Calculate |G|, find all the conjugacy classes in G and their cardinalities.

(4). Calculate the character of Vψ.

(5). Show that Vψ ' (Vψ)∗.

(6). Calculate the number of simple components of Vψ.

(7). Let W be a simple k[G]-module. Assume that q > 2. Show that the following are equiva-
lent :

(a) 〈W,Vψ〉G 6= 0 (ie W is a simple component of Vψ);

(b) 〈ψ,ResGN W 〉N 6= 0;

(c) for every ψ′ ∈ F̂q − {1}, 〈ψ′,ResGN W 〉N 6= 0;

(d) dimk(W ) ≥ 2.

(You can admit the following useful facts : (1) The commutator subgroup ofG is SL2(Fq).

(2) The group SL2(Fq) is generated by N and by N ′ :=
(

1 0
∗ 0

)
.)

(If q = 2, then GL2(Fq) = SL2(Fq) ' S3, and the useful fact is not true anymore.)

Solution.

(1). By problem VII.2.11, there exists a unique a ∈ Fq such that ψ′(x) = ψ(ax) for every

x ∈ Fq. As ψ′ 6= 1, a 6= 0. Let t =

(
a 0
0 1

)
∈ G. Then, if n =

(
1 x
0 1

)
∈ N ,

we have tnt−1 =

(
1 ax
0 1

)
, so that ψ′(n) = ψ(tnt−1). We define u : Vψ → Vψ′ by

u(g ⊗ x) = (gt)⊗ x, for every g ∈ G and x ∈ kχ. Then :
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- u is well-defined : Let n ∈ N , g ∈ G, x ∈ kψ. We have to show that
u((gn)⊗ x) = u(g ⊗ (nx)). But

u((gn)⊗x) = (gnt)⊗x = ((gt)(t−1nt))⊗x = (gt)⊗(ψ′(t−1nt)x) = ψ(n)((gt)⊗x)

(using that t−1nt ∈ N ), and

u(g ⊗ (nx)) = u(ψ(n)(g ⊗ x)) = ψ(n)((gt)⊗ x).

- u is obviously k[G]-linear.

- u is an isomorphism, because it has an inverse v given by v(g ⊗ x) = (gt−1) ⊗ x.
(The proof that v is well-defined is similar to the proof that u is well-defined.)

(2). Let’s use the hint and apply problem VII.2.10 with α given by α

(
a b
c d

)
=

(
d b
c a

)
.

The second condition of problem VII.2.10 is clear. Let w =

(
0 1
1 0

)
. Then w = w−1

and α(g) = wgTw for every g ∈ G, so the first condition is also clear. Obviously the
third condition for g ∈ G depends only on the double class NgN , so we start by finding

representatives for these double classes. Let T =

(
∗ 0
0 ∗

)
. If G =

(
a 0
0 b

)
∈ T , then an

easy calculation gives

NgN =

{(
x y
z t

)
∈ G|z = 0, x = a and t = b

}
and

NwgN =

{(
x y
z t

)
∈ G|z = a and y − t−1xz = b

}
.

So

G =

(∐
t∈T

NtN

)
t

(∐
t∈T

NwtN

)
.

Let t =

(
a 0
0 b

)
∈ T . Consider the double class NtN . We have tNt−1 = N , so Nt = N ,

and ψt is given by

ψt
((

1 x
0 1

))
= ψ

(
t−1

(
1 x
0 1

)
t

)
= ψ

((
1 a−1bx
0 1

))
,

so HomNt(ψ, ψ
t) 6= 0 if and only ψ = ψt, if and only if a−1b = 1, ie a = b. In that case,

we have α(t) = t.
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Now consider the double class NwtN . We have wtN(wt)−1 = wNw−1 =

(
1 0
∗ 1

)
, so

Nwt = {1}, so HomNwt(χ|Nwt , χ
t) = k 6= 0. On the other hand, wt =

(
0 b
a 0

)
, so

α(wt) = wt.

(3). The cardinality of G is the number of bases in F2
q , ie (q2 − 1)(q2 − q). We already found

representatives of the conjugacy classes in the solution of (2) of problem VII.2.6, they are
:

(a) t =

(
a 0
0 b

)
, a, b ∈ F×q . The corresponding class has cardinality |G/ZG(t)|. If

a 6= b, then ZG(T ) = T , so |G/ZG(t)| = q(q + 1). If a = b, then ZG(t) = G, so
|G/ZG(t)| = 1.

(b) g =

(
a b
ub a

)
, where u is a fixed element of F×q − (F×q )2 and a, b ∈ Fq are such that

a2 − ub2 6= 0 and b 6= 0. Then we easily see that

ZG(g) =

{(
a′ b′

ub′ a′

)
, with a′, b′ ∈ Fq st (a′)2 − u(b′)2 6= 0

}
,

so |ZG(g)| = q2 − 1 and |G/ZG(g)| = q2 − q.

(c) n =

(
a 1
0 a

)
, a ∈ F×q . Then ZG(n) =

{(
x y
0 x

)
, x, y ∈ Fq, x 6= 0

}
, so

|ZG(n)| = q(q − 1) and |G/ZG(n)| = q2 − 1.

(4). We use the formula for the character of an induced representation. The only conju-

gacy classes that intersect N are the ones with representatives
(

1 0
0 1

)
and

(
1 1
0 1

)
. So

χVψ(g) = 0 if g is not conjugate to one of these two matrices. Also,

χVψ

((
1 0
0 1

))
= dimk(Vψ) = |G/N | = (q2 − 1)(q − 1).

Finally, if n =

(
1 1
0 1

)
, then χVψ(n) = 1

|N |
∑

g∈G, gng−1∈N χ(gng−1). We see easily that

gng−1 ∈ N if and only if g ∈ B, where B =

(
∗ ∗
0 ∗

)
. If g =

(
a b
0 d

)
∈ B, then

gng−1 =

(
1 ad−1

0 1

)
. So

χVψ(n) =
1

q

∑
a,d∈F×q ,b∈Fq

ψ(ad−1) = (q − 1)
∑
x∈F×q

ψ(x) = 1− q,
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because ∑
x∈F×q

ψ(x) = −1 +
∑
x∈Fq

ψ(x) = −1 + 〈ψ, 1〉Fq = −1

(as ψ 6= 1).

Note that this calculation gives another proof of the result of (1).

(5). It is enough to show that χVψ = χV ∗ψ . But χV ∗ψ (g) = χVψ(g−1), for every g ∈ G. Let

n be as in the solution of (d). As n−1 =

(
1 −1
0 1

)
is in the conjugacy class of n,

ψVψ(n−1) = ψVψ(n). By (4), this gives the desired result.

(6). If Vψ =
⊕

W∈Sk(G) W
⊕n(W ), then 〈Vψ, Vψ〉G =

∑
W∈Sk(G) n

2
W . By (2), Vψ is multiplicity-

free, so
∑

W∈Sk(G) n
2
W is the number of simple components of Vψ. So we have to calculate

〈Vψ, Vψ〉G. By definition and using (3), (4) and (5), 〈Vψ, Vψ〉G is equal to

1

|G|
∑
g∈G

χVψ(g)2 =
1

(q2 − 1)(q2 − q)
(
((q2 − 1)(q − 1))2 + (1− q)2(q2 − 1)

)
= q(q− 1).

(7). By Frobenius reciprocity, 〈W,Vψ〉G = 〈ψ,ResGN W 〉N = dimk Homk[N ](ψ,ResGHW ).
This gives the equivalence of (a) and (b).

Using Frobenius reciprocity as above and (1), we get the fact that (a) implies (c). As (c)
obviously implies (b), it also implies (a), so (a) and (c) are equivalent.

Suppose that 〈W,Vψ〉G = 0. Then, using (1) and the fact that (a) implies (b), we get
〈ψ′,ResGN W 〉N = 0 for every ψ′ ∈ F̂q − {1}. So N acts trivially on W . Let N ′ be as in
the useful admitted fact, the N ′ = wNw−1 with w as in the solution of (2), so N ′ also acts
trivially on W . As SL2(Fq) is generated by N and N ′, SL2(Fq) acts trivially on W , so
the action of G on W factors through G/SL2(Fq)

∼→ F×q (the isomorphism being given by
the determinant). As F×q is abelian and W is irreducible, dimkW = 1. This show that (d)
implies (a).

Suppose that dimk(W ) = 1. Then the action of G on W is given by a morphism of groups
G → k×, so it factors through the abelianization of G, which is G/SL2(Fq) by the useful
fact. As N ⊂ SL2(Fq), this show that N acts trivially on W , so (b) is false. This show that
(b) implies (d).

�

VII.2.13 Representations of GL2(Fq), part 3

Let Fq be a finite field, G = GL2(Fq), B be the subgroup of upper triangular matrices in G, N
be the subgroup of unipotent upper triangular matrices in G (ie elements of B with both diagonal
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entries equal to 1), T be the subgroup of diagonal matrices in G.

If ω1, ω2 are morphisms F×q → C×, we used them in problem VII.2.6 to define a representation
I(ω1, ω2) of G (that was denoted by IndGB ρ there). We saw that I(ω1, ω2) is irreducible if and
only if ω1 6= ω2.

(1). Show that I(1, 1) = 11⊕St, with St an irreducible representation ofG. (This representation
St is called the Steinberg representation.)

(2). Calculate the character of St.

(3). For every morphism of groups ω : F×q → C×, show that
I(ω, ω) = (ω ◦ det)⊕ ((ω ◦ det)⊗ St).

(4). We say that an irreducible representation V of G is cuspidal if V N = {0}. Show that V
is cuspidal if and only if it is not a simple constituent of one of the I(ω1, ω2). (Simple
constituents of the I(ω1, ω2) are called principal series representations.)

(5). Find the number of isomorphism classes of cuspidal representations of G.

(6). Suppose that q > 2. Let V be a cuspidal representation of G. Show that dimC(V ) = q−1.
(Hint : for every nontrivial morphism ψ : N → C×, show that 〈ψ,ResGN V 〉N = 1.)

Solution.

(1). Let V = I(1, 1). We have

〈V, V 〉G = 〈11,ResGB V 〉B =
1

|B|
∑
g∈B

χV (g).

We have calculated χV in problem VII.2.6. If g =

(
a b
0 a

)
with b 6= 0, then χV (g) = 1,

and there (q−1)2 such elements inB. If g =

(
a 0
0 a

)
, then χV (g) = 1+q, and there q−1

such elements in B. If g =

(
a b
0 c

)
with a 6= c, then χV (g) = 2, and there (q− 1)(q− 2)q

such elements in B. Also, |B| = (q − 1)2q. So finally

〈V, V 〉G =
1

(q − 1)2q
((q − 1)2 + (q + 1)(q − 1) + 2(q − 1)(q − 2)q) = 2,

and this implies that V has two irreducible components. As

HomG(V, 11) = HomB(11, 11) = C,

one of these components is 11. So V = 11⊕ St, with St an irreducible representation of G.

(2). We have χSt = χI(1,1)−1. So χSt(g) = 1 if g has two distinct eigenvalues in Fq, χSt(g) = q

if g =

(
a 0
0 a

)
with a ∈ F×q , and χSt(g) = 0 otherwise.
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(3). Let χ = ω det : G→ C. Then

χ⊕ (χ⊗ St) = χ⊗ I(1, 1) = IndGB(χ|B ⊗ 11) = I(ω, ω).

(4). For ω1, ω2 : F×q → C×, we use the same notation ω1 ⊗ ω2 to denote the map B → C,(
a b
0 c

)
7−→ ω1(a)ω2(c), and its restriction to T . We also use the same notation for the

representations they define.

I claim that, for every C[B]-module W , the inclusion

HomT (ω1 ⊗ ω2,W
N) = HomB(ω1 ⊗ ω2,W

N) ⊂ HomB(ω1 ⊗ ω2,W )

is an equality. Indeed, N acts trivially on ω1⊗ω2, so every element of HomB(ω1⊗ω2,W )
has image contained in WN .

Now let’s apply this to a representation V of G. For every ω1, ω2 : F×q → C×, we have

HomG(I(ω1, ω2), V ) = HomB(ω1 ⊗ ω2,ResGB V ) = HomT (ω1 ⊗ ω2, (ResGB V )N).

If V is cuspidal, then this is 0 for any ω1 and ω2, so V cannot be a simple constituent of a
I(ω1, ω2). If V is not cuspidal, then the representation (ResGB V )N of T is not trivial, so it
contains some ω1 ⊗ ω2, and then we have a nonzero morphism I(ω1, ω2) → V . As V is
irreducible, this morphism is surjective, so V is a simple constituent of I(ω1, ω2).

(5). First let’s calculate the number of isomorphism classes of irreducible representations of
G. This is the same as the number of conjugacy classes in G. We have q − 1 elements in
the center of G, q− 1 conjugacy classes of non-diagonalizable elements, (q− 1)(q− 2)/2
conjugacy classes of elements that have distinct eigenvalues in Fq, and (q2−q)/2 conjugacy
classes of elements that have eigenvalues in Fq2−Fq. So this gives (q−1)(q+1) conjugacy
classes in total.

Now let’s count isomorphism classes of non-cuspidal irreducible representations. If
ω1, ω2 : F×1 → C× are distinct, then I(ω1, ω2) is irreducible. Moreover, the calculation
of the character of I(ω1, ω2) in (2) of problem VII.2.6 shows that I(ω1, ω2) ' I(ω′1, ω

′
2)

if and only if (ω1, ω2) = (ω′1, ω
′
2) or (ω′2, ω

′
1). So we get (q − 1)(q − 2)/2 irreducible

representations this way. For every ω : F×q → C×, we also get the representations ω ◦ det
and (ω ◦ det)⊗ St, hence 2(q− 1) representations in total. So the number of isomorphism
classes of cuspidal irreducible representations is

(q − 1)(q + 1)− (q − 1)(q − 2)/2− 2(q − 1) = q(q − 1)/2.

(6). By (7) of problem VII.2.12, for every nontrivial morphism ψ : N → C×,

〈ψ,ResGN V 〉N = 〈IndGN ψ, V 〉G = 1.
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As V N = 0, ResGN V is a sum of nontrivial irreducible representations of N . As N is
commutative, all these representations are of dimension 1. By the calculation above, every
nontrivial dimension 1 representation of N appears in ResGN V with multiplicity 1. So
dimC V = |N | − 1 = q − 1.

�

VII.2.14 Representations of GL2(Fq), part 4

We use the notation of problem VII.2.13. Fix an element u ∈ F×q − (F×q )2, and let

E =

{(
a b
ub a

)
, a, b ∈ Fq

}
⊂M2(Fq).

If g =

(
a b
ub a

)
is an element of E, we set

g =

(
a −b
−ub a

)
∈ E

and N(g) = a2 − ub2 ∈ Fq. We also set S = E ∩G.

(1). Show that E is a commutative subring of M2(Fq), that it is isomorphic to Fq2 , and that this
identifies S with F×q2 .

(2). Show that the map E → E, g 7−→ g, is a morphism of rings and that N : S → F×q is a
morphism of groups.

(3). Fix a nontrivial group morphism ψ : Fq → C×. If f : E → C is a function, we define
another function f̂ : E → C by

f̂(x) = −q−1
∑
y∈E

f(y)ψ(Tr(xy)).

Show that ̂̂f(x) = f(−x).

(4). We say that an element u of G is unipotent if u− 1 ∈M2(Fq) is nilpotent.

Let A be a maximal commutative subgroup of G, and suppose 1 is the only unipotent
element of A. Show that there exists g ∈ G such that A = gTg−1 or A = gSg−1.

(We will use the group S to construct the cuspidal representations of G in the next problem.)

Solution.
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(1). Note that, if q is even, then F×q = (F×q )2. So the problem is empty in this case, and so we
may assume that q is odd.

The set E is clearly stable by addition and substraction. If g =

(
a b
ub a

)
and

g′ =

(
a′ b′

ub′ a′

)
, then gg′ = g′g =

(
aa′ + ubb′ ab′ + a′b
u(ab′ + a′b) aa′ + ubb′

)
∈ E and, if

det(g) = N(g) 6= 0, then g−1 = N(g)−1g ∈ E.

So E is a commutative subring of M2(Fq) and its set of invertible elements is S. Note also
that E has q2 elements.

Let g =

(
a b
ub a

)
be non-invertible. Then a2 = ub2. As u is not a square in Fq, this is only

possible if a = b = 0, ie g = 0. So E is a field with q2 elements, and hence is isomorphic
to Fq2 . We have already seen that S = E×.

(2). The map N : S → F×q is a morphism of groups because it is the restriction to S of
the determinant on GL2(Fq). Showing that g 7−→ g is a morphism of rings is an easy
calculation. (We can also notice that, by (1), this morphism identifies to the action of the
nontrivial element of Gal(Fq2/Fq) on Fq2 .)

(3). Let F =
̂̂
f . Let x ∈ E. Then

F (x) = −q−1
∑
y∈E

f̂(y)ψ(Tr(xy)) = q−2
∑
y,z∈E

f(z)ψ(Tr(yz))ψ(Tr(xy)).

As Tr(g) = Tr(g) for every g ∈ E, Tr(xy) = Tr(xy) = Tr(yz) for every y ∈ E. As ψ is
a morphism of groups from E to C,

F (x) = q−2
∑
z∈E

f(z)
∑
y∈E

ψ(Tr(y(x+ z))).

If z is fixed, then y 7−→ ψ(Tr(y(x + z))) if a morphism of groups E → C, trivial if and
only if x+ z = 0. So∑

y∈E

ψ(Tr(y(x+ z))) =

{
0 if x+ z 6= 0
q2 if x+ z = 0.

Finally, we get F (x) = f(−x).

(4). Suppose that A contains an element x that is not diagonalizable (over Fq). Then, after

replacing A by a conjugate, we may assume that x =

(
a 1
0 a

)
, with a ∈ F×q . Then, for

every r ∈ Z,

xr =

(
ar rar−1

0 ar

)
,
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so xq−1 =

(
1 −aq−2

0 1

)
∈ A − {1} is idempotent, which contradicts the hypothesis. So

every element of A is diagonalizable.

If every element of A has eigenvalues in Fq, then there exists g ∈ G such that A ⊂ gTg−1.
By maximality of A, A = gTg−1.

Otherwise, there exists h ∈ GL2(Fq2) such that, for every x ∈ A, h−1xh is diagonal in
GL2(Fq2). Fix a square root α of u in Fq2 . Let x ∈ A. As x ∈ GL2(Fq), the diagonal
entries of h−1xh are of the form ax + αbx and ax − αbx. Let S ′ be the set of elements of
GL2(Fq2) that are diagonal with diagonal entries equal to a+αb and a−αb, with a, b ∈ Fq;
note that |S ′| ≤ q2− 1. Then h−1Ah ⊂ S ′. Similarly, there exists h′ ∈ GL2(Fq2) such that
h′Sh′−1 ⊂ S ′. As |S| = q2 − 1 ≥ |S ′|, we have S ′ = h′Sh′−1, so A ⊂ (hh′)S(hh′)−1.
We are not done because we don’t know that hh′ ∈ GL2(Fq). If we could find g ∈ G such
that A ⊂ gSg−1, then we could conclude by maximality of A that A = gSg−1. Note that
A is isomorphic to a subgroup of S ' F×q2 , so A is cyclic. Let x be a generator of A. We
just need to find g ∈ G such that g−1xg ∈ S, and then we’ll have g−1Ag ⊂ S. But x has
eigenvalues of the form a + αb and a − αb, with a, b ∈ Fq, so it cnojugate in GL2(Fq) to

the element
(
a b
ub a

)
of S, and we are done.

�

VII.2.15 Representations of GL2(Fq), part 5

This is a continuation of problems VII.2.13 and VII.2.14, and we use the notation of these prob-
lems. We also suppose that q is odd, and we fix a nontrivial group morphism ψ : Fq → C×.

(1). Let χ : S → C be a morphism of groups. We let

W (χ) = {f : E → C|f(yx) = χ(y)−1f(x) ∀x, y ∈ E satisfying N(y) = 1}.

Calculate dimC W (χ).

(2). For every a ∈ F×q and c ∈ Fq, let

t(a) =

(
a 0
0 a−1

)
and

n(c) =

(
1 c
0 1

)
.

Let H = SL2(Fq) ⊂ G, and let H ′ be the group generated by elements ta, a ∈ F×q , nc,
c ∈ Fq, and s, subject to the following relations :

ta1ta2 = ta1a2 , nc1nc2 = nc1+c2 ,
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tanct
−1
a = na2c,

stas = t−a−1 ,

and, if c 6= 0,
sncs = t−c−1n−csn−c−1 .

Show that there is a morphism ϕ : H ′ → H that sends ta to t(a), nc to n(c) and s to w,
and that it is an isomorphism.

(Hint : Write BH = B ∩ H , NH = N ∩ H , T = TH . When you’re trying to con-
struct an inverse of ϕ, show first that H = BH t BHwBH , and that BH = THNH and
BHwBH = NHTHwNH .)

(3). Show that there exists a unique representation ρ of H on W (χ) such that, for every
f ∈ W (χ) and x ∈ E :

• If a ∈ F×q , (
ρ

(
a 0
0 a−1

)
f

)
(x) = f(ax).

• If c ∈ Fq, (
ρ

(
1 c
0 1

)
f

)
(x) = ψ(N(x)c)f(x).

• (ρ(w)f)(x) = f̂(x).

(Remember that f̂ is defined in problem VII.2.14(3).)

This is (a particular case of) the Weil representation.

About checking the last relation : No, you don’t need to know how to calculate Gauss sums.
It’s easier than it seems. Look more closely at that sum, and remember the properties of
N : E → Fq that you (hopefully) proved in (1). (For example, that this map is surjective.)

(4). Show that there is a unique extension of ρ to a morphism of groups ρ : G → GL(W (χ))
(ie a representation of G on W (χ)) such that, for every a ∈ F×q , every f ∈ W (χ) and
x ∈ E, (

ρ

(
a 0
0 1

)
f

)
(x) = χ(b)f(bx),

where b is any element of S such that N(b) = a.

(5). Suppose that χ is not trivial on the subgroup Ker(N) of S. Show that W (χ) is cuspidal
and irreducible.

(6). Show that every cuspidal irreducible representation of G is of the form W (χ), for χ satis-
fying the condition of (5).

(Hint : Calculate the character of W (χ) on
(
a 1
0 a

)
∈ G.)
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Solution.

(1). Let E1 = Ker(N : E× → F×q ) be the set of norm 1 elements of E. Let’s calculate
the cardinality of E1 for later usage. Things will be easier if we write an isomorphism
Fq2

∼→ E more explicitely (see problem VII.2.14(1) for the existence of such an isomor-
phism). Let α ∈ Fq2 be a square root of u. Then Fq2 = Fq[α], so every element of E can
be written in a unique way as a + αb, with a, b ∈ Fq. We define a map ι : Fq2 → E by

ι(a + αb) =

(
a b
ub a

)
. Then this is obviously a bijection that preserves 0, 1 and addition.

It’s also compatible with multiplication by the explicit calculation of the product of two
elements of E in the solution of (1) of problem VII.2.14. Now note that α2q = uq = u, so
αq is also a square root of u; as αq 6= α (otherwise α would be in Fq), we have αq = −α.
So, for every a+ αb ∈ Fq2 ,

(a+ αb)q = aq + αqbq = a− αb.

In other words, for every g ∈ E, g = gq and N(g) = gq+1. As E is a field,
this means that E1, the set of zeros of the polynomial xq+1 − 1 in E, has at most
q + 1 elements. If we know about separable polynomials, it’s obvious that the poly-
nomial xq+1 − 1 is separable and hence |E1| = q + 1. Otherwise, we observe that
|E1| = |E×||N(E×)|−1 ≥ (q2 − 1)/(q − 1) = q + 1, and so |E1| = q + 1. (Also,
we proved that N : E× → F×q is surjective.)

An element f ∈ W (χ) is totally determined by its values on a set of representatives of
E/E1. Let (xi)i∈I be a set of representatives of E×/E1; then (0, xi, i ∈ I) is a set of
representatives of E/E1. For every i ∈ I , there exists a unique function fi ∈ W (χ) such
that fi(ei) = 1 and fi(ej) = 0 if j 6= i; it’s given by

fi(x) =

{
χ(y)−1 if x = yei, y ∈ E1

0 otherwise.

If χ|E1 = 1, then the function f0 that sends 0 to 1 and every element of E× to 0 is also
an element of W (χ). If χ|E1 6= 1, then, for every f ∈ W (χ), f(0) = 0 (indeed, choose
y ∈ E1 − {1} such that χ(y) 6= 1, and note that f(0) = f(y0) = χ(y)−1f(0)).

Finally, we see that if χ|E1 = 1, then the family (f0, fi, i ∈ I) is a basis of W (χ), so

dimC W (χ) = 1 + |E×/E1| = 1 + (q2 − 1)/(q + 1) = q.

If χ|E1 6= 1, then the family (fi)i∈I is a basis of W (χ), so

dimC W (χ) = |E×/E1| = q − 1.

(2). To show that ϕ exists, we just have that the images of the generators satisfy the relations
in H , which is an easy calculation.
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To show that ϕ is an isomorphism, we construct its inverse ψ. Define ψ : H → H ′ by

ψ

(
a b
c d

)
=

{
n(ac−1)t(−c−1)sn(dc−1) if c 6= 0
t(a)n(ba−1) if c = 0.

We have ψ◦ϕ = idH′ , because this is true on the generators onH ′. And an easy calculation
shows that ϕ ◦ ψ = idH . So ϕ is bijective. As it is a morphism of groups by construction,
it’s an isomorphism of groups.

(3). By (2), we can instead check that there is a unique morphism of groups
ρ′ : H ′ → GL(W (χ)) (which will be ρ ◦ ϕ) that is given by the formulas above on the
genetaors ta, nc and s. That is, we just have to check that the images of these generators in
W (χ) satisfy the relations defining H ′.

Let’s write Ta = ρ′(ta), Nc = ρ′(Nc), S = ρ′(s). Let f ∈ W (χ) and x ∈ E. The, if
a1, a2 ∈ F×q and c1, c2 ∈ Fq,

(Ta1Ta2f)(x) = (Ta2f)(a1x) = f(a1a2x) = (Ta1a2f)(x)

and

(Nc1Nc2f)(x) = ψ(N(x)c1)(Nc2f)(x) = ψ(N(x)c1)ψ(N(x)c2)f(x) = (Nc1+c2f)(x),

which gives the first two relations.

For every a ∈ F×q and c ∈ Fq, noting by T−1
a = Ta−1 by the first relation and that

N(ax) = a2x by definition of N , we have

(TaNcT
−1
a f)(x) = (NcTa−1f)(ax) = ψ(N(ax)c)(Ta−1f)(ax) = ψ(N(x)a2c)f(x),

which is equal to (Na2cf)(x). This gives the third relation.

For every a ∈ F×q , we have

f̂(ax) = −q−1
∑
y∈E

f(y)ψ(Tr(axy)) = −q−1
∑
y′∈E

f(a−1y′)ψ(Tr(xy′) = (T̂a−1f)(x)

(using the fact that ax = ax and the change of variables y′ = ay). Also, problem

VII.2.14(3) implies that ̂̂h = T−1h for everyh ∈ W (χ). So

STaSf = STaf̂ = ST̂a−1f =
̂̂
Ta−1f = T−a−1f,

and this gives the fourth relation.

Finally, let c ∈ F×q . Then

(SN−c−1f)(x) = −q−1
∑
y∈E

ψ(−c−1N(y))f(y)ψ(Tr(xy)),
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so

(T−c−1N−cSN−c−1f)(x) = ψ(−cN(−c−1x))(SN−c−1f)(−c−1x)

= −q−1ψ(−c−1N(x))
∑
y∈E

ψ(−c−1N(y)− c−1Tr(xy))f(y)

− q−1
∑
y∈E

ψ(c−1(N(x) +N(y) + Tr(xy))f(y)

= q−1
∑
y∈E

ψ(c−1N(x+ y))f(y).

On the other hand,
(NcSf)(x) = ψ(cN(x))f̂(x),

so
(SNcSf)(x) = −q−1

∑
y∈E

ψ(cN(y))ψ(Tr(xy))f̂(y)

= q−2
∑
y,z∈E

ψ(cN(y) + Tr(xy) + Tr(yz))f(z).

Noting that

cN(y)+Tr(xy)+Tr(yz) = cN(y)+Tr(y(x+ z)) = cN(y+c−1(x+z))−c−1N(x+z),

we get

(SNcSf)(x) = q−2
∑
z∈E

ψ(−c−1N(x+ z))f(z)
∑
y∈E

ψ(cN(y + c−1(x+ z))).

For every t ∈ E, let
Σ(c, t) =

∑
y∈E

ψ(cN(y + c−1t)).

Then doing the change of variables y′ = y + c−1t, we see that Σ(c, t) = Σ(c, 0). Also,
we have shown in (1) that N : E× → F×q is surjective, so there exists d ∈ E× such that
N(d) = c, and we have

Σ(c, 0) =
∑
y∈E

ψ(cN(y)) =
∑
y∈E

ψ(N(dy)) = Σ(1, 0).

Finalement, let’s calculate Σ := Σ(1, 0). Remember that we showed in (1) that
N : E× → F×q is surjective and that its kernel E1 has cardinality q + 1. So we get

Σ =
∑
y∈E

ψ(N(y)) = ψ(0) + |E1|
∑
a∈F×q

ψ(a) = 1 + (q + 1)(−1) = −q,

because, as ψ : Fq → C× is a nontrivial character,∑
a∈F×q

ψ(a) = −1 +
∑
b∈Fq

ψ(b) = −1.
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Coming back to the calculation of SNcSf , we get

(SNcSf)(x) = q−2
∑
z∈E

ψ(−c−1N(x+ z))f(z)(−q) = q−1
∑
z∈E

ψ(c−1N(x+ z))f(z),

which is indeed equal to (T−c−1N−cSN−c−1f)(x), and so the fifth relation is also proved.

(4). First, note that if f ∈ W (χ), x ∈ E and b, b′ ∈ E are two elements such that
N(b) = N(b′) ∈ F−1

q , then b′b−1 ∈ E1,

χ(b′)f(b′x) = χ(b′)f((b′b−1)bx) = χ(b′)χ(b′b−1)−1f(bx) = χ(b)f(bx).

So the formula given in the statement of (4) does not depend on the choice of b.

For every a ∈ F×q , write t′(a) =

(
a 0
0 1

)
. Then, if g ∈ G, t′(det(g)−1)g ∈ H , so G is

generated by H and the t′(a), a ∈ F×q , which gives the uniqueness of the extension of ρ to
G.

If a ∈ F×q , let T ′a be the linear automorphism of W (χ) defined in the statement of (4). We
define ρ : G→ W (χ) by taking ρ(g) = T ′det(g)ρ(t′(det(g)−1)g). (This is the only possible
choice.) We have to check that this is a morphism of groups. If g1, g2 ∈ G, and if we set
ai = det(gi) and hi = t′(ai)

−1gi, then

g1g2 = t′(a1)h1t
′(a2)h2 = t′(a1a2)(t′(a2)−1h1t

′(a2))h2

and t′(a2)−1h1t
′(a2). As we know that ρ|H is a morphism of groups, we need to check two

things :
T ′a1

T ′a2
= T ′a1a2

and
ρ(t′(a2)−1h1t

′(a2)) = T ′
a−1

2
ρ(h1)T ′a2

.

For the first equality, choose b1, b2 ∈ E such that N(b1) = a1, N(b2) = a2. Let f ∈ W (χ)
and x ∈ E. Then

(T ′a1
T ′a2

f)(x) = χ(b1)(T ′a2
f)(b1x) = χ(b1b2)f(b1b2x) = (T ′a1a2

f)(x).

For the second equality, take a ∈ F×q and h ∈ H . We want to show that
T ′a−1ρ(h)T ′a = ρ(t′(a−1))ht′(a)). As T ′a−1 = T ′a

−1, it’s enough to check this equality
for h one of the generators of H given in (b). Fix b ∈ E such that N(b) = a, and fix
f ∈ W (χ) and x ∈ E.

Suppose that h = t(a1), with a1 ∈ F×q . Then t′(a)−1ht′(a) = h, and

(T ′a−1ρ(h)T ′af)(x) = χ(b)−1(Ta1T
′
af)(b−1x) = χ(b−1)(T ′af)(a1b

−1x) = f(a1x),
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so T ′a−1Ta1T
′
af = Ta1f .

Suppose that h = n(c), with c ∈ Fq. Then t′(a−1)ht′(a) = n(a−1c). On the other hand,
(T ′a−1NcT

′
af)(x) is equal to

χ(b)−1(NcT
′
af)(b−1x) = χ(b)−1ψ(cN(b−1x))(T ′af)(b−1x) = ψ(ca−1N(x))f(x),

so we do get T ′a−1NcT
′
af = Na−1cf .

Finally, suppose that h = w. Then

t′(a−1)ht′(a) =

(
0 a−1

−a 0

)
= t(a−1)h.

We need to calculate the Fourier transform of the function x 7−→ f(bx). It sends x to

−q−1
∑
y∈E

f(by)ψ(Tr(xy)) = −q−1
∑
y′∈E

f(y′)ψ(Tr(xb−1y′)) = f̂(b
−1
x).

So (ST ′af)(x) = χ(b)f̂(b
−1
x), and

(T ′a−1ST ′af)(x) = f̂(b−1b
−1
x) = f̂(a−1x) = (Ta−1Sf)(x).

This finishes the proof.

(5). First we calculate W (χ)N . Let f ∈ W (χ) such that N(c)f = f for every c ∈ Fq. Then, if
x ∈ E, ψ(cN(x))f(x) = f(x) for every c ∈ Fq. This implies that f(x) = 0 if x 6= 0. As
ψ|E1 6= 1, we know that f(0) = 0 (see the proof of (a), but this is pretty easy). So f = 0.
So we have shown that W (χ)N = 0.

This implies that every irreducible component V of W (χ) also satisfies V N , ie is irre-
ducible cuspidal. But we have seen in problem VII.2.13(6) that every irreducible cuspidal
representation of G has dimension q−1, and we have seen in (a) that W (χ) has dimension
q − 1 (because χ|E1 6= 1), so W (χ) cannot have more than one irreducible component,
which means that it is irreducible cuspidal.

(6). We have seen in problem VII.2.13(5) that there are q(q− 1)/2 classes of irreducible cuspi-
dal representations ofG. Let’s count the numberN of morphisms of groups χ : E× → C×
that are trivial onE1. AsE×/E1 ∼→ F×q is commutative of order q−1 (see (1)), the number
of χ that are trivial on E1 is equal to the number of group morphisms F×q → C×, which
is q − 1. Also, as E× is commutative, the number of morphism of groups E× → C× is
|E×| = q2 − 1. So, finally, N = q2 − 1− (q − 1) = q(q − 1).

Obviously, some of the W (χ) are going to be isomorphic. The easiest way to see whether
two representations are isomorphic is to compare their characters. We don’t want to do the
full calculation, but we’re basically forced to.
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Let’s first calculate the value of χW (χ) on the matrix g :=

(
a 1
0 a

)
∈ G. This matrix is

equal to t′(a2)t(a−1)n(a−1), so, if f ∈ W (χ) and x ∈ E,

(ρ(g)f)(x) = χ(a)ψ(a−1N(x))f(x).

Now assume that χ|E1 6= 1, and remember the basis (fi)i∈I constructed in the proof of
(a). As N : E× → F×q is constant on the orbits of E1, the calculation above show that
ρ(g)fi = χ(a)ψ(a−1N(xi)). So we get

χW (χ)(g) =
∑
i∈I

χ(a)ψ(a−1N(xi)) = χ(a)
∑

x∈E/E1

ψ(a−1x) = χ(a)
∑
x∈F×q

ψ(a−1x).

As χ is non-trivial,∑
x∈F×q

ψ(a−1x) =
∑
x′∈F×q

ψ(x′) = −1 +
∑
x′∈Fq

ψ(x′) = −1.

So finally
χW (χ)(g) = −χ(a).

Let’s also calculate χW (χ) on the matrix g =

(
a b
ub a

)
, with a ∈ Fq, b ∈ F×q and

a2 − ub2 6= 0, using the proofs of (b) and (d) to decompose this as a product of matri-
ces whose images by ρ we know. It’s an awful calculation, and should give

χW (χ)(g) = −(χ(z) + χ(z)) = −(χ(z) + χ(zq)),

where z = a+ αb ∈ E.

AsE ' Fq2 , the groupE× is cyclic. Let’s choose a generator ζ ofE×. Now let χ, χ′ be two
morphisms of groups E× → C× that are non-trivial on E1 and such that W (χ) ' W (χ′).
Then χW (χ) = χW (χ′), and by the calculation above χ(z) + χ(zq+1) = χ′(z) + χ′(zq) for
every z ∈ E×. Writing ξ = χ(ζ) and ξ′ = χ′(ζ), this translates to

ξn + (ξq)n = ξ′
n

+ (ξ′
q
)n

for every n ∈ Z, and is equivalent to the condition {ξ, ξq} = {ξ′, ξ′q}. Also, the condition
χ|E1 6= 1 (resp. χ′|E1 6= 1) is equivalent ξq−1 6= 1, ie ξ 6= ξq (resp. ξ′ 6= ξ′q), because E1 is
the subgroup {x ∈ E×|xq+1 = 1} of E×, hence is generated by ζq−1. Finally, we see that,
if W (χ) ' W (χ′), then either ξ = ξ′, which means that χ = χ′, or ξ′ = ξq, which means
that χ′ = χq. This implies that there are at least N/2 = q(q − 1)/2 distinct W (χ). As the
total number of irreducible cuspidal representations of G is q(q − 1)/2, there are exactly
q(q − 1)/2 distinct W (χ), and every irreducible cuspidal representation is of that form.

�
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VII.2.16 Induction and characters

Let k be a field of characteristic 0, and let α : H → G be a morphism of finite groups. For every
f ∈ C(H, k), define a function IndGH f : G→ k by

f(g) =
1

|H|
∑

(s,h)∈G×H|s−1gs=α(h)

f(h).

Show that, for every representation V on a finite-dimensional k-vector space, we have

χIndGH V = IndGH χV .

Solution. We may assume that k is algebraically closed.

Write f = χV . First note that, if α is injective, the definition of IndGH is the same as in
definition II.3.1.1 of chapter II. Also, for every g ∈ α(H),

(Ind
α(H)
H f)(g) =

1

|H|
∑

(s,h)∈α(H)×H|s−1gs=α(h)

f(h) =
|α(H)|
|H|

∑
h∈H|g=α(h)

f(h),

so, for every g ∈ G,

(IndGα(H) Ind
α(H)
H f)(g) =

1

|H|
∑

s∈G|s−1gs∈α(H)

|α(H)|
|H|

∑
h∈H|s−1gs=α(h)

f(h) = (IndGH f)(g).

Using this, the transitivity of induction and theorem II.3.1.2 of chapter II, we are reduced to the
case where G = α(H).

In this case, by lemma I.5.2.5 and proposition I.5.5.3 of chapter I, IndGH V = V Ker(α). Now
we have to generalize lemmas II.1.2.3 and II.1.2.4 of chapter II. Write K = Ker(α). We want to
show that, for every g ∈ G,

χV K (g) =
1

|K|
∑

h∈α−1(g)

χV (h).

Let V =
⊕

W∈Sk(K) W
⊕nW be the decomposition into irreducibles of ResHK V . Fix g ∈ G, pick

h0 ∈ H such that g = α(h0) and write c =
∑

x∈K h0x =
∑

h∈α−1(g) h ∈ k[H]. Then, for every
x ∈ K, xc = cx = x. In particular, c centralizes k[K] ⊂ k[H], and so, by Schur’s lemma,
it stabilizes every summand W⊕nW in V and acts on W⊕nW by a nW × nW matrix AW with
coefficients in Endk[K](W ) = k.

Fix W ∈ Sk(K), write ρW for the map K → Endk(W ) and n = nW . Let λ1, . . . , λn be the
diagonal coefficients of AW . Then, using the fact that cx = c for every x ∈ K, we see as in the
proof of lemma I.1.2.3 of chapter I that, for every i ∈ {1, . . . , n} and every x ∈ K,

λiρW (x) = λiidW .
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So, if W 6' 11K , we must have λ1 = · · · = λn = 0.

Also, if W = 11K , then the action of c on the summand W⊕nW = V K is equal to that of |K|g.

Finally, this shows that

χV (c) =
∑

h∈α−1(g)

χV (h) = |K|χV K (g),

which is the result we wanted to prove.

�

VII.3 Chapter III exercises

VII.3.1 Discrete valuation rings

A discrete valuation ring is a commutative principal ideal domain A such that A has a unique
nonzero prime ideal ℘. Let π be a generator of ℘; we call π a uniformizer of A. The quotient
k = A/℘ is called the residue field of A. We denote by K the fraction field of A.

(1). Show that k is indeed a field.

(2). Show that, for every x ∈ K×, there exists n ∈ Z and u ∈ A× uniquely determined such
that x = uπn, and that n does not depend on the choice of the uniformizer π.

If x = uπn as in (2), we write n = v(x) and we say that n is the valuation of x. We also set
v(0) =∞.

(3). Show that :

(a) v : K× → Z is surjective.

(b) For every x, y ∈ K, v(xy) = v(x) + v(y) and v(x+ y) ≥ inf(v(x), v(y)).

(c) A = {x ∈ K|v(x) ≥ 0} and ℘ = {x ∈ K|v(x) ≥ 1}.

(With the convention that, for every n ∈ Z,∞n =∞ and∞ > n.)

(4). Let k be a field and k[[T ]] be the ring of formal series over k. Show that k[[T ]] is a discrete
valuation ring.

(5). Show that Z(p) is a discrete valuation ring. (Remember that Z(p) is the localization of Z
at the prime ideal (p), that is, the subring of Q generated by Z and the 1/n, for every
n ∈ Z− (p).)

Solution.
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(1). As A is a domain, 0 is also a prime ideal of A. So A has exactly two prime ideals and
cannot be a field. As maximal ideals are prime, the only maximal ideal of A is ℘, and so
k = A/℘ is a field.

(2). As A is a principal ideal domain, it is a unique factorization domain. The only irreducible
element of A is π (up to multiplying by an invertible element), so every element a of
A − {0} can be written as a = uπn, with u ∈ A× and n ≥ 0 uniquely determined by a.
Also, n is the unique nonnegative integer such that a ∈ ℘n − ℘n+1 (in other words, the
biggest nonnegative integer such that a ∈ ℘n), so it does not depend on the choice of ℘.
Write n = v(a). Clearly, if a, b ∈ A− {0}, then v(ab) = v(a) + v(b).

As every element of K× is of the form ab−1 for a, b ∈ A−{0}, and as v sends multiplica-
tion in A to addition in Z, these results extend to elements of K×.

(3). (a) For every n ∈ Z, v(℘n) = n. So v is surjective.

(b) The first property is clear. For the second property, we may assume that x, y ∈ A
(using the first property), and that they both nonzero (otherwise the conclusion is ob-
vious). Let n = v(x) andm = v(y). Then x+y ∈ ℘inf(n,m), so v(x+y) ≥ inf(n,m).
(Here we use the fact that, for a ∈ A−{0}, v(a) is the biggest nonnegative integer n
such that a ∈ ℘n.)

(c) Obviously, for every a ∈ A, v(a) ≥ 0. Now let x ∈ K× such that v(x) ≥ 0, and
write x = ab−1, with a, b ∈ A − {0}, Let n = v(a), m = v(b). Then a = uπn and
b = vπm, with u, v ∈ A×. So x = uv−1πn−m ∈ A. The second equality follows
from the characterization of v we gave in (b).

(4). Either you know that k[[T ]] is a principal ideal domain, and then it’s easy because it’s also
local with maximal ideal (T ), so its unique irreducible element (up to invertibles) is T .
Or you don’t, and then the easiest way is to use problem VII.3.2, with the valuation v on
Frac(k[[T ]]) = k((T )) given by taking the order of f ∈ k((T )) at 0.

(5). We know that Z[p−1] is a principal ideal domain, because it is a localization of the principal
ideal domain Z. Prime ideals of Z[p−1] are prime ideals of Z that are contained in (p), so
only 0 and (p) are left.

�

VII.3.2 Discrete valuation fields

Let K be a field and v : K× → Z be a surjective group morphism such that
v(x + y) ≥ inf(v(x), v(y)) for every x, y ∈ K× such that x + y 6= 0. (We say that (K, v)
(or simply K) is a discrete valuation field.) Show that A := {0} ∪ {x ∈ K×|v(x) ≥ 0} is a
discrete valuation ring (see problem VII.3.1 for the definition of a discrete valuation ring). (The
ring A is called is the valuation ring of K.)
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Solution. First, A is obviously a domain, because it’s a subring of a field.

We claim that A× = {x ∈ K|v(x) = 0}. Indeed, if a ∈ A×, then a and a−1 are in A, so
v(a) ≥ 0 and v(a−1) = −v(a) ≥ 0, hence v(a) = 0. Conversely, let a ∈ K such that v(a) = 0.
Then v(a) ≥ 0 and v(a−1) = −v(a) ≥ 0, so both a and a−1 are in A, so a ∈ A×.

Choose π ∈ K such that v(π) = 1. We have π ∈ A by definition of A. Let’s show that, for
every a ∈ A−{0}, there exists u ∈ A× and n ≥ 0, uniquely determined by a, such that a = uπn.
First, if a = uπn, then v(a) = v(u)+nv(π) = n, and u = aπ−n, so u and n are determined by a.
Also, for every a ∈ A− {0}, we have n := v(a) ≥ 0 and u := aπ−n ∈ A× (because v(u) = 0),
which gives the existence of u and n.

Now we show that A is a principal ideal domain whose only nonzero prime ideal if (π). Let
I be a nonzero ideal of A. If a is any nonzero element of I and n = v(a), then a = uπn with
u ∈ A×, so πn inI . Let n0 be the smallest nonnegative integer such that πn ∈ I . (This exists
because every nonempty subset of Z≥0 has a smallest element.) Let’s show that I = (πn0). As
πn0 ∈ I , we obviously have I ⊃ (πn0). Conversely, let a ∈ I , let n = v(a). Then we see as
before that πn ∈ I , so n ≥ n0 by definition of n0, so aπ−n0 ∈ A (because its valuation is ≥ 0),
so a ∈ (πn0). Finally, we show that I is prime if and only if n0 = 1. if n0 > 1, then I is not
prime because π ∈ I and πn0 ∈ I . Conversely, assume that n0 = 1, and let a, b ∈ A such that
ab ∈ I . If ab = 0, then a = 0 or b = 0 because A is domain, so a ∈ I or b ∈ I . If ab 6= 0, then
v(ab) = v(a) + v(b) ≥ 1, so v(a) ≥ 1 or v(b) ≥ 1m hence a ∈ I or b ∈ I .

�

VII.3.3 Completion of a discrete valuation ring

Let A be a discrete valuation ring with maximal ideal m. (See problem VII.3.1.) The completion
of A is

Â = lim←−
n

(A/mn) := {(xn) ∈
∏
n≥0

A/mn|∀n ≥ 0, xn = xn+1 mod mn}.

We define a map A→ Â by sending x ∈ A to the family (x+mn)n≥0 ∈
∏

n≥0A/m
n.

(1). Show that the map A → Â is injective. (We use it to identify A to a subring of Â. If
A = Â, we say that A is complete.)

(2). Show that Â is a discrete valuation ring with maximal ideal m̂ := mÂ, and that the obvious
map A/mn → Â/m̂n is an isomorphism for every n. (In particular, Â is complete.)

(3). We consider the following three topologies on Â :

(a) The topology induced by the product topology on
∏

n≥0A/m
n, where we put the

discrete topology on each A/mn. (This is the topology on
∏

n≥0A/m
n generated by
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the open sets
∏

n≥0Xn, where Xn ⊂ A/mn for every n and Xn = A/mn for all but
a finite number of n’s.)

(b) The topology generated by the open sets x+ m̂n, for x ∈ Â and n ≥ 0.

(c) The topology given by the distance function d(x, y) = cv(x−y), where c is a real
number such that 0 < c < 1 and v : Â → Z≥0 ∪ {∞} is the valuation of Â. (With
the convention that c∞ = 0.)

Show that these three topologies are equal (in particular, the last one does not depend on c),
that Â is a complete metric space and that, if k is finite, then Â is Hausdorff and compact.

(4). Let k = A/m = Â/m̂ be the residual field of Â. Let f ∈ A[t] be a polynomial such that
its image f in k[t] is nonzero, and let x be a simple root of f in k. Show that there exists a
root x of f in Â such that x mod m = x.

This statement is called Hensel’s lemma.

(5). Give an example of a non-complete dicrete valuation ring where (4) fails.

Solution.

(1). The kernel of the map A → Â is
⋂
n≥0m

n, so we have to show that this intersection is 0.
Let v be the valuation ofA. If x ∈

⋂
n≥0m

n, then v(x) ≥ n for every n ≥ 0, so v(x) =∞,
so x = 0.

(2). First we extend v to Â. Let x = (xn) ∈ Â. We choose elements yn of A lift-
ing the xn ∈ A/mn. For every n, k ≥ 0, we have yn+k = yn modulo mn, so
v(yn+k) ≥ inf(v(yn), n) and v(yn) ≥ inf(v(yn+k), n). If yn ∈ mn for every n ≥ 0,
then x = 0, and we take v(x) =∞. Otherwise, let n0 be the smallest nonnegative integer
such that yn0 6∈ mn0 . Then, for every n ≥ n0, we have n0 > v(yn0) ≥ inf(n0, v(yn)),
so v(yn) ≤ v(yn0) < n0, and v(yn) ≥ inf(n, v(yn0)) = v(yn0). Finally, we get
v(yn) = v(yn0) for every n ≥ n0, and we set v(x) = v(yn0). Note that v(yn) = v(x) for
n > v(x). (Indeed, let N be big enough so that v(yN) = v(x). Then, for v(x) < n ≤ N ,
yn = yN mod mn, so n > v(yN) ≥ inf(v(yn), n) and v(yn) ≤ v(x) < n, but then
v(yn) ≥ inf(v(yN), n) = v(x).) Note also that yn ∈ mn (ie xn = 0) for n ≤ v(x).
(Indeed, let n ≤ v(x). Then v(yn) ≥ inf(n, v(x)) = n, so yn ∈ mn.)

If x ∈ Â is the image of an element a of A, and we choose (xn) in AN representing x (ie
x = (xn + mn)), then xn = a modulo mn for every n. If n > max(v(x), v(a)) and n is
big enough that v(x) = v(xn), this implies that v(a) = v(xn) = v(x). So v does indeed
extend the valuation on A.

It is clear from the definition that, for every x, y ∈ Â, v(xy) = v(x) + v(y) and
v(x + y) ≥ inf(v(x), v(y)). (If x and y are representend by families (xn) and (yn) in
AN, just take n big enough so that v(x) = v(xn) and v(y) = v(yn).) Also, the only
element with valuation ∞ is 0. In particular, A is a domain (if x, y ∈ A − {0}, then
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v(xy) = v(x) + v(y) 6= ∞, so xy 6= 0). Let K be the fraction field of A. Using that v
sends products to sums, we can extend v to a morphism of groups v : K× → Z satisfying
the conditions of problem 2 (the surjectivity comes from the fact that A is a dicrete valu-
ation ring, hence v(A − {0}) = Z≥0 ⊂ v(K)). So K is a discrete valuation field, and to
finish we just have to show that Â− {0} = v−1(Z≥0).

Obviously, v sends Â − {0} to Z≥0. Conversely, let x ∈ K× such that v(x) ≥ 0. We
write x = ab−1, with a, b ∈ Â and N := v(a) ≥ M := v(b). Write a = (an + mn) and
b = (bn+mn), with (an), (bn) ∈ AN. We choose the an and bn such that, if an ∈ mn (resp.
bn ∈ mn), then v(an) = n (resp. v(bn) = n). This does not affect the classes an + mn

and bn + mn. We want to show that bn divides an in A for every n ≥ 0, which obviously
implies that xy−1 ∈ Â. If n > N , then v(xn) = N and v(Yn) = M ≤ N , so xny−1

n ∈ A
(as A itself is a discrete valuation ring). If M < n ≤ N , then v(bn) = M and v(an) = n,
so anb−1

n ∈ A. If n ≤M , then v(an) = v(bn) = n, so anb−1
n ∈ A.

This finishes the proof that Â is a discrete valuation ring. Its unique maximal ideal is
I := {0} ∪ v−1(Z≥1), let’s show that I = m̂. First, it follows easily from the definition
of v on Â that I is the set of a = (an) in Â such that a1 = 0 (in A/m). This contains
the image of m in Â, so I contains m̂. Conversely, let x ∈ I − {0}, let n = v(x). We
choose an element a of valuation a in m. Then v(xa−1) = n − 1 ≥ 0, so xa−1 ∈ Â, so
x = a(xa−1) ∈ m̂.

Finally, we have m̂n = {0} ∪ v−1(Z≥n), so

m̂n = {(a = (an) ∈ Â|ai = 0 in A/mi for 0 ≤ i ≤ n}.

So

Â/m̂n = {(x0, . . . , xn) ∈
n∏
i=0

A/mi|∀i ≤ n− 1, xi +mi = xi+1 +mi}.

For a family (x0, . . . , xn) as above, xn determines all the xi. So the map A/mn → Â/m̂n

sending a to the family (a + mi)0≤i≤n (which is the obvious map) is an isomorphism of
rings.

(3). Let’s call these three topologies T1, T2 and T3. Let U :=
∏

n≥0Xn be a generating set for
T1 as above, ie Xn ⊂ A/mn and Xn = A/mn for all but a finite number of n’s. Choose
N ≥ 0 such that Xn = A/mn for every n ≥ N . Then U + m̂N = U , so U is a union
of classes of Â/m̂n, so there exists a family (xi)i∈I of elements of Â such that U is the
disjoint union of the xi + m̂N . To show that U is open in T2 and T3, it suffices to show
that a set of the form x + m̂N is. For T2, such a set if open by definition. For T3, such a
set if open because it’s the open ball of radius cN−1 centered at x. (That is, y ∈ x+ m̂N if
and only if v(x− y) ≥ N if and only if v(x− y) > N − 1.)

We alredy showed that every generating open for T2 if open for T3. To finish the proof, we
have to show that an open ball for T3 is open for T1. Let x ∈ Â and c ∈ R>0, and let U be
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then open ball of radius r and center x. Write x = (xn), xn ∈ A/mn. Then U = x + m̂N

where N is biggest integer such that cN < r, so U =
∏

n≥0Xn, with Xn = {xn} if n < N
and Xn = A/mn if n ≥ N .

Note that, using the second description of the topology of Â, we see that the map v on
A− {0} is locally constant.

We now show that Â is complete. Let (xn)n≥0 be a Cauchy sequence in Â. This means
that for every A ∈ R, there exists N ∈ Z≥0 such that v(xn − xp) ≥ A if n, p ≥ N . We
want to show that (xn) converges. As a Cauchy sequence converges if and only if some
(infinite) subsequence of it converges, we can always replace (xn) by a subsequence. In
particular, we may assume that either xn = 0 for every n, or xn 6= 0 for every n. In the first
case, the sequence (xn) converges to 0. In the second case, using the fact that v is locally
constant on A− {0}, we may assume that all the xn have the same valuation, say n0; after
diving all the xn by the same element of A of valuation n0, we may assume that n0 = 0.
By taking another subsequence of necessary, we may also assume that v(xn− xp) ≥ n for
every p ≥ n. For every n, we choose a family (xi,n)i≥0 in AN representing xn. if p ≥ n,
then for 0 ≤ i ≤ n, xi,p and xi,p are equal modulo mn, hence modulo mi. So, if x is the
element of Â represented by (xn,n), then x = xn modulo m̂n for every n, and the sequence
(xn) converges to x.

If k is finite, then, for every n ≥ 0, mn/mn+1 ' k is finite, so A/mn is finite. The fact
that Â is Hausdorff compact follows from Tychonoff’s theorem, because the finite discrete
sets A/mn are Hausdorff compact.

(4). First note the following fact : Let n ≥ 1. If x ∈ A is such that f(x) ∈ mn and f ′(x) 6∈ m
(i.e. f ′(x) ∈ A×), then, setting h = − f(x)

f ′(x)
and y = x + h, we have f(y) ∈ m2n and

f ′(y) 6∈ m. Indeed, we have h ∈ mn, so

f(y) = f(x+ h) ∈ f(x) + hf ′(x) + h2A ⊂ f(x) + hf ′(x) +m2n = m2n,

and
f ′(y) = f ′(x+ h) ∈ f ′(x) + hA ⊂ f ′(x) +mn,

so f ′(y) 6∈ m because otherwise f ′(x) would be in m.

Now let’s prove Hensel’s lemma. We construct by induction on n ≥ 0 a sequence (xn)n≥0

of elements of A such that :

- For every n ≥ 0, xn +m = x, f(xn) ∈ m2n and f ′(xn) 6∈ m.

- For every n ≥ 0, xn+1 − xn ∈ m2n .

For x0, we choose any lift of x in A. Then f(x0) ∈ m because x is a root of f , and
f ′(x0) 6∈ m because it’s a simple root. Suppose that we have constructed x0, . . . , xn, and
let’s construct xn+1. Let hn = − f(xn)

f ′(xn)
∈ m2n , and take xn+1 = xn + hn. Then xn+1

satisfies all the desired conditions by the observation above.
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Now note that (xn)n≥0 is a Cauchy sequence if we use the metric defined in question
(3). As A is complete for this metric, the sequence (xn)n≥0 has a limit, say x. We have
x + m = x (if we choose some n such that v(x − xn) ≥ 1, then x ∈ xn + m, so x = xn
mod m), and f(x) is the limit of the sequence (f(xn))n≥0; as f(xn) ∈ m2n for every n,
f(xn)→ 0.

(5). Take A = Z[p−1], this is a discrete valuation ring with residue field Z/pZ. If p = 5, then
the polynomial f = t2+1 has a simple root in Z/pZ (because modulo 5, f = (t+2)(t+3)),
but it has no root in A, because A embeds in R.

�

VII.3.4 Witt vectors

NB : The goal of this exercise is to show that, for every algebraically closed (or even just perfect)
field k of characteristic p > 0, there exists a complete discrete valuation ring Λ with residue field
k and fraction field K of characteristic 0. To apply the results of the last sections of chapter III,
we also need to be able to construct a Λ such that K contains enough roots of 1, which doesn’t
follow immediately from this problem. (In addition to the results of this problem, we also need
to know that the integral closure of a complete discrete valuation ring in a finite extension of its
ring of fractions is still a complete discrete valution ring.)

Let p be a prime number. For every n ≥ 0, we define a polynomial Wn ∈ Z[X0, . . . , Xn] by

Wn(X0, . . . , Xn) =
n∑
i=0

piXpn−i

i .

These are called the Witt polynomials.

If A is a commutative ring, define a map W : AN → AN by sending a = (a0, a1, . . . ) ∈ AN to
(W0(a0),W1(a0, a1),W2(a0, a1, a2), . . . ).

(1). We say that a commutative ring A is p-unramified if n is not a zero divisor in A for every
positive integer and there exists a ring endomorphism τ of A such that, for every a ∈ A,
τ(a)− ap ∈ pA.

(a) Show that Z is p-unramified.

(b) If A is p-unramified and I is any set, show that the polynomial ring A[Xi, i ∈ I] is
p-unramified.

(2). Let A be a commutative ring. For every f in A[x], we define a sequence (f ◦(n))n≥0

of elements of A[x] in the following way : f ◦(0)(x) = x and, for every n ≥ 0,
f ◦(n+1)(x) = f ◦(n)(f(x)).

Let h ∈ A[x], and let f(x) = xp + ph(x). Show that, for every a, b ∈ A and n ≥ 0 :
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(a) bn − an ∈ (b− a)A.

(b) If b− a ∈ pA, then bp − ap ∈ p(b− a)A.

(c) h(b)− h(a) ∈ (b− a)A.

(d) If b− a ∈ pA, then f ◦(n)(b)− f ◦(n)(a) ∈ pn(b− a)A.

(3). Let A be a p-unramified ring, and let τ be a ring endormophism of A such that
τ(x) − xp ∈ pA for every x ∈ A. Show that W : AN → AN is injective, and that its
image is the set of (w0, w1, . . . ) ∈ AN such that, for every n ≥ 1, wn − τ(wn−1) ∈ pnA.
(Hint : To show that every element in the image of W satisfies the stated condition, use (2)
with h = 0.)

(4). Let Φ ∈ Z[X, Y ]. Show that there is a unique sequence of polynomials
ϕn ∈ Z[X0, . . . , Xn, Y0, . . . , Yn], n ≥ 0, such that, for every n ≥ 0 :

Wn(ϕ0(X0, Y0), . . . , ϕn(X0, . . . , Xn, Y0, . . . , Yn)) = Φ(Wn(X0, . . . , Xn),Wn(Y0, . . . , Yn)).

(Hint : Use (3) for A = Z[X0, Y0, X1, Y1, . . . ] and τ defined by τ(Xi) = Xp
i , τ(Yi) = Y p

i .
But don’t forget to check that ϕn only depends on X0, . . . , Xn.)

(5). Applying (4) to the polynomial X + Y (resp. XY ), we get a sequence of polynomials
(Sn)≥0 (resp. (Pn)n≥0). Let A be a commutative ring. We define two operations on AN by
the formulas

a+ b = (S0(a0, b0), . . . , Sn(a0, . . . , an, b0, . . . , bn), . . . )

a · b = (P0(a0, b0), . . . , Pn(a0, . . . , an, b0, . . . , bn), . . . )

for a = (a0, a1, . . . ) and b = (b0, b1, . . . ) in AN.

We write W (A) for the set AN with these two laws.

(a) Calculate S0, S1, P0 and P1.

(b) If p is invertible in A, show that W : AN → AN is bijective and sends these two laws
to the usual addition and multiplication (term by term) on AN.

In particular, W (A) is a ring (isomorphic to the product ring AN.)

(c) Show that, for any commutative ring A, W (A) is a commutative ring with zero el-
ement (0, 0, 0, . . . ) and unit element (1, 0, 0, . . . ). (Hint : Find commutative rings
B ⊂ C such that B surjects to A and that (ii) applies to C.)

This ring is called the ring of Witt vectors of A. (Remember the trick that we used in
this question, it will be useful again.)

(d) Show that the map W (A) → A that sends (a0, a1, . . . ) to a0 is a morphism of rings,
and that the map A→ W (A), a0 7−→ [a0] = (a0, 0, 0, . . . ) is multiplicative.
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(e) Suppose that p is not a zero divisor in A. Let a = (a0, a1, . . . ) ∈ W (A), and let
b = (b0, b1, . . . ) be the unique element of W (A) such that W (b) = W (p · a). Show
that b0 ∈ pA and that, for every n ≥ 0, bn+1 − apn ∈ pA.

(f) If p = 0 in A, show that, for every a = (a0, a1, . . . ) ∈ W (A), p · a = (0, ap0, a
p
1, . . . ).

(g) For every n ≥ 0, let In be the set of (a0, a1, . . . ) ∈ W (A) such that ai = 0 for
0 ≤ i ≤ n. Show that all the In are ideals of W (A), that two elements a = (ai) and
b = (bi) of W (A) are equal modulo In if and only if ai = bi for 0 ≤ n− 1, and that
the map

W (A)→ lim←−
n

W (A)/In := {(xn)n≥0 ∈
∏
n≥0

W (A)/In|∀n, xn+1 = xn mod In}

sending x to the family (x+ In)n≥0 is a ring isomorphism.

From now on, we take k to be a perfect ring of characteristic p. (“Of characteristic p”
means that p = 0 in k, and “perfect” means that that the map k → k, x 7−→ xp (which
respects addition because p = 0 in k) is an automorphism of rings.

(h) Let I be the ideal of W (k) generated by p. Show that the map

W (k)→ lim←−
n

W (k)/In := {(xn)n≥0 ∈
∏
n≥0

W (k)/In|∀n, xn+1 = xn mod In}

that sends x to the family (x+ In)n≥0 is a ring isomorphism.

(i) If k is a field, show that W (k) is a complete discrete valuation ring (see problem
VII.3.3) with residue field k and uniformizer p, and that the fraction field of W (k) is
a field of characteristic 0.

Solution.

(1). (a) Show that Z is p-unramified.

Take τ = idZ.

(b) As A is a subring and a quotient of A[Xi, i ∈ I], so any element of A that is a zero
divisor in A[Xi, i ∈ I] is also a zero divisor in A. In particular, positive integers
cannot be zero divisors in A[Xi, i ∈ I].

If τ : A → A is a ring automorphism such that τ(a) − ap ∈ pA for every a ∈ A,
extend τ to A[Xi, i ∈ I] by setting τ(Xi) = Xp

i for every i ∈ I . This obviously
satisfies the condition.

(2). (a) If n = 0, bn − an = 0 ∈ (b − a)A. if n ≥ 1,
bn − an = (b− a)

∑n−1
i=0 b

n−1−iai ∈ (b− a)A.
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(b) We have

bp = ((b− a) + a)p = (b− a)p + ap +

p−1∑
k=1

(
n

k

)
(b− a)kan−k,

so bp = (b− a)p + ap modulo p(b− a)A, which implies the conclusion (as p(b− a)
divides (b− a)p).

(c) This follows directly from (a).

(d) We prove the result by induction on n. It’s obvious for n = 0. Let n ≥ 0, and suppose
the result known for n. Write x = f ◦(n)(a), y = f ◦(n)(b). Then

f ◦n+1(a)− f ◦(n+1)(b) = f(x)− f(y) = xp − yp + p(h(x)− h(y)).

By (c), h(x)−h(y) ∈ (x−y)A. By (d), xp−yp ∈ p(x−y)A. As (x−y) ∈ pn(b−a)A
by the induction hypothesis, we see that f ◦n+1(a)− f ◦(n+1)(b) ∈ pn+1(b− a)A.

(3). We show by induction on n ≥ 0 that there exist polynomials Zn ∈ Z[p−1][X0, . . . , Xn]
such that Zn(W0, . . . ,Wn) = Xn and Wn(Z0, . . . , Zn) = Xn.

We take Z0 = X0. Suppose that we have constructed Z0, . . . , Zn−1, for some n ≥ 1. Note
that Wn = pnXn +Wn−1(Xp

0 , . . . , X
p
n−1). Let f = Wn−1(Zp

0 , . . . , Z
p
n−1). Then

f(W0, . . . ,Wn−1) = Wn−1(Xp
0 , . . . , X

p
n−1),

so, if Zn = p−n(Xn − f), then

Xn = p−n(Wn −Wn−1(Xp
0 , . . . , X

p
n−1)) = Zn(W0, . . . ,Wn).

On the other hand,

Wn(Z0, . . . , Zn) = pnZn +Wn−1(Zp
0 , . . . , Z

p
n−1) = Xn − f + f = Xn.

Let A′ = A[p−1]. As p is not a zero divisor in A, the obvious map A → A′ is injective.
The family (Zn)n≥0 defines a map (A′)N → (A′)N, that is an inverse of W by construction,
so W : (A′)N → (A′)N is a bijection. As A injects in A′, W : AN → AN is injective.

Note that, to show the statements above, we only used that p is invertible in A′ and that
A→ A′ is invertible. (Not that A is p-unramified.)

Let a = (a0, a1, . . . ) ∈ AN, and let (w0, w1, . . . ) = W (a). We want to show that for, for
every n ≥ 1, wn − τ(wn−1) ∈ pnA. We apply (b)(iv) with h = 0, so f ◦(k) = xp

k for every
k ≥ 0. If a ∈ A, then ap − τ(a) ∈ pA, so

ap
n − τ(ap

n−1

) = f ◦(n−1)(ap)− f ◦(n−1)(τ(a)) ∈ pn−1pA = pnA.
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Applying (2)(c) with h = Wn−1, this gives

Wn−1(ap0, . . . , a
p
n−1)−Wn−1(τ(a0), . . . , τ(an−1)) ∈ pnA.

Finally,

wn − τ(wn−1) = pnan +Wn−1(ap0, . . . , a
p
n−1)−Wn−1(τ(a0), . . . , τ(an−1)) ∈ pnA.

Let w = (w0, w1, . . . ) ∈ AN such that, for every n ≥ 1, wn− τ(wn−1) ∈ pnA. We want to
show that w is in the image of W , by finding a = (a0, a1, . . . ) ∈ AN such that W (a) = w.
We construct the an by induction on n. Take a0 = w0. Let n ≥ 1, and suppose that we
have found a0, . . . , an−1 ∈ A such that Wi(a0, . . . , ai) = wi for 0 ≤ i ≤ n− 1. We wan to
find an ∈ A such that

wn = Wn(a0, . . . , an) = pnan +Wn−1(ap0, . . . , a
p
n−1).

Applying (2)(c) to h = Wn−1 as above, we get that, modulo pnA :

wn −Wn−1(ap0, . . . , a
p
n−1) = wn −Wn−1(τ(a0), . . . , τ(an−1)) = wn − τ(wn−1) = 0,

so there exists an ∈ A such that pnan = wn −Wn−1(ap0, . . . , a
p
n−1).

(4). Let A = Z[X0, Y0, X1, Y1, . . . ], and let τ be the ring endomorphism of A that sends
Xi (resp. Yi) to Xp

i (resp. Y p
i ). By (1)(b), A is a p-ring. For every n ≥ 0, let

wn = Φ(Wn(X0, . . . , Xn),Wn(Y0, . . . , Yn)). Then w := (w0, w1, . . . ) ∈ AN, and find-
ing a sequence (ϕn)n≥0 of elements of Z[X0, X1, Y0, Y1, . . . ] satisfying the conditions of
the statement amounts to showing that w is in the image of W : AN → AN. Also, the
uniqueness of the sequence (ϕn)≥n follows from the injectivity of W : AN → AN. By (3),
we just need to show that wn − τ(wn−1) ∈ pnA for every n ≥ 1. But wn − τ(wn−1) is
equal to

Φ(Wn(X0, . . . , Xn),Wn(Y0, . . . , Yn))− Φ(Wn−1(Y p
0 , . . . , Y

p
n−1),Wn−1(Y p

0 , . . . , Y
p
n−1))

As
Wn(X0, . . . , Xn)−Wn−1(Xp

0 , . . . , X
p
n−1) = pnXn ∈ pnA,

an easy generalization of (2)(c) to polynomials with two indeterminates shows that
wn − τ(wn−1) ∈ pnA.

It remains to show that, for every n ≥ 0, ϕ is in Z[X0, . . . , Xn, Y0, . . . , Yn] (and
not just in the bigger ring A). In the proof of (3), we have constructed a fam-
ily of polynomials Zn ∈ Z[p−1](X0, . . . , Xn) such that Xn = Zn(W0, . . . ,Wn)
for every n ≥ 0. Applying this to the equation in the statement of (4)
gives ϕn = Zn(w′0, . . . , w

′
n), with w′i = Φ(Wi(X0, . . . , Xi),Wi(Y0, . . . , Yi)). So

wn ∈ Z[p−1][X0, . . . , Xn, Y0, . . . , Yn] ∩ A = Z[X0, . . . , Xn, Y0, . . . , Yn].
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(5). (a) We have S0 = X0 + Y0, S1 = X1 + Y1 + 1
p
(Xp

0 + Y p
0 − (X0 + Y0)p), P0 = X0Y0 and

P1 = Xp
0Y1 + Y p

0 X1 + pX1Y1.

(b) If p is invertible in A, we showed in the beginning of the proof of (3) that
W : AN → AN is bijective. By the very definition of the polynomials Sn
and Pn, W sends the two laws on W (A) to the usual addition and multiplica-
tion on the product ring AN. So W (A) is a commutative ring, with zero element
W −1(0, 0, . . . ) = (0, 0, . . . ) and unit element W −1(1, 1, . . . ) = (1, 0, 0, . . . ). (To
check that (1, 0, . . . ) is indeed the inverse image of (1, 1, . . . ) by W , it suffices to
check that W (1, 0, . . . ) = (1, 1, . . . ), which is obvious.)

(c) Let B be the ring of polynomials Z[Xa, a ∈ A], and let v : B → A be the ring
morphism sending Xa to a, for every a ∈ A. We also set C = B[p−1] and write
u : B → C for the inclusion. Then u and v induces maps BN → AN, BN → CN,
W (v) : W (B) → W (A) and W (u) : W (B) → W (C). The first two are maps of
rings, and the second two respect the two laws defined above (simply because u and
v are ring morphisms). As W (C) is a ring and the map W (u) : W (B) → W (C)
is injective, we see that the two laws on W (B) satisfy all the conditions imposed on
the addition and multiplication laws of commutative a ring, and that the zero and unit
elements are the ones given above. As W (v) : W (B)→ W (A) is surjective, the two
laws onW (A) also satisfy all the necessary conditions to makeW (A) a commutative
ring, with the zero and unit elements described above.

(d) The first statement follows from the formulas for S0 and P0 given in (a).

For the second statement, choose v : B → A and u : B → C as in the proof of (c).
Then we have a commutative diagram

A

[ ]
��

B
u //voo

[ ]
��

C

[ ]
��

W (A) W (B)
W (u) //W (v)oo W (C)

The vertical map on the ring is multiplicative, because its composition with the ring
isomorphism W : W (C) → CN is the map a 7−→ (a, ap, ap

2
, . . . ), which is multi-

plicative. As W (u) is an injective ring moprhism, [ ] : B → W (B) is also multi-
plicative. As v : B → A and W (v) : W (B) → W (A) are ring morphisms and v is
surjective, [ ] : A→ W (A) is also multiplicative.

(e) We show the statement by induction on n. Write A′ = A[p−1]. By the hypothesis
on A, the obvious map A → A′ is injective, and we use it to identify A to a subring
of A′. Let (w0, w1, . . . ) = W (a0, a1, . . . ). Let Z0, Z1, · · · ∈ Z[p−1][X0, X − 1, . . . ]
be the polynomials defined in the proof of (c). We have bn = Zn(pw0, . . . , pwn) for
every n ≥ 0. Then Z0 = X0 and Z1 = p−1(X1 − Xp

0 ), so b0 = pa0 ∈ pA and we
have in A′ :

b1 = p−1(p(ap0 + pa1)− (pa0)p) = ap0 + pa1 − pp−1ap0,

246



VII.3 Chapter III exercises

so b1 − ap0 ∈ pA. Now let n ≥ 1, and suppose that we know that bm+1 − apm ∈ pA
for every m < n. Then

Zn+1 = p−(n+1)(Xn+1 −Wn(Zp
0 , . . . , Z

p
n)),

so, in A′,

bn+1 = p−(n+1)(pWn+1(a0, . . . , an+1)−Wn(bp0, . . . , b
p
n)) =

p−(n+1)(p(pn+1an+1 +Wn(ap0, . . . , a
p
n))−Wn(bp0, . . . , b

p
n))

The right-hand side is equal to

pan+1 + apn − p−(n+1)bp
n+1

0 − p−(n+1)

n∑
i=1

pi(bp
n−i+1

i − ap
n−i+2

i−1 ).

By the induction hypothesis and (2)(b), this is equal to apn modulo pA.

(f) As in the proof of (d), choose a surjective ring morphism v : B → A such that p
is not a zero divisor in B, and let W (v) : W (B) → W (A) be the induced map
of rings. Fix a = (a0, a1, . . . ) ∈ W (A), and choose a′ = (a′0, a

′
1, . . . ) ∈ W (B)

such that W (v)(a′) = a. Let b′ = (b′0, b
′
1, . . . ) = pa′. Then, by (v), b′0 ∈ pB

and b′n − a′n−1
p ∈ pB for every n ≥ 1. Now if b = (v(b′0), v(b′1), . . . ), then

b = W (v)(b′) = pa, and we have b0 = 0 and bn = apn−1 for every n ≥ 1.

(g) For every n ≥ 0, let Jn be the subset of the product ring AN made up of the a = (ai)
such that ai = 0 for 0 ≤ i ≤ n− 1. Then Jn is obviously an ideal, and two elements
a = (ai) and b = (bi) of AN are equal modulo Jn if and only if ai = bi for 0 ≤ n− 1.

We apply the trick of (c). Choose a surjective ring morphism u : B → A and an
injective ring morphism v : B → C such that p is invertible in C. We write In(A),
In(B) and In(C) for the subsets of W (A), W (B) and W (C) defined above, and we
use the same convention for Jn. The map W : W (C) → CN is an isomorphism of
rings, and W (In(C)) = Jn(C), so we get the fact that the In(C) are ideals. The
second assertion in this case follows from the easy fact that, for every n ≥ 0 and
every a0, . . . , an−1, b0, . . . , bn−1 ∈ C, ai = bi for every 0 ≤ i ≤ n − 1 if and only
Wi(a0, . . . , an−1) = Wi(b0, . . . , bn−1) for every 0 ≤ i ≤ n− 1.

Now note that In(B) = u−1(In(C)) and In(A) = v(In(B)), so they are ideals. Fix
n ≥ 0. If a = (ai) and b = (bi) are in W (A), W (B) or W (C), we write a ∼ b to
indicate that ai = bi for 0 ≤ i ≤ n.

If a, b are in W (B), then a ∼ b if and only if u(a) ∼ u(b), and a = b modulo In(B)
if and only if u(a) = u(b) modulo In(C). This gives the second assertion for B.

Assume that a, b ∈ W (A). If a ∼ b, then there exists a′, b′ ∈ W (B) such that
v(a′) = a, v(b′) = b and a′ ∼ b′; then a′ = b′ modulo In(B), so a = b modulo In(A).
If on the other hand a = bmodulo In(A), then there exists a′, b′, c′ ∈ W (B) such that
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v(a′) = a, v(b′) = b, c′ ∈ Ker v and a′ = b′ + c′ modulo In(B); then a′ ∼ b′ + c′, so
a ∼ b.

Finally, we prove the last assertion. Call ϕ the morphism A → lim←−nA/In. Then
Kerϕ =

⋂
n In = 0, so ϕ is injective. Now we prove that ϕ is surjective. Let

x = (xn)n≥0 ∈ lim←−nA/In, and write xn = (an0 , a
n
1 , . . . ). By what we just proved,

the condition xn = xn+1 modulo In gives ani = an+1
i for 0 ≤ i ≤ n. Let

a = (a0
0, a

a
1, a

2
2, . . . ) ∈ W (A). Then a = xn modulo In for every n ≥ 0, so ϕ(a) = x.

(h) By (f), for every n ≥ 0, In is the set of (0, . . . , 0, ap
n

0 , a
pn

1 , . . . ), with n zeroes at the
beginning and a0, a1, · · · ∈ k. As k is perfect, In is thus equal to the ideal In of (g),
and the assertion follows from (g).

(i) If k is a field, then the ideal I = pW (k) of (h) is a maximal ideal. We want to show
that it’s the only maximal ideal, ie that every element of W (k) − I is invertible. By
(d), for every a ∈ k − {0}, [a0] = (a0, 0, 0, . . . ) is invertible (with inverse [a−1

0 ]).
Now let a = (a0, a1, . . . ) ∈ W (k) such that a0 6= 0. Then, by (g) and (h), a = [a0]
modulo I , so there exists b ∈ I such that a = [a0](1 − b). For every n ≥ 0, let
xn =

∑n
k=0 b

n. As bn+1 ∈ In+1, xn = xn+1 modulo In+1 for every n, so (xn)n≥0 is
an element of lim←−nW (k)/In. By (h), there exists c ∈ W (k) such that c = xn modulo
In for every n ≥ 0. Then, for every n ≥ 0, (1 − b)c = (1 − b)xn = 1 modulo In.
By (h) again, (1− b)c = 1, so 1− b is invertible, hence so is a. (Note that, if we only
assume that k is a perfect ring of characteristic p, the same proof show that a = (ai)
is invertible in W (k) if and only if a0 is invertible in k.)

Using (f) and the fact that k is perfect, we get that, for every a ∈ W (k)− {0}, there
exists a unique n ≥ 0 and a unique b = (b0, b1, . . . ) ∈ W (k) such that a = pnb and
b0 6= 0 (in k). By what we have just seen, b is invertible. We set v(a) = n. We also
set v(0) =∞.

If a, a′ ∈ W (k) − {0}, let n = v(a) and n′ = v(a′), and write a = pnu, a′ = pn
′
u′

with u, u′ ∈ W (k)×. Then aa′ = pn+n′uu′. By (f), aa′ 6= 0 and v(aa′) = n + n′.
In particular, W (k) is a domain. Let K be its fraction field. We extend v to a map
K× → Z by setting v(xy−1) = v(x) − v(y) if x, y ∈ W (k). By what we just
proved, this makes sense and defines a group morphism. Note that v : K× → Z is
surjective, because v(pn) = n, for every n ∈ Z. Let x ∈ K×, and write x = yz−1,
with y, z ∈ W (k) − {0}. If v(y) = n and v(z) = m, we have v(x) = n − m and
x = pn−mu, with u ∈ W (k)×. So x is in W (k) if and only if v(x) ≥ 0. (Note that p
is not invertible in W (k), because it is in the maximal ideal.)

To finish the proof that W (k) is a discrete valuation ring, we have to show
that v(x + y) ≥ inf(v(x), v(y)) for every x, y ∈ K×. We may assume
that x, y ∈ W (k) − {0}. Let n = v(x) and m = v(y), and assume that
n ≥ m (this is always true up to switching x and y.) Write x = pnu
and y = pmu′ with u, u′ ∈ W (k)×. then x + y = pm(pn−mu + u′), so
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v(x+ y) = m+ v(pn−mu+ u′) ≥ m = inf(v(x), v(y)).

By (h), W (k) is complete. It remains to show that the characteristic of K is 0. We
already know that char(K) 6= p, because p is invertible in K. If char(K) = ` > 0,
then p` = p in K, which is not possible. So char(K) = 0.

�

VII.4 Chapter IV exercises

None yet, but see problem VII.7.1.

VII.5 Chapter V exercises

VII.5.1 Existence of the Haar measure on a compact group

LetG be a Hausdorff locally compact topological group. By a measure onG, we mean a measure
on the Borel σ-algebra of G. A nonzero measure µ on G is called a left Haar measure if, for
every measurable function f : G → C and every g ∈ G,

∫
G
f(x)dµ =

∫
G
f(gx)dµ. In general,

left Haar measures always exist and they are unique up to scaling. Here we are only interested in
the case of compact groups.

We denote by C the space of continuous functions with compact support G → C, equipped
with the compact-open topology. This is the topology generated by the sets {f ∈ C |f(K) ⊂ U},
for K ⊂ G compact and U ⊂ C open.

Let C ∗ be the space of continuous linear maps C → C, equipped with the weak topology. Re-
member that the weak topology is the coarsest topology such that the maps C ∗ → C, λ 7−→ λ(f),
are continuous for every f ∈ C . So a base of opens is given by the sets

{λ ∈ C ∗||(λ− λ1)(f1)| < r1, . . . , |(λ− λn)(fn)| < rn},

for λ1, . . . , λn ∈ C ∗, f1, . . . , fn ∈ C and r1, . . . , rn ∈ R>0.

Now assume that G is compact and either is metrizable, or has a countable basis for its topol-
ogy. This hypothesis is just here to guarantee the following fact (that you don’t have to prove)
: for every probability measure µ on G, the linear form f 7−→

∫
G
f(x)dµ on C is continuous,

hence in C ∗. So we identify the set P(G) of probability measures on G with a subset of C ∗.

(1). Show that the compact-open topology on C is the same as the topology of uniform con-
vergence, i.e. the topology induced by the norm ‖ · ‖∞ given by

‖f‖∞ = sup
x∈G
|f(x)|.
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(2). Let ρ be the representation of G on C defined by (ρ(g)f)(x) = f(g−1x), for f ∈ C and
x, g ∈ G. Show that the map G × C → C , (g, f) 7−→ ρ(g)f is continuous (ie ρ is a
continuous representation of G).

(3). Show that the contragredient representation ρ∗ (defined as usual by ρ∗(g)λ = λ ◦ ρ(g−1),
if g ∈ G and λ ∈ C ∗) is also continuous.

(4). Show that P(G) is a convex compact G-invariant subset of C ∗. (Hint : Tychonoff’s
theorem.)

(5). Show that G has a left Haar measure. (Hint : An appropriate form of the Markov-Kakutani
fixed point theorem might help. For example theorem 5.11 of Rudin’s Functional analysis.)

Solution.

(1). Let f0 ∈ C . We want to show that every open neighbourhood of f0 in the compact-open
topology contains an open neighbourhood of f0 in the topology of uniform convergence,
and vice versa.

For the first direction, we may assume that the open neighbourhood of f0 if of the form
X := {f ∈ C |f(K1) ⊂ U1, . . . , f(Km) ⊂ Um} where K1, . . . , Km ⊂ G are compact and
U1, . . . , Um ⊂ C are open. For every ε > 0, we write

Vε = {f ∈ C |‖f − f0‖∞ < ε}.

Let i ∈ {1, . . . ,m}. As f0(Ki) ⊂ Ui is compact, there exists εi > 0 such that
{x ∈ C|∃y ∈ f0(Ki), |x − y| < εi} ⊂ Ui. 12 Let ε = min(ε1, . . . , εm). Then Vε ⊂ X .
Indeed, if f ∈ Vε and i ∈ {1, . . . ,m}, then for every x ∈ Ki, |f(x) − fi(x)| < ε, so
f(x) ∈ Ui by the choice of ε.

Conversely, let ε > 0 and let Vε be defined as above. We have to show that Vε contains an
open neighbourhood of f0 in the compact-open topology. Let η = ε/2. For every x ∈ G,
let

Ux = {y ∈ G||f0(x)− f0(y)| < η} ⊂ Kx = {y ∈ G||f0(x)− f0(y)| ≤ η}.

Then Ux is open and Kx is compact. As G =
⋃
x∈G Ux and G is compact,

there exist x1, . . . , xn ∈ G such that G =
⋃n
i=1 Uxi =

⋃n
i=1Kxi . For every

i ∈ {1, . . . , n}, write Ki = Kxi and let Ui = {a ∈ C||f0(xi) − a| < η}. Then
X := {f ∈ C |∀i ∈ {1, . . . , n}, f(Ki) ⊂ Ui} ⊂ Vε. Indeed, let f ∈ X and let x ∈ G.
Then there exists i ∈ {1, . . . , n} such that x ∈ Ki, and we have

|f(x)− f0(x)| ≤ |f(x)− f0(xi)|+ |f0(xi)− f0(x)| < η + η = ε.

12This is a standard compactness argument. For every x ∈ f0(Ki), choose εx > 0 such that B(x, εx) ⊂ Ui, where
B(x, r) = {y ∈ C||x − y| < r}. Then f0(Ki) ⊂

⋃
x∈f0(Ki)

B(x, εx/2), so there exists x1, . . . , xr ∈ f0(Ki)

such that f0(Ki) ⊂
⋃r
j=1B(xj , εxj

/2). Then εi = 1
2 min(εx1

, . . . , εxr
) will work.
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(2). Denote by µ the map G × C → C . Let g0 ∈ G and f0 ∈ C . We want to prove that, for
every ε > 0, there exists a neighbourhood W of g0 in G and η > 0 such that, if g ∈ W and
‖f − f0‖∞ < η, then ‖gf − g0f0‖∞ < ε. Fix ε > 0.

As G is compact, f0 : G → C is uniformely continuous, so there exists two collections
U1, . . . , Un and V1, . . . , Vn of open subsets of G such that Ki := Ui ⊂ Vi for every i,
G = U1 ∪ · · · ∪ Un and, for every i and every x, y ∈ Vi, |f0(x) − f0(y)| < ε/2. Let
i ∈ {1, . . . , n}. For every x ∈ Ki, choose j such that g−1

0 x is in Vj and open neighbour-
hoods Ux of x in G and Wx of g0 in G such that, for every g ∈ Wx and y ∈ Ux, g−1y ∈ Vj .
As Ki is compact, we can choose x1, . . . , xm such that Ki ⊂ Ux1 ∪ · · · ∪ Uxm . Then the
open neighbourhood Wi := Wx1 ∩ · · · ∩Wxm of g0 has the property that, for every g ∈ Wi

and every x ∈ Ki, there exists j ∈ {1, . . . , n} such that both g−1
0 x and g−1x are in Vj .

Finally, let W = W1 ∩ · · · ∩Wn. Let g ∈ W and f ∈ C such that ‖f − f0‖∞ < ε/2.
We want to show that ‖gf − g0f0‖∞ < ε. Let x ∈ G. Choose i ∈ {1, . . . , n} such that
x ∈ Ki. Then there exists j ∈ {1, . . . , n} such that g−1

0 x, g−1x ∈ Vj . Then

(gf − g0f0)(x) = f(g−1x)−f0(g−1
0 x) = (f(g−1x)−f0(g−1x)) + (f0(g−1x)−f0(g−1

0 x)),

so
|(gf − g0f0)(x)| < ε/2 + ε/2 = ε.

(3). Let g0 ∈ G, λ0 ∈ C ∗, f ∈ C and r ∈ R>0. We want to find a neighbourhood W of
g0 in G and a neighbourhood U of λ in C ∗ such that, for every g ∈ W and λ ∈ U ,
|(gλ− g0λ0)(f)| < r. Let

‖λ0‖ = sup{‖λ0(f1)‖∞, f1 ∈ C , ‖f1‖∞ = 1}.

Then ‖λ0‖ is finite because λ0 is continuous, and ‖λ0(f1)‖∞ ≤ ‖λ0‖‖f1‖∞ for every
f1 ∈ C .

By (2) (or just the uniform continuity of f ), there exists a neighbourhood W of g0

in G such that, for every g ∈ W , ‖g−1f − g−1
0 f‖∞ < r/(2(1 + ‖λ0‖)). Let

U = {λ ∈ C ∗||(λ − λ0)(g−1f)| < r/2}. Then U is a neighbourhood of λ0 in C ∗,
and we have, for every g ∈ W and λ ∈ U ,

|(gλ− g0λ0)(f)| = |λ(g−1f)− λ0(g−1f)|+ |λ0(g−1f)− λ0(g−1
0 f)| < r.

(4). The set P(G) is obviously convex and G-invariant, the harder thing is proving that it is
compact.

We denote by B its unit ball of C (for the norm ‖ · ‖∞). Let B+ be the set of f ∈ B such
that f(G) ⊂ R≥0. Then B+ generates C as a vector space,13 so the map C ∗ →

∏
B+ C,

13Obviously B generates C . If f ∈ C , then f = f1 + if2, with f1, f2 : G→ R uniquely determined, and we have
f1, f2 ∈ B if f ∈ B. Finally, if f ∈ C has real values, then f = f+ − f− with f+(x) = sup(f(x), 0) and
f−(x) = − inf(f(x), 0), and f+, f− ∈ B+ if f ∈ B.
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λ 7−→ (λ(f))f∈C , is injective, and we use it to identify C ∗ to a subspace of
∏

B+ C. By
definition, the weak topology on C ∗ is the topology induced by the product topology on∏

B C.

Let K =
∏

B[0, 1] ⊂
∏

B C. By Tychonoff’s theorem, K is compact. By the Riesz
representation theorem, C ∗ ∩ K is closed in K. Indeed, if (af )f∈B+ is in the closure of
C ∗ ∩ K, then the map B+ → C, f 7−→ af extends to a linear map C → C. This linear
map is positive because the af are in R≥0, so it is of the form f 7−→

∫
fdµ, where µ is a

regular Borel measure on G, and hence it is a continuous (for the compact-open topology
on C ), ie an element of C ∗.

So K ∩ C ∗ is compact, and this implies that P(G) is compact, because
P(G) = {λ ∈ K ∩ C ∗|λ(1) = 1} (where 1 the constant function 1 on G) is closed
in K ∩ C ∗.

(5). We want to apply the Markov-Kakutani fixed point theorem in the form of theorem 5.11
of Rudin’s Functional analysis to the group G acting as above on the space C ∗, and to the
invariant compact convex subset P(G) of C ∗. First, note that P(G) is nonempty because
the linear functional f 7−→ f(1) is in P(G) (that’s the Dirac measure at 1 ∈ G).

Second, C ∗ is locally convex because the sets {λ ∈ C ∗||λ(f1) < r1, . . . , |λ(fs)| < rs},
for f1, . . . , fs ∈ C and r1, . . . , rs ∈ R>0, form a basis of neighbourhoods of 0 in C ∗ and
they are convex.

Third, we have to check that the action of G on P(G) (not C ∗ !) is equicontinuous. This
means that, for every neighbourhood W of 0 in C ∗, there exists a neighbourhood V of 0 in
C ∗ such that, for every µ1, µ2 ∈P(G) such that µ1 − µ2 ∈ V , we have g.(µ1 − µ2) ∈ W
for every g ∈ G.

It is obviously enough to prove this for a neighbourhood of 0 of the form
W = {λ ∈ C ∗||λ(f)| < r}, where f ∈ C and r ∈ R>0 are fixed and ‖f‖∞ = 1.

As the action of G on C is continuous, the open sets
Uh = {g ∈ G|‖(g−1f − h−1f)‖∞ < r/3}, h ∈ G, cover G. As G is
compact, we can find h1, . . . , hm ∈ G such that G =

⋃m
i=1 Uhi . Now let

V = {λ ∈ C ∗|∀i ∈ {1, . . . ,m}, |λ(h−1
i f)| < r/3}. This is a neighbourhood of 0

in C ∗. Let µ1, µ2 ∈P(G) such that λ := µ1−µ2 ∈ V . We want to prove that gλ ∈ W for
every g ∈ G. First notice that, as µ1 and µ2 are probability measures, |λ(f1)| ≤ 2‖f1‖∞
for every f1 ∈ C . Let g ∈ G. There exists i ∈ {1, . . . ,m} such that g ∈ Uhi , ie
‖g−1f − h−1

i f‖∞ < r/3. Then

|(gλ)(f)| = |λ(g−1f)| ≤ |λ(g−1f − h−1
i f)|+ |λ(h−1

i f)| < 2r/3 + r/3 = r,

so gλ ∈ W .

Finally, the fixed point theorem gives an element µ ∈ P(G) such that gµ = µ for every
g ∈ G. But this is the same as saying that µ is a left Haar measure.
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�

VII.5.2 Haar measures are unique

Let G be a Hausdorff locally compact topological group. We denote by C (G,C) the space of
continuous functions with compact support from G to C. Remember (from remark V.1.3 of
chapter V) that a left Haar measure on G is a nonzero positive C-linear map λ : C (G,C) → C
such that, if µ is the measure on the σ-algebra of Borel sets of G corresponding to λ, for every
continuous function f : G→ C and every g ∈ G,

∫
G
f(x)dµ =

∫
G
f(gx)dµ.

For simplicity, we will assume in this problem that the group G is a normal topological space.
This is the case for example if we assume that G is σ-compact (i.e., G is a countable union of
compact subsets).

Remember Urysohn’s lemma :

Theorem. If X is a normal topological space, then, for every closet subsets Y, Z ⊂ X such
that Y ∩ Z = ∅, there exists a continuous function f : X → [0, 1] such that f(Y ) = {0} and
f(Z) = {1}.

Let λ1, λ2 : C (G,C)→ C be two left Haar measures onG, and let µ1, µ2 be the corresponding
measures on the σ-algebra of Borel sets of G. We want to show that λ1 and λ2 are equal up to a
real positive scalar.

(1). Show that it is enough to see that λ1(f)λ2(g) = λ1(g)λ2(f) for every f, g ∈ C (G,C).

(2). Show that, for every non-empty open subset U ⊂ G, there exists ψ ∈ C (G,C) taking only
non-negative values, supported in U , and such that λ1(ψ) = 1.

(3). Let A ⊂ C (G,C) be a finite subset and ε > 0. Find 0 6= ψε ∈ C (G,C) taking non-
negative values and such that, for every f ∈ A,

λ2(f) = λ1(f)

∫
G

(ψε(x
−1))dµ2(x) +O(ε)

(where “O(ε)” means “bounded by Cε, for C ∈ R≥0 depending on A but not on ε”).

(Hint : Find ψε by applying (2) to a well-chosen neighborhood of 1 in G. To show the
property of ψε, calculate

∫
G

∫
G
f(xy)ψε(y) dµ1(y)dµ2(x) in two different ways.)

(4). Conclude.

Solution.

(1). Suppose that λ1(f)λ2(g) = λ1(g)λ2(f) for any f, g ∈ C (G,C). Let A1, A2 ⊂ G be two
compact subsets such that µ1(A1) > 0 and µ2(A2) > 0. (These exist because µ1 and
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µ2 are regular.) By Urysohn’s lemma, we can find g : G → [0, 1] continuous such that
g|A1∪A2 = 1. Then λi(g) ∈ R>0 for i = 1, 2, and we have λ1 = λ1(g)

λ2(g)
λ2.

(2). Let U ⊂ G be open nonempty. Then any compact subset of G can be covered by a
finite number of left translates of U , which all have volume equal to that of U for the
measure µ1 (thanks to left invariance). As there exists compact subsets of G with nonzero
volume, µ1(U) 6= 0. As µ1 is regular, there exists a compact subset K of U such that
µ1(K) > 0. Then λ1(11K) > 0. By theorem 3.14 of Rudin’s book [25], there exsist a
function f1 ∈ C (U,R≥0) such that λ1(11K − f) < 1

2
λ1(11K), hence λ1(f) > 0. If we

extend f to G by taking f(x) = 0 for x 6∈ U , this is still continuous. Now we just take
ψ = 1

λ1(f)
f .

(3). For every ε > 0, choose a neighborhood Uε of 1 in G such that, for every f ∈ A, every
x ∈ G and every y ∈ Uε, |f(x)− f(xy)| ≤ ε. Let ψε : G→ R≥0 be a continuous function
with compact support included in Uε such that λ1(ψε) = 1. (Such a function exists by
(2).) We may assume that the supports of all the ψε, for 0 < ε < 1, are contained in some
compact subset K1 of G.

Choose a compact subset K2 of G containing the supports of all the elements of A, and let
K = K1 ∪ K1K2. (Another compact subset of G.) Let f ∈ A and ε ∈]0, 1[. Then, for
every x ∈ G,

|f(x)−
∫
G

f(xy)ψε(y)dµ1(y)| = |
∫
G

(f(x)−f(xy))ψε(y)dµ1(y)| ≤ ε

∫
G

ψε(y)dµ1(y) = ε,

so
|
∫
G

∫
G

f(xy)ψε(y) dµ1(y)dµ2(x)− λ2(f)| ≤
∫
K

εdµ2(x) ≤ εµ2(K).

On the other hand, using the change of variables z = xy and the left invariance of µ1, we
get ∫

G

∫
G

f(xy)ψε(y) dµ1(y)dµ2(x) =

∫
G

f(z)(

∫
G

ψε(x
−1z)dµ2(x))dµ1(z).

Using the left invariance of µ2 (and the change of variables x′ = z−1x), we see that, for
every z ∈ G, ∫

G

ψε(x
−1z)dµ2(x) =

∫
G

ψε(x
−1)dµ2(x).

So ∫
G

∫
G

f(xy)ψε(y) dµ1(y)dµ2(x) = λ1(f)

∫
G

ψε(x
−1)dµ2(x),

which gives the result.

(4). Let f, g ∈ C (G,C), and take A = {f, g}. Then we have found in (3) a constant C ∈ R>0

and functions ψε ∈ C (G,R≥0), for every ε ∈]0, 1[, such that

|λ2(f)− λ1(f)

∫
G

ψε(x
−1)dµ2(x)| ≤ Cε
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and

|λ2(g)− λ1(g)

∫
G

ψε(x
−1)dµ2(x)| ≤ Cε.

Note that any of these two relations implies that there exist constants 0 < A < B such that
A ≤

∫
G
ψε(x

−1)dµ2(x) ≤ B for ε small enough. In particular, we get

λ1(f)λ2(g) = λ2(f)λ1(g) +O(ε).

Making ε tend to 0, we get λ1(f)λ2(g) = λ2(f)λ1(g), as desired.

�

VII.5.3 Unimodular groups

We use the notation and definitions of problem VII.5.2. Let G be a locally compact Hausdorff
topological group, let µ be a left Haar measure on G. We also admit the fact that left Haar
measure on G are unique up to mutliplication by a scalar (if G is a normal topological space, this
was proved in problem VII.5.2.)

(1). Show that there exists a function c : G → R>0 such that, for every g ∈ G and
f ∈ C (G,C),

∫
G
f(xg)dµ(x) = c(g)

∫
G
f(x)dµ(x).

(2). Show that c : G→ (R>0,×) is a continuous morphism of groups.

The function c is called the modular function of G, and we say that G is unimodular if
c(G) = 1 (i.e. if µ is also a right Haar measure).

(3). If G is compact, show that it is unimodular.

(4). Let f ∈ C (G,C). Show that
∫
G
f(x−1) dµ(x) =

∫
G
c(x)f(x)dµ(x). 14

(Hint : Take another function g ∈ C (G,C) and calculate∫
G

∫
G
g(yx)c(x)−1f(x−1)dµ(x)dµ(y) in two different ways.)

(5). Let G be the topological group R>0 × R, with the multiplication given by
(a, b)(a′, b′) = (aa′, ab′ + b). Find a left Haar measure on G. Is G unimodular ?

Solution.

(1). Let g ∈ G. Then dµ(x) and dµ(xg−1) are both left Haar measures on G, so, by prob-
lem VII.5.2, there exists c(g) ∈ R>0 such that dµ(xg−1) = c(g)dµ(x), i.e., for every
f ∈ C (G,C),

∫
G
f(xg)dµ(x) =

∫
G
f(y)dµ(yg−1) = c(g)

∫
G
f(x)dµ(x).

14Cette formule est-elle juste ?
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(2). By problem VII.5.2, all left Haar measures on G are proportional, and so we would have
gotten the same function c in question (1) if we had used another left Haar measure on G
to define it. In particular, for all g1, g2 ∈ G,

c(g1g2)dµ(x) = dµ(x(g1g2)−1) = dµ(xg−1
2 g−1

1 ) = c(g1)dµ(xg−1
2 ) = c(g1)c(g2)dµ(x),

so c(g1g2) = c(g1)c(g2). Hence c : G→ (R>0,×) is a morphism of groups.

Now we show that c is continuous. Let ε > 0. Choose f ∈ C (G,R≥0) such that∫
G
f(x)dµ(x) = 1. Let U be a neighborhood of 1 in G such that, for every x ∈ G

and every y ∈ U , |f(x) − f(xy)| ≤ ε, and let K be the support of f . Then, if g, g′ ∈ G
are such that g−1g′ ∈ U , we have

|c(g′)−c(g)| = |(c(g′)−c(g))

∫
G

f(x)dµ(x)| = |
∫
G

f(xg′)dµ(x)−
∫
G

f(xg)dµ(x)| ≤ εµ(K).

(3). If G is compact, then c(G) is a compact subgroup of R>0. The only compact subgroup of
R>0 is {1}, so c(G) = {1}, i.e., G is unimodular.

(4). Let g ∈ C (G,C). Then we have∫
G

∫
G

g(yx)c(x)−1f(x−1)dµ(x)dµ(y) =

∫
G

f(x−1)c(x)−1(

∫
G

g(yx)dµ(y))dµ(x).

By definition of c, c(x)−1
∫
G
g(yx)dµ(y) =

∫
G
g(y)dµ(y), and so∫

G

∫
G

g(yx)c(x)−1f(x−1)dµ(x)dµ(y) =

∫
G

f(x−1)dµ(x)

∫
G

g(y)dµ(y).

On the other, the left invariance of µ and the change of variables z = yx give∫
G

∫
G

g(yx)c(x)−1f(x−1)dµ(x)dµ(y) =

∫
G

∫
G

g(z)c(y−1z)−1f(z−1y)dµ(z)dµ(y).

Using the left invariance of µ again and the change of variables t = z−1y, this becomes
equal to ∫

G

g(z)dµ(z)

∫
G

c(t)f(t)dµ(t).

Choosing a function g such that
∫
G
g(x)dµ(x) = 1, we get the result.

(5). Note that G is isomorphic to the closed subgroup {
(
a b
0 1

)
, a ∈ R>0, b ∈ R} of

GL2(R). Let dx be the Lebesgue measure on R. Then it is very easy to check that
dµ(a, b) := da

a2db is a left Haar measure on G. It’s not a right Haar measure, because
dµ((a, b)(x, y)) = x−1dµ(a, b), so the modular function c of G is given by c(x, y) = x.

�
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VII.5.4 Some examples of topological groups

Among the following closed subgroups of GLn(C), which ones are connected ? Which ones are
compact ?

(1). GLn(C)

(2). SLn(C) := {A ∈Mn(R)| det(A) = 1}

(3). GLn(R)

(4). SLn(R) := {A ∈Mn(R)| det(A) = 1}

(5). O(q) := {A ∈ Mn(R)|tAqA = q}, where q ∈ Mn(R) is an invertible symmetric matrix
(corresponding to a non-degenerate quadratic form on Rn)

Warning : I am not assuming that the quadratic form is positive definite. Feel free to use
the fact that any non-degenerate quadratic form on Rn is equivalent to a form of the type
q(x1, . . . , xn) = x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
n (the pair of integers (r, n− r) is called

the signature of the form).

(6). SO(q) := {A ∈ O(q)| det(A) = 1}

(7). O(n,C) := {A ∈Mn(C)|tAA = In}

(8). SO(n,C) := {A ∈ O(n,C)| det(A) = 1}

(9). U(q) := {A ∈ Mn(C)|A∗qA = q}, where q ∈ Mn(C) is an invertible Hermitian matrix
(corresponding to a non-degenerate Hermitian form on Cn)

Warning : I am not assuming that the Hermitian form is positive definite. Feel free to use
the fact that any non-degenerate Hermitian form on Cn is equivalent to a form of the type
q(z1, . . . , zn) = |z1|2 + · · ·+ |zr|2 − |zr+1|2 − · · · − |zn|2 (the pair of integers (r, n− r) is
called the signature of the form).

(10). SU(q) := {A ∈ U(q)| det(A) = 1}

(11). Sp(q,R) := {A ∈Mn(R)|tAqA = q}, where q ∈Mn(R) is an invertible skew-symmetric
matrix (corresponding to a symplectic form on Rn)

Hint : First, show that n has to be even and that you can take the matrix q to be

Jn :=

(
0 In/2
−In/2 0

)
, where In/2 is the identity matrix in GLn/2(R). We write

Spn(R) = Sp(Jn,R) and denote by 〈., .〉 the symplectic form on Rn defined by Jn (ie
〈x, y〉 = txJny).

Then there are (at least) three ways to proceed to prove that Spn(R) is connected :

(a) Argument by induction : Let Z = Rn − {0}. Consider the obvious action of Spn(R)
on Rn.
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(i). Show that Spn(R) preserves Z and acts transitively on Z.

(ii). Show that the stabilizer in Spn(R) of (1, 0, . . . , 0) ∈ Z is connected.

(iii). Show that Z is connected and conclude.

(b) Argument by Iwasawa decomposition : Let K = Spn(R) ∩ O(n,R). Let L be the
set of R-vector subspaces V of Rn such that dimV = n/2 and that the restriction of
〈., .〉 to V is zero (such a subspace is called a maximal totally isotropic subspace, or
a Lagrangian subspace).

(i). Make Spn(R) act on L by (g, V ) 7→ gV (the image of V by the linear transfor-
mation g). Show that this action is well defined, and that K acts transitively on
L.

(ii). Show that every matrix in K is of the form
(
M −N
N M

)
(blocks of size

n/2× n/2), with some condition on M and N , and that the map ϕ : K → U(n)

that sends
(
M −N
N M

)
to M + iN is an isomorphism.

(iii). Calculate the stabilizer P of V0 = Rn/2 ⊕ 0 ∈ L (in Spn(R)). Is P connected ?

(iv). Show that Spn(R) = KP 0 (ie, every element of Spn(R) is the product of an
element of K and an element of P 0), where P 0 is the connected component of
the unit element in P .

(v). Conclude.

(The fact that SpnR) = KP is a particular case of the Iwasawa decomposition.)

(c) Argument by symplectic polar decomposition : Let K = Spn(R) ∩ O(n,R) and let
S be the set of elements of Spn(R) that are symmetric positive definite.

(i). Show that every matrix in K is of the form
(
M −N
N M

)
(blocks of size

n/2× n/2), with some condition on M and N , and that the map ϕ : K → U(n)

that sends
(
M −N
N M

)
to M + iN is an isomorphism.

(ii). Show that S is connected.

(iii). Show that every element g of Spn(R) can be written in a unique way as g = us,
with u ∈ K and s ∈ S.

(iv). Conclude.

(12). Sp(q,C) := {A ∈Mn(C)|tAqA = q}, where q ∈Mn(C) is an invertible skew-symmetric
matrix (corresponding to a symplectic form on Cn)

Hint : Try to adapt one of the methods for Sp(q,R).
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(13). Why am not adding SSp(q,R) := {A ∈ Sp(q,R)| det(A) = 1} and SSp(q,C) to the list ?

Solution.

(1). Let’s show that GLn(C) is connected and not compact.

By g ∈ GLn(C). By Jordan reduction, there exists h ∈ GLn(C) such that hgh−1 = D+N ,
where

D =

λ1 0
. . .

0 λn


and

N =


0 a1 0

. . . . . .
. . . an−1

0 0

 ,

with λ1, . . . , λn ∈ C× and a1, . . . , an−1 ∈ {0, 1}. Write λr = αre
iθr , with αr ∈ R>0 and

θr ∈ R. If t ∈ R, we set
λr(t) = et log(αr)eitθr ,

D =

λ1(t) 0
. . .

0 λn(t)

 ,

N =


0 ta1 0

. . . . . .
. . . tan−1

0 0

 ,

and g(t) = h−1(D(t) + N(t))h. Then t 7−→ g(t) is a continuous function from R to
GLn(C), g(t) ∈ GLn(C) for every t ∈ R, g(1) = g and g(0) = In. So GLn(C) is
connected (and even path-connected). Note also that if g ∈ SLn(C), then α1 . . . αn = 1
and θ1 + · · · + θn ∈ 2πZ. After modifying θn by an element of 2πZ, we can assume that
θ1 + · · ·+ θn = 0. Then, for every t ∈ R,

det(g(t)) = et log(α1...αn)eit(θ1+···+θn) = 1,

that is, g(t) ∈ SLn(C). So the same proof shows that SLn(C) is connected.

On the other hand, we have a continuous surjective function det : GLn(C)→ C×, and C×
is not compact, so GLn(C) cannot be compact.
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(2). We already saw in the proof of (1) that SLn(C) is connected. Let’s show that SLn(C) is
not compact. For example, we can consider the set U of matrices of the form1 a

. . .
0 1

 ,

with a ∈ C (all the entries except the ones on the diagonal and the upper left-hand one
are zero). This is a closed subset (actually a subgroup) of SLn(C), and it is homemorphic
(actually isomorphic as a topological group) to C, which is not compact. So SLn(C) cannot
be compact.

(3). The map det : GLn(R) → R× is continuous and surjective. As R× is neither connected
nor compact, GLn(R) is neither connected nor compact.

(4). Let’s show that SLn(R) is connected and not compact.

We can prove that it is not compact just as in the case of SLn(C) : if U is the closed subset
of SLn(C) defined in the proof of (2), then U ∩ SLn(R) ' R, which is not compact, so
SLn(R) is not compact.

To prove that SLn(R) is connected, we can for example use the fact that it is generated
by the transvections (a.k.a. shear transformations). Remember that, for any field K, a
transvection in Mn(K) is a matrix of the form In + A, where rk(A) ≤ 1. Such a matrix
is automatically in SLn(K), and SLn(K) is generated by matrices of this form. 15 Now
let’s take g ∈ SLn(R), and write g = (In +A1) . . . (In +Ar), where rk(Ai) ≤ 1 for every
i ∈ {1, . . . , r}. For every t ∈ R, let g(t) = (In + tA1) . . . (In + tAr). Then t 7−→ g(t) is
a continuous map from R to SLn(R), and we have g(1) = g and g(0) = In. So SLn(R) is
connected.

(5). Let (r, n − r) be the signature of q. Then there exists a matrix g ∈ GLn(R) such that
q = tgIr,n−rg, where Ir,n−r is the diagonal matrix whose first r diagonal entries equal to 1
and whose last n− r diagonal entries are equal to −1. If A ∈ GLn(R), we see easily that
A ∈ O(q) if and only if gAg−1 ∈ O(Ir,n−r). So the mapA 7−→ gAg−1 is a homemorphism
from O(q) to O(Ir,n−r), and so we may assume that q = Ir,n−r.

Fix r ∈ {0, . . . , n} and write Gr for O(Ir,n−r). First we show that Gr is not
connected. Consider the continuous map det : Gr → R×. If A ∈ Gr, then
det(tAIr,n−rA) = det(Ir,n−r), so det(A)2 = 1, so det(A) ∈ {±1}. On the other hand,

A :=

(
In−1 0

0 −1

)
is in Gr and det(A) = −1. So det : Gr → {±1} is a surjective continuous map. As {±1}
is not connected, Gr cannot be connected.

15ref ?
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If 1 ≤ r ≤ n − 1, let’s show that Gr is not compact. Consider the subset X of Gr of
matrices of the form 

a 0 0 b

0
. . . 0 0

0 0
. . . 0

c 0 0 d

 ,

where a, b, c, d ∈ R and all the diagonal terms except for the first and last one are equal to
1. This is a closed subset, and an easy calculation shows that every element of X is of the
form 

√
1 + t2 0 0 t

0
. . . 0 0

0 0
. . . 0

t 0 0
√

1 + t2

 ,

for a uniquely determined t ∈ R×. So X is homemorphic to R×. As it is closed in Gr and
R× is not compact, Gr cannot be compact.

If r = 0, then Ir,n−r = −In, so O(Ir,n−r) = O(In). This group is usually denoted by
O(n). Let’s show that it is compact. Let A ∈ Mn(R), and let v1, . . . , vn be the column
vectors of A. Then A ∈ O(n) if and only of (v1, . . . , vn) is an orthonormal basis of Rn.
Let Sn = {v ∈ Rn|‖v‖ = 1}, this is the unit sphere in Rn and it is compact (because it’s
closed and bounded). The set of orthonormal bases (v1, . . . , vn) of Rn is a closed subset
of (Sn)n, so we get a homemorphism between O(n) and a closed subset of (Sn)n, and this
implies that O(n) is compact.

(6). As in (5), we may assume that q = Ir,n−r, with 0 ≤ r ≤ n− r. If r ∈ {1, . . . , n− r}, then
the closed subset X of O(Ir,n−r) constructed in (5) is actually contained in SO(Ir,n−r). As
X is homemorphic to R×, which is not compact, SO(Ir,n−r) is not compact.

If r = 0 or r = n, then SO(Ir,n−r) = SO(n) := {A ∈ O(n)| det(A) = 1}. This is a
closed subgroup of the compact group O(n) (cf. (5)), so it is compact.

Now let’s show that SO(q) is connected for every non-degenerate q. First we note the
following two lemmas.
Lemma. Let q be any non-degenerate quadratic form on Rn, and let (v1, . . . , vr) be an
orthogonal family in Rn such that q(vi) ∈ {±1} for every i ∈ {1, . . . , r}. Then (v1, . . . , vr)
can be extended to an orthogonal basis (v1, . . . , vn) of Rn such that q(vi) ∈ {±1} for every
i ∈ {1, . . . , n}.

Proof. Denote by 〈., .〉 the symmetric bilinear form corresponding to q. Let
W = Span(v1, . . . , vr). We prove the lemma by induction on n − dimW = n − r.
If n = r, we’re done, so let’s assume that r < n. Then W⊥ 6= {0}, and q|W⊥ is a
non-degenerate quadratic form, so there exists vr+1 ∈ W⊥ such that q(vr+1) 6= 0. After
multiplying vr+1 by a scalar, we may assume that q(vr+1) = ±1. Now we just have to
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apply the induction hypothesis to (v1, . . . , vr+1).

Lemma. Let X and Y be topological spaces, and let π : X → Y be a continuous surjec-
tive map. Suppose that :

(a) For every y ∈ Y , π−1(y) is path-connected.

(b) For every y ∈ Y , there exists an open neighborhood U of y in Y and a continuous
map s : U → X such that π ◦ s = idU .

Then X is path-connected if and only if Y is path-connected.

Proof. If X is path-connected, then Y is obviously path-connected.

Conversely, assume that Y is path-connected. Let x1, x2 ∈ X , and write y1 = π(x1),
y2 = π(x2). By (a), there exists a continuous map γ : [0, 1] → Y such that
γ(0) = y1 and γ(1) = y2. Using (c) and the compactness of γ([0, 1]), we get a sequence
0 = 10 < a1 . . . an = 1, open subsets U1, . . . , Un and continuous maps si : Ui → X
such that π ◦ si = idUi and γ([ai−1, ai]) ⊂ Ui for every i ∈ {1, . . . , n}. For every
i ∈ {1, . . . , n}, let δi : [ai−1, ai] → X be si ◦ γ|[ai−1,ai]. This is a continuous path on
X connecting si(γ(ai−1)) and si(γ(ai)). Also, by condition (b), we can find a continuous
paths connecting x1 and s1(γ(0)), x2 and sn(γ(1)), and si(γ(ai)) and si+1(γ(ai)) for every
i ∈ {1, . . . , n− 1}. So we have connected x1 and x2 by a continuous path.

Now we come back to the problem. Let q be a non-degenerate quadratic form on Rn, we
want to show that SO(q) is path-connected, unless n = 2 and the signature of the form is
(1, 1). We proceed by induction on n. If n = 1, then SO(q) = {1}.

Suppose that n = 2. If r = 2 or r = 0, then SO(q) ' SO(2), so SO(q) is homeomorphic
to the unit circle in R2, and this is path-connected. If r = n − r = 1, then an easy
calculation show that

SO(I1,1) = {
(
a b
b a

)
|a2 − b2 = 1},

so SO(I1,1) has two connected components.

Assume that n ≥ 3. After replacing q by −q, we may assume that there exists a v0 ∈ Rn

such that q(v0) = 1. Let 〈., .〉 be the bilinear symmetric form attached to q, and let
S = {v ∈ V |q(v) = 1}. We consider the continous map π : SO(q) → S, A 7−→ Av0.
We’ll show that SO(q) is path-connected by checking the conditions of the second lemma
:

- Let’s show that π is surjective. Let v1 ∈ S. By the first lemma, there exists orthono-
mal bases (w1 = v0, . . . , wn) and (v1, . . . , vn) such that q(vi), q(wi) ∈ {±1} for ev-
ery i. The number of 1’s and −1’s among (q(w1), . . . , q(wn)) and (q(v1), . . . , q(vn))
must be the same (it’s the signature of q), and q(w1) = q(v1), so after changing the
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order of v2, . . . , vn we may assume that q(vi) = q(wi) for every i ∈ {1, . . . , n}. This
means that the unique A ∈ GLn(R) sending (w1, . . . , wn) to (v1, . . . , vn) is in O(q).
After replacing wn by −wn (which changes the sign of det(A)), we may assume that
A ∈ SO(q). So we have found A ∈ SO(q) such that Av0 = v1, i.e., π(A) = v1.

- Let’s show that S is path-connected. We may assume that q is given by the matrix
Ir,n−r. As Ir,n−r and In−r,r give rise to isomorphic groups, we may assume that
r ≥ n/2. Then

S = {(x1, . . . , xn) ∈ Rn|x2
1 + · · ·+ x2

r − x2
r+1 − · · · − x2

n = 1},

and the vectors e1 := (1, 0, . . . , 0), −e1 = (−1, 0, . . . , 0) are in S. Let’s show how
to connected every point of S to e1 or −e1. Let p = (x1, . . . , xn). If x1 = 1, then
x2

2 + · · · + x2
r − x2

r+1 − · · · − x2
n = 0. Consider the continuous map p : [0, 1]→ Rn

sending t to p(t) := (1, tx2, . . . , txn). By the observation just made, p(t) ∈ S for
every t, and we also have p(0) = e1, p(1) = p, so we are done. Suppose that x1 ≥ 0
and x1 6= 1. For every t ∈ [0, 1], set x1(t) = 1− t+ tx1. Then, if t > 0, 1− x1(t)2 is
nonzero and has the same sign as 1−x2

1. Consider the continuous map p : [0, 1]→ Rn

sending t to

(x1(t),

√
1− x1(t)2

1− x2
1

x2, . . . ,

√
1− x1(t)2

1− x2
1

xn).

We check easily that p(t) ∈ S for every t, and we have p(0) = e1, p(1) = p, so we
have connected p and e1. Similarly, if x1 ≤ 0, then we can connected p and −e1. To
finish the proof, we just need to find a continuous path on S between e1 and −e1. As
n ≥ 3, we have r ≥ 2, so we can use the path p : [0, 1]→ S sending t to

((1− 2t),
√

1− (1− 2t)2, 0, . . . , 0),

which makes sense because (1− 2t)2 ≤ 1 if 0 ≤ t ≤ 1.

- Let’s show that the fibers of π are path-connected. We may assume that q = Ir,n−r,
that r ≥ 1, and that r 6= 2 if n = 3 (if (r, n− r) = (2, 1), we just switch r and n− r,
which doesn’t change the group up to isomorphism). Let e1 = (1, 0, . . . , 0), we have
e1 ∈ S because r ≥ 1. Let G′ = {A ∈ SO(q)|Ae1 = e1} (this is a closed subgroup
of SO(q)). Let v1 ∈ S. We have seen that π is surjective, so there exist g, h ∈ SO(q)
such that v1 = gv0 and e1 = hv0. Then

π−1(v1) = {A ∈ SO(q)|Av0 = v1} = {A ∈ SO(q)|Ah−1e1 = gh−1e1} = gh−1G′h,

so it suffices to show thatG′ is path-connected. ButG′ is isomorphic to SO(Ir−1,n−r),
so this follows from the induction hypothesis.

- Let’s show condition (b) of the lemma, i.e. the fact that π admits a continuous section
locally on S. We may assume that q = Ir,n−r with r ≥ 1, so that e1 := (1, 0, . . . , 0)
is in S. Let v1 ∈ S, let A ∈ SO(q) such that Ae1 = v1 (this exists by the surjectivity
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of π), and let v1, . . . , vn be the columns of A. Then (v1, . . . , vn) is an orthogonal
basis (v1, . . . , vn) of Rn, and we have q(vi) = ±1 for every i ∈ {1, . . . , n}. Suppose
that v′1 ∈ S, if v′1 is close enough to v1 then (v′1, v2, . . . , vn) is still a basis of Rn

(because the determinant of the matrix with columns v′1, v2, . . . , vn will be close to
det(A) 6= 0), and we want to apply the Gram-Schmidt process to this basis. Of
course, this is not always possible, because q is not definite. Let’s ignore this problem
for now. The Gram-Schmidt process gives an orthogonal basis (v′1, v

′
2, . . . , v

′
n) by the

inductive formula

v′i = vi −
i−1∑
j=1

〈v′j, vi〉
〈v′j, v′j〉

vi,

for 2 ≤ i ≤ n. The elements v′2, . . . , v
′
n, if they make sense, vary continuously

with v′1 and equal v2, . . . , vn if v′1 = v1. So, for v′1 close enough to v1, we will have
〈v′1, v′1〉 6= 0 and then v′2 will make sense, and then 〈v′2, v′2〉 will be close to 〈v2, v2〉,
hence nonzero, and then v′3 will make sense, etc. So there exists a neighborhood U of
v1 in S such that the Gram-Schmidt process will work for v′1 ∈ U , and will produce
an orthogonal basis (v′1, v

′
2, . . . , v

′
n) with q(v′i) 6= 0 for every i. After shrinking U , we

may also assume that, for v′1 ∈ U , q(vi) and q(v′i) have the same sign for every i, and
so the matrix B(v′1) with columns 1

q(v′1)
v′1, . . . ,

1
q(v′n)

v′n is in O(q). Also, det(B(v′1)) is
a continuous function of v′1 and can only take the values 1 and−1, so, after shrinking
U , we may assume that det(B(v′1)) = 1 (i.e. B(v′1) ∈ SO(q)) for every v′1 ∈ U .
We have B(v′1)e1 = 1

q(v′1)
v′1 = v′1. Choose g ∈ SO(q) such that v0 = ge1 (this is

possible by the surjectivity of π). Then v′1 = B(v′1)e1 = B(v′1)gv0, so the fonction
s : U → SO(q), v′1 7−→ B(v′1)g, is continuous and satisfies π ◦ s = idU .

(7). Note that all the non-degenerate quadratic forms on Cn are equivalent, so all the associated
orthogonal groups are isomorphic to O(n,C). This is why we don’t vary the form as in
(5).

Just as in (5), we see that det : O(n,C) → {±1} is a surjective continuous map, so
O(n,C) is not connected.

If n = 1, then O(n,C) = {±1} is compact. Suppose that n ≥ 2, and choose
r ∈ {1, . . . , n − 1}. Then the quadratic forms on Cn given by In and Ir,n−r are equiv-
alent, so O(n,C) is isomorphic to

G := {A ∈Mn(C)|AIr,n−rA = Ir,n−r}.

But the closed subset G ∩Mn(R) of G is clearly equal to O(Ir,n−r), and we have seen in
(5) that this is not compact, so O(n,C) is not compact.

(8). If n = 1, then SO(n,C) = {1} is compact and connected. If n ≥ 2, we show that
SO(n,C) is not compact as in (7) (this time using the fact, proved in (6), that SO(Ir,n−r)
is not compact for 1 ≤ r ≤ n− 1).
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Let’s show that SO(n,C) is always connected. We use the same method as in (6). First
note the following lemma, analogous to the first lemma of (6) :
Lemma. Let q be any non-degenerate quadratic form on Cn, and let (v1, . . . , vr) be an
orthonormal family in Cn Then (v1, . . . , vr) can be extended to an orthonormal basis
(v1, . . . , vn) of Cn.

The proof is exactly the same as in (6), the only difference being that, if v ∈ Cn is such
that q(v) 6= 0, then we can always find a λ ∈ C such that q(λv) = 1. So we can normalize
any orthogonal basis to make it an orthonormal basis, as long as the basis vectors are not
in the set {v ∈ Cn|q(v) = 0}.

Now let’s prove that SO(n,C) is connected by induction on n. We know the case n = 1,
so suppose that n ≥ 2. Let

S = {(z1, . . . , zn) ∈ Cn|z2
1 + · · ·+ z2

n = 1},

let e1 = (1, 0, . . . , 0), and define a continuous map π : SO(n,C) → S by π(A) = Ae1.
We want to check the conditions of the second lemma of (6). The proofs are similar but
simpler.

- Let’s show that π is surjective. If v1 ∈ S, the lemma says that it is possible to
complete it to an orthonomal basis (v1, . . . , vn) of Cn. IfA is the matrix with columns
v1, . . . , vn, then A ∈ SO(n,C) and π(A) = v1.

- Let’s show that S is path-connected. Let (x1, . . . , xn) ∈ S. Choose a con-
tinuous function t 7−→ x1(t) from [0, 1] to C such that, for every t ∈ [0, 1],
x1(t)2 = (1 − t2) + t2x2

1. Then 1 − x1(t)2 = t2(1 − x2
1) = t2(x+

2 · · · + x2
n), so

the continuous path p : [0, 1]→ Cn, t 7−→ (x1(t), tx2, . . . , txn), has image in S, and
it connects (x1, . . . , xn) and (1, 0, . . . , 0).

- Let’s show that the fibers of π are path-connected. As in (6), using the surjectivity of
π, we see that all the fibers are homemorphic to π−1(e1) ' SO(n− 1,C), so we can
apply the induction hypothesis.

- Let’s show that π admits a continuous section locally on S. Let v1 ∈ S. The
lemma gives an orthonomal basis (v1, . . . , vn) of Cn. Just as in (6), we can find
a neighborhood U of v1 in S such that, if v′1 ∈ U , then (v′1, v2, . . . , vn) is still a
basis of Cn and applying the Gram-Schmidt process to it will make sense and pro-
duce an orthonomal basis (v′1, . . . , v

′
n). Denote by B(v′1) the matrix with columns

v′1, . . . , v
′
n, then B(v′1)e1 = v′1 and, after shrinking U (again, just like in (6)), we

get B(v′1) ∈ SO(n,C) for every v′1 ∈ U . Then the function s : U → SO(n,C),
v′1 7−→ B(v′1), is continuous and satisfies π ◦ s = idU .

(9). This will be very similar to (5) and (6) (except that all the groups are connected here). First
suppose that q = Ir,n−r with 1 ≤ r ≤ n − 1, and let’s show that neither SU(q) nor U(q)
are compact. As SU(q) is closed in U(q), it suffice to show that SU(q) is not compact.
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Consider the intersection of SU(q) with the closed subset X :=


∗ 0 . . . 0 ∗
0 1 0 0
... . . . ...
0 0 1 0
∗ 0 . . . 0 ∗

 of

Mn(C). An easy calculation show that an element A = (aij) of X is in SU(q) if and only
we can find r ∈ R≥0 and t, u ∈ R such that a11 =

√
1 + r2eit, a1n = reiu, an1 = re−iu

and ann =
√

1 + r2e−it. So X ∩ SU(q) contains a copy of R≥0 as a closed subset, hence it
cannot be compact, and neither can SU(q).

Suppose that q = In or q = I0,n = −In. Then U(q) (resp. SU(q)) is the usual unitary
(resp. special unitary) group in Mn(C), which is denoted by U(n) (resp. SU(n)). Let’s
show that both U(n) and SU(n) are both compact. As SU(n) is a closed subgroup of U(n),
it suffices to show that U(n) is compact. Consider the homeomorphism Mn(C) → (Cn)n

sending a matrix to the list of its column vectors. Then the image of U(n) is a closed subset
of Sn, where S = {(z1, . . . , zn) ∈ Cn||z1|2 + · · · + |zn|2}. As S is compact (as a closed
and bounded subset of Cn), U(n) is compact.

To show that SU(q) and U(q), we will use the same method as in (6). First note the
following lemma, which is proved exactly as th first lemma of (6) :
Lemma. Let q be any non-degenerate Hermitian form on Cn, and let (v1, . . . , vr) be an or-
thogonal family in Rn such that q(vi) ∈ U(1) := {z ∈ C||z| = 1} for every i ∈ {1, . . . , r}.
Then (v1, . . . , vr) can be extended to an orthogonal basis (v1, . . . , vn) of Rn such that
q(vi) ∈ U(1) for every i ∈ {1, . . . , n}.

Now we come back to the case q = Ir,n−r. We may assume that r ≥ 1. Let’s show
that both SU(q) and U(q) are connected. We reason by induction on n. If n = 1, then
U(q) = U(1) is the unit circle in C and SU(q) = {1}, so both are connected. Assume that
n ≥ 2, and let S = {z ∈ Cn|q(z) = 1} and e1 = (1, 0, . . . , 0); as r ≥ 1, e1 ∈ S. We have
a continuous map π : U(q) → S, A 7−→ Ae1; we denote by π′ its restriction to SU(q).
Let’s check the conditions of the second lemma of (6).

- Let’s show that π and π′ are surjective. It suffices to treat the case of π′. If v1 ∈ S, the
above lemma says that it is possible to complete it to an orthogonal basis (v1, . . . , vn)
of Cn such that q(vi) ∈ U(1) for every i ∈ {2, . . . , n}. Let A be the matrix with
columns v1, . . . , vn. Then A ∈ U(q), and in particular det(A) ∈ U(1). Let A′

be the matrix with columns v1, . . . , vn−1, det(A)vn. Then A′ is also in U(q), and
det(A′) = | det(A)|2 = 1, so A′ ∈ SU(q). By construction, we have π′(A′) = v1.

- Let’s show that S is path-connected. Let (z1, . . . , zn) ∈ S. Write z1 = reiθ with
r ∈ R≥0 and θ ∈ R, and let λ = |z2|2 + · · · + |zr|2 − |zr+1|2 − · · · − |zn|2. Then
λ ∈ R, and λ ≤ 1 (because λ = 1 − |z1|2). Consider the function [0, 1] → C,
t 7−→ z1(t) :=

√
1− λt2eitθ. Note that z1(1) =

√
|z1|2eiθ = z1. Let γ : [0, 1]→ Cn

be defined by
γ(t) = (z1(t), tz2(t), . . . , tzn(t)).
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Then, for every t ∈ [0, 1],

q(γ(t)) = (1− λt2) + t2λ = 1,

i.e., γ(t) ∈ S. As γ(0) = e1 and γ(1) = (z1, . . . , zn), this shows that S is path-
connected.

- Let’s show that the fibers of π and π′ are path-connected. As in (6), using the sur-
jectivity of π (resp. π′), we see that all the fibers of π (resp. π′) are homemorphic
to π−1(e1) ' U(Ir−1,n−r) (resp. π′−1(e1) = SU(Ir−1,n−r)), so we can apply the
induction hypothesis.

- Let’s show that π and π′ admit continuous sections locally on S. It suffices to show
it for π′ (because any section of π′ will also give a section of π.) Let v1 ∈ S. The
lemma gives an orthogonal basis (v1, . . . , vn) of Cn such that q(vi) ∈ U(1) for ev-
ery i ∈ {2, . . . , n}. Just as in (6), we can find a neighborhood U of v1 in S such
that, if v′1 ∈ U , then (v′1, v2, . . . , vn) is still a basis of Cn and applying the Gram-
Schmidt process to it will make sense and produce an orthonomal basis (v′1, . . . , v

′
n).

Denote by B(v′1) the matrix with columns v′1, . . . , v
′
n, then B(v′1) ∈ U(q) and

B(v′1)e1 = v′1. Let A(v′1) be the matrix with columns v′1, . . . , v
′
n−1, det(B(v′1))v′n,

then A(V ′1) ∈ SU(q) and π′(A(v′1)) = v′1. The function s : U → SU(q),
v′1 7−→ Q(v′1), is continuous and satisfies π′ ◦ s = idU .

(10). The group SU(q) is always connected, and it is compact if and only if q has signature (n, 0)
or (0, n). See (9) for proofs.

(11). We start by proving a useful lemma.
Lemma VII.5.1. Let K be a field, let V be a finite-dimensional vector space, and let
〈., .〉 be a non-degenerate symplectic form on V . Let v1, . . . , v2r ∈ V be such that
〈v1, v2〉 = 〈v3, v4〉 = · · · = 〈v2r−1, v2r〉 = 1, and 〈vi, vj〉 = 0 if i = j or {i, j} is not
of the form {2m− 1, 2m}.

Then :

(i) the family (v1, . . . , v2r) is linearly independent;

(ii) if W = Span(v1, . . . , v2r), then V = W ⊕ W⊥ (where
W⊥ = {v ∈ V |∀w ∈ W, 〈v, w〉 = 0});

(iii) we can complete it to a basis (v1, . . . , v2n) satisfying a similar condition (i.e.
〈v1, v2〉 = 〈v3, v4〉 = · · · = 〈v2n−1, v2n〉 = 1, and 〈vi, vj〉 = 0 if i = j or {i, j}
is not of the form {2m− 1, 2m}).

In particular, we see that every finite-dimensionalK-vector space having a non-degenerate
symplectic form must be of even dimension.

Proof. Let show (i) Let λ1, . . . , λ2r ∈ K such that λ1v1 + · · · + λ2rv2r = 0. Let
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i ∈ {1, . . . , 2r}. If i is odd, then we have

0 = 〈λ1v1 + · · ·+ λ2rv2r, vi+1〉 = λi.

If i is even, then we have

0 = 〈λ1v1 + · · ·+ λ2rv2r, vi−1〉 = λi.

Now we show (ii). Let W = Span(v1, . . . , v2r). As the form is non-degenerate,
dim(W ) + dim(W⊥) = dim(V ). Let’s show that W ∩ W⊥ = {0}. Let
v = λ1v1 + · · · + λ2rv2r ∈ W . If v ∈ W⊥, we see by looking at all the 〈v, vi〉 as
above that λ1 = · · · = λ2r = 0. Finally, we get that V = W ⊕W⊥.

Now let’s show (iii). We proceed by induction on dimV −dimW . If dimV −dimW = 0,
then V = W and we are done, so suppose that dimW < dimV . By (ii), we just need to
find a basis of W⊥ satisfying the conditions of the lemma (that is, we just need to treat the
case r = 0). Let v2r+1 ∈ W⊥ − {0}. As the form is alternating, 〈v2r+1, v2r+1〉 = 0. As
the restriction of the form to W⊥ is non-degenerate (because V = W ⊕W⊥ and W and
W⊥ are orthogonal), there exists v2r+2 ∈ W⊥ such that 〈v2r+1, v2r+2〉 6= 0, and we may
assume after rescaling that 〈v2r+1, v2r+2〉 = 1. Then we can apply the induction hypothesis
to (v1, . . . , v2r+2).

Now we come back to the problem. By the lemma, n has to be even, say n = 2m,
and we can find a basis (v1, . . . , vn) of Rn as in the lemma. Then, in the basis
(v1, v3, . . . , v2m−1, v2m, . . . , v4, v2), the matrix of the symplectic form is Jn. As in (5),
this implies that Sp(q,R) and Sp(Jn,R) are isomorphic (as topological groups), so we
may assume that q = Jn. We will also denote the group Sp(Jn,R) by Spn(R).

Let’s first show that Spn(R) is not compact. Consider the the closed subset

X :=


∗ 0 . . . 0 ∗
0 1 0 0
... . . . ...
0 0 1 0
∗ 0 . . . 0 ∗

 of Mn(R). An easy calculation show that a matrix A = (aij)

of Mn(R) is in the closed subset Spn(R) ∩ X of Spn(R) if and only if
(
a11 a12

a21 a22

)
is in

SL2(R). As SL2(R) is not compact, neither is Spn(R).

Now let’s show that Spn(R) is connected. We follow the hint, in fact we’ll follow all three
hints.

(a) The first method is similar to the method used in (6)-(10). We do an induction on n.
If n = 2, we saw above that Spn(R) = SL2(R), and this is connected by (2). So let’s
suppose that n ≥ 4.
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Let 〈., .〉 be the symplectic form on Rn with matrix Jn. We consider the continuous
map π : Spn(R) → Z, A 7−→ Ae1 (where e1 = (1, 0, . . . , 0)), and we try to check
the hypotheses of the second lemma of (6).

- Let’s show that π is surjective. If v1 ∈ Z, complete it to a basis
(v1, . . . , v2m) of Rn as in the lemma above. Let A be the matrix with columns
v1, v3, . . . , v2m−1, v2m, . . . , v4, v2. Then A ∈ Spn(R) and π(A) = v1.

- As n ≥ 2, Z is path-connected.

- Let’s show that the fibers of π are path-connected. As in (6), using the surjectiv-
ity of π, we see that all the fibers of π are homemorphic to π−1(e1). Let’s show
that π−1(e1) ' Sp2n−2(R) so that we can apply the induction hypothesis.

Let A ∈ π−1(e1), i.e. Ae1 = e1. Let v = Aen. Then v is orthogonal to
e2, . . . , en, and 〈e1, v〉 = 1. If we write v = λ1e1 + · · · + λnen, this implies
easily that λ1 = · · · = λn−1 = 0 and λn = 1, i.e. that v = en. So the matrix

A is of the form

1 0 0
0 B 0
0 0 1

 with B ∈ M2n−2(R), and it is easy to see that

B is actually in Sp2n−2(R). Conversely, every matrix of this form is clearly in
π−1(e1).

- Let’s show that π admits continuous sections locally on Z. Let v1 ∈ Z, and
complete it to a basis (v1, . . . , v2m) of R2m satisfying the condition of the lemma.
As in (6), the main point is to show that, if v′1 is close enough to v1, then we
can complete to a basis (v′1, . . . , v

′
2m) satisfying the condition of the lemma that

depends continuously on v′1. The inspiration is again the Gram-Schmidt process.
Let v′1 be close enough to v1 so that 〈v′1, v2〉 6= 0. We set v′2 =

〈v′1,v2〉
v 2

, so that
〈v′1, v′2〉 = 1. We set v′3 = −〈v′2, v3〉v′1 − 〈v′1, v3〉v′2 + v3, so that 〈v′i, v′3〉 = 0
for i = 1, 2. If v′1 is close enough to v1, then v′3 is close to v3 and so we have
〈v′3, v4〉 6= 0. We set v′4 = −〈v′2, v4〉v′1−〈v′1, v4〉v′2 + 1

〈v′3,v4〉v4, so that 〈v′i, v′4〉 = 0

if i = 1, 2 and 〈v′3, v′4〉 = 1. We continue the construction of v′1, . . . , v
′
2m in the

same way : If we already have v′1, . . . , v
′
2r, then we set

v′2r+1 = v2r+1 −
r∑
s=1

(〈v′2s, v2r+1〉v′2s−1 + 〈v′2s−1, v2r+1〉v′2s)

and

v′2r+2 =
1

〈v′2r+1, v2r+2〉
v2r+2 −

r∑
s=1

(〈v′2s, v2r+2〉v′2s−1 + 〈v′2s−1, v2r+2〉v′2s).

The second expression makes sense if v′1 is close enough to v1, because then
v′2r+1 will be close to v2r+1 and so 〈v′2r+1, v2r+2〉 will be nonzero. Finally, we de-
note by B(v′1) the matrix with columns v′1, v

′
3, . . . , v

′
2m−1, v

′
2m, . . . , v

′
4, v
′
2. Then
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B(v′1) ∈ Sp2m(R), π(B(v′1)) = v′1 and B(v′1) depends continuously on v′1. So
we are done.

(b) We use the notation of (b) of the problem. Remember that n is even by the lemma,
write n = 2m.

(i). The action is well-defined because Spn(R) preserves the form 〈., .〉, so the image
of a Lagrangian subspace is a Lagrangian subspace. Let (e1, . . . , en) be the
canonical basis of Rn, and let V0 = Span(e1, . . . , en/2). Then V0 is a Lagrangian
subspace of Rn. To show that the action of K on L is transitive, we just need to
show that, for every V ∈ L, there exists g ∈ K such that V = gV0 (or, in other
words, such that the first n/2 columns of g generate V ).

Let (v1, . . . , vm) be a basis of V that is orthonormal for the usual scalar product
on Rn, and consider the matrix with columns v1, . . . , vm. This is a 2m × m

matrix, and we write it M =

(
A
B

)
, with A,B ∈Mm(R). The condition that the

basis is orthonormal is equivalent to Im = tMM = tAA + tBB, and the fact
that V is Lagrangian is equivalent to 0 = tMJnM = −tBA + tAB. By (ii) (or

by an easy calculation), the matrix g :=

(
A −B
B A

)
is in K. By the choice of A

and B, gV0 = V .

(ii). Let g ∈ K, write g =

(
A B
C D

)
with A,B,C,D ∈ Mn/2(R). Then tgJng = Jn

because g ∈ Spn(R), so gtgJng = gJn. As gtg = In (because g ∈ On(R)), we

get gJn = Jng, which is equivalent to A = D and B = −C. If g =

(
A B
−B A

)
,

then the conditions that g ∈ O(n) and g ∈ Spn(R) actually become equivalent to
each other, and they are both equivalent to the conditions that tAA+ tBB = In

and tAB = tBA. So K is the group of matrices
(
A B
−B A

)
satisfying these two

conditions on A and B.

Now we consider the map ϕ : K →Mn(C) sending
(
A B
−B A

)
to A− iB. For

A,B ∈Mn(R), we have

(A− iB)∗(A− iB) = (tA+ itB)(A− iB) = (tAA+ tBB) + i(tBA− tAB).

This show that U(n) is exactly the image of ϕ. As it is clear that ϕ is a homem-
orphism onto its image, it just remains to show that ϕ is a morphism of groups.
But this is a straightforward calculation.

(iii). First, a matrix M ∈ Mn(R) stabilizes V0 if and only if it is of the form

M =

(
A B
0 D

)
with A,B,D ∈ Mm(R). Such a matrix is in Spn(R) if and
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only if tAD = Im and tBD = tDB. Let Sym be the set of symmetric matri-
ces in Mm(R), it’s a R-vector of Mm(R) and in particular connected. The map(
A B
0 D

)
7−→ (D, tDB) induces a homeomorphism ψ : P

∼→ GLm(R)×Sym.

As GLm(R) is not connected (see (3)), P is not connected.

(iv). First let’s calculate P 0. I claim that GLm(R)0 (the connected component of
Im in GLm(R)) is equal to GLm(R)+ := {g ∈ GLm(R)| det(g) > 0}.
First, GLm(R)+ is the inverse image by the continuous surjectif map
det : GLm(R) → R× of a connected component of R×, so it is a union of con-
nected components of GLm(R). So it is enough to show that GLm(R)+ is con-
nected. The maps GLm(R)+ → SLm(R) × R>0, g 7−→ (det(g)−1/mg, det(g)),
and SLm(R)×R>0 → GLm(R)+, (g, λ) 7−→ λ1/mg, are continuous and inverse
of each other, so GLm(R)+ is homeomorphic to SLm(R)× R>0. As SLm(R) is
connected (see question (4)), GLm(R)+ is connected.

Now, using the homemorphism ψ of (iii), we get P 0 = ψ−1(GLm(R)+×Sym),

so P 0 is the set of
(
A B
0 D

)
in P such that det(D) > 0 (or equivalently

det(A) > 0).

We come back to the problem. Let g ∈ Spn(R). Then V = gV0 is a La-
grangian subspace of Rn, so, by (i), there exists h ∈ K such that V = hV0. We
get hV0 = gV0, i.e., h−1g ∈ P , which means that g = hp with p ∈ P . We
still need to show that we can choose p ∈ P 0. Let A be the diagonal matrix

1
. . .

1
−1

 in GLm(R), let q =

(
A 0
0 A

)
. Then q2 = In, q ∈ K ∩ P ,

and exactly one of p and qp is in P 0 (this is obvious on the description of P 0 we
obtained above). So either p ∈ P 0 and we’re done, or we write g = (hq)(qp),
and we have hq ∈ K and qp ∈ P 0.

(v). By (ii) (and question (9)), K is path-connected. By the calculation of P 0 in (iv),
P 0 is path-connected. Let g ∈ Spn(R); by (iv), we can write g = hp, with
h ∈ K and p ∈ P 0. Choose continuous maps t 7−→ p(t) (resp. t 7−→ h(t)) from
[0, 1] to P 0 (resp. K) such that p(0) = h(0) = In and p(1) = p, h(1) = h. Then
t 7−→ h(t)p(t) is a continuous path on Spn(R) that connects In and g.

(c) (i). This is identical to (b)(ii).

(ii). Let
s = {A ∈Mn(R)|tA = A and AJ + JA = 0}.

This is vector subspace of Mn(R), and in particular it is path-connected. We’ll
show that the matrix exponential sends s onto S, which implies that S is path-
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connected.

Let g ∈ S. As g is symmetric positive definite, there exists h ∈ O(n) and

D =

λ1 0
. . .

0 λn

 ∈ Mn(R), with λ1, . . . , λn > 0, such that g = h−1Dh.

Let E =

log λ1 0
. . .

0 log λn

, so that eE = D and eh−1Eh = g. Also, h−1Eh

is symmetric because E is symmetric and h is orthogonal. On the other hand,
the function f : R→Mn(R), t 7−→ eth

−1EhJeth
−1Eh − J is real analytic, and it

sends every t ∈ N to 0 (if t ∈ N, then eth−1Eh = gt ∈ Spn(R)), so it is identically
0 by the identity theorem. 16 Also, we have

f ′(t) = h−1Ehf(t) + f(t)h−1Eh.

In particular, 0 = f ′(0) = h−1EhJ + Jh−1Eh, so h−1Eh ∈ s.

(iii). Let’s show the uniqueness. Let g ∈ Spn(R), suppose that g = us = u′s′, with
u, u′ ∈ K and s, s′ ∈ S. Then tgg = s2 = (s′)2. As s and s′ are symmetric
positive definite, s2 = (s′)2 implies that s = s′,17 and then we also get u = u′.

Let’s show existence. Let g ∈ Spn(R). Then tgg is in S, so, by (ii), there exists

A ∈ s such that tgg = eA. Let s = e
1
2
A, we have s ∈ S. Let u = gs−1. Then

tuu = s−1tggs−1 = s−1s2s−1 = In,

so u ∈ Spn(R) ∩On(R) = K.

(iv). We know thatK is path-connected by (i) and question (9), and we know that S is
path-connected by (ii). We conclude that Spn(R) is path-connected as in (b)(v).

(12). First, the lemma of (11) show that we just need to consider the case where q = Jn. We
write Spn(C) = Sp(Jn,C). As the closed subgroup Spn(R) = Spn(C)∩Mn(R) of Spn(C)
is not compact (by (11)), Spn(C) cannot be compact. To show that Spn(C) is connected,
we can adapt any of the methods of (11), but the easiest is to use method (a) goes through
with almost no change. In methods (b) and (c), we have to use K = Spn(C) ∩ U(n),

16See corollary 1.2.6 of Krantz and Parks’s book [19].
17This is a standard exercise. Up to conjugating by an orthogonal matrix, we may assume that s′ is diagonal. Then

we want to show that s is also diagonal, which is enough because the eigenvalues of s have to be equal to
the eigenvalues of s′, as they’re both the square roots of the eigenvalues of s2 = (s′)2. So we are reduced to
the following statement : Let s be a symmetric definite positive matrix such that s2 is diagonal, then s is also
diagonal. Let λ1, . . . , λn ∈ R>0 be the eigenvalues of s. As taking the square is an injective operation on R>0,
we have λ2i = λ2j if and only if λi = λj , and so there exists a polynomial P ∈ R[X] such that P (λ2i ) = λi for
every i ∈ {1, . . . , n}. As s is diagonalizable, P (s2) = s. But s2 is diagonal, so P (s2) is also diagonal.
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which is isomorphic to the group of “unitary” matrices in Mn/2(H), and to prove that this
is path-connected. (The rest of methods (b) and (c) adapts very easily, but the previous part
requires more work.)

�

VII.5.5 Representations of compact commutative groups

(1). If G is an abelian compact Hausdorff topological group, show that every irreducible con-
tinuous finite-dimensional representation of G is of dimension 1.

(2). Find all the continuous 1-dimensional representations of S1 := {z ∈ C||z| = 1} and their
images in L2(S1).

Solution.

(1). It’s exactly the same proof as for finite groups. Let (V, ρ) be an irreducible continuous
representation of G. Then for every g ∈ G, ρ(g) ∈ EndG(V ), so, by Schur’s lemma, there
exists χ(g) ∈ C× such that ρ(g) = χ(g)idV . This show that every vector subspace of V is
invariant by G. As V is irreducible, the only G-invariant subspaces of V are 0 and V , so
dimC V = 1.

(2). For every n ∈ Z, let χn : S1 → C× be the map z 7−→ zn. This is a continuous morphism
of groups, hence a continuous 1-dimensional representation of S1. Its image in L2(S1) is
also 1-dimensional, and it is generated by the function z → Tr(χn(z)−1) = z−n.

Now let’s show that every continuous 1-dimensional representation of S1 is of the form χn
(and hence, by (a), every continuous irreducible finite-dimensional representation of S1).
Let χ : S1 → C× be such a representation, ie a continuous morphism of groups.

Composing χ with the map π : R→ S1, x 7−→ exp(2πix), we get a continuous morphism
of groups ψ : R→ C×. As ψ is continuous, ψ(x)→ 1 as x→ 1. Hence we can find c > 0
such that a :=

∫ c
0
ψ(x)dx 6= 0. (Just choose c > 0 such that 1/2 ≤ ψ(x) for 0 ≤ x ≤ c.)

Now for every x ∈ R,∫ x+c

x

ψ(t)dt =

∫ c

0

ψ(x+ t)dt = ψ(x)

∫ c

0

ψ(t)dt = aψ(x),

because ψ is a morphism of groups. So we get

ψ(x) = a−1

∫ x+c

x

ψ(t)dt.

This shows that ψ is derivable, and also that

ψ′(x) = a−1(ψ(x+ c)− ψ(x)) = ψ(x)a−1(ψ(c)− 1).
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So ψ(x) = exp(αx) (with α = a−1(ψ(c)− 1), though we don’t care).

Now as ψ factors through π : R→ S1, we have exp(2iπα) = 1, hence α ∈ Z, and we get
χ = χα.

(We could also have used the fact that the functions χn, n ∈ Z, form a Hilbert basis of
L2(S1) by the theory of Fourier series. So if S1 has any 1-dimensional representation χ
that were not of the χn, this χ would have to be in L2(S1), nonzero and orthogonal to all
the χn, and that’s impossible.)

�

VII.5.6 Complex representations of profinite groups

(1). Let n be a positive integer. Put some norm ‖.‖ on Mn(C). (They are all equivalent, so you
can choose your favourite one.) Show that there exists ε > 0 such that the only subgroup
of GLn(C) contained in {g ∈ GLn(C)|‖g − 1‖ < ε} is {1}. (Hint : Start with the case
n = 1, and then don’t do an induction on n.)

(2). We say that a topological group is profinite if

Γ = lim←−
∆

Γ/∆ := {(x∆) ∈
∏
∆

Γ/∆|∀∆′ ⊂ ∆, x∆ = x∆′∆},

where we take the limit over all normal subgroups ∆ of finite index of Γ, and if the topology
of Γ is induced by the topology of

∏
∆ Γ/∆, where we put the discrete topology on each

Γ/∆. Examples of profinite groups are Zp, Z×p and the Galois group of a possibly infinite
Galois extension of fields.

(a) Show that a profinite group is compact Hausdorff.

(b) Suppose that Γ is a profinite group, and let (V, ρ) be a continuous finite-dimensional
representation of Γ on a C-vector space. Show that Ker ρ is a subgroup of finite index
of Γ.

Solution.

(1). We do the case n = 1. LetG be a subgroup of C× such that, for every g ∈ G, |g−1| < 1/2.
First we show that G ⊂ S1. Indeed, if there is a g ∈ G such that |g| 6= 1, then either
|g|n → 0 as n → +∞, or |gn| → +∞ as n → +∞ In both cases |gn − 1| eventu-
ally becomes bigger than 1/2, which is impossible. Now suppose that G = {1}, and let
g ∈ G − {1}. Write g = exp(2πiα), α ∈ R. We may assume that 0 < α < π/2 (if this
does not work for g, it will for g−1). There exists n ∈ Z≥1 such that π/2 < nα < π, and
then |gn − 1| > 1/2, contradicting our hypothesis on G. So G = {1}.
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Now let n be any positive integer, and choose ε > 0 such that, if g ∈ GLn(C) is such that
‖g− 1‖ < ε, then for every eigenvalue λ of g satisfies |λ− 1| < 1/2. Let G be a subgroup
of GLn(C) such that ‖g − 1‖ < ε for every g ∈ GLn(C).

Let g ∈ G, and let λ1, . . . , λn be its eigenvalues. For every k ∈ Z, the eigenvalues of gk

are λk1, . . . , λ
k
n. By the first part, this forces all the λi to be equal to 1.

We have shown that all the eigenvalues of g are equal to 1, so g = 1 +N with N ∈Mn(C)
nilpotent. If N 6= 0, choose e ∈ Cn such that N(e) 6= 0 but N2(e) = 0. Then, for every
m ∈ Z≥1, gm(e) = (1 + N)m(e) = e + mN(e), so ‖gm(e) − e‖ = m‖N(e)‖ → +∞ as
m→ +∞, which contradicts the hypothesis on G. So the only element of G is 1.

Another way to see that every element of G has to be semisimple is the following : Take
ε small enough so that every g ∈ Mn(C) with ‖g − 1‖ ≤ ε is invertible, and consider the
closure G of G in Mn(C). By the choice of ε, this is also the closure of G in GLn(C),
hence it’s a subgroup of GLn(C). But it’s also a compact subset of Mn(C) because it’s
closed and bounded. So G is a compact subgroup of GLn(C). By theorem V.3.1.6 of
chapter V, there exists a Hermitian inner product on Cn for which every element of G is
unitary. In other words, there exists g ∈ GLn(C) such that G ⊂ gU(n)g−1. As every
element of U(n) is diagonalizable, so is every element of G.

(2). (a) This follows from Tychonoff’s theorem, because finite sets with the discrete topology
are compact Hausdorff.

(b) After choosing a basis of V , we can see ρ as a continuous morphism of groups
G → GLn(C). Let ε > 0 be as in (1), and let U = {g ∈ GLn(C)|‖g − 1‖ < ε}.
Then U is an open neighbourhood of 1 in GLn(C), so ρ−1(U) is an open neighbourg-
hood of 1 in G. By the fact that Γ = lim←−∆

Γ/∆ and the definition of the product
topology, this implies that ρ−1(U) contains a normal subgroup ∆ of Γ of finite index.
In particular, ρ(∆) is a subgroup of GLn(C) contained in U . By (1), ρ(∆) = 1, ie
∆ ⊂ Ker(ρ), so [Γ : Ker(ρ)] <∞.

�

VII.5.7 A unitary representation of G such that G→ U(V ) is not
continuous

LetG be a non-discrete compact group. Show that the morphism ρ : G→ U(L2(G)), x 7→ Rx is
not continuous, where the topology on U(L2(G)) is the one induced by ‖.‖op. (Note : you don’t
really need G to be compact for this, G locally compact would be enough, but non-discreteness
is of course necessary.)
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Solution. We will show that, for every x 6= 1 in G, we have ‖id − Rx‖op ≥ 1√
2
.18 As G is not

discrete, we can find a sequence (xn)n≥0 converging to 1 such that xn 6= 1 for every n, so this
will imply the result.

Let x ∈ G − {1}. We choose open subsets 1 ∈ U ⊂ V in G such that U is compact and
contained in V , vol(V ) ≤ 2 vol(U) et U ∩Ux = ∅. By Urysohn’s lemma (see problem VII.5.2),
there exists a continuous function f : G→ [0, 1] such that f|U = 1 and fG−V = 0. We have

‖f‖2
L2(G) =

∫
G

|f(g)|2dg =

∫
V

|f(g)|2dg ≤ vol(V ) ≤ 2 vol(U).

On the other hand,

‖f −Rx(f)‖2
L2(G) =

∫
G

|f(g)− f(gx)|2dg ≥
∫
U

|f(g)− f(gx)|2dg = vol(U).

So

‖id−Rx‖2
op ≥

‖f −Rx(f)‖2
L2(G)

‖f‖2
L2G

≥ vol(U)

2 vol(U)
=

1

2
.

�

VII.5.8 A compact group with no faihful representation

Find a compact (Hausdorff) topological group that doesn’t have any faithful finite-dimensional
representation.

Solution. By problem VII.5.6, any infinite profinite group will do. Take for example
Ẑ := lim←−n≥1

Z/nZ, where the integers n are ordered by the divisibility relation and, if n|m,
the map Z/mZ→ Z/nZ is the obvious projection.

�

VII.5.9 Uniqueness of the inner product making an irreducible
representation unitary

Let G be a compact Hausdorff group, let V be a finite-dimensional C-vector space and
ρ : G → GL(V ) be a continuous representation of G on V . Assume that ρ is an irreducible
representation of G.

18 We could actually show with the same methods that ‖Rx − id|op ≥ 1.
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If 〈., .〉1 and 〈., .〉2 are two Hermitian inner products making ρ a unitary representation, show
that there exists λ ∈ R>0 such that 〈., .〉2 = λ〈., .〉1.

Solution. Let S be the set of bi-additive forms V × V → C that are C-linear in the first variable
and C-antilinear in the second; that is, if f ∈ S, then, for all v, v′, w, w′ ∈ V and λ, µ ∈ C, we
have

f(λv + v′, µw + w′) = λµf(v, w) + λf(v, w′) + µf(v′, w) + f(w,w′).

This is a finite-dimensional C-vector space in the obvious way, and we make G act on it by
: if g ∈ G and f ∈ S, then g.f is the form (v, w) 7−→ f(ρ(g)−1v, ρ(g)−1w). It is easy
to see that this makes S a continuous representation of G, but this will also follow from the
next paragraph. Note also that dimC S = (dimC V )2. (If (e1, . . . , en) is a C-basis of V , then
sending f ∈ S to the matrix (f(ei, ej))1≤i,j≤n gives a R-linear isomorphism S

∼→ Mn(C), so
dimC S = 1

2
dimR S = 1

2
dimRMn(C) = 1

2
(2n2) = n2.)

Let ϕ : V → V ∗ be the map v 7−→ (w 7−→ 〈w, v〉1). It is an isomorphisme of R-vector
spaces, and we have ϕ(λv) = λv for all λ ∈ C and v ∈ V . Also, ϕ is G-equivariant, be-
cause 〈ρ(g)v, w〉1 = 〈v, ρ(g)−1w〉1 for all v, w ∈ V . Now write W = V ⊗C V

∗, and con-
sider the map ψ : W ∗ → S sending u : W → C to the form (v, w) 7−→ u(v ⊗ ϕ(w)). I
claim that this well-defined and a G-equivariant C-linear isomorphism. Indeed, it is straighfor-
ward to check that ψ is well-defined, C-linear and G-equivariant; it is injective because the map
idV ⊗ ϕ : V ⊗C V → V ⊗C V

∗ is a R-linear isomorphism, hence in particular surjective; and it
is an isomorphism because its source and target have the same dimension, which is (dimC V )2.
So the representations of G on W ∗ and on S are isomorphic.

Now note that Hermitian inner products on V are elements of S, and that saying that a Her-
mitian inner product on V makes ρ a unitary representations is equivalent to saying that the
corresponding element of S is in SG (by the definition of the action of G on S). So if we show
that dimC(SG) = 1, we will be very close to solving the problem. Let’s use characters to calcu-
late dimC(SG). By decomposing S into irreducible representations and using corollary V.3.3.3
of chapter V, we see (as in the proof of lemma II.1.2.4 of chapter II) that

dimC(SG) =

∫
G

χS(g)dg.

We can calculate the character of S using the G-equivariant isomorphism S ' W ∗. Let g ∈ G.
By propositions II.1.1.3 and II.1.1.11 of chapter II (which don’t require the group G to be finite),
we have

χW ∗(g) = χW (g−1) = χV (g−1)χV ∗(g
−1) = χV (g−1)χV (g).

Moreover, as V has a Hermitian inner product that makes ρ(g) unitary, all the eigenvalues of
ρ(g) are complex numbers of module 1, and so χV (g−1) = χV (g). Finally, we get

χS(g) = χW ∗(g) = |χv(g)|2.
As V is irreducible, Schur orthogonality ( corollary V.3.3.3 of chapter V) gives∫

G

χS(g)dg =

∫
G

|χV (g)|2dg = 1.
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So we have proved that dimC(SG) = 1.

As 〈., .〉1 and 〈., .〉2 are both nonzero elements of the 1-dimensional C-vector space SG, there
exists λ ∈ C such that 〈., .〉2 = λ〈., .〉1. Taking v to be any nonzero element of V , we get
λ = 〈v,v〉2

〈v,v〉1 ∈ R>0.

�

VII.6 Chapter VI exercises

VII.6.1 Surjectivity of the exponential map

(1). Show that the exponential map exp : Mn(C)→ GLn(C) is surjective.

(2). Is exp : Mn(R)→ GLn(R) surjective ? If not, what is its image ?

(3). Let SO(n) = {A ∈ Mn(R)|tAA = In and det(A) = 1} and
so(n) = {A ∈Mn(R)|tA+ A = 0}. Show that exp(so(n)) = SO(n).

(4). Let O(n) = {A ∈ Mn(R)|tAA = In}. Can you find a subspace E of Mn(R) such that
exp(E) = O(n) ?

Solution.

(1). Let g ∈ GLn(C). We write g = su, with s diagonalizable, u unipotent and su = us
(this is the Chevalley-Jordan decomposition). The idea is to find “logarithms” of s and u
separately, and to choose them so that they will also commute.

As s is diagonalizable, we have s = hdh−1 with h ∈ GLn(C) and d a diagonal matrix.
Call λ1, . . . , λn the diagonal terms of d, and choose µ1, . . . , µn ∈ C such that eµi = λi
for every i (this is possible because the λi are nonzero). If λi = λj , we can arrange that
µi = µj; so we may assume that there exists a polynomial P ∈ C[X] such that P (λi) = µi
for every i. LetD be the diagonal matrix with diagonal entries µ1, . . . , µn, let S = hDh−1.
We have eD = d, hence eS = heDh−1 = s. Also, as P (d) = D, we also have P (s) = S,
and so S and u commute.

On the other hand, u is unipotent, so n := u− 1 is nilpotent. Let

N =
∑
r≥1

(−1)r−1 1

r
nr.

This sum is finite because n is nilpotent, and, by proposition VI.3.4 of chapter VI, we have
eN = n. Also, N is by definition a polynomial in u, so it commutes with every matrix that
commutes with u, and in particular it commutes with S.
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Finally, using the fact that S and N commute, we get eS+N = eSeN = su = g.

(2). We know that exp is a continuous map and that Mn(R) is connected, so exp(Mn(R)) is
also connected. As GLn(R) is not connected (see (2) of VII.5.4), exp(Mn(R)) cannot be
equal to GLn(R).

Before calculating the image of exp, we prove two lemmas.
Lemma. Let A,B ∈ Mn(R), and suppose that there exists g ∈ GLn(C) such that
gAg−1 = B. Then there exists h ∈ GLn(R) such that hAh−1 = B.

The lemma is actually true when we replace C/R by any field extension, but the proof that
we will give here only works for infinite fields. 19

Solution. Let g ∈ GLn(C) be such that gAg−1 = B, write g = X + iY with
X, Y ∈ Mn(R). Then we have XA + iY A = BX + iBY , hence, as A and B are
in Mn(R), XA = BX and Y A = Y B. If we knew that X or Y is invertible, we
would be done, but this is not necessarily true. However, notice that, for every t ∈ C,
(X + tY )A = B(X + tY ). Consider the function f : t 7−→ det(X + tY ). This is a degree
≤ n polynomial (with coefficients in R), and f(i) = det(g) 6= 0. So f is not the zero poly-
nomial, and so it cannot be identically 0 on R (because R is infinite), i.e. there exists λ ∈ R
such that f(λ) 6= 0. Now let h = X + λY . We have h ∈Mn(R), det(h) = f(λ) 6= 0 so h
is even in GLn(R), and hA = Bh.

�

Before stating the second lemma, we introduce some notation. For A ∈ Mn(C), λ ∈ C
and r ∈ N∗, we set

wr,λ(A) = dim(Ker(A− λIn)r)− dim(Ker(A− λIn)r−1).

It is easy to check (using the Jordan normal) that wr,λ(A) is the number of Jordan blocks
of size ≥ r in the Jordan normal form of A.

For λ ∈ C and r ≥ 1, we also denote by Jr(λ) ∈ Mr(C) the Jordan block
λ 1 0

. . . . . .
. . . 1

0 λ

.

Lemma. Let A ∈Mn(C). Then A is similar to a matrix with real entries if and only if, for
every λ ∈ C and every r ∈ N∗, wr,λ(A) = wr,λ(A).

Of course, the condition is empty for λ ∈ R.

Solution. Suppose that wr,λ(A) = wr,λ(A) for every λ ∈ C and every r ∈ N∗, and let’s

19For the general case, see [28], proposition X.1.3; there is also a generalization of the lemma in the exercises of
section X.1 of the same book.
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show that A is similar to a real matrix. We may assume that A is in Jordan normal form.
The condition says that, for every λ ∈ C and every r ∈ N∗, if A has a Jordan block of the
form Jr(λ), then it must also have a Jordan block of the form Jr(λ). So it is enough to

show that every matrix of the form
(
Jr(λ) 0

0 Jr(λ)

)
, for λ ∈ C and r ∈ N∗, is similar to

a real matrix. But if B is the matrix of the previous sentence and P =

(
Ir iIr
iIr Ir

)
, then a

straightforward calculation shows that P−1BP ∈M2r(R).

Conversely, suppose that A is similar matrix, and let’s show that wr(λ) = wr(λ) for every
λ ∈ C and r ∈ N∗. We may assume that Mn(R). Let V = Cr, seen as a R-vector
space, and let T be the element of End(V ) given by A. We denote by σ the R-linear
automorphism of V given by applying complex conjugation to all the coordinates. Then
T ◦ σ = σ ◦ T , and (λidV ) ◦ σ = σ ◦ (λidV ) for every λ. So

wr,λ(A) = 1
2

dimR(Ker(σ ◦ (T −λidV )r ◦σ−1))− 1
2

dimR(Ker(σ ◦ (T −λidV )r−1 ◦σ−1)),

and this equal to wr,λ(A) because σ is an automorphism.

�

Let’s come back to the problem.

Let X be the set of g ∈ GLn(R) such that, for every λ ∈ R<0 and r ∈ N∗, wr(λ) is
even. We want to show that X = exp(Mn(R)). First let’s see what happens when we
exponentiate Jordan blocks. Let λ ∈ C and r ∈ N∗. We have Jr(λ) = λIr + N , with
N ∈ Mr(R) a nilpotent matrix such that N r−1 6= 0. So eJr(λ) = eλeN = eλ(Ir + N ′),
with N ′ = N + 1

2
N2 + · · · + 1

(r−1)!
N r−1. The matrix N ′ is nilpotent, and we have

N ′r−1 = N r−1 6= 0 (because N r = 0), so eJr(λ) is similar to Jr(eλ). Using the inter-
pretation of wr,λ(A) in terms of Jordan blocks in the Jordan normal form of A, this implies
immediately that, for every λ ∈ C and r ∈ N∗,

wr,λ(e
A) =

∑
µ∈C|eµ=λ

wr,µ(A).

In particular, if A is similar to a real matrix, then, for every λ ∈ R<0 and r ∈ N∗, we have

wr,λ(e
A) =

∑
m∈Z

wr,log |λ|+i(2m+1)π(A) =
∑
m≥0

2wr,log |λ|+i(2m+1)π(A),

so wr,λ(eA) and eA ∈ X .

Conversely, let’s show that X ⊂ exp(Mn(R)). Let g ∈ X . We may assume that g is in

Jordan normal form, so we have g =

g1 0
. . .

0 gm

, with each gj of the form Jr(λ) with
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λ ∈ R>0 or
(
Jr(λ) 0

0 Jr(λ)

)
with λ ∈ C − R≥0 It suffices to show that each of the gj is

the exponential of a real matrix, so we may assume that g is one of the gj .

If g = Jr(λ) with λ ∈ R>0, then g = λIr + N with N nilpotent, and so g = eA with
A = log(λ)

∑
m≥1(−1)m−1 1

m
Nm by proposition VI.3.4.

If g =

(
Jr(λ) 0

0 Jr(λ)

)
with λ ∈ C − R≥0, choose µ ∈ C such that eµ = λ and let

A =

(
Jr(µ) 0

0 Jr(µ)

)
. Note that eµ = eµ, so, by what we have seen above, eA is similar to(

Jr(λ) 0

0 Jr(λ)

)
= g. Also, by the second lemma, A is similar to a matrix B ∈ M2r(R).

Then eB and g are similar and they are both in M2r(R), so, by the first lemma, there exists
h ∈ GL2r(R) such that heBh−1 = g. Finally, we get g = ehBh

−1 , with hBh−1 ∈M2r(R).

(3). Let’s show that exp(so(n)) ⊂ SO(n). Let A ∈ so(n), then tA = −A, so A and tA
commute, so (by proposition VI.3.2 of chapter VI) etA+A = e

tAeA. As tA + A = 0 and
e
tA = teA, this gives In = e0 = teAeA, i.e., eA ∈ O(n). Also, det(eA) = eTrA (again

by proposition VI.3.2 of chapter VI). But 0 = Tr(tA + A) = 2Tr(A), so TrA = 0 and
det(eA) = 1. This shows that eA ∈ SO(n).

Conversely, let g ∈ SO(n), and let’s show that there exists A ∈ so(n) such that eA = g.

We can find h ∈ O(n) such that hgh−1 =

g1 0
. . .

0 gm

, with each gj equal to either 1

or to
(

cos θ sin θ
− sin θ cos θ

)
, θ ∈ R. As conjugating by a matrix of O(n) preserves so(n), we

may assume that h = In, and it suffices to treat the case g = gj . If g = 1, we can take

A = 0. If g =

(
cos θ sin θ
− sin θ cos θ

)
with θ ∈ R, then we have g = PhP−1 with P =

(
1 i
i 1

)
and h =

(
eiθ 0
0 e−iθ

)
, so g = eA with A = P

(
iθ 0
0 −iθ

)
P−1, and it is easy to check that

A ∈ so(n).

(4). No. If A is the diagonal matrix with diagonal entries −1, 1, . . . , 1, then A ∈ O(n)
and det(A) = −1. But, by proposition VI.3.2 of chapter VI, we know that, for every
B ∈Mn(R), det(eB) = eTrB > 0. So A cannot be the exponential of a real matrix.

�
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VII.6.2 Kernel of the adjoint representation

Let G be a closed subgroup of GLn(C) and g be its Lie algebra. What is the kernel of the
continuous group morphism Ad : G→ GL(g) ?

Solution. If g ∈ G, then Ad(g) is the differential (see theorem VI.5.2 of chapter VI) of the
continuous group morphism Int(g) : G → G, h 7−→ ghg−1. Also, we know (see the remarks
below the theorem we just quoted) that Ad(g) determines Int(g)|G0 (this is just because exp(g)
contains a neighborhood of 1 in G), so Ad(g) = 0 if and only if Int(g)|G0 = idG0 . So the kernel
of Ad is the centralizer of G0 in G. If G is connected, this is just the center of G, but in general
it could be bigger (for example if G is isomorphic to the direct product of a connected group and
a noncommutative finite group).

�

VII.6.3 Lie algebras of compact groups

(1). Let G a compact closed subgroup of GLn(C) and g = Lie(G). Prove that there exists an
inner product 〈., 〉 on g such that, for every X, Y, Z ∈ g,

〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 0.

(2). Show that sln(R) cannot be the Lie algebra of a compact closed subgroup of GLn(C) if
n ≥ 2.

Solution.

(1). Consider the continuous representation of G on g given by the map Ad : G→ GL(g). As
G is compact, there exists (by theorem V.3.1.6 of chapter V)20 an inner product 〈., .〉 on g
that makes Ad a unitary representation. Let X, Y, Z ∈ g. Then, for every t ∈ R, we have

〈etXY e−tX , Z〉 = 〈Y, e−tXZetX〉.

Taking the derivative of this equality and evaluating at t = 0 gives
〈[X, Y ], Z〉 = 〈Y, [Z,W ]〉, which is what we wanted.

(2). Suppose that sln(R) is the Lie algebra of a compact subgroup of GLn(C), and choose an
inner product 〈., .〉 on sln(R) satisfying the condition of (1). As n ≥ 2, sln(R) contains
a copy of sl2(R), so we can find E,F,H ∈ sln(R) such that [E,F ] = H , [H,E] = 2E
and [H,F ] = −2F . We have 〈[E,H], E〉 + 〈H, [E,E]〉 = 0, so 〈−2E,E〉 + 〈H, 0〉 = 0,
hence 〈E,E〉 = 0, which contradicts the fact that 〈., .〉 is definite positive.

�

20This theorem applies to complex representations, but the exact same proof works for real representations.
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VII.6.4 Some Lie algebras, and the adjoint representation

In this problem, k is a commutative ring (with unit). If V is a k-module, we write
gl(V ) = Endk(V ). The Lie bracket [., .] : gl(V )2 → gl(V ) is defined by [X, Y ] = XY − Y X .
A Lie subalgebra of gl(V ) is a k-submodule g that is stable by [., .].

If V = kn, we also write gln(k) for gl(V ).

(1). Let n be a positive integer, and let J ∈ gln(k). Show that

sln(k) := {X ∈ gln(k)|Tr(X) = 0}

and
o(J, k) := {X ∈ gln(k)|XJ + JX t = 0}

are Lie subalgebras of gln(k).

(2). Let A be a k-algebra (not necessarily associative). A k-linear map δ : A → A is called a
derivation if δ(ab) = aδ(b) + δ(a)b, for every a, b ∈ A.

Show that Der(A) is a Lie subalgebra of gl(A).

(3). Let g be a Lie algebra, and consider the map ad : g → gl(g) sending X ∈ g to the linear
endomorphism Y 7−→ [X, Y ] of g. Show that ad is a morphism of Lie algebras, that
ad(g) ⊂ Der(g) and that ad(g) is an ideal of the Lie algebra Der(g).

Solution. The proofs of (1) and (2) are easy calculations. The fact that ad is a morphism of Lie
algebras and that ad(X) is a derivation for every X ∈ g are both equivalent to the Jacobi identity
in a straightforward way. Let’s show that ad(g) is an ideal of Der(g). LetX ∈ g and δ ∈ Der(g).
Then, for every Y ∈ g,

[δ, ad(X)](Y ) = − ad(X)(δ(Y )) + δ(ad(X)(Y )) = −[X, δ(Y )] + δ([X, Y ]).

As δ is a derivation, δ([X, Y ]) = [δ(X), Y ] + [X, δ(Y )], so δ, ad(X)](Y ) = [δ(X), Y ], and
finally [δ, ad(X)] = ad(δ(X)) ∈ ad(g).

�

VII.6.5 Lie algebra of a linear algebraic group

Let k be a commutative ring. Fix a positive integer n and a family of polynomials (Pα)α∈I in
k[Xij, 1 ≤ i, j ≤ n]. We say that (Pα)α∈I defines an algebraic group G over k if, for every map
of commutative rings k → k′, the set G(k′) of zeros of (Pα)α∈I in GLn(k′) is a subgroup of
GLn(k′). (An element g = (xij) of GLn(k′) is called a zero of (Pα)α∈I if Pα(xij) = 0 for every
α.)
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Examples of such algebraic groups are GLn, SLn, O(n) and Sp2n, where, for every k′ as above,

O(n, k′) = {g ∈ GLn(k′)|ggt = In}

and
Sp2n(k′) = {g ∈ GL2n(k′)|gJgt = I2n},

with J =

(
0 In
−In 0

)
.

Let k[ε] = k ⊕ kε, with the multiplication given by ε2 = 0. Then the Lie algebra of G is by
definition

g = {X ∈ gln(k)|In + εX ∈ G(k[ε])}.

(1). Show that g is indeed a Lie subalgebra of gln(k).

(2). If G = GLn (resp. SLn, O(n), Sp2n), show that g = gln(k) (resp. sln(k),
on(k) := o(In, k), sp2n(k) := o(J, k)).

(3). Suppose that k is a field, and let A be a k-algebra. 21 Let G be a linear algebraic group
over k, defined by a family of polynomials (Pα)α∈I in k[Xij, 1 ≤ i, j ≤ n]. We denote
by GA the linear algebraic group over A defined by the same polynomials, now seen as
polynomials with coefficients in A.

Show that the map G(k[ε]) → G(A[ε]) induces an isomorphism of A-Lie algebras
(LieG)⊗k A

∼→ LieGA.

(4). Suppose that k = C, and let G be a linear algebraic group over k, defined by a family of
polynomials (Pα)α∈I in k[Xij, 1 ≤ i, j ≤ n]. Show that G(C) is a closed subgroup of
GLn(C), and that we have Lie(G(C)) ⊂ LieG.22 (The first Lie algebra is the one defined
in question (1), and the second Lie algebra is the one defined in definition VI.4.1 of chapter
VI.)

Solution.

(1). There are three things to check : that g is stable by multiplication by elements of k, that
it’s stable by addition and that it’s stable by the bracket.

Let X, Y ∈ g and λ ∈ k.

First, we have a (unique) k-algebra map u : k[ε] → k[ε] that sends ε to λε. It in-
duces a map u∗ : G(k[ε]) → G(k[ε]). As X ∈ g, In + εX ∈ G(k[ε]), and we have
u∗(In + εX) = In + ε(λX). So λX ∈ g.

21We actually only need the fact that A is a flat k-algebra, which happens to be automatic if k is a field.
22This is actually an equality, but I couldn’t figure out an elementary proof.
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Second, asG(k[ε]) is a subgroup of GLn(k[ε]) and In+εX, In+εY ∈ G(k[ε]), the product
(In + εX)(In + εY ) = In + ε(X + Y ) is also in G(k[ε]). So X + Y ∈ g.

Finally, we consider k′ = k[ε]⊗kk[ε] = k[ε1, ε2], where ε1 = ε⊗1 and ε2 = 1⊗ε. We have
maps u1, u2, u : k[ε] → k′ defined by u1(ε) = ε1, u2(ε) = ε2, and u(ε) = ε1ε2 = ε ⊗ ε.
These give maps u1∗, u2∗, u∗ : GLn(k[ε]) → GLn(k′). We have g1 = u1∗(In + εX),
g2 = u2∗(In + εY ) ∈ G(k′). Using the fact that (In + εX)−1 = (In − εX) (and similarly
for In + εY ), we see that

g1g2g
−1
1 g−1

2 = In + ε1ε2[X, Y ] = u∗(In + ε[X, Y ]) ∈ G(k′).

But because u is injective, an element g of GLn(k[ε]) is in G(k[ε]) if and only if u∗(g) is
in G(k′). So In + ε[X, Y ] ∈ G(k[ε]), and [X, Y ] ∈ g.

(2). The result is clear for GLn.

Let’s calculate Lie(SLn) (where Lie(G) means “the Lie algebra of G”). Let X ∈ gln(k),
and let χX ∈ k[t] be its characteristic polynomial (χX(t) = det(1− tX)). Then

det(In + εX) = χX(−ε) = 1 + εTr(X),

because ε2 = 0. So

In + εX ∈ SLn(k[ε])⇔ det(In + εX) = 1⇔ Tr(X) = 0⇔ X ∈ sln(k).

For Lie(O(n)), note that (In + εX)t = In + εX t, so

(In + εX)(In + εX)t = In + ε(X +X t).

So obviously In + εX ∈ O(n)(k[ε]) if and only if X +X t = 0, ie X ∈ son(k).

The calculation for spn(k) is the same, mutatis mutandis.

(3). If k is any commutative ring, f ∈ k[t1, . . . , tm] is a polynomial and a = (a1, . . . , rm) ∈ km,
denote by df(a) the k-linear map from km to k given by

(x1, . . . , xm) 7−→
m∑
r=1

xr
∂f

∂tr
(a1, . . . , am).

Then we have, for all x1, . . . , xm ∈ k,

f(a1 + εx1, . . . , am + εxm) = f(a1, . . . , an) + εdf(a)(x1, . . . , xm).

(This is easy to check for monomials, and f is a linear combination of monomials.)

Applying this to the family of polynomials (Pα)α∈I defining the algebraic group G, we get
that LieG is, by definition, the intersection of the kernels of all the linear forms dPα(1)
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on Mn(k). This is true without any assumption on k. Now, if A is a k-algebra, we always
have a natural map(⋂

α∈I

Ker(dPα(1) : Mn(k)→ k)

)
⊗k A→

(⋂
α∈I

Ker(dPα(1) : Mn(A)→ A)

)
,

i.e., a map (LieG)⊗kA→ LieGA, but this map is not an isomorphism in general, because
taking the tensor product by A is not an exact operation. If for example k is a field,
there is no problem. More generally, if A is a flat k-algebra,23 then the above map is an
isomorphism.

(4). We know that G(C) is a subgroup of GLn(C) (by definition of a linear algebraic group),
and it is closed because it is the set of zeros of a family of continuous functions from
GLn(C) to C (the functions given by the Pα).

Let X ∈ gln(C) and α ∈ I , and define c : R → C by by c(t) = Pα(etX). Then we have
c′(0) = dPα(1)(X). If X ∈ LieG(C), then etX ∈ G for every t, so c is identically 0 and
c′(0) = 0. This shows that

LieG(C) ⊂
⋂
α∈I

Ker(dPα(1)).

By the proof of (3), the right-hand side is LieG.

�

VII.6.6 Group of automorphisms of a k-algebra

This problem uses the definitions of problems VII.6.4(2) and VII.6.5.

Let A be a k-algebra (not necessarily associative), and assume that A is free of finite type as
a k-module. For every map of commutative rings k → k′, let Aut(A)(k′) be the subgroup of
GL(A⊗k k′) whose elements are k′-algebra automorphisms.

(1). Show that Aut(A) is an algebraic group over k, i.e., identify A to kn (as a k-module)
by choosing a basis of A and show that there exists a family of polynomials in
k[Xij, 1 ≤ i, j ≤ n] that defines an algebraic group over k and such that Aut(A)(k′)
is the set of zeros of that family.

(2). Show that the Lie algebra of Aut(A) is Der(A).

Solution.
23Which meabs exactly that ⊗kA preserves exact sequences.
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(1). Let (e1, . . . , en) be a basis of A as a k-module, and write, for every i, j ∈ {1, . . . , n},

eiej =
n∑
k=1

αijkej,

with αijk ∈ k. We also write 1A =
∑n

i=1 βiei, where 1A is the unit of A and the βi are in
k.

Let k → k′ be a map of commutative rings, and let g = (gij) ∈ GL(A) ' GLn(k′) (using
the fixed basis). Then g is in Aut(A)(k′) if and only g sends 1A to 1A and preserves the
product of A. Because g is k′-linear, to check the second condition, we only need to check
that g(eiej) = g(ei)g(ej), for every i, j. We have

g(ei) =
n∑
j=1

gijej

and

g(1A) =
n∑
i=1

αig(ei) =
n∑

i,j=1

αigijej.

So we see that g ∈ Aut(A)(k′) if and only if the following conditions are satisfied :

(A) For every i ∈ {1, . . . , n},

αi =
n∑
j=1

αjgji.

(B) For every i, j, k ∈ {1, . . . , n},
n∑

a,b=1

giagjbαabk =
n∑
c=1

αijcgck.

(These conditions are supposed to correspond to the conditions g(1A) = 1A and
g(ei)g(ej) = g(eiej).)

As (A) and (B) are obviously polynomial conditions in the entries of g, this gives the result.

(2). We identify GL(A) and GLn as above. Let X ∈ gln(k). Then X ∈ Lie(Aut(A)) if
and only if g := idA + εX ∈ Aut(A)(k[ε]), that is, if and only if g(1A) = g(1A) and
g(ab) = g(a)g(b) for every a, b ∈ A⊗k k[ε].

The first condition is equivalent to X(1A) = 0. For the second condition, we write
a = a1 + εa2, b = b1 + εb2, with a1, a2, b1, b2 ∈ A. Then g(a) = a1 + ε(a2 + X(a1)),
g(b) = b1 + ε(b2 +X(b1)) and ab = a1b1 + ε(a1b2 + a2b1). So

g(a)g(b) = a1b1 + ε(a2b1 +X(a1)b1 + a1b2 + a1X(b1)
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and
g(ab) = a1a2 + ε(a1b2 + a2b1 +X(a1b1)).

So we have
g(a)g(b) = g(ab)⇔ X(a1b1) = a1X(b1) +X(a1)b1.

From this, it’s now obvious that idA + εX ∈ Aut(A)(k[ε]) if and only X is a
derivation. (Notice we have δ(1A) = 1A for any derivation δ : A → A, because
δ(1A) = δ(12

A) = δ(1A) + δ(1A).)

�

VII.6.7 Symmetric algebra and symmetric powers of a
representation

Let k be a commutative ring.

Let V be a k-module and n ∈ Z≥0. Remember that we write T nV or V ⊗n for the n-fold
tensor product of V by itself (over k); by convention, if n = 0, T 0V = k. By definition of the
tensor product, for every other k-vector space W , Homk(T

nV,W ) is the space of multilinear
maps from V n to W .

Let In be the subspace of T nV generated by all v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n), for
v1, . . . , vn ∈ V and σ ∈ Sn. We set SnV = T nV/In and call it the nth symmetric power of V .
(If n = 0, S0V = k.)

(1). Show that the multiplication T nV ⊗ TmV → T n+mV defined in class sends T nV ⊗k Im
and In ⊗k TmV to In+m. So we get a k-algebra structure on S∗V :=

⊕
n≥0 S

nV . Show
that this k-algebra is commutative. (This is called the symmetric algebra of V .)

Now suppose that V is a free k-module of finite rank and choose a basis (e1, . . . , ed) of V .

(2). Find a basis of T nV and calculate dimk(T
nV ).

(3). Find a basis of SnV .

Stop assuming that V is free of finite rank.

(4). If W is another k-vector space, show that Homk(S
nV,W ) ⊂ Homk(T

nV,W ) is the sub-
space of symmetric multilinear maps from V n to W .

(5). Let g be a Lie algebra over k and u : g → gl(V ) be a representation of g on V . Consider
the induced representation of T nV . Show that In is stable by g. (If we have representations
of g on V1 and V2, the action of g on V1⊗kV2 is given byX(v⊗w) = (Xv)⊗w+v⊗(Xw),
for every X ∈ g, v ∈ V1 and w ∈ V2.)
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Hence we get a representation of g on SnV , called the nth symmetric power of the represen-
tation (V, u).

Solution.

(1). Let v1, . . . , vn, w1, . . . , wm ∈ V and let σ ∈ Sm. Define x1, . . . , xn+m ∈ V and τ ∈ Sn+m

by xi = vi τ(i) = i if 1 ≤ i ≤ n, and vn+j = wj and τ(n + j) = n + σ(j) if 1 ≤ j ≤ m.
Then

v1⊗· · ·⊗vn⊗(w1⊗· · ·⊗wm−wσ(1)⊗· · ·⊗wσ(m)) = x1⊗· · ·⊗xn+m−xτ(1)⊗· · ·⊗xτ(n+m).

So the multiplication sends T nV ⊗ Im to In+m.

The case of Im ⊗ T nV is similar.

(2). An easy induction on n show that a basis of T nV is given by the ei1 ⊗ . . . ein , for
(i1, . . . , in) ∈ {1, . . . , d}n. So dimk(T

nV ) = dn.

(3). I claim that a basis of SnV is given by the en1
1 . . . endd , with n1, . . . , nd ∈ Z≥0 such that

n1 + · · ·+ nd = n.

Indeed, this family is clearly generating by (2). (If i1, . . . , in are any elements of
{1, . . . , d}, choose σ ∈ Σn such that iσ(1) ≤ · · · ≤ iσ(n). Then, in SnV ,
e1 . . . ein = siσ(1)

. . . eiσ(n)
is the form en1

1 . . . endd .)

Showing that this family is free is easier after we know the result of (d), so let’s assume
we do. Let (e∗1, . . . , e

∗
d) ∈ V ∗ be the dual basis of (e1, . . . , ed). Let n1, . . . , nd ∈ Z≥0 such

that n1 + · · · + nd = n. For 1 ≤ r ≤ d and n1 + · · · + nr ≤ i ≤ n1 + · · · + nr+1 − 1, let
fi = e∗i . Define a multilinear map f : V n → k by

f(v1, . . . , vn) =
∑
σ∈Σn

n∏
i=1

fi(vσ(i)).

Then f is obviously symmetric, so it gives a map SnV → k, that we will also denote by
f . If m1, . . . ,md ∈ Z≥0 and m1 + · · ·+md = n, we have

f(em1
1 . . . emdd ) =

{
1 if ni = mi ∀i
0 otherwise.

This shows that the family given above is linearly independent.

(4). Let f ∈ Homk(T
nV,W ). Then f factors through SnV if and only if, for every

v1, . . . , vn ∈ V and σ ∈ Σn, f(v1, . . . , vn) = f(vσ(1), . . . , vσ(n)). This is the same as
saying that f is symmetric.

(5). If v1, . . . , vn ∈ V and X ∈ g, then

X(v1 ⊗ · · · ⊗ vn) =
n∑
i=1

v1 ⊗ · · · ⊗ vi−1 ⊗ (Xvi)⊗ vi+1 ⊗ · · · ⊗ vn.
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So X(v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)) =

n∑
i=1

(v1⊗· · ·⊗vi−1⊗(Xvi)⊗vi+1⊗· · ·⊗vn−vσ(1)⊗· · ·⊗vσ(i−1)⊗(Xvσ(i))⊗vσ(i+1)⊗· · ·⊗vσ(n)) ∈ In.

�

VII.6.8 Symmetric algebra and polynomial functions

We use the notation of problem VII.6.7, and assume that k is an infinite field.

Let V be a finite-dimensional k-vector space. We say that a map f : V → k is
polynomial if, for every basis e1, . . . , en of V , there exists P ∈ k[X1, . . . , Xn] such that
f(λ1e1 + · · · + λnen) = P (λ1, . . . , λn) for every λ1, . . . , λn ∈ k. We denote by k[V ] the al-
gebra of polynomials functions from V to k. Let V ∗ = Hom(V, k).

Show that the map ϕ : T •V ∗ → Map(V, k) that sends u1 ⊗ · · · ⊗ un ∈ T nV ∗ to the map
x 7→ u1(x) . . . un(x) is well-defined, has image contained in k[V ], and induces a k-algebra
isomorphism S•V ∗

∼→ k[V ].

Solution. The map ϕ is well-defined, because the map (V ∗)n → Map(V, k) sending (u1, . . . , un)
to x 7→ u1(x) . . . un(x) is multilinear. For every u ∈ V ∗, the element of Map(V, k) is a polyno-
mial map. As the image of ϕ is the k-subalgebra generated by these elements, it is contained in
k[V ]. As k[V ], ϕ factors through a map ψ : S•V ∗ → k[V ].

Now let’s fix a basis (e1, . . . , en), and let (e∗1, . . . , e
∗
n) be the dual basis. By question (3) of

problem VII.6.7, the elements (e∗1)m1 . . . (e∗n)mn , with m1, . . . ,mn ∈ N, form a basis of S•V ∗.
We denote by ψ′ : S•V ∗ → k[X1, . . . , Xn] sending each (e∗1)m1 . . . (e∗n)mn to Xm1

1 . . . Xmn
n ; this

is clearly an isomorphism of k-algebras. We denote by ev : k[X1, . . . , Xn] → k[V ] the map
sending P ∈ k[X1, . . . , Xn] to the function λ1e1 + · · · + λnen) 7−→ P (λ1, . . . , λn). This is a
morphism of k-algebra, and it is surjective by definition of k[V ]. Also, we have ψ = ev ◦ ψ′,
because this two maps are k-algebra maps which are equal on the generators e∗1, . . . , e

∗
n of S•V ∗.

So we just have to show that ev is injective. (Note that we have not yet used the hypothesis on
the cardinality of k. Now it will become important.)

We want to prove the following fact : If P ∈ k[X1, . . . , Xn] is nonzero, then there
exists λ1, . . . , λn ∈ k such that P (λ1, . . . , λn) 6= 0. We do an induction on n. If
n = 1, this just follows from the fact that a nonzero polynomial has finitely many roots
(and that k is infinite). Suppose that n ≥ 2. Let P ∈ k[X1, . . . , Xn] − {0}, and write
P = P0 + P1Xn + · · · + PdX

d
n, with P0, . . . , Pd ∈ k[X1, . . . , Xn−1] and Pd 6= 0. By

the induction hypothesis, there exists λ1, . . . , λn−1 such that Pd(λ1, . . . , λn−1) 6= 0. Then
Q := P0(λ1, . . . , λn−1) +P1(λ1, . . . , λn−1)Xn + · · ·+Pd(λ1, . . . , λn−1)Xd

n ∈ k[Xn] is nonzero,
so, by the first step of the induction, there exists λn ∈ k such that Q(λn) = P (λ1, . . . , λn) 6= 0.
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�

VII.6.9 Some representations of sl2(k)

By definition, the standard representation of g := sl2(k) is the inclusion g ⊂ gl2(k). It’s a
representation of g on V := k2. For every n ≥ 0, we write Wn+1 = SnV and consider the
symmetric power representation g on this space.

(1). Show that the three elements e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
and h :=

(
1 0
0 −1

)
form a

basis of g, and calculate their Lie brackets.

(2). Find a basis of Wn+1 and write the action of e, f and h in that basis.

(3). Show that Wn+1 is an irreducible representation of g if char(k) = 0 or n < char(k).

(4). If char(k) > 0 and n = char(k), show that Wn is not irreducible.

(5). (*) What happens if n > char(k) ?

Solution.

(1). It’s obvious that (e, f, h) is a basis of g. We have [e, f ] = h, [h, e] = 2e and [h, f ] = −2f .

(2). Let (v1, v2) be the standard basis of k2. Then, by problem VII.6.7(3) a basis of Wn+1 is
(vn1 , v

n−1
1 v2, . . . , v

n
2 ). We have ev1 = 0, ev2 = v1, fv1 = v2, fv2 = 0, hv1 = v1 and

hv2 = −v2. So
e(vi1v

n−i
2 ) = (n− i)vi+1

1 v
n−(i+1)
2 ,

f(vi1v
n−i
2 ) = ivi−1

1 v
n−(i−1)
2

and
h(vi1v

n−i
2 ) = (2i− n)vi1v

n−i
2 .

(3). Let V be a nonzero g-invariant subspace of Wn+1. We want to show that V = Wn+1. Let
v ∈ V − {0}, and write v =

∑n
i=i0

aiv
i
1v
n−i
2 , with ai ∈ k and ai0 6= 0. Then

en−i0v = (n− i0)!ai+0v
n
2 .

By the assumption on char(k), (n − i0)! is invertible in k, so vn2 ∈ V . For every
i ∈ {0, . . . , n}, f ivn2 = i!vi1v

n−i
2 . As i! ∈ k×, vi1v

n−i
2 ∈ V . So V = Wn+1.

(4). Suppose that p = char(k) > 0. Then evp2 = fvp2 = hvp2 = 0, so kvp2 is a nonzero
subrepresentation of Wp+1, and Wp+1 is not irreducible.

�
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VII.6.10 Representations of sl2(k) in characteristic 0

Suppose that k is algebraically closed and char(k) = 0, and let g = sl2(k). Let (W,u) be a
representation of g on a k-vector space. We use the notation of problem VII.6.9.

(1). For every a ∈ k, let W (a) ⊂ W ′(a) be the a-eigenspace and the generalized a-eigenspace
of u(h) on W (that is, W ′(a) =

⋃
n≥1 Ker((u(h)− aidW )n)). Show that, for every a ∈ k,

u(e) sends W (a) (resp. W ′(a)) to W (a+2) (resp. W ′(a+2)) and u(f) sends W (a) (resp.
W ′(a)) to W (a− 2) (resp. W ′(a− 2)).

(2). Let v ∈ W be such that u(e)v = 0, and set vk = u(f)kv for every k ≥ 0. Find
(explicit) polynomials Pl,k(t) ∈ Z[t] (for 0 ≤ l ≤ k) such that, if 0 ≤ l ≤ k,
u(e)lvk = Pl,k(u(h))ek−l, and such that deg(Pl,k) = l.

From now on, we assume that dimkW <∞ et W 6= 0.

(3). For every a ∈ k, show that we have u(e)N(W ′(a)) = u(f)N(W ′(a)) = 0 for N big
enough.

(4). For every a ∈ k, show that u(h) is diagonalizable on W ′(a) (so that W (a) = W ′(a)), and
that a ∈ Z≥0 if W (a) 6= 0.

(5). Find an eigenvector v of u(h) in W such that u(e)v = 0, and let a ∈ Z≥0 be the eigenvalue
of v. For every d ≥ 0, let vd = u(f)dv, and let V be the subspace of W generated by
(v0, v1, . . . ). Show that V is a subrepresentation of W , that it is of dimension a + 1, and
that it is isomorphic to the representation Wa+1 of problem VII.6.9.

In particular, the Wn+1 are (up to isomorphism) the only irreducible representations of g.

Solution.

(1). Let U be the universal enveloping algebra of g, and extend u to a k-algebra map
U → Endk(W ). Note that, in U ,

he = [h, e] + eh = 2e+ eh = e(h+ 2),

So, for every n ∈ Z≥0,
(h− (a+ 2))ne = e(h− a)n.

Applying u gives

(u(h)− (a+ 2)idV )nu(e) = u(e)(u(h)− a)idV )n,

and hence
u(e) Ker(u(h)− aidV )n ⊂ Ker(u(h)− (a+ 2)idV )n.

This shows that u(e) sends W (a) to W (a− 2) and W ′(a) to W ′(a− 2).

The proof for u(f) is similar, starting with the fact that hf = f(h− 2) in U .
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(2). We can take P0,k = 1.

Let’s construct the P1,k by induction on k. If k = 0, then u(e)vk = u(e)v = 0, so we can
take P1,0 = 0. Suppose that we know that P1,k exists, with k ≥ 0. In U , we have

efk+1 = (ef)fk = ([e, f ] + fe)fk = (h+ fe)fk.

Also, we have seen in the proof of (1) that fh = (h + 2)f , so, for every P ∈ Z[t],
fP (h) = P (h+ 2)f . Similarly, eP (h) = P (h− 2)e. Hence

u(e)vk+1 = u(e)u(f)k+1v = (2u(h) + u(f)u(e))vk.

Using the induction hypothesis gives

u(e)vk+1 = 2u(h)vk + u(f)P1,k(u(h))vk−1 = (u(h) + P1,k(u(h) + 2))vk

(with the convention that v−1 = 0). So we can take P1,k+1 = t+P1,k(t+ 2). We see easily
that this gives P1,k(t) = k(t+ k − 1), for every k ≥ 1.

Now fix k and let’s construct Pl,k by induction on l. We gave already done the cases l = 0
and l = 1, so let’s assume that 1 ≤ l ≤ k− 1 and that we have shown the existence of Pl,k.
We have

u(e)l+1vk = u(e)Pl,k(u(h))vk−l = Pl,k(u(h)−2)u(e)vk−l = Pl,k(u(h)−2)P1,k−l(u(h))vk−(l+1).

So we can take Pl+1,k(t) = Pl,k(t− 2)P1,k−l(t).

Unpacking the induction formula above gives

Pl,k(t) = P1,k−l+1(t)P1,k−l+2(t− 2) . . . P1,k−1(t− 2(l − 1)),

ie

Pl,k(t) = (k− 1)(k− 2) . . . (k− l+ 1)(t+ k− l)(t+ k− l− 1) . . . (t+ k− l− (l− 1)).

This obviously has degree l.

(3). By (1), we know that u(e)NW ′(a) ⊂ W ′(a − 2N) and u(f)NW ′(a) ⊂ W ′(a + 2N).
As dimkW < ∞, the endomorphism u(h) of W has only finitely many eigenvalues, so
there are only finitely many b ∈ k such that W ′(b) 6= 0. Hence, if N is big enough,
W ′(a− 2N) = W ′(a+ 2N) = 0, which proves the claim.

(4). We reason by induction on the smallest i ∈ Z≥1 such that W ′(a+ 2i) = 0.

If i = 1, then W ′(a + 2) = 0, so u(e)W ′(a) = 0 by (1). By (3), there exists N ≥ 0 such
that u(f)NW ′(a) = 0. by (2), for every v ∈ W ′(a),

0 = u(e)Nu(f)Nv = PN,N(u(h))v.
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So the minimal polynomial of u(h) on W ′(a) divides PN,N(t). As PN,N(t) has sim-
ple roots, u(h) is semisimple on W ′(a). As all roots of PN,N(t) are 0, 1, . . . , N − 1,
a ∈ {0, . . . , N − 1}, and in particular a ∈ Z.

Now assume that we know the result for i ≥ 1 and let’s prove it for i + 1. As
W ′(a + 2 + 2i) = 0, we know by the induction hypothesis that u(h) is semisimple on
W ′(a+ 2). So, for every v ∈ W ′(a),

(a+ 2)u(e)v = u(h)u(e)v = u(e)(u(h) + 2)v,

ie u(e)(u(h)− a)v = 0.

(5). Choose a ∈ Z such that W (a) 6= 0 and W (a + 2) = 0, and let v be any nonzero element
of W (a). Then u(e)v ∈ W (a + 2), so u(e)v = 0. Let’s show that the resulting V is a
subrepresentation of W . First, V is obvioously stable by u(e). Second, for every d ∈ Z≥0,
vd ∈ W (a − 2d), so vd is an eigenvector of u(h). So V is stable by u(h). Finally, let
d ∈ Z≥0. If d = 0, u(e) = 0, If d ≥ 1, by (2), u(e)vd = P1,d(u(h))vd−1 ∈ kvd−1 ⊂ V as
vd−1 is an eigenvector of u(h). So V is stable by u(e), u(f) and u(h).

Let d be the biggest integer such that vd 6= 0. Then dimk V = d + 1, because (v0, . . . , vd)
is a basis of V (this family is generating, and it’s free because it’s made up of eigen-
vectors of u(h) with pairwise different eigenvalues). Also, u(f)d+1v = vd+1 = 0, so
Pd+1,d+1(u(h))v = 0, so a is a root of Pd,d(t), so a ∈ {0, . . . , d}. Suppose that a ≤ d− 1.
Then va+1 6= 0, and we have

u(e)va+1 = P1,a+1(u(h))va = (a+ 1)(u(h) + a)va = 0,

because va ∈ W (a − 2a) = W (−a). Applying (2) again, we see that, if N ≥ 0 is such
that u(f)N = 0, then

0 = u(e)Nu(f)Nvd = PN,N(u(h))vd = PN,N(−a)vd.

But the roots of PN,N are 0, 1, . . . , N − 1, so PN,N(−a) 6= 0, which gives a contradiction.
So a = d.

We now consider the map ϕ : V → Wd+1 sending vi ∈ V to
d(d − 1) . . . (d − i + 1)vd−1

1 vi2 ∈ Wd+1. (Sorry about the awful notation.) Using the
fact that u(f)vi = vi+1, u(h)vi = (d− 2i)vi and u(e)vi = i(d− (i− 1))vi−1 by (2) (with
the convention v−1 = 0), we see that this is an isomorphism of representations of g.

�

VII.6.11 The Jacobson-Morozov theorem (for gln(k))

We still assume that k is algebraically closed of characteristic 0. Let W be a finite-dimensional
k-vector space, and let N ∈ Endk(W ) be nilpotent. Show that there exists a unique semisimple
representation u : sl2(k)→ gl(W ) of sl2(k) on W such that N = u(e).
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(Actually, all finite-dimensional representations of sl2(k) are semisimple by corollary VI.8.4
of chapter VI, so the semisimplicity hypothesis is not necessary.)

Solution. Let u : sl2(k) → gl(W ) be a semisimple representation such that N = u(e), and let
W = V1 ⊕ · · · ⊕ Vr be the decomposition of W into irreducible subrepresentations of sl2(k).
Let ni = dimk(Vi). By problem VII.6.10(5), Vi ' Wni as a representation of sl2(k), so u(e) is
a Jordan block of length ni − 1 (ie maximal length) on Vi. In particular, W = V1 ⊕ · · · ⊕ Vr is
the decomposition of W given by the Jordan normal form of N , so it is determined by N . The
representations of sl2(k) on the Vi are also uniquely determined, because sl2(k) has a unique
irreducible representation of each dimension. This gives uniqueness.

Let’s prove the existence of u. Let W = V1⊕· · ·⊕Vr be the unique decomposition of W such
that N stabilizes all the Vi and acts on each Vi by a Jordan block. Fix i, let ni = dimVi−1. Then
we can find a basis (x0, . . . , xni) of Vi such that Nvj = jvj+1 for 0 ≤ j ≤ ni− 1, and Nvni = 0.
Sending xj to vni−j1 vj2 gives an isomorphism of vector spaces Vi

∼→ Wni+1 that sends N to the
endormorphism of Wni+1 induced by e. So we get an ismorphism of vector spaces between W
and the

⊕r
i=1 Wni+1 that sends N to the endomorphism induces by e.

�

VII.6.12 Clebsch-Gordan decomposition

We use the notation of problem VII.6.9, and assume moreover that k = C.

For every n ∈ Z≥0, we have defined an irreducible representation Wn+1 of sl2(C). The
character of such a representation is defined in proposition VI.14.4.4 of chapter VI.

(1). Calculate the character χWn+1 of Wn+1.

(2). For n,m ∈ Z≥0 write Wn+1 ⊗ Wm+1 as a direct sum of irreducible representations of
sl2(C). (Hint : A finite-dimensional representation of sl2(C) is uniquely determined by its
character. (Why ?))

Solution.

(1). Denote by t the space of diagonal matrices in s2(C), and let e ∈ t∗ be the map sending(
X 0
0 −X

)
to X . (Then the roots of sl2(C) are 2e and −2e.) For every λ ∈ t∗, denote

by cλ the corresponding basis element in Z[t∗]. By (2) of problem VII.6.9, the character of
Wn+1 is

∑n
i=0 c(2i−n)e = c−ne + c(−n+2)e + · · ·+ c(n−2)e + cne.

(2). By theorem VI.10.3 of chapter VI, finite-dimensional representations of sl2(C) are
uniquely determined by their character. The easiest way to figure out the decomposition
into irreducibles of Wn+1 ⊗Wm+1 is to calculate characters in a few examples and then to
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try to extrapolate.

The correct formula is : for any n,m ∈ N,

Wn+1 ⊗Wm+1 = Wn+m+1 ⊕Wn+m−1 ⊕Wn+m−3 ⊕ · · · ⊕W|n−m|+1.

This is easily checked on characters.

�

VII.6.13 Dual representation

Show that, if V is an irreducible representation of SU(2) on a finite-dimensional C-vector space,
then V ' V ∗ as representations of SU(2).

Is the same true for irreducible representations of U(1) ? What about SU(3) ?

Solution. By theorem VI.11.5 of chapter VI (and the remark following it), we know that the com-
plex irreducible finite-dimensional representations of SU(2) are theWn+1 = SymnC2, where the
representation on C2 is given by the inclusion SU(2) ⊂ GL2(C). Let Tc be the diagonal torus of

SU(2). Then, if t =

(
λ 0
0 λ−1

)
∈ Tc, we have

χWn+1(t) = λn + λn−2 + · · ·+ λ−n+2 + λ−n

(see problem VII.6.12). By proposition II.1.1.11 of chapter II, we have, for every t ∈ Tc,
χW ∗n+1

(t) = χWn+1(t−1) = χWn+1(t). As the character of a finite-dimensional representation
determines the representation up to isomorphism (see theorem VI.10.3 of chapter VI), we get
W ∗
n+1 ' Wn+1.

The analogous statement is false for U(1) and SU(3). For example, let V be the 1-dimensional
representation of U(1) given by the inclusion U(1) ⊂ C×. Then, for every λ ∈ U(1), χV (λ) = λ
and χV ∗(λ) = λ−1; so χV 6= χV ∗ . Similarly, let W be the 3-dimensional representation of

SU(3) given by the inclusion SU(3) ⊂ GL3(C). Then, for t =

λ1 0 0
0 λ2 0
0 0 λ3

 ∈ SU(3),

χW (t) = λ1 + λ2 + λ3 and χW ∗(t) = λ−1
1 + λ−1

2 + λ−1
3 . For example, if we take λ1 = λ2 = i

and λ3 = −1, then χW (t) = 2i− 1 6= χW ∗(t) = −2i− 1.

�

VII.6.14 Some representations of sln(k)

We want to generalize some of the results of problem VII.6.9.
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By definition, the standard representation of g := sln(k) is the inclusion g ⊂ gln(k). It’s
a representation of g on V := kn. For every d ≥ 0, we write Wd+1 = SdV and consider the
symmetric power representation g on this space.

If k is a field of characteristic 0, show that all these representations are irreducible. What are
their highest weights ?

Solution. Let (e1, . . . , en) be the standard basis of kn. By problem VII.6.7(3), we know that the
ed1

1 . . . ednn , for d1, . . . , dn ∈ N such that d1 + · · ·+ dn = d, form a basis of SdV .

If (d1, . . . , dn), (d′1, . . . , d
′
n) ∈ Nn, we write (d1, . . . , dn) � (d′1, . . . , d

′
n) if

d1 + · · · + di ≤ d′1 + · · · + d′i for 1 ≤ i ≤ n − 1 and d1 + · · · + dn = d′1 + · · · + d′n.
(This is just the Bruhat order.)

For 1 ≤ i ≤ n− 1, we denote by Xi the matrix in Mn(k) defined by

Xiej =

{
ei if j = i+ 1
0 otherwise

(that is, Xi is the elementary matrix often denoted by Ei,i+1). Then Xi ∈ sln(k) (because
Tr(Xi) = 0). If d1, . . . , dn ∈ N, then

Xi(e
d1
1 . . . ednn ) =

{
0 if di+1 = 0

di+1e
d1
1 . . . e

di−1

i−1 e
1+di
i e

−1+di+1

i+1 e
di+2

i+2 . . . e
dn
n otherwise.

Let d1, . . . , dn ∈ N. Let
X = X

d1+···+dn−1

n−1 . . . Xd1+d2
2 Xd1

1 ,

where we take the produit in the universal enveloping algebra U of sln(C) (which also acts on
Wd+1). Then, for all d′1, . . . , d

′
n ∈ N such that d = d′1 + · · ·+ d′n, we have

X(e
d′1
1 . . . ed

′
n
n ) =

{
(d1)!(d1 + d2)! . . . (d1 + · · ·+ dn−1)!edn if d′i = di for every i
0 if (d1, . . . , dn) 6� (d′1, . . . , d

′
n).

Now let’s prove that Wd+1 is irreducible. Let V be a nonzero subrepresentation of Wd+1,
choose v ∈ V − {0}, write

v =
∑

(d1,...,dn)

ad1,...,dne
d1
1 . . . ednn ,

where the sum is on the (d1, . . . , dn) ∈ Nn such that d1 + · · · + dn = d, and choose
(d1, . . . , dn) maximal for the order � such that ad1,...,dn 6= 0. By the calculation above, if
X = X

d1+···+dn−1

n−1 . . . Xd1+d2
2 Xd1

1 , then Xv is a nonzero multiple of ed1, so ed1 ∈ V .

Now let Yi = tXi, for 1 ≤ i ≤ n− 1. We have

Yiej =

{
ei+1 if j = i
0 otherwise.
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Let d1, . . . , dn ∈ N be such that d1 + · · · + dn = d, and let Y = Y dn
n−1Y

dn−1+dn
n−2 . . . Y d2+···+dn

1 .
Then Y ed1 is a nonzero multiple of ed1

1 . . . ednn , so ed1
1 . . . ednn ∈ V . This shows that V = Wd+1.

Finally, let’s find the weights of Wd+1. It is clear that each ed1
1 . . . ednn is an eigenvector for

every the diagonal element diag(λ1, . . . , λn) of sln(C), with eigenvalue d1λ1 + · · · + dnλn. Let
t be the subspace of diagonal matrices in sln(C). We have just seen that the weights of Wd+1 are
the characters of t of the form diag(λ1, . . . , λn) 7−→ d1λ1 + · · · + dnλn, with d1, · · · + dn ∈ N
and d1 + · · ·+ dn = d, and that they all have multiplicity 1. The maximal weight for the Bruhat
is the one corresponding to (d1, . . . , dn) = (d, 0, . . . , 0), i.e., diag(λ1, . . . , λn) 7−→ dλ1, and the
corresponding highest weight vector is ed1.

Note that, just as in the proof of proposition VI.9.2.2 of chapter VI, out strategy to show
the irreducibility of Wd+1 was to show that every nonzero subrepresentation contains a highest
weight vector, and then that Wd+1 is generated (as a U(sln(C))-module) by a highest weight
vector.

�

VII.6.15 A generating family for the universal enveloping algebra

Let g be a k-Lie algebra (where k is a commutative ring), and let (ι, U(g)) be its universal en-
veloping algebra. We assume that g is finitely generated as a k-module24 and choose a generating
family (X1, . . . , Xr) of g.

Show that U(g) is generated as a k-module by the ι(X1)n1 . . . ι(Xr)
nr , for n1, . . . , nr ≥ 0.

Solution. The first thing to do is to show that the subspace generated by the ι(X1)n1 . . . ι(Xr)
nr

is equal to the subalgebra generated by ι(g).

We write Yi = ι(Xi) and U = Ug. For every n ≥ 0, let U ′n be the k-subspace of U gen-
erated by the Y n1

1 . . . Y nr
r for n1, . . . , nr ∈ Z≥0 such that n1 + · · · + nr ≤ n, and U ′′n be the

k-subspace of U generated by the Yr1 . . . Yrm , with r1, . . . , rm ∈ {1, . . . , r} and m ≤ n. Ob-
viously, U ′n ⊂ U ′′n . Let’s show by induction on n that U ′n = U ′′n . We have U ′0 = U ′′0 = k and
U ′1 = U ′′1 = k ⊕ ι(g), so take n ≥ 2 and suppose that we know that U ′n−1 = U ′′n−1. Let m ≥ n
and r1, . . . , rm ∈ {1, . . . , r}. We want to show that Yr1 . . . Yrm ∈ U ′n. This follows from the
induction hypothesis if m < n, so we may assume n = m. For every i ∈ {1, . . . , n − 1},
YriYri+1

= [Yri , Yri+1
] + Yri+1

Yri , so

Yi1 . . . Yin = Yi1 . . . Yri−1
Yri+1

YriYri+2
. . . Yrn mod U ′′n−1 = U ′n−1.

As Sn is generated by the transpositions (i, i+ 1), 1 ≤ i ≤ n−1, we see that, for every σ ∈ Sn,

Yi1 . . . Yin = Yiσ(1)
. . . Yiσ(n)

mod U ′n−1.

24This is not really necessary, we just don’t want to worry about the best way to order infinite sets.
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But we can choose σ such that iσ(1) ≤ · · · ≤ iσ(n), and then Yiσ(1)
. . . Yiσ(n)

will be in U ′n. So
Yi1 . . . Yrn ∈ U ′n.

Let U ′ =
∑

n≥0 U
′
n. We have seen that U ′ =

∑
n≥0 U

′′
n , that is, that U ′ is the subalgebra of U

generated by ι(g). We want to show that U ′ = U . We use the universal property of the universal
enveloping algebra. As ι sends g to U ′, there exists a unique k-algebra map ϕ : U → U ′ such
that ϕι = ι. Let ψ be the endomorphism of U that is the composition of ϕ : U → U ′ and of the
inclusion U ′ ⊂ U . Then ψ ◦ ι = ι, so, by the universal property of U , ψ = idU . This implies that
U ′ = U .

�

VII.6.16 Universal enveloping algebra and differential operators
(and a proof of the Poincaré-Birkhoff-Witt theorem for
gln(k) if char(k) = 0)

In this problem, we assume that k is a field of characteristic 0, we fix a positive integer n, and we
write G = GLn, seen as a linear algebraic as in problem VII.6.5. The goal of the problem is to
give a description of the universal enveloping algebra of Lie(G) = gln(k). (We could make this
work for any linear algebraic group if we assumed k algebraically closed, but we’ll stick to GLn
for simplicity.)

Let
A = k[tij, 1 ≤ i, j ≤ n][ 1

det
].

25

We see A as an algebra of functions G(k) = GLn(k) → k by sending f = P detk ∈ A, with
P ∈ k[tij, 1 ≤ i, j ≤ n], to the function

f̃ : g = (gij) 7−→ P (gij) det(g)k.

Because k is infinite, the function f̃ uniquely determines the rational fraction f (you can assume
this), so we will just identify them and write f(g) for f̃ .

Now we will define some k-linear endomorphisms of A :

- For any i, j ∈ {1, . . . , n}, we have the endomorphism ∂
∂tij

that sends f to ∂f
∂tij

.

- If a ∈ A, we write ma for the endomorphism of A that sends f to af .

- If g ∈ G(k), we write Lg for the endomorphism of A that sends f to the function
x 7−→ f(gx) on G(k). (It is very easy to check that this function is still in A.)

25This A is the k-algebra of regular functions on G, see problem VII.6.17).
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Let D(G) be the subalgebra of End(A) (= the k-algebra of k-linear endomorphisms of A)
generated by the ∂

∂tij
for i, j ∈ {1, . . . , n} and the ma for a ∈ A. This is called the algebra

of (algebraic) differential operators on G.

(1). Show that, for every element D of D(G), we can write

D =
∑

(k11,...,knn)∈N{1,...,n}×{1,...,n}
ak11,...,knn

∂k11+···+knn

(∂t11)k11 . . . (∂tnn)knn
,

where (ak11,...,knn) is a uniquely determined family ak11,...,knn of elements of A, indexed by
N{1,...,n}×{1,...,n}, that has almost all (= all but a finite number) of its elements equal to 0.

(2). For every d ∈ N, let Dd(G) be the subspace of D(G) of operators of the form

D =
∑

(k11,...,knn)∈N{1,...,n}×{1,...,n}|k11+...knn≤d

ak11,...,knn

∂k11+···+knn

(∂t11)k11 . . . (∂tnn)knn
.

We call elements of Dd(G) differential operators of order ≤ d.

Show that Dd(G)Dd′(G) ⊂ Dd+d′(G) for all d, d′ ∈ N. 26

(3). Let
Dinv(G) = {D ∈ D(G)|∀g ∈ G(k), Lg ◦D = D ◦ Lg}.

We call elements of Dinv(G) invariant differential operators on G.

Show that Dinv(G) is a subalgebra of D(G) containing the unit element, and that the linear
transformation ϕ : Dinv(G) → A∗ := Homk(A, k) sending D to f 7−→ D(f)(1) is
injective.

(4). Let k′ be the k-algebra k ⊕ kε, with ε2 (this is called the k-algebra of dual numbers), and
let g = Lie(G) = gln(k). If f ∈ A, g ∈ G(k) and X = (xij) ∈ gl, show that

f(g + εX) = f(g) + ε
∑

1≤i,j≤n

xij
∂f

∂tij
(g).

(5). If X ∈ g, f ∈ A and g ∈ G(k), set

X̃(f)(g) =
1

ε
(f(g(1 + εX))− f(g)).

Show that this makes sense, that X̃(f) ∈ A (hence X̃ ∈ End(A)) and that X̃ ∈ Dinv(G).

(6). Show that X̃ is a derivation27 of A for every X ∈ g.

26Hence D(G), with the filtration given by the Dd(G), is a filtered k-algebra.
27See problem VII.6.4(2).
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(7). Show that the map X 7−→ X̃ from g to Dinv(G) is a Lie algbera map (i.e. that it sends
[X, Y ] to X̃ ◦ Ỹ − Ỹ ◦ X̃ for all X, Y ∈ g).

(8). Let (ι, Ug) be the universal enveloping algebra of g, and let α : Ug → Dinv(G) be the
unique k-algebra map such that α(ι(X)) = X̃ for every X ∈ g. 28 Show that α is
injective.

More precisely, let (Eij)(i,j)∈{1,...,n}2 be the canonical basis of g. We have seen in problem
VII.6.15 that Ug is generated as a vector space by the products ι(E11)d11 . . . ι(Enn)dnn ,
with d11, . . . , dnn ∈ Z≥0, where we use the lexicographic order on {1, . . . , n}2 in the
products above. Show that the images of these elements by α, i.e. the Ẽd11

11 . . . Ẽdnn
nn , form

a linearly independent family in D(G).

Hint : Let’s denote byD=d(G) theA-submodule ofD(G) (freely) generated by the
∏

i,j δ
dij
ij

such that
∑

i,j dij = d. Show that D(G) =
⊕

d≥0D=d(G), 29 and denote by od the
projection D(G) → D=d(G). Then if we have a relation among the Ẽd11

11 . . . Ẽdnn
nn , apply

ϕ ◦ od to it (for a well-chosen value of d), and evaluate this on appropriate elements of A.

(9). Show that α is surjective.

Hint : Remember the filtration (Udg) of Ug defined in the solution of problem VII.6.15,
compare it to the filtration (Dd(G)) and look at what happens on the quotients of these
filtrations.

Note that question (8) implies that the family of generators ι(E11)d11 . . . ι(Enn)dnn , with
d11, . . . , dnn ∈ Z≥0, of Ug is actually a basis. This result is actually true for any Lie algebra
over a commutative ring k that is free as a k-module, and is called the Poincaré-Birkhoff-Witt
theorem. 30

Solution.

(1). First note that a 7−→ ma is an injective k-algebra map from A to End(A). We use it to
identify A to a subalgebra of End(A). For every i, j, write ∂ij = ∂

∂tij
∈ End(A). Note that

∂ij∂i′j′ = ∂i′j′∂ij , for every i, i′, j, j′ ∈ {1, . . . , n}.

For every d ∈ Z≥0, let Dd be the A-submodule of End(A) generated by the δk11
11 . . . δknnnn ,

with kij ≥ 0 and
∑

i,j kij ≤ d, and let D′d be the A-submodule generated by the
δi1,j1ma1δi2,j2ma2 . . . δie,jemae , for i1, j1, . . . , ie, je ∈ {1, . . . , n}, a1, . . . , ae ∈ A and
e ≤ d. I claim that Dd = D′d. (This will prove the existence of the ak11,...,knn in the
question, because clearly D(G) =

∑
d≥0D

′
d.)

Let’s prove the claim by induction on d. For d = 0, Dd = D′0 = A. Choose d ≥ 1,
and suppose the claim known for d − 1. Let e ≤ d and i1, j1, . . . , ie, je ∈ {1, . . . , n},

28Note that the existence of the injective map X 7−→ X̃ from g to Dinv(G) forces ι to be injective.
29Warning : this not make D(G) a graded algebra, because D=d(G)D=d′(G) 6⊂ D=d+d′(G) in general.
30See theorem 4.3 of chapter III of part I of Serre’s book [31].
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a1, . . . , ae ∈ A. We want to show that D := δi1,j1ma1δi2,j2ma2 . . . δie,jemae ∈ Dd. This
follows from the induction hypothesis if e < d, so we may assume e = d. By the product
rule, δi1,j1ma1 = mδi1,j1 (a) +maδi1,j1 , so D ∈ AD′d−1 +Aδi1,j1D

′
d−1. As D′d−1 = Dd−1 by

the induction hypothesis, this implies that D ∈ Dd.

Now we prove the uniqueness of the ak11,...,knn in the question. This is the same as saying
that the family (δk11

11 . . . δknnnn )k11,...,knn∈Z≥0
of D(G) is free over A. So suppose that we have

D :=
∑

k11,...,knn∈Z≥0

ak11,...,knnδ
k11
11 . . . δknnnn = 0,

where ak11,...,knn ∈ A and both the sum has only a finite number of nonzero terms.
If the coefficients are not all 0, choose k11, . . . , knn ∈ Z≥0 such that ak11,...,knn 6= 0
and al11,...,lnn = 0 if there exists (i, j) ∈ {1, . . . , n}2 such that lij > kij . Let
f =

∏
i,j∈{1,...,n} t

kij
ij ∈ A. Then

0 = D(f) =

(∏
i,j

kij!

)
ak11,...,knn ,

hence ak11,...,knn = 0, a contradiction.

(2). Obviously, Dd(G) is the subspace Dd defined in the answer of (1). We showed in (1) that
Dd = D′d. As the inclusion D′d1

D′d2
⊂ D′d1+d2

is obvious from the definition of the D′d,
this gives the result.

(3). The unit element (which is idA) is obviously in Dinv(G), and it’s clear that Dinv(G) is a
k-subspace of D(G). Let D,D′ ∈ Dinv(G). For every g ∈ G(k),

Lg ◦ (D ◦D′) = D ◦ Lg ◦D′ = (D ◦D′ ◦ Lg),

so D ◦D′ ∈ Dinv(G). This show that Dinv(G) is a subalgebra of D(G).

To show that ϕ is injective, let’s take D ∈ Kerϕ and try to show that D = 0. Take f ∈ A
and try to calculate f ′ := D(f). Let g ∈ G(k). Then, because D is left invariant,

f ′(g) = (Lg(f
′))(1) = (Lg◦D)(f)(1) = (D◦Lg)(f)(1) = D(Lg(f))(1) = ϕ(D)(Lg(f)).

As D ∈ Kerϕ, this is equal to 0. So f ′(g) = 0 for every g ∈ G(k), and hence f ′ = 0.31

We’ve showed that D(f) = 0 for every f ∈ A, which means that D = 0.

(4). By a stroke of luck (the fact that g = Mn(K) is stable by left multiplication by G(k)),
we have g + εX ∈ G(k′), so it makes sense to apply f to it. (In general, you should use
g(1 + εX) instead, which is what we want for (5) anyway.)

Let f1, f2 ∈ A, and let f = f1f2. First we suppose that f1 and f2 satisfy the conclusion
and we show that f does. Indeed,

31Technically, we’ve proved that f̃ ′ = 0, but this implies f ′ = 0 and we are explicitely allowed to use this fact.
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f(g + εX) = f1(g + εX)f2(g + εX) =(
f1(g) + ε

∑
i,j

xi,jδij(f1)(g)

)(
f2(g) + ε

∑
i,j

xi,jδij(f2)(g)

)

The result then follows from the product rule and the fact that ε2 = 0. Now assume that f2

and f satisfy the conclusion and that f2 ∈ A×, and we want to show that f1 satisfies the
conclusion. We have

f(g + εX) = f(g) + ε
∑
i,j

xi,jδij(f)(g) =

f1(g + εX)f2(g + εX) = f1(g + εX)

(
f2(g) + ε

∑
i,j

xi,jδij(f2)(g)

)

Using the fact that f2(g) 6= 0 and that ε2 = 0, we get

f1(g + εX) =

(
f(g) + ε

∑
i,j

xi,jδij(f)(g)

)
f2(g)−1

(
1− ε

∑
i,j

xijf2(g)−1δij(f2)(g)

)
=

f1(g) + ε
∑
i,j

xi,j(f2(g)−1δij(f)(g)− f2(g)−2δij(f2)(g)) =

f1(g) + ε
∑
i,j

xi,jδij(f)(g).

As the conclusion of (4) is clearly true for every degree 1 monomial tij ∈ A, it’s true
for every element of k[tij] ⊂ A by the first calculation above, and in particular for the
powers of det. But then the second calculation show that this conclusion is also true for
the functions f(det)−d, for f ∈ k[tij] and d ≥ 0, so we get it for every element of A.

(5). By (4), we have
f(g(1 + εX))− f(g) = ε

∑
ij

(gX)ijδij(f)(g),

so the definition of X̃(f)(g) makes sense, and we get

X̃(f)(g) =
∑
i,j

(gX)ijδij(f)(g).

For every (i, j) ∈ {1, . . . , n}, let aij ∈ A be the function that sends g ∈ G(k) to the (i, j)
entry of gX . (This is clearly a polynomial function of the entries of g, it’s even linear.)
Then the calculation above shows that X̃ is equal to the differential operator

∑
i,jmaijδij .

(In particular, X̃ sends A to A.)
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We still have to show that X̃ is left invariant. Let g1, g2 ∈ G(k) and f ∈ A. Then

X̃(Lg1(f))(g2) =
1

ε
(f(g1g2(1 + εX))− f(g1g2))

and

(Lg1X̃(f))(g2) = X̃(f)(g1g2) =
1

ε
(f(g1g2(1 + εX)− f(g1g2)).

So X̃Lg1 = Lg1X̃ .

(6). In the proof of (5), we have written X̃ as a sum
∑

ijmaijδij , with the aij in A. As each δij
is a derivation of A (that’s the product rule), this easily implies that X̃ is a derivation of A.

(7). Let X, Y ∈ g, and let Z = [X, Y ]. We want to compare D := X̃ ◦ Ỹ − Ỹ X̃ and Z̃.

Let’s first show that D is a derivation. Let f1, f2 ∈ A. Then

D(f1f2) = X̃(Ỹ (f1f2))−Ỹ (X̃(f1f2)) = X̃(Ỹ (f1)f2+f1Ỹ (f2))−Ỹ (X̃(f1)f2+f1X̃(f2)) =

X̃(Ỹ (f1))f2 + Ỹ (f1)X̃(f2) + X̃(f1)Ỹ (f2) + f1X̃(Ỹ (f2))

−Ỹ (X̃(f1))f2 − X̃(f1)Ỹ (f2)− Ỹ (f1)X̃(f2)− f1Ỹ (X̃(f2)) =

D(f1)f2 + f1D(f2).

As both D and Z̃ are derivations, they are determined by their action on the subspace of
linear functions in A. Indeed, as a difference of derivations is a derivation, it suffices to
show that, if δ ∈ End(A) is a derivation and δ(f) = 0 for every linear function f , then
δ = 0. First, the condition and the Leibniz rule imply that δ(f) = 0 for every f ∈ k[tij].
To finish the proof, we just have to show that if f1 ∈ A, f2 ∈ A× and δ(f2) = δ(f1f2) = 0,
then δ(f1) = 0. But this follows from the fact δ(f1) = f−1

2 (δ(f1f2)− f1δ(f2)). (Note the
similarity with the proof of (4).)

So let’s show that Z̃ and D are equal on linear functions. Let f ∈ k[tji] be linear (ie
homogeneous of degree 1). Then applying the definition in (5) gives

X̃f(g) = f(gX),

hence
Ỹ (X̃f)(g) = f(gXY ).

Similary,
X̃(Ỹ f)(g) = f(gY X),

so
(Df)(g) = f(g(XY − Y X)) = Z̃f(g).
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(8). First let’s note that, thanks to (1), if we denote by D=d(G) the A-submodule of D(G)

(freely) generated by the
∏

i,j δ
dij
ij such that

∑
i,j dij = d, then D(G) =

⊕
d≥0D=d(G).

Let’s denote by od the projection D(G) → D=d(G), that is, the operator that returns the
order d part of a differential operator.

Let (Eij)(i,j)∈{1,...,n}2 be the canonical basis of g. Note that

Ẽij =
n∑
r=1

mtjrδir.

Let’s prove that the Ẽd11
11 . . . Ẽdnn

nn , form a linearly independent family in D(G). This will
show that α is injective.

Consider a relation

D :=
∑

(d11,...,dnn)∈Zn2
≥0

αd11,...,dnnẼ
d11
11 . . . Ẽdnn

nn = 0,

where the αd11,...,dnn are in k and almost all of them are 0. Then we must have od(D) = 0
for every d ∈ Z≥0. Let d be the biggest integer such that there exist a n2-uple (d11, . . . , dnn)
with d =

∑
dij and αd11,...,dnn 6= 0, and let’s calculate od(D). This will be simpler than

D for two reasons. First, only the products
∏

i,j Ẽ
dij
ij with

∑
i,j dij = d will contribute.

Second, thanks to the equality δijma = mδija +maδij for every a ∈ A, when we calculate
the image by od of the products

∏
i,j Ẽ

dij
ij , we can pretend that the δij commute with all

the operators of the form ma. Now we want to calculate od(D)(f)(1) for f ∈ A. The
evaluation at 1 introduces a third simplification : in the calculation of od(

∏
i,j Ẽ

dij
ij )(f)(1),

all the mtij (which we can move to the left by the second simplification) will go to 0 unless
i = j, and to 1 if i = j. Taking into account the formula for Ẽij above, we finally get

od(
∏
i,j

Ẽ
dij
ij )(f)(1) = (

∏
ij

δ
dij
ij f)(1)

for every f ∈ A, hence

od(D)(f)(1) = (
∑

d11+···+dnn=d

αd11,...,dnn

∏
ij

δ
dij
ij )(f)(1).

For every n2-uple (d11, . . . , dnn) such that
∑

i,j dij = d, applying the formula above to

f =
∏

i,j t
dij
ij gives αd11,...,dnn = 0. But this contradicts the choice of d.

(9). Remember the filtration Ud of Ug defined in the solution of problem VII.6.15. (we
use the basis (Eij) of g to defined it). The map X 7−→ X̃ clearly sends Ud
to Dd(G) (because Ẽij ∈ D1(G)), and in (8) we proved that this induces an in-
jection αd : Ud/Ud−1 → Dd(G)/Dd−1(G) for every d ≥ 0, with U−1 = 0,
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D−1(G) = 0. (Because the map Ud → Ud/Ud−1 → Dd(G)/Dd−1(G) is the same as
Ud → Dd(G)

od→ D=d(G) ' Dd(G)/Dd−1(G).) Also by (8), the generating family of Ug
defined in problem VII.6.15 is a basis (because its image in D(G) is free). So we get a
basis of Ud/Ud−1 given by the images of the ι(E11)d11 . . . ι(Enn)dnn for d11 + · · · + dnn,
and we see that

dimk(Ud/Ud−1) = Nd := |{(d11, . . . , dnn) ∈ Zn2

≥0|d11 + . . . dnn = d}|.

For every d ≥ 0, let Pd ⊂ k[tij] be the subspace of polynomials of degree ≤ d and
ϕd : Dd(G) → Hom(Pd, k) be the map D 7−→ (f 7−→ D(f)(1)). I claim that ϕd
is injective on Dd(G) ∩ Dinv(G). Indeed, let D ∈ Dd(G) ∩ Dinv(G). Reasoning as
in (3) and using that Lg(Pd) = Pd for every g ∈ G(k), we see that D(f) = 0 for
every f ∈ Pd. Write D =

∑
(d11,...,dnn) ad11,...,dnn

∏
i,j δ

dij
ij , where ad11,...,dnn = 0 for∑

i,j dij > d. Suppose D 6= 0, and choose (d11, . . . , dnn) such that ad11,...,dnn 6= 0

and
∑

i,j dij is maximal for this property. Applying D to
∏

i,j t
dij
ij ∈ Pd, we get

ad11,...,dnn = 0, a contradiction. So we’ve proved the claim, and in particular we get that
dimk(Dd(G) ∩Dinv(G)) ≤ dimk(Pd) = dimk(Ud).

To finish the proof that α : Ug → Dinv(G) is an isomorphism, it suffices to show that
αd : Ud/Ud−1 → (Dd(G) ∩Dinv(G))/(Dd−1(G) ∩Dinv(G)) is an isomorphism for every
d ≥ 1. We prove this by induction on d. For d = 0, the result is obvious as the source and
target of α0 are both k. Suppose that d ≥ 1, and the result is known for d−1. In particular,
we get dimk(Ud−1) = dimk(Dd−1(G) ∩Dinv(G)), so

dimk((Dd(G) ∩Dinv(G))/(Dd−1(G) ∩Dinv(G))) ≤ dimk(Pd)− dimk(Ud−1) = Nd.

As the source of αd is of dimension Nd and αd is injective, this shows that αd is bijective.

�

VII.6.17 Regular functions on an algebraic group

We use the notation of problem VII.6.5.

Let G ⊂ GLn be a linear algebraic group over k, given as the set of zeroes of a fam-
ily (Pα)α∈I of polynomials. We set det = det((Xij)1≤i,j≤n) ∈ k[Xij, 1 ≤ i, j ≤ n], and
R = k[Xij, 1 ≤ i, j ≤ n][ 1

det
].

The ring of regular functions on G is by definition the ring RG = R/(Pα, α ∈ I). It is a
k-algebra.

On the other hand, the set R′G of regular functions from G to k is defined as follows : an
element of R′G is the data, for every k-algebra A, of a map (of sets) fA : G(A) → A such that,
for every map of k-algebras u : A → B, if we denote by G(u) : G(A) → G(B) the obvious
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map (given by applying u to the coordinates), then fB ◦ G(u) = u ◦ fA, or in other words, the
following diagram commutes :

G(A)
fA //

G(u)
��

A

u

��
G(B)

fB
// B

(Note the similarity with the definition of morphisms of algebraic groups in the next problem.)

The set R′G has an obvious structure of k-algebra : If (fA), (f ′A) are two elements of R′G and
λ ∈ k, we set (fA) + (f ′A) = (fA + f ′A), (fA)(f ′A) = (fAf

′
A) and λ(fA) = (λfA).

(1). If P ∈ k[Xij, 1 ≤ i, j ≤ n], it defines for every k-algebra A a map G(A)→ A by sending
g = (gij) to P (gij). Use this to get a map of k-algebras ϕ : RG → R′G.

(2). Show that ϕ is an isomorphism. (Hint : If (fA) ∈ R′G, find a preimage of (fA) by applying
fRG to a well-chosen element of G(RG).)

Solution.

(1). If P ∈ k[Xij] and A is a k-algebra, let ϕ(P )A : G(A) → A be the map (gij) 7−→ P (gij).
Then P 7−→ ϕ(P )A is a morphism of k-algebras k[Xij] → Maps(G(A), A) (where
the algebra structure on the right hand side is given by pointwise addition and multipli-
cation), and ϕ(det)A send G(A) to A×, so P 7−→ ϕ(P )A extends to a k-algebra map
R → Maps(G(A), A). This map sends all the Pα to 0, so it defines a k-algebra map
RG → Maps(G(A), A), that we’ll still call f 7−→ ϕ(f)A. It’s now clear that the family
(ϕ(f)A) (as A varies) defines an element of R′G for every P ∈ RG, and that this is a map
of k-algebras ϕ : RG → R′G.

(2). Let’s try to construct an inverse ψ : R′G → RG of ϕ. Let g0 be the element of (Xij)1≤i,j≤n
of Mn(k[Xij]). Then g0 is not in GLn(k[Xji]) because its determinant det is not invert-
ible, but g0 is in GLn(R), because in R, det is invertible (by construction of R). Of
course, g has no reason to be its G(R), but its image g in GLn(RG) is in G(RG), because
Pα(g) = Pα(Xij) = 0 in RG.

Now if f = (fA) be an element of R′G, we set ψ(f) = fRG(g) ∈ RG. This is obviously a
morphism of k-algebras. Let’s show that ψ ◦ ϕ = idRG . This is almost tautological. Let
P ∈ RG, then ψ(ϕ(P )) = P (Xij), that is, ψ(ϕ(P )) = P .

Let’s show that ψ ◦ ϕ = idR′G . This is a bit less tautological but not very hard. Let
f = (fA) ∈ R′G, and set P = ψ(f) and f ′ = ϕ(P ). Let A be a k-algebra, and let
h = (hij) ∈ G(A). Define a k-algebra map k[Xij] → A by sending Xij to hij . Because
det(h) ∈ A×, this map extends to a k-algebra map R → A. Because Pα(h) = 0 for every
α ∈ I , it further goes to quotient and defines a k-algebra map u : RG → A. Now applying
the compatibility property of f , we see that u ◦ fRG = fA ◦ G(u). Applying this to the
element g ∈ G(RG) defined above and noting that G(u)(g) = h (by the very definition of
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u) gives
fA(h) = u(fRG(g)) = u(P ) = P (hij) = f ′A(h).

�

VII.6.18 Differentiating morphisms of algebraic groups

We use the notation of problem VII.6.5.

Let k be a commutative ring, and let G ⊂ GLn and H ⊂ GLm be two linear algebraic groups
over k. A morphism of algebraic groups ρ : G → H is the data, for every k-algebra A, of a
morphism of groups ρA : G(A) → H(A) such that, for every map of k-algebras u : A → B, if
we denote by G(u) : G(A) → G(B) and H(u) : H(A) → H(B) the obvious maps (given by
applying u to the coordinates), then ρB ◦ G(u) = H(u) ◦ ρA, or in other words, the following
diagram commutes :

G(A)
ρA //

G(u)

��

H(A)

H(u)

��
G(B) ρB

// H(B)

(1). If ρ : G→ H is a morphism of algebraic groups, we define dρ : LieG→ LieH by

dρ(X) =
1

ε
(ρ(1 + εX)− ρ(1)).

Show that this is well-defined and a morphism of Lie algebras over k.

(2). If k = C and ρ : G → H is a morphism of algebraic groups over k, show
that ρC : G(C) → H(C) is a continuous morphism of groups, and that the map
dρ : LieG → LieH defined in question (1) and the map dρC : Lie(G(C)) → Lie(H(C))
defined in theorem VI.5.2 of chapter VI agree on Lie(G(C)). (Note that the question makes
sense by (4) of problem VII.6.5.)

(3). If ρ : SLn → H is a morphism of algebraic groups over a field k of characteristic 0, show
that dρ uniquely determines ρ. 32

Solution.

(1). Remember that the Lie algebra of G is by definition the set of g − In, where g is in the
kernel of the map G(k[ε])→ G(k) coming from the k-algebra map k[ε]→ k, ε 7−→ 0. By

32We do not really need the first group to be SLn, but we do need it to be connected, and I haven’t defined what this
means for algebraic groups.
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definition of a morphism of algebraic groups, we have a commutative diagram

G(k[ε])
ρk[ε] //

��

H(k[ε])

��
G(k) ρk

// H(k)

so ρk[ε] induces a map Ker(G(k[ε]) → G(k)) → Ker(H(k[ε]) → H(k)), i.e., a map
dρ : Lie(G)→ Lie(H). Let’s see that this map is given by the formula of the problem. Let
X ∈ Lie(G). Then, by the definition of dρ we just gave,

1 + εdρ(X) = ρ(1 + εX),

which is exactly what we wanted to prove.

Now let’s show that dρ is a morphism of k-Lie algebras. Let X1, X2 ∈ Lie(G) and λ ∈ k.
We’ll write ρ instead of ρk[ε] in what follows. First, as ρ : G(k[ε]) → H(k[ε]) is a mor-
phism of groups, we have

1 + εdρ(X1 +X2) = ρ(1 + ε(X1 +X2)) = ρ((1 + εX1)(1 + εX2))

= (1 + εdρ(X1))(1 + εdρ(X2)) = 1 + ε(dρ(X1) + dρ(X2)),

i.e., dρ(X1 +X2) = dρ(X1) + dρ(X2).

Let u : k[ε] → k[ε] be the k-algebra map sending ε to λε. Then we have a commutative
diagram

G(k[ε])
ρ //

G(u)
��

H(k[ε])

H(u)
��

G(k[ε]) ρ
// H(k[ε])

so

1 + εdρ(λX1) = ρ(1 + kεX1) = ρ ◦G(u)(1 + εX1) = H(u) ◦ ρ(1 + εX1)

= H(u)(1 + εdρ(X1)) = 1 + ελdρ(X1),

i.e., dρ(λX1) = λdρ(X1).

Finally, we consider k′ = k[ε] ⊗k k[ε] = k[ε1, ε2], where ε1 = ε ⊗ 1 and ε2 = 1 ⊗ ε.
We have maps u1, u2, u : k[ε] → k′ defined by u1(ε) = ε1, u2(ε) = ε2, and
u(ε) = ε1ε2 = ε ⊗ ε. Let gi = G(ui)(1 + εXi) and hi = H(ui)(1 + εdρ(Xi)), i = 1, 2.
We have seen in the solution of problem VII.6.5 that g1g2g

−1
1 g−1

2 = G(u)(1 + ε[X1, X2])
and h1h2h

−1
1 h−1

2 = H(u)(1 + ε[dρ(X1), dρ(X2)]). As ρk′ ◦G(u) = H(u) ◦ ρ, we get

H(u)(1 + εdρ([X1, X2])) = H(u)(ρ(1 + ε[X1, X2])) = H(u)(1 + ε[dρ(X1), dρ(X2)]),

hence, thanks to the injectivity of u, dρ([X1, X2]) = [dρ(X1), dρ(X2)].

309



VII Exercises

(2). The fact that ρC is a morphism of groups follows immediately from the definition of a
morphism of algebraic groups.

For every i, j ∈ {1, . . . ,m} and every commutative ring A, let tij,A : Mm(A) → A be
the function giving the (i, j)-th entry. Then the family (tij,A ◦ ρA), for A varying over all
C-algebras, defines an element of R′G in the notation of problem VII.6.17, and so, by (2)
of that same problem, it comes from an element ρij of C[Xrs, 1 ≤ r, s ≤ n][det−1]. In
other words, if g ∈ G(C), all the entries of ρC(g) are given by polynomials (independent
on g) in the entries of g and in det(g). This implies that ρC is continuous.

For every commutative ring k, every rational function f ∈ k(t1, . . . , tp) and every
a = (a1, . . . , ap) ∈ kp such that all the ∂f

∂tp
(a) are defined, we set define a linear form

df(a) : kp → k by

df(a)(x1, . . . , xp) =

p∑
s=1

xs
∂f

∂ts
(a1, . . . , ap).

This is similar to what we did in the solution of (3) of problem VII.6.5, and, just as in this
solution, we see that, for every X ∈ LieG, we have

ρ(In + εX) = Im + ε(dρij(1)(X))1≤i,j≤m.

So the map dρ : LieG→ LieH is given by dρ(X) = (dρij(1)(X))1≤i,j≤m.

On the other hand, if X ∈ Lie(G(C)), then

dρC(X) =
d

dt
ρC(etX)|t=0 = (

d

dt
ρij(e

tX)|t=0)1≤i,j≤m,

which gives the same result.

(3). Without loss of generality, we may assume that H = GLm. So let ρ1, ρ2 : SLn → GLm
be two morphisms of algebraic groups over k such that dρ1 = dρ2. We want to prove that
ρ1 = ρ2.

We have seen in (2) that the entries of ρ1 and ρ2 are given by polynomials in the coordinates
of Mn(k) and in det. Let k′ be the smallest subfield of k containing all the coefficients of
these polynomials, then k′ is of finite transcendence degree over Q, so there exists an
injective Q-algebra map k′ → C. All the objects appearing in the problem (SLn, GLm, ρ1,
ρ2) are defined over k′, and the equality of the differentials also hold if we consider ρ1 and
ρ2 as morphisms of algebraic groups over k′. (By the explicit formula for the differential in
(2), for example.) So we may assume that k is a subfield of C that is of finite transcendence
degree over Q.

Let A be a k-algebra, let g = (aij) ∈ SLn(A). We want to prove that ρ1,A(g) = ρ2,A(g).
As g is also in SLn(A′), where A′ is the k-subalgebra of A generated by the aij , we may
assume that A = A′. In the polynomial algebra B = k[tij, 1 ≤ i, j ≤ n], consider the
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elementD = det((tij)1≤i,j≤n). LetB′ = B[t]/(tnD−1). The k-algebra map mapB → A
sending each tij to aij sends D to det(g) = 1, so we may extend it to a map u : B′ → A
by sending t to 1. Let g′ = (t−1tij)1≤i,j≤n ∈ Mn(B′), then det(g′) = t−nD = 1, so
g′ ∈ SLn(B′). Also, the image of g′ by SLn(u) : SLn(B′) → SLn(A) is g, so it suffices
to show that ρ1,B′(g

′) = ρ2,B′(g
′). Choose a family (zij)1≤i,j≤n of elements of C that are

algebraically independent over k, and define a k-algebra map v : B′ → C by sending each
tij to zij , and sending t to a primitive nth root of det((zij)1≤i,j≤n). This is injective,33 so
it suffices to show that ρ1,C(g′′) = ρ2,C(g′′), where g′′ = SLn(v)(g′) ∈ SLn(C). But we
know that ρ1,C = ρ2,C by (2) (which says that dρ1,C = dρ2,C), remark VI.5.4 of chapter VI
and problem VII.5.4(2).

�

VII.6.19 Semisimple representations of the Lie algebra gln(C)

If g is a Lie algebra over a commutative ring k, the center of g is by definition
{X ∈ g|∀Y ∈ g, [X, Y ] = 0}.

(1). If k is a commutative ring, calculate the center z of gln(k). If n is invertible in k, show that
gln(n) = z× sln(k) as Lie algebras.

From now, we take k = C, and we write g = gln(C).

(2). Give an example of a non semisimple-representation finite-dimensional representation of
g.

(3). If u : g→ gl(V ) is an irreducible finite-dimensional representation of g, show that u|sln(C)

is still irreducible and that u(z) is contained in the subalgebra k · idV ⊂ gl(V ).

(4). Let Λ+
g = {(a1, . . . , an) ∈ Cn|ai − ai+1 ∈ Z≥0 for 1 ≤ i ≤ n − 1}. We extend

the Bruhat order of definition VI.11.1 of chapter VI to Cn in the following way : if
(a1, . . . , an), (b1, . . . , bn) ∈ Cn, we say that (a1, . . . , an) � (b1, . . . , bn) if and only if
b1−a1 ∈ Z≥0, (b1 + b2)− (a1 +a2) ∈ Z≥0,. . . ,(b1 + · · ·+ bn−1)− (a1 + · · ·+ bn−1) ∈ Z≥0,
and b1 + · · ·+ bn = a1 + · · ·+ an. 34

Show that, if (a1, . . . , an) ∈ Λ+
g , there exists b ∈ C such that (a1 + b, . . . , an + b) ∈ Zn,

and that λ := (a1 + b, . . . , an + b) is in Λ+ (see definition VI.11.2 of chapter VI) and
independent of the choice of b, and the map λ 7−→ λ just defined respects the Bruhat order.

(5). Construct a bijection λ 7−→ Wλ between Λ+
g and isomorphism classes of irreducible rep-

resentations of g such that :

33Because D is a linear combination of monomials where all the tij have exponent at most 1, so it cannot be a rth
power in k(tij , 1 ≤ i, j ≤ n) if r ≥ 2.

34Note that this a lift of the Bruhat order of definition VI.14.4.1 of chapter VI.
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(a) For every λ ∈ Λ+
g , the action of sln(C) on Wλ makes Wλ the irreducible representa-

tion of sln(C) of highest weight λ as in theorem VI.11.5 of chapter VI.

(b) W(1,...,1) = Tr.

(c) For all λ, µ ∈ Λ+
g , we have

Wλ ⊗Wµ = Wλ+µ ⊕
⊕
ν≺λ+µ

W⊕cν
ν .

(6). Give the irreducible representations of g corresponding to the elements (1, 0, . . . , 0),
(1, 1, 0, . . . , 0),. . . , (1, . . . , 1) of Λ+

g and to the elements (m, 0, . . . , 0), m ∈ Z≥0.

(7). If λ ∈ Λ+
g ∩Zn, show thatWλ comes (by differentiation, as in theorem VI.5.2 of chapter VI)

from a continuous representation of GLd(C) on Wλ, and give a formula for the character
of this representation on diagonal matrices in GLd(C).

Solution.

(1). Let’s show that z = kIn. It is clear that every multiple of In is central. Conversely, let
A = (aij) ∈ z. Denote by Eij , 1 ≤ i, j ≤ n, the elementary matrices in Mn(k) (Eij has
(i, j)-th equal to 1, and all other entries equal to 0). Then, for all i, j,

0 = [A,Eij] =
n∑
k=1

akiEkj −
n∑
l=1

ajlEil.

This gives aij = 0 if i 6= j, and aii = ajj for all i, j ∈ {1, . . . , n}, i.e., A ∈ kIn.

We have a k-linear map ϕ : z× sln(k)→ gln(k), (X, Y ) 7−→ X + Y . It is a morphism of
Lie algebras because, if X,X ′ ∈ z, then [X, Y ] = [X ′, Y ] = 0 for every Y ∈ gln(k), so,
for Y, Y ′ ∈ sln(k), we get

[ϕ(X, Y ), ϕ(X ′, Y ′)] = [X + Y,X ′ + Y ′] = [Y, Y ′] = ϕ([X,X ′], [Y, Y ′]).

Also note that, if A = X + Y with Y ∈ sln(k) and X = xIn ∈ z, then
Tr(A) = Tr(X) + Tr(Y ) = Tr(X) = nx. So, if n is invertible in k, the morphism
ψ : gln(k)→ z× sln(k), A 7−→ ( 1

n
Tr(A)In, A− 1

n
Tr(A)In), is an inverse of ϕ.

(2). By (1), we have g ' C× sln(C). So we can take any non-semisimple representation of C
and compose it with the first projection to get the desired representation of g. For example,

the map u : a 7−→
(

0 a
0 0

)
is a representation of the Lie algebra C on C2, but it is not

semisimple, because its only subrepresentations are 0, C× {0} and C2.

(3). For everyX ∈ z, u(X) commutes with all the elements of u(g), so it is a g-equivariant map
from V to itself. As V is an irreducible representation of g, i.e. a simple U(g)-module,
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its g-equivariant endomorphisms must form a division algebra by Schur’s lemma (theorem
I.1.4.1 of chapter I), but this division algebra is finite-dimensional over its subalgebra CidV
(because it’s a subspace of EndC(V )), hence equal to CidV by problem VII.1.3(1).

As u(z) ⊂ CidV , every subspace of V is invariant by z. But g = z ⊕ sln(C), so g and
sln(C) have the same invariant subspaces in V , i.e., only 0 and V .

(4). Let λ = (a1, . . . , an) ∈ Λ+
g . For i ∈ {1, . . . , n − 1}, we have

ai − an = (ai − ai+1) + · · · + (an−1 − an) ∈ Z, so we can take b = −an.
Also, (ai − b) − (ai+1 − b) = ai − ai+1 ∈ Z≥0 for every i ∈ {1, . . . , n − 1}, so
λ = (a1 − an, . . . , an − an) mod (1, . . . , 1) is indeed in Λ+. It is clear that the map
λ 7−→ λ respects the Bruhat order.

We still need to prove the following fact : If b, b′ ∈ C are
such that (a1 + b, . . . , an + b), (a1 + b′, . . . , an + b′) ∈ Zn, then
(a1 + b, . . . , an + b) − (a1 + b′, . . . , an + b′) ∈ (1, . . . , 1)Z, i.e., b − b′ ∈ Z. But
this is obvious, because b− b′ = (a1 − b′)− (a1 − b).

(5). By (1) and (3), every irreducible representation of g is of the form
X 7−→ aTr(X)u(X − 1

n
Tr(X)), where a ∈ C is a C-linear map and u is an irre-

ducible representation of sln(C). Conversely, every representation of this form is clearly
irreducible.

Let λ = (a1, . . . , an) ∈ Λ+
g , let λ ∈ Λ+ be as in (4), and let Wλ be the corresponding

irreducible representation of sln(C). We set Wλ = Wλ as C-vector space. We make
sln(C) act on Wλ via its action on Wλ, and z act on Wλ by 1

n
(a1 + · · ·+ an)Tr.

This construction satisfies conditions (1) and (2). To show that it satisfies (3) and
that it gives the desired bijection, by the description of irreducible representations of
g given above (and remark VI.11.7 of chapter VI), it suffices to show that the map
ϕ : Λ+

g → C × Λ+ sending λ = (a1, . . . , an) to ( 1
n
(a1 + · · · + an), λ) is bijective and

sends the Bruhat order on Λ+
g to the order ≤ on C× Λ+ given by : (a, λ) ≤ (a′, λ′) if and

only a = a′ and λ � λ′.

The statement about the orders is an immediate consequence of the definitions. Let’s
show that ϕ is injective. Let λ = (a1, . . . , an), λ′ = (a′1, . . . , a

′
n) ∈ Λ+

g such that
ϕ(λ) = ϕ(λ′). Then (by definition of the map λ 7−→ λ), there exists b ∈ C such that
a′i = ai + b for every i. But a1 + · · · + an = a′1 + · · · + a′n, so b = 0 and λ = λ′. Let’s
show that ϕ is surjective. Choose an element of Λ+, that we write λ mod (1, . . . , 1),
for some λ = (a1, . . . , an) ∈ Zn, and let a ∈ C. Let b = a − 1

n
(a1 + · · · + an), and

µ = (a1 + b, . . . , an + b). Then µ = λ and 1
n
(b1 + · · ·+ bn) = b+ 1

n
(a1 + · · ·+ an) = a,

so ϕ(µ) = (a, λ).

(6). For d ∈ {1, . . . , n}, we write $d = (1, . . . , 1︸ ︷︷ ︸
d

, 0, . . . , 0) ∈ Λ+
g . Let’s show that

W$d = ΛdCn, where g acts on Cn in the obvious way (i.e. via the identification
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g = Mn(C)).

We just need to check that the two representations agree on sln(C) and on CIn. For sln(C)
and 1 ≤ d ≤ n− 1, this follows from condition (a) in (5). Let’s calculate the action of CIn
on ΛdCn (and identify ΛnCn). Denote by (e1, . . . , en) the canonical basis of Cn. Then, by
proposition VI.9.1.4 of chapter VI, we have a basis of ΛdCn given by the ei1 ∧ · · · ∧ eid ,
with 1 ≤ i1 < · · · < id ≤ n. In particular, ΛnCn is 1-dimensional, with basis e1∧ · · · ∧ en.
Let A = (aij) ∈ g. Then, if 1 ≤ i1 < · · · < id ≤ n,

A(ei1∧· · ·∧eid) =
d∑
r=1

ei1∧· · ·∧eir−1∧(Aeir)∧eir+1∧· · ·∧eid =
n∑
i=1

air,irei1∧· · ·∧eid .

If d = n, the action of A mutliplies the unique basis element by a11 + · · · + ann, so the
representation of g on ΛnCn is indeed the one given by Tr. On the other hand, for any d,
if A ∈ CIn and a = a11, then A acts as da = d

n
Tr(A) on ΛdCn, which is what we wanted

to prove.

Let λ = (m, 0, . . . , 0), with m ∈ Z≥0, and let’s show that Wλ = SmCn, where g acts on
Cn in the obvious way as before. By problem VII.6.14, we already know that SmCn is
the irreducible representation of sln(C) with highest weight λ, so we just need to check
that CIn acts in the correct way, i.e. by m

n
Tr. Let (e1, . . . , en) be the canonical basis of

Cn. By problem VII.6.7(3), a basis of SmCn is given by the elements ed1
1 . . . ednn , with

d1, . . . , dn ∈ Z≥0 and d1 + . . . dn = m. If A = aIn, then

A(ed1
1 . . . ednn ) =

n∑
i=1

adi(e
d1
1 . . . ednn ) = d1+...dn

n
Tr(A)(ed1

1 . . . ednn ).

This gives the desired conclusion.

(7). We use a strategy similar to the one in the proof of theorem VI.11.5 of chapter VI to
construct the desired representation of GLn(C). First, a convention : Remember that
ΛnCn is the 1-dimensional representation of g given by Tr. For any a ∈ C, we denote by
(ΛnCn)⊗a the 1-dimensional representation of g given by aTr.

Let λ = (a1, . . . , an) ∈ Λ+
g ∩ Zn. Set dn = an and di = ai − ai+1 for 1 ≤ i ≤ n − 1.

Then λ = d1$1 + · · · + dn$n, where the $i are as in (6). So, by condition (c) in (5), Wλ

is an irreducible subrepresentation of V :=
⊗n

i=1(ΛdCn)⊗ai (this makes sense because
d1, . . . , dn−1 ∈ Z≥0) (it even has multiplicity 1 in V ). Now, note that the action of g on V
comes from an action of GLn(C). Indeed, this is true for the obvious action of g on Cn, so
it’s true for all the ΛdCn, so it’s also true for (ΛdiC×)⊗di if 1 ≤ i ≤ n − 1, because then
di ≥ 0. For the last factor, note that the action of GLn(C) on ΛnCn is just multiplication
by the determinant (by definition of the determinant), so, as long as dn ∈ Z (which is true
by the hypothesis that λ ∈ Zn), we can talk about the representation detdn of GLn(C),
whose corresponding representation of g is dnTr, i.e., (ΛnCn)⊗dn . So, we got an action of
GLn(C) on V whose differential is the action of g. But then, by remark VI.8.3 of chapter
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VI, a subspace of V is invariant under the action of g if and only if it is invariant it is
invariant under the action of GLn(C). In particular, the subspace Wλ of V is invariant
under the action of GLn(C), and it gives the desired representation of GLn(C).

Come back for a moment to the case where λ is just an element of Λ+
g . First we want to

find the character of Wλ as a representation of g.

Let t = Cn be the space of diagonal matrices in g, we identify its dual t∗ to Cn by using
the dual of the canonical basis, which we call (e∗1, . . . , e

∗
n). First we define the ring where

our calculations will take place (see definition VI.14.4.2 of chapter VI) : For every λ ∈ t∗,
let

Cλ = {µ ∈ t∗|µ 4 λ}.

We define A to be the set of formal sums
∑

λ∈t∗ aλcλ, where aλ ∈ Z, such that there exists
λ1, . . . , λr ∈ t∗ such that, if λ 6∈ Cλ1 ∪ · · · ∪ Cλr , then aλ = 0. This contains the group
algebra Z[t∗] (where we denote the basis element of Z[t∗] corresponding to λ by cλ, as in
the case of sln(C)). We define the multiplication on A by

(
∑
λ∈t∗

aλcλ)(
∑
λ∈t∗

bλcλ) =
∑
λ∈t∗

(
∑
µ1+µ2

aµ1bµ2)cλ.

It is easy to check that the sums defining the coefficients on the right-hand side are finite,
so this makes sense (and extends the multiplication on Z[t∗]).

Let V be a finite-dimensional representation of g. For λ ∈ t∗, we set

V (λ) = {v ∈ V |∀X ∈ t, X · v = λ(X)v}.

(See definition VI.12.1.1 of chapter VI.) The character of V is

χV =
∑
λ∈t∗

dim(V (λ))cλ ∈ A.

We set Φ+ = {e∗i − e∗j , i < j} ⊂ t∗ and ρ = 1
2

∑
α∈Φ∗ α. (These all lift the similar-named

objects of sections VI.12.2 and VI.13 of chapter VI, by the explicit formulas given there).
Also, make W := Sn act on t∗ = Cn in the usual way. Fix λ ∈ Λ+

g , and let

χλ =
∑
σ∈W

sgn(σ)cσ(λ+ρ)−ρ
∏
α∈Φ+

(1 + c−α + c−2α + . . . ) ∈ A.

Let’s show that this is character of Wλ. Write λ = (λ1, . . . , λn) and χλ =
∑

µ∈t∗ aµcµ,
with aµ ∈ Z. We want to show that aµ = dim(Wλ(µ)), for every µ ∈ t∗.

By definition of χλ, aµ is 0 unless µ is of the form σ(λ + ρ) − ρ −
∑

α∈Φ+ nαα, with
σ ∈ W and nα ∈ Z≥0. In particular, if µ = (µ1, . . . , µn) is such that aµ 6= 0, then
µ1 + · · ·+ µn = λ1 + · · ·+ λn.
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By the construction of Wλ in (5), we know that CIn acts on Wλ by multiplication by
λ1+···+λn

n
Tr. So, for every µ ∈ t∗, Wλ(µ) is also equal to

{v ∈ Wλ|∀X ∈ t′, X · v = µ(X)v},

where t′ = sln(C) ∩ t, i.e., to the µ|t′-weight space for Wλ seen as a representation of
sln(C). The dimension of this weight space is given by the Weyl character formula, i.e.,
theorem VI.13.2 of chapter VI. Using example VI.14.4.3 of the same chapter, we see that,
for every µ′ ∈ (t′)∗, the coefficient of µ′ in the character of the representation of sln(C) on
Wλ is the sum of the aµ over all the extensions µ of µ′ to a character of t∗. But there is at
most one such extension µ such that aµ 6= 0, because aµ 6= 0 implies that the sum of the
coefficients of µ is equal to λ1 + · · · + λn by the observation above. So, for every µ ∈ t∗

such that aµ 6= 0, we get that aµ is equal the coefficient of µ′ = µ|t′ in the character of the
representation of sln(C) on Wλ, i.e., to dimWλ(µ

′) = dimWλ(µ).

Now assume that λ is also in Zn. Then we have seen that there is a representation of
GLn(C) on Wλ inducing the representation of g. Let T be the subgroup of diagonal ma-
trices in GLn(C), we have T = (C×)n and Lie(T ) = t. If µ = (µ1, . . . , µn) ∈ Zn,
we denote by eµ the character of T given by (z1, . . . , zn) 7−→ zµ1

1 . . . zµnn . Note that
d(eµ) : Lie(T ) = t → C is just µ, see as an element of t∗. Let µ ∈ t∗ such that aµ 6= 0.
Then µ is of the form σ(λ + ρ) − ρ −

∑
α∈Φ+ nαα, with σ ∈ W and nα ∈ Z≥0, and in

particular µ ∈ Zn, so eµ makes sense. By remark VI.8.3 of chapter VI, the weight space
Wλ(µ) is stable by the action of T . As T is connected, the action of T on Wλ(µ) is de-
termined by the action of t (see remark VI.5.4 of chapter VI), and so it has to be given
by multiplication by the character eµ. As Wλ =

⊕
µ∈t∗Wλ(µ), this implies that Wλ, as a

representation of T , is isomorphic to
⊕

µ∈t∗ aµe
µ, where “aµeµ” means “the direct sum of

aµ copies of the 1-dimensional representation eµ”.

Let D ∈ C[x1, . . . , xn] be the polynomial defined by

D =
∏

1≤i<j≤n

(xi − xj) = xn−1
1 xn−2

2 . . . xn−1

∏
1≤i<j≤n

(1− x−1
i xj).

Let Nλ ∈ C[x1, . . . , xn] be the polynomial defined by

Nλ =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xλi+n−iσ(i) .

For every µ = (µ1, . . . , µn) ∈ Zn, write xµ = xµ1

1 . . . xµnn . If σ ∈ W , we have

σ(λ+ ρ)− ρ = (λσ−1(1) − σ−1(1) + 1, . . . , λσ−1(n) − σ−1(n) + n),

hence
n∏
i=1

xλi+n−iσ(i) =
n∏
i=1

x
λσ−1 (i)−σ−1(i)+n

i = (xn−1
1 xn−2

2 . . . xn−1)xσ(λ+ρ)−ρ.
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So we get that
Nλ

D
=

∑
σ∈W sgn(σ)xσ(λ+ρ)−ρ∏
1≤i<j≤n(1− x−1

i xj)
.

Using the formula for χWλ
calculated above (and the explicit description of Φ+), we finally

get that the trace of an element (z1, . . . , zn) of (C×)n = T on Wλ is given by Nλ(z1,...,zn)
D(z1,...,zn)

.

�

VII.6.20 Differential of a tensor product of representations

Let g is the Lie algebra of a closed subgroup G of GLn(C), let ρ1 : G → GL(V1) and
ρ2 : G → GL(V2) be continuous finite-dimensional representations of G on complex vector
spaces, and let ρ3 : G→ GL(V1 ⊗C V2) and ρ4 : G→ GL(HomC(V1, V2)) be the tensor product
and Hom representations.

Show that, for every X ∈ g,

dρ3(X) = dρ1(X)⊗ idV2 + idV1 ⊗ dρ2(X)

and
dρ4(X)(f) = dρ2(X) ◦ f − f ◦ dρ1(X)

if f ∈ HomC(V1, V2).

Solution. Let v : R→ V1, w : R→ V2 and f : R→ HomC(V1, V2) be three derivable functions.
We want to prove the following formulas :

d

dt
(v(t)⊗ w(t)) = v′(t)⊗ w(t) + v(t)⊗ w′(t)

and
d

dt
(f(t)(v(t))) = f ′(t)(v(t)) + f(t)(v′(t)).

The formulas of the problem will follows immediately from this and from the formula for the
differential of a representation in (i) of theorem VI.5.2 of chapter VI.

Let t ∈ R. For the first formula, we want to calculate the limit of
1
h
(v(t+ h)⊗w(t+ h)− v(t)⊗w(t)) as h goes to 0. We write v(t+ h) = v(t) + hv′(t) + hε(h)

and w(t + h) = w(t) + hw′(t) + hη(h), where ε : R → V1 and η : R → V2 are functions that
tend to 0 as h→ 0. Then

v(t+h)⊗w(t+h) = v(t)⊗w(t)+h(v′(t)⊗w(t)+v(t)⊗w′(t))+h2(v′(t)⊗w′(t)+ε(h)η(h))

+hη(h)(v(t) + hv′(t)) + hε(h)(w(t) + hw′(t)),
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so

lim
h→0

(
v(t+ h)⊗ w(t+ h)− v(t)⊗ w(t)

h
− v′(t)⊗ w(t)− v(t)⊗ w′(t)

)
= 0.

For the second formula, write f(t+ h) = f(t) + hf ′(t) + hg(h), where g : R→ HomC(V1, V2)
is a function that tends to 0 as h→ 0. Then

f(t+ h)(v(t+ h)) = f(t)(v(t)) + h(f ′(t)(v(t)) + f(t)(v′(t))) + h2(f ′(t)(v′(t) + ε(h)))

+h2g(h)(ε(h)) + h2f ′(t)(ε(h))) + h(g(h)(v(t)) + f(t)(ε(h)),

so

lim
h→0

(
f(t+ h)(v(t+ h))− f(t)(v(t))

h
− f ′(t)(v(t))− f(t)(v′(t))

)
= 0.

�

VII.6.21 Casimir element

Show that the Casimir element of definition VI.14.2.1 of chapter VI is in the center of the uni-
versal enveloping algebra of sln(C).

Solution. We use the notation of section VI.14.2 of chapter VI. By section VI.12.2 of the same
chapter, if the Eij are the elementary matrices in Mn(C), then the Casimir element is given by

c =
1

2

n−1∑
i=1

H2
i +

∑
i 6=j

EijEji,

where Hi = Eii − Ei+1,i+1 and all the products must be taken in the universal envelopping
algebra of sln(C) and not in Mn(C). It suffices to show that c commutes with every element of
a basis of sln(C).

Instead of doing a direct calculation, I’ll show you a particular instance of the general method
of proof. Consider the bilinear form B on sln(C) given by B(X, Y ) = Tr(XY ). This is a non-
degenerate form, and a positive multiple of what is called in general the Killing form. 35 Let’s de-
note by (Ai)1≤i≤n2−1 the basis (H1, . . . , Hn−1, Eij, i 6= j) of sln(C), for some arbitrary order on
the set {(i, j)|i 6= j}. Then the dual basis (A∗i ) for the form B is (1

2
H1, . . . ,

1
2
Hn−1, Eji, i 6= j).

Note that the Casimir element is given by c =
∑n2−1

j=1 AjA
∗
j , and we want to show that it com-

mutes with every Ai. The key observation is that, for all X, Y, Z ∈ sln(C), we have

B([X, Y ], Z) +B(X, [Y, Z]).

35The Killing form is defined in general as the bilinear form (X,Y ) 7−→ Tr((adX)(adY )). In the case of sln(C),
it is relatively easy to check that Tr((adX)(adY )) = 2nTr(XY ).

318



VII.7 Exercises involving several chapters

(This follows directly from the definition of B.) Let i ∈ {1, . . . , n2 − 1}. By the observation
above, the adjoint of adAi is − adAi, so, if we write

[Ai, Aj] =
n2−1∑
k=1

cijkAk,

then

[Ai, A
∗
j ] =

n2−1∑
k=1

cikjA
∗
k.

Using this and the fact that [X, Y Z] = [X, Y ]Z + Y [X,Z] for all X, Y, Z ∈ U(sln(C)) (again
an easy calculation), we get

[Ai, c] =
n2−1∑
j=1

[Ai, AjA
∗
j ] =

n2−1∑
j=1

([Ai, Aj]A
∗
j + Aj[Ai, A

∗
j ]) =

n2−1∑
j=1

n2−1∑
k=1

(cijkAkA
∗
j − cikjAjA∗k),

and the last sum is clearly 0 (separate the two terms, switch j and k in the second one).

�

VII.7 Exercises involving several chapters

VII.7.1 The algebraic Peter-Weyl theorem (chapters V and VI)

In this problem, G = SU(n), g = sln(C) and we also use the algebraic group SLn (over C)
defined in problem VII.6.5. We identify g to Lie(G) ⊗R C as in the proof of corollary VI.8.4
of chapter VI. So, by this corollary, we have a 1− 1 correspondence between continuous finite-
dimensional representations of G (over C) and finite-dimensional representations of g.

The Peter-Weyl theorem (theorem V.5.2 of chapter V) gives an injective map with dense image

ι :
⊕

(ρ,Vρ)∈Ĝ

End(Vρ)→ L2(G).

Remember that Ĝ is the set of isomorphism classes of continuous irreducible representations
of G on finite-dimensional C-vector spaces. If ρ : G → GL(Vρ) is such a representation and
u ∈ End(Vρ), then ι(u) is by definition the function g 7−→ Tr(ρ(g)−1 ◦ u).

The goal of this problem is to describe the image of ι.

We use the definitions of problem VII.6.18 (morphisms of algebraic groups and their differ-
entials), and we also make the following definitions : A representation of SLn is a morphism of
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algebraic groups (over C) ρ : SLn → GLm. We say that two representations ρ : SLn → GLm and
ρ′ : SLn → GLm′ are equivalent if m = m′ and there exists g ∈ GLm(C) such that ρ′ = gρg−1

(i.e. for every C-algebra A, for every x ∈ SLn(A), ρ′A(x) = gρA(x)g−1). We say that a repre-
sentation ρ : SLn → GLm is irreducible if the only C-subspaces of Cm stable by SLn are 0 and
Cm. (We say that a subspace V of Cm is stable by SLn if for every C-algebra A and for every
x ∈ SLn(A), ρA(x)(V ⊗C A) ⊂ V ⊗C A). Finally, we denote by ŜLn the set of equivalence
classes of irreducible representations of SLn.

(1). If ρ : SLn → GLm is a representation, then the restriction of ρC : SLn(C) → GLm(C) to
SU(n) ⊂ SLn(C) is a morphism of groups ρc : SU(n)→ GLm(C). Show that this induces
a bijection ŜLn

∼→ Ĝ.

(2). Remember the definition of the ring of regular functions RSLn in problem VII.6.17. If
f ∈ RSLn , then we get a “polynomial” map fC : SLn(C) → C, and we can restrict it to
G = SU(n) ⊂ SLn(C). Show that the resulting map r : RSLn → L2(G) is injective.

(3). Show that r(RSLn) contains the image of ι.

(4). If f ∈ RSLn , show that there exist f1, . . . , fr, h1, . . . , hr ∈ RSLn such that, for every C-
algebra A and every x, y ∈ SLn(A),

f(xy) =
r∑
i=1

fi(x)hi(y).

(You may admit the (easy) fact that the ring of regular functions on SLn × SLn is
RSLn ⊗C RSLn .)

(5). For every f ∈ RSLn , show that the subrepresentation of G×G generated by r(f) in L2(G)
is finite-dimensional.

(6). Show that r(RSLn) is equal to the image of ι.

In other words, the image of ι is the subalgebra of polynomials functions on SU(n). This is
also a general fact; for example, it will be true for all connected compact subgroups of GLn(C),
with the appropriate changes.

Solution.

(1). We have in problem VII.6.18 that, if ρ : SLn → GLm is a representation, then
ρC : SLn(C) → GLm(C) is a continuous morphism of groups, whose differential
dρC : sln(C) → glm(C) is equal to the differential dρ defined algebraically, and that dρ
(or dρC) uniquely determines ρ. Also, by corollary VI.8.4 of chapter VI, dρC is uniquely
determined by its restriction to su(n), which is also equal to dρc. So the map ρ 7−→ ρc
induces an injection from the set of morphisms of algebraic groups SLn → GLm to the set
of continuous morphisms of groups SU(n)→ GLm(C).

Let ρ : SLn → GLm be a morphism of algebraic groups, let ρc : SU(n) → GLm(C) be
the corresponding continuous morphism of groups. Obviously, if the subspace V of Cm is
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stable by SLn, it is stable by SU(n). Conversely, let V be a subspace of Cm, and suppose
that it is stable by SU(n). Then, by remark VI.8.3 and corollary VI.8.4 of chapter VI, V is
also stable by su(n), hence by sl(n), hence by SLn(C). We want to show that it is stable
by SLn. Let A be a C-algebra, let g ∈ SLn(A), and let x ∈ V ⊗C A. As in the solution of
problem VII.6.18(3), we can find a subfield k of C of finite transcendence degree over Q
and a k-subspace V0 of km such that ρmakes sense as a morphism of algebraic groups over
k and V = V0⊗kC, and we can find morphisms of k-algebras u : B′ → A and v : B′ → C,
and elements g′ ∈ SLn(B) and x′ ∈ V0⊗kB′ such that g = SLn(u)(g′), x = (idV0⊗ku)(x′)
and v is injective. Let g′′ = SLn(v)(g′) ∈ SLn(C) and x′′ = (idV0⊗v)(x′) ∈ V0⊗kC = V .
Then ρC(g′′)(x′′) ∈ V , so ρB′(x′) ∈ V0⊗k B′, and finally ρA(g)(x) ∈ V0⊗k A = V ⊗C A.

By the results proved in the above paragraph, ρ is irreducible if and only if ρc is irre-
ducible. Also, the equivalence relations on both sides are given by conjugating by elements
of GLm(C). So we have shown that the construction ρ 7−→ ρc induces an injective map
ŜLn → ŜU(n). It remains to show that this map is surjective, i.e., that every irreducible
representation of SU(n) (on a finite-dimensional C-vector space) comes from a represen-
tation of the algebraic group SLn. For this, we use theorem VI.11.5 of chapter VI, and we
also use its notation. Let ρc be an irreducible representation of SU(n). By this theorem, it
is given by a λ ∈ Λ+. Writing λ = d1$1 + · · ·+ dn−1$n−1 as in the proof of the theorem,
we can realize ρc on some subspace W of the representation V :=

⊗n−1
i=1 (ΛiCn)⊗di . Now,

observe that the standard representation of SU(n) on Cn (i.e. the one coming from the
inclusion SU(n) ⊂ GLn(C)) comes from a representation of SLn (given by the inclusion
SLn ⊂ GLn), as do its exterior powers and any tensor product of these (because the con-
struction of the exterior power representations, and of tensor products of representations,
make sense over any ring of coefficients), so the representation of SU(n) on V comes from
a representation of SLn. But we saw above that SU(n) and SLn have the same invariant
subspaces in any representation, so W is also invariant by SLn, hence gives a represen-
tation ρ of SLn such that ρc = ρC|SU(n). We have already shown that this ρ has to be
irreducible, so we are done.

(2). The map r : RSLn → L2(G) is obviously a map of C-algebras, so we have to show that its
kernel is trivial. Let f ∈ RSLn be such that fC|SU(n) = 0. We want to show that f = 0. By
problem VII.6.17, it suffices to show that, for every C-algebra A and every g ∈ SLn(C),
f(g) = 0. Using the same trick as in the proof of (3) of problem VII.6.18, we see that
it actually suffices to show that f(g) = 0 for every g ∈ SLn(C). Let g ∈ SLn(C). The
polar decomposition for matrices says that we can write g = su, with s Hermitian positive
definite and u ∈ SU(n).36 As s is Hermitian positive definite, there exists h ∈ SU(n)
such that hsh∗ is diagonal with real positive eigenvalues λ1, . . . , λn. Let A be the diagonal

36These s and u are actually uniquely determined by g. Compare with problem VII.5.4(11)(c)(iii). If you’ve
never the polar decomposition, here is how to prove existence : The matrix g∗g is Hermitian definite positive,
so it can be diagonalized in an orthogonal basis and has real positive eigenvalues, so we can find a Hermi-
tian definite positive matrix s (take it to be diagonalizable in the same basis as g∗g) such that s2 = g∗g. As
det(s)2 = |det(g)|2 = 1 and det(s) ∈ R>0, s is in SLn(C). Now if u = gs−1, then u∗u = s−1g∗gs−1 = 1 so
u ∈ U(n), and det(u) = det(g) det(s)−1 = 1 so u ∈ SU(n).
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matrix with eigenvalues log λ1, . . . , log λn, then Tr(A) = log det(s) = 0. Now consider
the function F : C → C defined by h(t) = f(h∗etAhu). This is well-defined, because
etA ∈ SLn(C) for every t ∈ C. It is also a holomorphic function, because the matrix
exponential is defined by an absolutely convergent power series, and f is a polynomial
function. If t ∈ iR, then etA ∈ SU(n), so h∗etAhu ∈ SU(n), so F (t) = 0 by the
hypothesis on f . By the identity theorem for holomorphic functions, F is identically 0.
Now note that, if t = 1, then h∗etAhu = su = g. So f(g) = 0.

(3). Remember that ι is the direct sum of the maps ιρ defined just before theorem V.5.2 of
chapter V. So we have to show that the image of r contains the image of all the ιρ. Let
ρ : SU(n) → GL(Vρ) be an irreducible representation. We choose an isomorphism
Vρ ' Cm. By (1) we have a morphism of algebraic groups ρ′ : SLn → GLm such
that ρ = ρ′C|SU(n). Now remember that ιρ is the function Mm(C) → L2(SU(n)) sending
u ∈ Mm(C) to g 7−→ Tr(ρ(g)−1 ◦ u). If u ∈ Mm(C), then, for every C-algebra A, the
function SLn(A) → A, g 7−→ Tr(ρ′A(g)−1 ◦ u), makes sense, and this gives an element f
of RSLn such that r(f) = ιρ(u).

(4). Let f ∈ RSLn . We define a function F ∈ RSLn×SLn
37 in the following way : For ev-

ery C-algebra A, for every g1, g2 ∈ SLn(A), F (g1, g2) = f(g1g2). Note that the map
RSLn⊗CRSLn → RSLn×SLn sends h1⊗h2 to the regular function given on SLn(A)×SLn(A
by (g1, g2) 7−→ f1(g1)f2(g2), for any C-algebra A.

By the fact that we admitted,38 we can write F =
∑r

i=1 fi ⊗ hi, with
f1, . . . , fr, h1, . . . , hr ∈ RSLn . This immediately gives the conclusion.

(5). Let f ∈ RSLn . By (4), we can find element h1, . . . , hr, h
′
1, . . . , h

′
r, h
′′
1, . . . , h

′′
r ∈ RSLn such

that, for every C-algebra A and every x, y, z ∈ SLn(A),

f(xyz) =
r∑
i=1

h1(x)h′1(y)h′′1(z).

By definition of the action of G×G on L2(G), the subrepresentation of G×G generated
by r(f) ∈ L2(G) is the span of all the functions Lx−1Ryr(f) : G → C, g 7−→ f(x−1gy),
for x, y ∈ G. By the formula above, this is contained in Span(r(h′1), . . . , r(h′r)), so it is
finite-dimensional.

(6). We have seen in the proof of theorem V.2 of chapter V that, if we make G act on L2(G)
by the left regular action, then every finite-dimensional G-representation of L2(G) is con-
tained in Im(ι). So by (5), Im(r) ⊂ Im(ι). But we have seen in (4) that Im(ι) ⊂ Im(r),
so finally Im(ι) = Im(r).

�

37Note that SLn × SLn is an algebraic subgroup of GL2n : just take the matrices in GL2n that have two diagonal
blocks, both of determinant 1.

38And that is very easy to prove using the description of regular functions as polynomials on the group, i.e., the first
description in problem VII.6.17.
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VII.7.2 Polarization

This is actually just a lemma for the next problem, problem VII.7.3.

Let V and W be finite-dimensional C-vector spaces and f : V d → W be a symmetric d-linear
form. If f(x, . . . , x) = 0 for every x ∈ V , show that f = 0.

Hint : You can approach this problem in at least two ways. If you are good with algebraic
manipulations, you can find (and prove) the formula giving f from the function V → W ,
x 7−→ f(x, . . . , x). (This will actually work for modules over any ring where d! is invertible,
not just vector spaces over C). Or you could use representation theory : first prove that the dth
symmetric power of the standard representation of sl(V ) is irreducible, then find a way to apply
this to the question.

Solution. Write D(x) = f(x, . . . , x).

Let’s take the first hint and suppose that V and W are k-modules, where k is a commutative
ring. We will show that, for every x1, . . . , xd ∈ V ,

d!f(x1, . . . , xd) =
∑

∅6=S⊂{1,...,d}

(−1)d−|S|D

(∑
i∈S

xi

)
.

If d! is invertible in k, this clealry implies the result.

Let S ⊂ {1, . . . , d} be nonempty. Then

D

(∑
i∈S

xi

)
=

∑
i1,...,id∈S

f(xi1 , . . . , xid) =
∑

i1≤···≤id
i1,...,id∈S

N(i1, . . . , id)f(xi1 , . . . , xid),

where
N(i1, . . . , id) = |{(iσ(1), . . . , iσ(d)) ∈ Zd, σ ∈ Sd}|.

Note that N(i1, . . . , id) only depends on i1, . . . , id, not on S. So we get

∑
∅6=S⊂{1,...,d}

(−1)d−|S|D

(∑
i∈S

xi

)
=

∑
∅6=S⊂{1,...,d}

(−1)d−|S|
∑

i1≤···≤id
i1,...,id∈S

N(i1, . . . , id)f(xi1 , . . . , xid),

which by the fact that N(i1, . . . , id)f(xi1 , . . . , xid) doesn’t depend on S is equal to∑
1≤i1≤···≤id≤d

N(i1, . . . , id)f(xi1 , . . . , xid)
∑

{i1,...,id}⊂S⊂{1,...,d}

(−1)d−|S|.

Suppose that {i1, . . . , id} ( {1, . . . , d}, and let T = {1, . . . , d} − {i1, . . . , id}. Then∑
{i1,...,id}⊂S⊂{1,...,d}

(−1)d−|S| = (−1)|T |
∑
S′⊂T

(−1)|S
′| = (1− 1)|T | = 0.
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So only the term with i1 = 1, . . . , id = d survives in the sum above. Note also that
N(1, . . . , d) = d!. Finally, we get∑

∅6=S⊂{1,...,d}

(−1)d−|S|D

(∑
i∈S

xi

)
= d!f(x1, . . . , xd),

as desired.

Suppose that we wanted to apply the second hint. This time we take V and W to be finite-
dimensional vector spaces over C. We may asumme that V = Cn. By problem VII.6.14, the
representation of sln(C) on the symmetric power Sd(V ) is irreducible for every d ≥ 0. By
remark VI.8.3 of chapter VI, the representation of SU(n) on that same symmetric power (induced
by the standard representation on Cn) is also irreducible.

Let U be the subspace of Sd(V ) spanned by all the elements of the form x⊗ · · · ⊗ x, x ∈ V .
This space is nonzero, and it is clearly stable by SU(n). As Sd(V ) is an irreducible representation
of SU(n), we get that U = Sd(V ).

The fact that f is symmetric says that f factors through a linear map Sd(V ) → W , that we
will still call f . (See problem VII.6.7(4).) The hypothesis says that f|U = 0. But we have just
seen that U = Sd(V ), so f|U = 0 implies that f = 0.

�

VII.7.3 Pseudo-characters (chapters I and II)

Historical remarks : Pseudo-characters were first introduced by Wiles ([36]) and Taylor ([35]) to
study the deformation rings of representations of absolute Galois groups of number fields. The
theory was then developed more systematically in papers of Nyssen ([22]) and Rouquier ([24]).
The original definition of pseudo-characters of degree d does not work well if d! is not invertible
in the coefficient ring. In his article [7], Chenevier introduced a refinement of pseudo-characters,
called determinants, that have the expected properties in all characteristics.

The exposition here follows section 2 of Bellaiche’s notes [2], with some help from Dotsenko’s
notes [9].

In this problem, k is a commutative ring and R is a (not necessarily commutative) k-algebra.

A central function on R is a k-linear map f : R → k such that f(xy) = f(yx) for every
x, y ∈ R. If f : R → k is a central function and r is a positive integer, we define a function
Sr(f) : R⊗r → k in the following way : For every σ ∈ Sr, let σ = c1 . . . cm be its decomposition
into cycles with disjoint supports, write ci = (ai1 . . . aini), and define fσ : R⊗r → k by

fσ(x1 ⊗ · · · ⊗ xr) =
r∏
i=1

f(xai1 . . . xaini ).
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Then Sr(f) is given by
Sr(f) =

∑
σ∈Sr

sgn(σ)fσ.

Let d ∈ Z≥1. We say that a central function f : R → k is a pseudo-character of degree d
if Sd(f) is not identically 0 and Sd+1(f) = 0. (Pseudo-characters are also often called pseudo-
representations.)

The idea is that a pseudo-character of degree d looks like the character (i.e. the trace) of
a representation of R on a free k-module of dimension d. In this problem, we will make the
previous statement more precise.

VII.7.3.1 First properties and an example

(1). Show that the definition of Sr(f) above doesn’t depend on the choices and makes sense.

(2). Show that, for every r ≥ 1, the r-linear map Sr(f) : R⊗r → k is symmetric.

(3). Show that S1(f) = f and that, for every r ≥ 1,

Sr+1(f)(x1 ⊗ · · · ⊗ xr+1) =

f(xr+1)Sr(f)(x1 ⊗ · · · ⊗ xr)−
r∑
i=1

Sr(f)(x1 ⊗ · · · ⊗ xi−1 ⊗ (xixr+1)⊗ xi+1 ⊗ · · · ⊗ xr).

(4). Show that a pseudo-character of degree 1 is the same as a nonzero k-linear map that re-
spects multiplication.

(5). Suppose that k is local and that d! is invertible in k. If f : R → k is a pseudo-character
of degree d, show that f(1) = d. (Hint : Use the relation between Sr+1(x1, . . . , xr, 1) and
Sr(x1, . . . , xr) to calculate Sd+1(1, . . . , 1).)

(6). Suppose that R = Mr(k) and that f : R → k is a k-linear central function, and let
d = f(1).

Show that r divides d (in k) and that f = d
r
Tr.

(7). Let H be the R-algebra of quaternions (see problem VII.1.6). Consider the function
f : H → R given by f(a + bi + cj + dk) = 2a, for all a, b, c, d ∈ R. Show that f is
a pseudo-character of degree 2, but that there is no representation u : H → M2(R) such
that f = Tr ◦ u.

Solution.

(1). First, the formula giving fσ is clearly linear in each xi, so it does define a function on
R⊗r. We have to check that the definition of fσ doesn’t depend on the choices. It doesn’t
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depend on the ordering we choose on the cycles because k is commutative, and it doesn’t
depend on the way we write each cycles because f is a central function (so, for every
x1, . . . , xr ∈ R and i ∈ {1, . . . , r}, f(x1 . . . xr) = f(xi+1 . . . xrx1 . . . xi)).

(2). Let τ ∈ Sr. Then, for every σ ∈ Sr, if σ = c1 . . . c` is its decomposition of cycles
with disjoint supports and ci = (ri,1 . . . ri,ji), the decomposition in cycles of τστ−1 is
τστ−1 = d1 . . . d`, with di = (τ(ri,1), . . . , τ(ri,ji)). So

fσ(xτ(1) ⊗ · · · ⊗ xτ(r)) = fτστ−1(x1 ⊗ · · · ⊗ xr).

As σ 7−→ τ−1στ is an automorphism of Sr that preserves sgn, we get that

Sr(f)(xτ(1) ⊗ · · · ⊗ xτ(r)) = Sr(f)(x1 ⊗ · · · ⊗ xr).

(3). The first equality is obvious.

Let r ≥ 1. For every i ∈ {1, . . . , r + 1}, let Ci = {σ ∈ Sr+1 |σ(i) = r + 1}. If i = r + 1,
Cr+1 is a subgroup that canonically identities to Sr, and we have∑

σ∈Cr+1

sgn(σ)fσ(x1 ⊗ · · · ⊗ xr+1) = f(xr+1)
∑
σ∈Sr

sgn(σ)fσ(x1 ⊗ · · · ⊗ xr).

If 1 ≤ i ≤ r, then we have a bijection Ci
∼→ Sr sending σ ∈ Ci to the element τ of Sr

defined by τ(j) = σ(j) if j 6= i, and τ(i) = σ2(i) = σ(r+1). We have sgn(τ) = −sgn(σ),
and

fσ(x1 ⊗ · · · ⊗ xr+1) = fτ (x1 ⊗ · · · ⊗ (xixr+1)⊗ · · · ⊗ xr).

This proves the equality of the question.

(4). Let f : R→ k be a pseudo-character of degree 1. Then f is k-linear, and S1(f) = f 6= 0.
Also, for every x1, x2 ∈ R,

S2(f)(x1 ⊗ xr) = f(x2)f(x1)− f(x1x2) = 0,

so f is multiplicative.

Conversely, a nonzero multiplicative k-linear map f : R→ k is clearly a pseudo-character
of degree 1.

(5). If r ≥ 1 and x1, . . . , xr ∈ R, then, by question (2),

Sr+1(f)(x1 ⊗ · · · ⊗ xr ⊗ 1) = (f(1)− r)Sr(f)(x1 ⊗ · · · ⊗ xr).

So, by an easy induction, for every r ≥ 1,

Sr(f)(1⊗ · · · ⊗ 1) =
r−1∏
i=0

(f(1)− i).
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As f is a pseudo-character of degree d, Sd+1(f) = 0, and so
f(1)(f(1) − 1) . . . (f(1) − d) = 0, and there is a i ∈ {0, . . . , d} such that f(1) − i is in
the maximal ideal of k. For every j ∈ {0, . . . , d} − {i}, i− j is invertible in k (because d!
is invertible in k), so f(1)− j is not in the maximal ideal of k, and hence f(1)− j ∈ k×.
This shows that actually f(1) − i = 0, i.e. f(1) = i. Now suppose that i 6= d, then
f(1)− d ∈ k×, and, so, for every x1, . . . , xd ∈ R,

0 = (f(1)− d)−1Sd+1(f)(x1 ⊗ · · · ⊗ xd ⊗ 1) = Sd(f)(x1 ⊗ · · · ⊗ xd),

contradicting the fact that Sd(f) 6= 0. So i = d, i.e. f(1) = d.

(6). Write Eij for the matrix that has (i, j)-entry equal to 1 and all its other entries equal to
0. Then EijEji = Eii and EjiEij = Ejj for every i, j, so f(E11) = · · · = f(Edd). In
particular,

f(1) = f(E11 + · · ·+ Err) = rf(E11),

so r divides d and f(E11) = d
r
.

On the other hand, if i 6= j, then Eij = EiiEij and EijEii = 0, so f(Eij) = f(0) = 0. If
A = (aij) ∈Mr(k), then A =

∑r
i,j=1 aijEij , so we get

f(A) =
r∑

i,j=1

aijf(Eij) = f(E11)(a1 + · · ·+ ar) = d
r
Tr(A).

(7). Remember from problem VII.1.6 that we have an isomorphism of C-algebras
u : H ⊗R C ∼→ M2(C), and note that f is simply the function x 7−→ Re(Tr(u(x ⊗ 1))).
Now the fact that f is a pseudo-character of degree 2 follows from the next part of the
problem.

Of course, it’s also possible to solve this question by a direct calculation.

�

VII.7.3.2 A character is a pseudo-character

Let u : R → Md(k) be a k-algebra map (i.e. a representation of R on the k-module kd, or a left
R-module structure on kd).

The goal of this question is to show that the central map f := Tr ◦ u : R → k is a pseudo-
character of degree ≤ d, and that its degree is exactly d if k is local and d! is invertible in k.

(1). Show that we may assume that R = Md(k) and u = id (and hence f = Tr).

(2). Show that we may assume that k = C.
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(3). Let r be a positive integer. We make the group Sr act on (Cd)⊗r by permuting the factors
(i.e. σ(v1 ⊗ · · · ⊗ vr) = vσ−1(1) ⊗ · · · ⊗ vσ−1(r)). We make Md(C) act on (Cd)⊗r by the
usual tensor power action (i.e. x(v1 ⊗ · · · ⊗ vr) = (xv1) ⊗ · · · ⊗ (xvr)).39 Show that, for
every x ∈Md(C),

Sr(f0)(x⊗ · · · ⊗ x) =
∑
σ∈Sr

sgn(σ)Tr(xσ, (Cd)⊗r),

where f0 : Md(C)→ C is the trace.

(4). If r ≥ d+ 1, show that the endomorphism
∑

σ∈Sr sgn(σ)σ of (Cd)⊗r is zero.

(5). Finish the proof that f is a pseudo-character of degree ≤ d.

(6). If moreover k is local and d! is invertible in k, show that the pseudo-character f is of degree
d.

Solution.

(1). As u is a map of k-algebras, we have Sr(Tr ◦ u) = Sr(Tr) ◦ u for every r ≥ 1. So, if
we know that Tr is a pseudo-character of degree ≤ d, this will imply immediately that f
is also a pseudo-character of degree ≤ d. Suppose that k is local and that d! is invertible
in k, and let d′ ≤ d be the degree of f . By question (5) of the previous part, we have
d′ = f(1) = Tr(u(1)) = Tr(1) = d. If d′ 6= d, then d′− d is invertible in k (because d! is),
which is impossible. So d′ = d.

(2). Suppose that we know that Tr : Md(k)→ k is a pseudo-character of degree dwhen k = C.

Now let k be any commutative ring, let r ≥ 1, and let
A(1) = (a

(1)
ij ), . . . , A(r) = (a

(r)
ij ) ∈ Md(k). Consider the polynomials ring

k′ = Z[X
(s)
ij , 1 ≤ s ≤ r, 1 ≤ i, j ≤ d], and let B(s) = (X

(s)
ij ) ∈ Md(k

′), for
1 ≤ s ≤ r. We have a morphism of rings ϕ : k′ → k sending each X(s)

ij to a(s)
ij , and

the corresponding morphism ϕ : Md(k
′) → Md(k) sends B(s) to A(s). Choosing rd2

algebraically independent elements in C, we also get an injective morphism of rings
ψ : k′ → C, and we still use ψ to denote the morphism Md(k

′)→Md(C). Because ϕ and
ψ are morphisms of rings, we have

ϕ(Sr(Tr)(B(1), . . . , B(r))) = Sr(Tr)(A(1), . . . , A(r))

and
ψ(Sr(Tr)(B(1), . . . , B(r))) = Sr(Tr)(ψ(B(1)), . . . , ψ(B(r))).

If r = d + 1, this gives ψ(Sd+1(Tr)(B(1), . . . , B(d+1))) = 0 by the hypothesis.
As ψ is injective, we get Sd+1(Tr)(B(1), . . . , B(d+1)) = 0, and applying ϕ gives
Sd+1(Tr)(A(1), . . . , A(d+1)) = 0. So Tr is a pseudo-character of degree ≤ d.

39Note that we think of Md(C) as an associative algebra and not as a Lie algebra here, so the action of Md(C) on
tensor powers of Cd is given by the usual “diagonal” action.
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Suppose that k is local and d! is invertible in k, and let d′ ≤ d be the degree of Tr. Then
d′ = Tr(1) = d (by question (4) of the previous part), and thius gives d = d′ as in question
(1).

(3). Both sides of the equality that we are trying to prove are continuous in x, and they
don’t change if we replace x by gxg−1, with g ∈ GLn(C). As diagonalizable matri-
ces are dense in Mn(C), it suffices to prove the equality for x a diagonal matrix, say
x = diag(x1, . . . , xd).

Let (e1, . . . , ed) be the canonical basis of Cd. Then a basis of (Cd)⊗r is given by
(ei1 ⊗ · · · ⊗ eir)1≤i1,...,ir≤d. Suppose that σ is a r-cycle. Then

(xσ)(ei1 ⊗ · · · ⊗ eir) = xσ−1(i1) . . . xσ−1(ir)(eσ−1(i1) ⊗ · · · ⊗ eσ−1(ir)),

and this is propotional to ei1 ⊗ · · · ⊗ eir if and only if i1 = · · · = ir. So

Tr(xσ, (Cd)⊗r) =
d∑
i=1

xri = Tr(xr).

Now if σ is any element of Sr, let σ = c1 . . . c` be its decomposition into cycles with
disjoint supports I1, . . . , I` ⊂ {1, . . . , r}. Then we have (by the formula for the trace of a
tensor product of maps, see the proof of proposition II.1.1.3 in chapter II)

Tr(xσ, (Cd)⊗r) =
∏̀
i=1

Tr(xci, (Cd)⊗Ii .

By the previous calculation, this is equal to
∏`

i=1 Tr(x|Ii|), which is exactly
(f0)σ(x⊗ · · · ⊗ x).

(4). As before, let (e1, . . . , ed) be the canonical basis of Cd. We get a basis of (Cd)⊗r by
taking the ei1 ⊗ · · · ⊗ eir , for all i1, . . . , ir ∈ {1, . . . , d}. So let i1, . . . , ir ∈ {1, . . . , d}.
As r ≥ d + 1, there exists s, t ∈ {1, . . . , r} distinct such that is = it. Let τ be the
transposition (st). Then we have Sr = S t τS, for S a set of representatives of the
quotient {1, τ} \Sr. Moreover, for every σ ∈ Sr, τσ(e11 ⊗· · ·⊗ eir) = σ(ei1 ⊗· · ·⊗ eir)
and sgn(τσ) = −sgn(σ). So∑
σ∈Sr

sgn(σ)σ(ei1⊗· · ·⊗eir) =
∑
σ∈S

sgn(σ)σ(ei1⊗· · ·⊗eir)+
∑
σ∈τS

sgn(τσ)τσ(ei1⊗· · ·⊗eir) = 0.

(5). Let r ≥ 1. We make Md(C)r act on (Cd)⊗r in the following way :
(x1, . . . , xr)(v1 ⊗ · · · ⊗ vr) = (x1v1)⊗ · · · ⊗ (xrvr). Then the map Md(C)r → C,

(x1, . . . , xr) 7−→ Sr(f0)(x1 ⊗ · · · ⊗ xr)−
∑
σ∈Sr

sgn(σ)Tr((x1, . . . , xr)σ, (Cd)⊗r)
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is r-linear and symmetric (because both of its summands are; for the second summand,
this is proved as in question (2) of teh previous part). By question (3), this map is zero an
all the x ⊗ · · · ⊗ x, x ∈ Md(C). By problem VII.7.2, it is therefore identically 0, i.e., for
all x1, . . . , xr ∈Md(C),

Sr(f0)(x1 ⊗ · · · ⊗ xr) =
∑
σ∈Sr

sgn(σ)Tr((x1, . . . , xr)σ, (Cd)⊗r).

By question (4), this show that Sd+1(f0) = 0.

(6). We already accidentally proved this in the answer of question (2).

�

VII.7.3.3 Characteristic polynomial of a pseudo-character

In this question, we suppose that d! is invertible in k.

(1). (Newton’s identities) Show that there exists unique polynomials a0, . . . , ad−1 in
Z[ 1

d!
][t1, . . . , td] such that, for every α1, . . . , αd ∈ C,

td + ad−1(s1, . . . , sd)t
d−1 + · · ·+ a1(s1, . . . , sd) + a0(s1, . . . , sd) = (t− α1) . . . (t− αd),

where sr = αr1 + · · ·+ αrd for 1 ≤ r ≤ d.

If f : R→ k is a central function, we define the characteristic polynomial of f at x ∈ R to be
the polynomial

Px,f (t) = td + ad−1(s1, . . . , sd)t
d−1 + · · ·+ a1(s1, . . . , sd)t+ a0(s1, . . . , sd) ∈ k[t],

where sr = f(xr) for 1 ≤ r ≤ d.

(2). If f = Tr ◦ u with u : R→Md(k) a k-algebra map, show that Px,f (t) is the characteristic
polynomial of u(x) for every x ∈ R.

(3). Let f : R→ k be a central function, and let x ∈ R. We set

Qx,f (t) =
∑

σ∈Sd+1

sgn(σ)f(x|c1|) . . . f(x|cl−1|)t|cl|−1,

where σ = c1 . . . cl is the decomposition of σ into cycles with disjoint supports such that
d+1 is in the support of cl, and |ci| is the length of the cycle ci (and t0 = 1 by convention).

Show that
Qx,f (t) = (−1)dd!Px,f (t).
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Hint : It’s possible to prove this by direct computation. You can also use the following trick
to reduce to the case where R = Md(k) and f = Tr. 40 First, notice that (−1)dd!Px,f (t)
and Qx,f (t) are the evaluations at sr = f(xr) of polynomials P and Q in the indetermi-
nates t, s1, . . . , sd. Then show that it’s enough to prove that the evaluations of P and Q at
sr = αr1 + · · ·+ αrd, 1 ≤ r ≤ d, are equal for all α1, . . . , αd ∈ C.

(4). If f : R→ k is a central function, show that

Sd+1(f)(x, . . . , x, y) = (−1)dd!f(Px,f (x)y)

for all x, y ∈ R.

If f : R→ k is a central function, its kernel is defined by

Ker(f) = {x ∈ R|∀y ∈ R, f(xy) = 0}.

We say that f is faithful if Ker(f) = 0.

(5). Show that Ker(f) is a two-sided ideal of R for every central function f : R→ k.

(6). (Cayley-Hamilton theorem) If f : R → k is a faithful pseudo-character of degree d, show
that Px,f (x) = 0 for every x ∈ R.

Solution.

(1). We work in the polynomial ring Z[α1, . . . , αd] (the αi are indeterminates) and see
s1, . . . , sd as elements of this ring. We also set s0 =

∑d
i=1 α

0
i = d. For every r ≥ 0,

let
σr =

∑
S⊂{1,...,d}
|S|=r

∏
i∈S

αi ∈ Z[α1, . . . , αd].

These are the elementary symmetric polynomials. Note that σ0 = 1 and σr = 0 for r > d.
We have

f(t) :=
d∏
i=1

(t− αi) =
d∑
r=0

(−1)rσrt
d−r

in Z[α1, . . . , αd][t]. This gives

f ′(t) =
d∑
i=1

f(t)

t− αi
=

d−1∑
r=0

(−1)r(d− r)σrtd−r−1.

In the ring of Laurent formal power series in 1
t

with coefficients in Z[α1, . . . , αd], we have

f ′(t)

f(t)
=

d∑
i=1

1

t− αi
=

d∑
i=1

∑
r≥0

αri
tr+1

=
∑
r≥0

sr
tr+1

,

40But don’t forget to treat this case ! It is not totally trivial.
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hence

f ′(t) = f(t)
f ′(t)

f(t)
=

d∑
i=0

∑
r≥0

(−1)iσisrt
d−i−r−1.

By equating the coefficients of td−k−1 in the two expressions for f ′(t), we get, for
0 ≤ k ≤ d− 1,

(−1)k(d− k)σk =
k∑
r=0

(−1)k−rσk−rsr = (−1)kdσk +
k∑
r=1

(−1)k−rσk−rsr,

hence

kσk = −
k∑
r=1

(−1)k−rσk−rsr.

Using this and the fact that σ1 = s1, an easy induction on k show that σk ∈ Z[ 1
d!

][s1, . . . , sd]
for every k ∈ {1, . . . , d−1}. Moreover, applying this to d+1 instead of d and then setting
αd+1 = 0, we also get dσd = −

∑d
r=1(−1)d−rσd−rsr, hence σd ∈ Z[ 1

d!
][s1, . . . , sd]. In

particular, thanks to the formula
∏d

i=1(t − αi) =
∑d

r=0(−1)rσrt
d−r, we get the existence

of the polynomials a0, . . . , ad−1.

Let’s show the uniqueness of a0, . . . , ad−1. So suppose that we have another family
b0, . . . , bd−1 of polynomials satisfying the same properties. Then, for all α1, . . . , αd ∈ C
and for 0 ≤ r ≤ d− 1,

ar(s1(α1, . . . , αd), . . . , sd(α1, . . . , αd)) = br(s1(α1, . . . , αd), . . . , sd(α1, . . . , αd)).

As C is infinite, two polynomials in Z[X1, . . . , Xd] are equal if and only if they take
the same value on every (x1, . . . , xd) ∈ Cd. So it suffices to prove that, for every
(x1, . . . , xd) ∈ Cd, there exists (α1, . . . , αd) ∈ Cd such that xr =

∑r
i=1 α

r
i for 1 ≤ r ≤ d.

Define a family y1, . . . , yd ∈ C inductively by y1 = x1 and

kyk = −
k∑
r=1

(−1)k−ryk−rxr

for 2 ≤ k ≤ d. Let α1, . . . , αd ∈ C be the roots of the polynomials
td +

∑d
i=1(−1)iyit

d−i ∈ C[t]. Then we have yr = σr(α1, . . . , αd) for 1 ≤ r ≤ d. Hence
the relation above between the xk and yk gives that xr = sr(α1, . . . , αd) for 1 ≤ r ≤ d,
which is what we wanted.

(2). It suffices to prove the following statement : For every A ∈ Md(k), if
sr = Tr(Ar) for 1 ≤ r ≤ d, then the characteristic polynomial of A is equal to
td + ad−1(s1, . . . , sd)t

d−1 + · · · + a1(s1, . . . , sd)t + a0(s1, . . . , sd). (Then we apply this
to A = u(x), for x ∈ R.)
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Write A = (aij), and consider the ring k′ = Z[Xij] and B = (Xij) ∈ Md(k
′).

We have a map of rings ϕ : k′ → k sending each Xij to aij , and ϕ(B) = A. So
ϕ(det(tId − B)) = det(tId − A) and ϕ(Tr(Br)) = Tr(Ar) for every r ≥ 0, and so it
suffices to prove the statement in the case k = k′ and A = B. Also, choosing d2 al-
gebraically independent elements of C gives an injective map of rings k′ → C, and so
we may assume that k′ = C. Let α1, . . . , αd ∈ C be the eignevalues of B, we have
Tr(Br) = sr(α1, . . . , αd) for 1 ≤ r ≤ d and

det(tId −B) = (t− α1) . . . (t− αd),

so the desired equality follows directly from the definition of the polynomials a0, . . . , ad−1.

(3). Note that, if x, y ∈ R, we have

f(Qx,f (x)y) =
∑

σ∈Sd+1

sgn(σ)f(x|c1|) . . . f(x|cl−1|)f(x|cl|−1y),

with σ = c1 . . . cl as before. By definition of Sd+1(f), this is equal to Sd+1(f)(x, . . . , x, y).
We will use this identity later in the solution of (3).

Consider the following polynomials in Z[s1, . . . , sd, t] (here s1, . . . , sd are seen as indeter-
minates) :

P = td +
d−1∑
i=0

ai(s1, . . . , sd)t
i−1

and
Q =

∑
σ∈Sd+1

sgn(σ)s|c1| . . . s|cl−1|t
|cl|−1,

where σ = c1 . . . cl is the decomposition of σ into cycles with disjoint supports such that
d + 1 is in the support of cl. Let x ∈ R. Then Px,f (t) (resp. Qx,f (t)) is obtained by
evaluating P (resp. Q) at sr = f(xr), 1 ≤ r ≤ d. So, to prove the statement, we just
need to show that P = Q in Z[s1, . . . , sd, t]. As C is infinite, we just need to show that the
evaluations of P and Q at every element (s1, . . . , sd) of Cd are equal. Let s1, . . . , sd ∈ C.
We have seen in the solution of question (1) that there exist α1, . . . , αd ∈ C such that
sr = αr1 + · · · + αrd for 1 ≤ r ≤ d. Let A ∈ Md(C) be a matrix with eigenvalues
α1, . . . , αd. Then Tr(Ar) = αr1 + · · ·+ αrd for every r ≥ 0, so P (s1, . . . , sd, t) = PA,Tr(t)
and Q(s1, . . . , sd, t) = PA,Tr(t). So to show that P = Q, it suffices to show the statement
of question (3) in the case R = Md(C), f = Tr.

Let’s suppose that R = Md(C) and f = Tr. As both sides of the equality to prove are
continuous in x ∈Md(C) and don’t change if we replace x by gxg−1, for g ∈ GLn(C), we
may assume that x ∈Md(C) is a diagonalizable matrix with pairwise distinct eigenvalues.
Remember that we saw at the beginning that, for every y ∈Md(C),

Tr(Qx,Tr(x)y) = Sd+1(Tr)(x, . . . , x, y).
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As Tr is a pseudo-character of degree ≤ d by the previous part, this is equal to 0 for every
y ∈ Md(C), and so Qx,Tr(x) = 0. This means that the minimal polynomial of x divides
Qx,Tr. As x has pairwise distinct eigenvalues, its minimal polynomial is its characteristic
polynomial, i.e. Px,Tr (by question (2)). Now note that deg(Qx,Tr) ≤ d and that the degree
d part of Qx,Tr is given by ∑

σ∈Sd+1
σ is a (d+1)−cycle

sgn(σ)td.

There are d! (d + 1)-cycles in Sd+1, and they all have signature (−1)d, so the leading
term of Qx,Tr is (−1)dd!td. As Px,Tr is monic of degree d and divides Qx,Tr, we finally get
Qx,Tr = (−1)dd!Px,Tr.

(4). We have seen at the beginning of the solution of question (3) that, for all x, y ∈ R,

f(Qx,f (x)y) = Sd+1(f)(x, . . . , x, y).

But question (3) gives Qx,f (x) = (−1)dd!Px,f (x), so we get the desired equality immedi-
ately.

(5). It is clear on the definition that Ker(f) is a right ideal of R. Let’s show that it is also
a left ideal. This is also very easy. If x ∈ Ker(f) and a ∈ R, then, for every y ∈ R,
f((ax)y) = f(xya) = 0 because f is a central function. So ax ∈ Ker(f).

(6). Let x ∈ R. By question (4), we have

0 = Sd+1(f)(x, . . . , x, y) = (−1)dd!f(Px,f (x)y)

for every y ∈ R. As d! is invertible in k, this implies that f(Px,f (x)y) = 0 for every y ∈ R,
i.e. that Px,f (x) ∈ Ker(f). As f is faithful, this gives Px,f (x) = 0.

�

VII.7.3.4 Pseudo-characters over an algebraically closed field

In this question, we suppose that k is an algebraically closed field where d! is invertible and that
the k-algebra R is finite-dimensional. Let f : R → k be a pseudo-character of degree d. The
goal is to show that f is the trace of an actual representation. 41

(1). Show that we may assume that Ker(f) = 0.

From now on, we assume that f is faithful, i.e. that Ker(f) = 0. Remember that rad(R) is the
Jacobson radical of R.
41The conclusion is actually true without the hypothesis onR, but with a slightly more difficult proof. See corollary

4.4 of Rouquier’s paper [24].
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(2). Show that every element of rad(R) is nilpotent. (Hint : use the Cayley-Hamilton theorem
of the previous part.)

(3). Show that rad(R) = 0. (Hint : Show that f(x) = 0 for every x ∈ rad(R).)

(4). Conclude.

Solution.

(1). We know that Ker(f) is an ideal of R by question (5) of the previous part. Let
π : R → R/Ker(f) be the projection map. As f|Ker(f) = 0, we can write f = f ◦ π
with f : R/Ker(f) → k, and it is very easy to check that f is a pseudo-character of
degree d. Suppose that we have a k-algebra map u : R/Ker(f) → Md(k) such that
f = Tr ◦ u. Then u = u ◦ π : R→Md(k) is a k-algebra map, and f = Tr ◦ u.

(2). Let x ∈ rad(R). As f is faithful, the Cayley-Hamilton theorem (question (6) of the
previous part) gives Px,f (x) = 0. The polynomial Px,f (t) ∈ k[t] is nonzero because its
leading term is td, so we may write the equality Px,f (x) = 0 as xr(c0+c1x+· · ·+csxs) = 0,
with r ≥ 0 and c0, cs ∈ k×. As x ∈ rad(R), c0 + · · · + csx

s is invertible (by proposition
I.2.5 of chapter I), so we must have r ≥ 1, and we get xr, which show that x is nilpotent.

(3). First we note that, for every x ∈ R, f(x2) = 0 implies that f(x) = 0. Indeed, we know
that

0 = Sd+1(f)(x, . . . , x) =
∑

σ∈Sd+1

sgn(σ)
l∏

i=1

f(x|ci|),

where σ = c1 . . . cl is the decomposition of σ as a product of cycles with disjoint supports.
If f(x2) = 0, then the only surviving term in the sum above is that for σ = 1, so we get
f(x)d+1 = 0 in k. As k is a field, this gives f(x) = 0.

Now suppose that x ∈ rad(R). By question (2), x is nilpotent, so there exists r ≥ 0 such
that x2r = 0. In particular, we have f(x2r) = 0, and we have just seen that this implies
that f(x) = f(x2) = · · · = f(x2r−1

) = f(x2r) = 0.

(4). As rad(R) is an ideal of R (by corollary I.2.6 of chapter I), the result of question (3)
implies that rad(R) ⊂ Ker(f). But f is faithful, so rad(R) = 0. As R is a finite-
dimensional k-vector space, it’s a left Artinian k-algebra, so, by theorem I.2.11 of chapter
I, it is semisimple. As k is algebraically closed, we get by remark I.1.10.7 of chapter I an
isomorphism R 'Mn1(k)× · · · ×Mnr(k), with n1, . . . , nr ≥ 1.

For every i ∈ {1, . . . , r}, we denote by ei the unit element in Mni(k) and by fi the restric-
tion of f to Mni(k). Then fi is a pseudo-character of degree di ≤ d, so by question (5)
of the first part, f(ei) = di. By question (6) of the first part, fi = di

ni
Tr. Also, we have

1 = e1 + · · ·+ er in R, so d = f(1) = d1 + · · ·+ dr (where the first equality follows again
from question (5) of the first part).

We want to show that all the quotient di
ni

are nonnegative integers. Fix i ∈ {1, . . . , r}, and
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let e be the matrix E11 ∈ Mni(k). We have f(e) = di
ni

Tr(e) = di
ni

. Also, e2 = e, so using
the equality of question (3) of the first part and reasoning as in the proof if question (5) of
that same part, we get that f(e)(f(e)− 1) . . . (f(e)− d) = Sd+1(f)(e⊗ · · · ⊗ e) = 0. As
k is a field, this shows that di

ni
= f(e) ∈ {0, . . . , d}.

Now let u : R → Md(k) be the map sending
x = (x1, . . . , xr) ∈ Mn1(k) × · · · × Mnr(k) = R to the d × d matrix with diago-
nal blocks (x1, . . . , x1, . . . , xr, . . . , xr), where each xi is repeated di

ni
times. This u is

obviously a morphism of k-alebras, and we have f = Tr ◦ u. Indeed, iff x = (x1, . . . , xr)
as before, then x = x1 + · · ·+ xr in R, so

f(x) =
r∑
i=1

f(xi) =
r∑
i=1

fi(xi) =
r∑
i=1

di
ni

Tr(xi) = Tr(u(x)).

�

VII.7.3.5 Characters and representations

In this question, we suppose that k is an algebraically closed field and that dimk(R) < +∞.
(The most important example is when R is the group algebra of a finite group.) All the (left)
R-modules are assumed to be finite-dimensional over k. If M is a R-module, its character
χM : R → k is by definition the composition of the structural map R → Endk(M) and of the
trace Endk(M) → k. By VII.7.3.2, this is a pseudo-character of degree ≤ dimk(M) if M 6= 0,
and it is actually of degree dimk(M) of (dimk(M))! is invertible in k.

Let M be a R-module. Because we assumed that dimk(M) is finite, M has a composition (=
Jordan-Hölder) series M = M0 ⊃ M1 ⊃ · · · ⊃ Mr = 0. (See sections I.1.5 of I.1.6 of chapter
I.) The semisimplification of M is by definition the semisimple R-module

M ss =
r⊕
i=1

Mi−1/Mi.

By the Jordan-Hölder theorem, it doesn’t depend on the choice of the composition series.

(1). Let V1, . . . , Vr be the (isomorphism classes of) simple R-modules. Show that the functions
χV1 , . . . , χVr are linearly indepedent in the k-vector space of functions R→ k.

(2). Let M and M ′ be two R-modules such that dimk(M) < char(k) and
dimk(M

′) < char(k). Show that M ss 'M ′ss if and only if χM = χM ′ .

Solution.

(1). As R is a finite-dimensional k-vector space, it is left Artinian, so R/ rad(R) is semisim-
ple by remark I.2.10 and theorem I.2.11 of chapter I. By the Artin-Wedderburn theo-
rem (theorem I.1.10.5 of chapter I), R/ rad(R) '

∏r
i=1 Endk(Vi). Note that all the
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χVi factor through R/ rad(R), and that they correspond to the maps Tr ◦ pri, where
pri :

∏r
i=1 Endk(Vi)→ Endk(Vi) is the ith projection.

Suppose that we have
∑r

i=1 aiχVi = 0, with a1, . . . , ar ∈ k. Let i ∈ {1, . . . , r}. We
have a surjective map R → R/ rad(R) '

∏r
j=1 Endk(Vj) '

∏r
j=1Mnj(k), where

nj = dimk(Vj), and we choose an element xi ∈ R lifting (0, . . . , 0, ei, 0, . . . , 0), where
ei is an element of Mni(k) of trace 1 (for example the elementary matrix E11). Then
χVi(xi) = 1 and χVj(xi) = 0 if j 6= i, so

0 =

(
r∑
j=1

ajχVj

)
(xi) = ai.

(2). If M ss ' M ′ss, then clearly χM = χM ′ (even without the condition on the dimensions
of M and M ′). Conversely, suppose that χM = χM ′ . Write M ss '

⊕r
i=1 V

⊕ni
i and

M ′ss '
⊕r

i=1 V
⊕mi
i . Then we have

∑r
i=1 niχVi =

∑r
i=1 miχVi , so, by question (1),

ni −mi = 0 in k for every i ∈ {1, . . . , r}. As dimk(M), dimk(M
′) < char(k), we have

ni,mi < char(k) for every i, and so the fact that ni = mi in k implies that ni = mi in Z.

�

VII.7.3.6 Universal pseudo-character

In this question, we take G to be a group (not necessarily finite) and we fix a positive integer d.

(1). Show that there exists a unique pair (Auniv, funiv), where Auniv is a commutative ring and
funiv : Auniv[G] → Auniv is a pseudo-character of degree d, satisfying the following con-
dition : For every commutative ringA, for every pseudo-character f : A[G]→ A of degree
≤ d, there exists a unique morphism of rings u : Auniv → A such that f|G = u ◦ funiv|G .

Hint : The uniqueness should be easy. For the construction of Auniv, start with Z, then
for every list (g1, . . . , gr) of elements of G (r is variable) add an indeterminate (that is
supposed to be funiv(g1 . . . gr)), then add some relations to make this work.

(2). (*) If G is a finitely generated group (i.e. generated by a finite subset), show that the ring
Auniv[1/d!] is a finitely generated Z[1/d!]-algebra (i.e. a quotient of a polynomial algebra
over Z[1/d!] with finitely many indeterminates).

(3). Suppose that G is a finite group. Show that, for every algebraically closed field k such
that d < char(k), taking the character induces a bijection between the set of isomorphism
classes of semisimple representations of G on k-vector spaces of dimension ≤ d and the
set of ring morphisms Auniv → k. 42 43

42This stays true for infinite groups.
43In the language of algebraic geometry, SpecAuniv is a Z-scheme of finite type (if G is finitely generated) whose
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Solution.

(1). Let’s start with the uniqueness. Suppose that we have two pairs (A1, f1) and (A2, f2)
satisfying the condition. Then the universal property of (A2, f2) (resp. (A1, f1)) gives a
map u : A2 → A1 (resp. v : A1 → A2) such that u ◦ f2|G = f1|G (resp. v ◦ f1|G = f2|G).
Then we (uv) ◦ f1|G = f1|G, so, by the uniqueness condition in the statement of the
universal property for (A1, f1), uv = idA1 . Similary, vu = idA2 .

Let’s show the existence. Consider the polynomial ring B′ = Z[Xg, g ∈ G], and the ideal
I of B′ generated by the following elements :

- Xgh −Xhg, for every g, h ∈ G;

- for every g1, . . . , gd+1 ∈ G, the element
∑

σ∈Sd+1
sgn(σ)

∏l
i=1Xgai,1 ...gai,ni

, where
σ = c1 . . . cm is the decomposition of σ into cycles with disjoint supports, and we
have written ci = (ai,1 . . . ai,ni).

We take B = B′/I and denote by T : B[G] → B the B-linear map sending every g ∈ G
to Xg mod I ∈ B, and by π : B′ → B the quotient map.

Let’s show that the pair (B, T ) has the universal property of the statement. Let A be a
commutative ring and f : A[G]→ A be a pseudo-character of degree ≤ d. We have a map
of rings u′ : B′ → A sending Xg = T (g) to f(g) for every g ∈ G, and u′(I) = 0 by the
very definition of a pseudo-character of degree ≤ d. So we get a map of rings u : B → A
such that u ◦ T|G = f|G. Suppose that v : B → A is another map of rings such that
v ◦ T|G = f|G, then v ◦ π = u′ on every Xg, hence v ◦ π = u′, hence v = u.

Finally, let’s show that T : B[G] → B is a pseudo-character of degree d. The B-linear
map B[G] ⊗B B[G] → B, x ⊗ y 7−→ T (xy) − T (yx), is zero on all the elements of the
form g ⊗ h, with g, h ∈ G (by definition of B), so it is zero everywhere because these
elements generate B[G] ⊗B B[G]. In other words, T is a central function. Similarly, the
B-linear map Sd+1T : B(G)⊗d+1 → B (the tensor product is again over B) is zero on
all the elements of the form g1 ⊗ · · · ⊗ gd+1 with g1, . . . , gd+1 ∈ G, by definition of B.
As these elements generate B[G]⊗d+1, we see that Sd+1T = 0, and so T is a pseudo-
character of degree ≤ d. To see that the degree of T is exactly d, consider the C-linear
map f : C[G] → C sending every element of G to d. This is the character of the trivial
representation of G on Cd, and hence, by VII.7.3.2, it is a pseudo-character of degree d.
So we get a map of rings u : B → C such that f|G = u ◦ T|G. As u is a map of rings,
we have Sd(f)(g1 ⊗ · · · ⊗ gd) = u(Sd(T )(g1 ⊗ · · · ⊗ gd)) for all g1, . . . , gd ∈ G. As the
degree of f is d, Sd(f) is not identically 0; as the elements g1 ⊗ · · · ⊗ gd generate C[G]⊗d,
Sd(f) is nonzero on at least one of them, and then so is Sd(T ), which shows that Sd(T ) is
not identically zero and hence that the degree of T is d.

Note that, by definition, B is generated as a Z-algebra by the T (g), g ∈ G.

k-points are naturally in bijection with isomorphism classes of dimension ≤ d semi-simple representations of G
over k.
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(2).

(3). Write (Auniv, funiv) = (A, T ). Let R≤d be the set of isomorphism classes of semisimple
representations of G on k-vector spaces of dimension ≤ d, and Homrings(A, k) be te set
of ring maps A→ k.

If ρ : k[G] → Endk(V ) is a representation of G on a k-vector space V such that
dimk V ≤ d, then Tr ◦ ρ : k[G]→ k is a pseudo-character of degree dimk V by VII.7.3.2,
so by the universal property of (A, T ) there exists a unique u ∈ Homrings(A, k) such that
u ◦ T|G = Tr ◦ ρ|G. As Tr ◦ ρ only depends on the isomorphism class of the semisimplifi-
cation of ρ, this gives a map ϕ : R≤d → Homrings(A, k).

Conversely, let u ∈ Homrings(A, k). Then u ◦ T|G : G → k extends to a k-linear map
f : k[G] → k, and we see as in the proof of (1) that this f is a pseudo-character of
degree d′ ≤ d. By VII.7.3.4, there exists a representation ρ : k[G] → Endk(V ), with
dimk(V ) = d′, such that f = Tr ◦ ρ. Replacing ρ by its semisimplification (see VII.7.3.5),
we may assume that ρ is semisimple. As dimk(V ) ≤ d < char(k), VII.7.3.5(2) says that
ρ (with the property that f = Tr ◦ ρ) is unique up to semisimplification. This gives a map
ψ : Homrings(A, k)→ R≤d.

The fact that ψ ◦ ϕ = idR≤d follows from VII.7.3.5(2), and the fact that
ϕ ◦ ψ = idHomrings(A,k) follows from the remark, made in the proof of (1), that the ele-
ments T (g), g ∈ G, generate A as a Z-algebra.

�

VII.7.4 Schur-Weyl duality (chapters I, IV and VI)

In this problem, k is a field.

(1). If A ⊂ A′ are two k-algebras, the centralizer of A in A′ is

ZA′(A) = {x ∈ A′|∀y ∈ A, xy = yx}.

Let V be a finite-dimensional k-vector space, let A be a subalgebra of Endk(V ), and let
B = ZEndk(V )(A). Suppose that A is semisimple. Prove the following :

(a) B is semisimple.

(b) A = ZEndk(V )(B).

(c) If k is algebraically closed, then, as a representation of A ⊗k B, V is equal to⊕
i∈I Vi ⊗ Wi, where (Vi)i∈I (resp. (Wi)i∈I)) is a complete set of representatives

of isomorphism classes of irreducible representations of A (resp. B).

In particular, you get a bijection between the isomorphism classes of irreducible represen-
tations of A and B.
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(2). We now assume that char(k) is prime to n!. We fix a nonzero finite-dimensional k-vector
V and a positive integer n. We denote by T nV and SnV the nth tensor and symmetric
powers of V (see problem VII.6.7). We make Sn act on T nV by permuting the factors
(see problem VII.7.3.2(3)).

(a) Show that the quotient map T nV → SnV induces an isomorphism
(T nV )Sn

∼→ SnV . We use this to identify SnV to a subspace of T nV in what
follows.

(b) Show that SnV is generated as a k-vector space by elements of the form vn, v ∈ V .
(Compare with problem VII.7.2.)

(c) Let A be a finite-dimensional associative k-algebra with unit. Then T nA is also an
associative k-algebra (we take (a1⊗· · ·⊗an)(b1⊗· · ·⊗bn) = (a1b1)⊗· · ·⊗(anbn)),
and SnV is a subalgebra (no need to prove this, it follows immediately from (a)
anyway). For each a ∈ A, let

∆n(a) =
1

n
(a⊗ 1⊗ · · · ⊗ 1 + 1⊗ a⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ a).

Show that, as a k-algebra, SnA is generated by ∆n(A).

(d) Now let g = gl(V ), and make this act on T nV as in problem VII.6.7(5). Let Ug
be the universal enveloping algebra of g. Show that the image of Ug in Endk(T

nV )
is canonically identified with Sn Endk(V ). (We see Sn Endk(V ) as a subalgebra
of T n Endk(V ) as in (c), and make T n Endk(V ) act on T nV in the obvious way :
(ϕ1 ⊗ · · · ⊗ ϕn)(v1 ⊗ · · · ⊗ vn) = ϕ1(v1) ⊗ · · · ⊗ ϕn(vn). This gives an injec-
tion T n Endk(V ) ↪→ Endk(T

nV ), which is actually an isomorphism for dimension
reasons.)

(e) Let A (resp. B) be the image of k[Sn] (resp. Ug) in Endk(T
nV ). Show that A and

B are semisimple, and that they are each other’s centralizers in Endk(T
nV ).

From now on, we take k = C and V = Cd, so g = gld(C).

(f) Let Irrg be the set of isomorphism classes of irreducible representations of g. We use
the notation of chapter IV for partitions of n and irreducible representations of Sn.
We also use the description of irreducible representations of g in problem VII.6.19(4)
(and the notation of this problem).

Show that there is a map{
{partitions of n} → Irrg ∪ {0}

λ 7→ Wλ

such that, as a representation of Sn×g,

T nV =
⊕
λ

Vλ ⊗Wλ,
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and that every Wλ comes by differentation (i.e. by the process of theorem VI.5.2 of
chapter VI) from a continuous representation of GLd(C), that we’ll also denote by
Wλ, and that is 0 or irreducible.

(g) Remember that dimV = d. Let ∆ ∈ k[x1, . . . , xd] be the polynomial defined by

∆ =
∑
σ∈Sd

sgn(σ)
n∏
i=1

xd−iσ(i).

Show that
∆ =

∏
1≤i<j≤d

(xi − xj).

(h) Let λ = (λ1, . . . , λr) be a partition of n with r ≤ d. We define a polynomial
Dλ ∈ k[x1, . . . , xd] by

Dλ =
∑
σ∈Sd

sgn(σ)
d∏
i=1

xλi+d−iσ(i) ,

where we take λi = 0 if i > r.

Let Sλ = Dλ
∆

. Show that this is in k[x1, . . . , xd], i.e. a polynomial and not just a
rational fraction. (Hint : use the fact that Dλ is antisymmetric in x1, . . . , xd.)

Let Td ⊂ GLd(C) be the commutative subgroup of diagonal matrices. If
ρ : GLd(C) → GL(W ) is a continuous representation, remember that its character
χW : GLd(C)→ C is defined by χW (g) = Tr(ρ(g)).

In the following questions, g = diag(a1, . . . , ad) will be an element of Td with diagonal
entries a1, . . . , ad ∈ C and σ will be an element of Sn. For every l ∈ Z≥1, we denote by il
the number of cycles of length l in the decomposition of σ as a product of cycles with pair-
wise disjoint supports. Finally, we denote by Π the set of partitions λ = (λ1 ≥ · · · ≥ λr)
of n such that r ≤ d.

Remember that we are using the notation of chapter IV.

(i) Show that
Tr(gσ, T nV ) =

∑
λ∈P(n)

χVλ(σ)χWλ
(g).

(j) Show that
Tr(gσ, T nV ) =

∏
l≥1

Pl(a1, . . . , ad)
il ,

where, for every l ≥ 1, Pl(x1, . . . , xd) = xl1 + · · ·+ xld ∈ k[x1, . . . , xd].
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(k) Show that ∏
l≥1

Pl(x1, . . . , xd)
il =

∑
λ∈Π

χVλ(σ)Sλ(x1, . . . , xd).

(Hint : Use the fact that the left-hand side is symmetric in x1, . . . , xd.)

(l) Show that Wλ = 0 if λ 6∈ Π, and that, for λ ∈ Π,

χWλ
(g) = Sλ(a1, . . . , ad).

(m) Show that, in the notation of problem VII.6.19, if λ ∈ Π, then Wλ is the irreducible
representation of g corresponding to (λ1, . . . , λr, 0, . . . , 0) ∈ Λ+

g . (This justifies the
notation Wλ a posteriori.)

Solution.

(1). Because A is semisimple, we can write V =
⊕

i∈I V
ni
i as a A-module, where (Vi)i∈I is

the (finite) set of simple A-modules (up to isomorphism) and ni ≥ 0. Let A =
∏

i∈I Ai be
the corresponding decomposition of A into simple factors (see theorem I.1.10.5 of chapter
I), that is, A acts on Vi through the projection A → Ai. As the map A → Endk(V ) is
injective, all the ni are positive.

For every i ∈ I , let Di = EndA(Vi). This is a division algbera by Schur’s lemma, and we
have B '

∏
i∈IMni(Di), so B is semisimple. Let A′ = ZEndk(V )(B); clearly, A ⊂ A′. By

Schur’s lemma again, A′ =
∏

i∈I Ei, where Ei is the set of k-linear endomorphisms of Vi
that commute with Di = EndA(Vi). By the double centralizer property (theorem I.1.9.2 of
chapter I), the obvious map Ai → Ei is an isomorphism. So we get A = A′.

As B commutes with A, it preserves the isotypic components V ni
i of V as a A-module.

So to prove the rest of the last statement, we may assume that A = Ai and V = V ni
i ;

then B = Mni(Di). As B commutes with A, it acts on HomA(Vi, V ) (through its action
on V , so (b · f)(x) = bf(x) for all b ∈ B, f ∈ HomA(Vi, V ) and x ∈ Vi), and, as a
B-module, HomA(Vi, V ) is isomorphic to Dni

i , which is the unique simple B-module. So
it suffices to show that the k-linear map u : Vi ⊗k HomA(Vi, V )→ V , x⊗ f 7−→ f(x), is
an isomorphism of A⊗kB-module, where the A⊗kB action on the left hand side is given
by the A-action on the factor Vi and the B-action on the factor HomA(Vi, V ). Let’s check
that u is A⊗k B-linear. Let a ∈ A, b ∈ B, x ∈ Vi and f ∈ HomA(Vi, V ). We have

u((a⊗ b)(x⊗ f)) = u((ax)⊗ (bf)) = (bf)(ax) = bf(ax) = baf(x) = abf(x),

where the last two inequalities come from the A-linearity of f and the fact that A and B
commute. Also, u is surjective because V ' V ni

i as a A-module. Finally, let’s show that u
is an isomorphism by computing dimensions. We use for the first time the hypothesis that
k is algebraically closed. Because of this hypothesis, we have A ' Md(k), so Vi ' V d,
EndA(Vi) ' k and HomA(Vi, V ) ' EndA(Vi)

ni ' kni . This gives

dimk V = ni dimk Vi = (dimk HomA(Vi, V ))(dimk Vi),
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hence the source and target of u have the same dimension.

(2). (a) Let p : T nV → SnV be the quotient map, and let π : T nV → T nV be the k-linear
map defined by

v1 ⊗ · · · ⊗ vn 7−→
1

n!

∑
σ∈Sn

σ(v1 ⊗ · · · ⊗ vn).

Then π is clearly a projection with image (T nV )Sn . Also, the map V n → (T n)SnV ,
(v1, . . . , vn) 7−→ π(v1 ⊗ · · · ⊗ vn), is n-linear symmetric, so it induces a map
u : SnV → (T nV )Sn , and it is very easy to see that u is an inverse of p|(TnV )Sn .

(b) As in problem VII.7.2, we can do this two ways (at last if k = C):

(i). The first solution of problem VII.7.2 gives that, for all v1, . . . , vn ∈ V ,

v1 . . . vn =
1

n!

∑
∅6=S⊂{1,...,n}

(−1)n−|S|

(∑
i∈S

vi

)n

in SnV , which immediately implies the result. This only uses the condition that
n! ∈ k×.

(ii). If k = C (the case of interest later), then SnV is an irreducible representation
of sl(V ) by problem VII.6.4, hence of a group isomorphic to SU(dimC V ) by
remark VI.8.3 of chapter VI, and the C-subspace generated by the vn, v ∈ V , is
nonzero and stable by the action of this group, hence equal to SnV .

(c) First, it is clear that ∆n(A) ⊂ (T nA)Sn , so the question makes sense. Let
a1, . . . , an ∈ A. Then, in SnV ,

∆n(a1) . . .∆n(an) = a1 . . . an.

So the k-subalgebra of SnA generated by ∆n(A) contains all the elements of the
form a1 . . . an, hence it is equal to SnA.

(d) Let’s make the injective map Sn Endk(V ) → Endk(T
nV ) explicit : If

u1, . . . , un ∈ Endk(V ) and v1, . . . , vn ∈ V , then

(u1 . . . un)(v1 ⊗ · · · ⊗ vn) =
1

n!

∑
σ∈Sn

uσ(1)(v1)⊗ · · · ⊗ uσ(n)(vn).

Then the action of g on T nV is given by the composition of the map
∆n : g → Sng = Sn Endk(V ) and of the map Sn Endk(V ) → Endk(T

nV ) that
we just wrote. So the image of Ug is the k-subalgebra generated by the image of ∆n,
which by (c) is equal to Sn Endk(V ).

(e) We already saw that B = Sn Endk(V ). Hence B is a quotient of the semisimple
k-algebra T n Endk(V ) ' Endk(T

nV ), and so it is semisimple.
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On the other hand, k[Sn] is semisimple because n! = |Sn | is invertible in k (by
Maschke’s theorem, i.e. theorem I.3.2 of chapter I), so its quotient A is also semisim-
ple. Also, it is clear on the formula for the action of Sn Endk(V ) that this action
commutes with the action of A, so Sn Endk(V ) ⊂ Zk[Sn](Endk(T

nV )).

By (a), the centralizer of k[Sn] in Endk(T
nV ) ' T n Endk(V ), i.e. (T n Endk(V ))Sn ,

is equal to Sn Endk(V ) = B. Finally, by question (1) (and the fact thatA is semisim-
ple), A = ZEndk(TnV )(B) (and we recover the fact that B is semisimple).

(f) We have seen (in theorem IV.3.3 of chapter IV) that we have a bijective map

P(n) := {partitions of n} → SC(Sn), λ 7−→ Vλ.

Also, by question (1), we have an isomorphism of A⊗C B-modules

T nV '
⊕

λ∈P(n)

Vλ ⊗Wλ,

where, for every λ ∈ P(n), Wλ is either 0 (if the irreducible representation Vλ of
Sn doesn’t appear in T nV ) or an irreducible representation of B, hence of Ug, hence
also of g. This gives the desired map. Note also that, if λ, µ ∈ P(n) and such that
λ 6= µ and Wλ,Wµ 6= 0, then Wλ 6' Wµ (again by (1)).

Finally, the representation of g on T nV clearly lifts to a representation of GLd(C)
(given by the formula g(v1 ⊗ · · · ⊗ vn) = (gv1) ⊗ · · · ⊗ (gvn), see remark VI.5.6
of chapter VI), and by remark VI.8.3 of chapter VI so do all its g-subrepresentation,
hence so do the Wλ. By the same remark, each nonzero Wλ is irreductible as a
representation of GLd(C).

(g) It is clear on the definition of ∆ that it is the determinant of the matrix
(xd−ji )1≤i,j≤d ∈ Md(k[x1, . . . , xd]). This is a Vandermonde matrix with the order
of its columns reversed, so it determined is (−1)d(d−1)/2

∏
1≤i<j≤d(xj − xi), which is

exactly the desired formula for ∆.

(h) Make Sd act on k[x1, . . . , xd] by σ(f(x1, . . . , xd)) = f(xσ(1), . . . , xσ(d)), for every
σ ∈ Sd and f ∈ k[x1, . . . , xd]. Then, for every σ ∈ Sd, σ(Dλ) = sgn(σ)Dλ.
(This is clear from the definition of Dλ.) In particular, if i, j ∈ {1, . . . , j} and
i 6= j, then σ(Dλ) = −Dλ if σ = (ij), hence Dλ|xi=xj = 0, so xi − xj di-
vides Dλ in k[x1, . . . , xd]. As the ring k[x1, . . . , xd] is a unique factorization do-
main, we deduce that

∏
1≤i<j≤d(xi − xj) divides Dλ in k[x1, . . . , xd]. But by (g),

∆ =
∏

1≤i<j≤d(xi − xj).

(i) This just follows from (f).

(j) The calculation exactly the same as in question (3) of VII.7.3.2 :

Let (e1, . . . , ed) be the canonical basis of V = kd. Then a basis of T nV is given by
(ei1 ⊗ · · · ⊗ ein)1≤i1,...,in≤d. Suppose that σ is a n-cycle. Then

(gσ)(ei1 ⊗ · · · ⊗ ein) = (aσ−1(i1) . . . aσ−1(in))(eσ−1(i1) ⊗ · · · ⊗ eσ−1(in)),
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and this is propotional to ei1 ⊗ · · · ⊗ ein if and only if i1 = · · · = in. So

Tr(gσ, T nV ) =
d∑
i=1

ani = Pn(a1, . . . , ad).

Now if σ is any element of Sn, let σ = c1 . . . c` be its decomposition into cycles with
disjoint supports I1, . . . , I` ⊂ {1, . . . , n}. Then we have (by the formula for the trace
of a tensor product of maps, see the proof of proposition II.1.1.3 in chapter II)

Tr(gσ, T nV ) =
∏̀
i=1

Tr(gci, V
⊗Ii).

By the previous calculation, this is equal to
∏`

i=1 P|Ii|(a1, . . . , ad), which gives the
desired result.

(k) By definition of the Sλ, the formula we’re trying to prove is equivalent to

∆
∏
l≥1

Pl(x1, . . . , xd)
il =

∑
λ∈Π

χVλ(σ)Dλ(x1, . . . , xd).

Note that, for every tau ∈ Sd, τ(Dλ) = sgn(τ)Dλ, τ(∆) = sgn(τ)∆ and
τ(Pl) = Pl. So both sides of the equality above are antisymmetric in the xi, and so we
only need to show that the coefficients of all the monomials of the form xn1

1 . . . xndd
with n1 > · · · > nd coincide. Note that ∆

∏
l≥1 P

il
l is homogeneous of degree

d(d− 1)/2 +
∑

l≥1 lil = n+d(d− 1)/2, and that each Dλ is homogeneous of degree∑d
i=1(d − i + λi) = n + d(d − 1)/2. So both sides are homogeneous of the same

degree. Let n1 > · · · > nd ≥ 0 be integers such that n1 + · · ·+nd = n+ d(d− 1)/2,
and write ni = d − i + λi. Then we have λ1 ≥ · · · ≤ λd = nd ≥ 0, and
λ1 + · · · + λd = n, so λ := (λ1, . . . , λd) ∈ Π. Also, by theorem IV.4.3 of chap-
ter IV, the coefficient χV}lambda(σ) of xn1

1 . . . xndd on the right hand side is equal to the
coefficient of xn1

1 . . . xndd in ∆
∏

l≥1 P
il
l , which is the left hand side. This proves the

equality.

(l) This follows from (i), (j), (k) and the fact that the fonctions χVλ : Sn → C form a
linearly independent family (by corollary II.1.2.8 of chapter II).

(m) We have seen that Wλ is an irreducible representation of GLd(C) and g, and that its
character is given on Td ⊂ GLd(C) by the formula (a1, . . . , ad) 7−→ Sλ(a1, . . . , ad).
By the Weyl character formula (theorem VI.13.2 of chapter VI), this is equal to the
character of the representationW with highest weight λ of GLd(C) on Td. (See (6) of
problem VII.6.19.) So χWλ

= χW on Td. As χW and χWλ
are both continuous and in-

variant by conjugation, and as the set of diagonalizable matrices in dense in GLd(C),
χW = χWλ

. Of course that should allow us to directly conclude that W ' Wλ as
representations of GLd(C) (and hence of g), but technically we haven’t proved this
so we still need to do some work. What we can immediately conclude, however, is
that :
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- the characters of the representations of sld(C) on W and Wλ are equal, so
W ' Wλ as representations of sld(C), and in particular dimCW = dimCWλ;

- the center C× of GLd(C), which acts by homotheties, i.e. via continuous group
morphisms ψ1, ψ2 : C× → C×, on W and Wλ by Schur’s lemma, acts via the
same morphism on these two representations, i.e. ψ1 = ψ2 (indeed, for every
a ∈ C×, χW (a) = (dimCW )ψ1(a) = χWλ

(a) = (dimCWλ)ψ2(a));

- as a consequence of the second point, W and Wλ are isomorphic as representa-
tions of CId ⊂ g.

Putting the first and third points together, we see that W ' Wλ as representations of
g (and hence also as representations of GLd(C)).

�
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R-linear map, 12
R-module morphism, 12
p-elementary group, 69
p-regular, 72
p-singular element, 92
p-unipotent, 72
p-unramified ring, 241

action of a group on a module, 36
adjoint representation of a Lie algebra, 133
algebraic differential operator, 275
algebraic Peter-Weyl theorem, 285
annihilator of a R-module, 33
annihilator of an element, 33
Artin’s theorem, 68
Artin-Wedderburn theorem, 31
Artinian R-module, 22
augmentation ideal, 36
augmentation map, 36

Baker-Campbell-Hausdorff formula, 148
Brauer group of a field, 190
Brauer’s theorem, 69, 74, 89
Bruhat order, 160, 167

Casimir element, 165
Cauchy determinant, 105
Cauchy matrix, 105
central function, 55
central simple k-algebra, 188
centralizer, 73
character of a group (1-dimensional repre-

sentation), 36
character of a Lie algebra representation,

168

character of a representation, 55, 115
character table of a group, 203
Clebsch-Gordon decomposition, 273
coinduction, 46
coinvariants, 47
column subgroup, 96
commutative Lie algebra, 132
commutator bracket, 132
compact operator, 127
complete discrete valuation ring, 237
completely reducible module, 15
completely reducible representation, 36
composition series, 20
continuous representation ring, 158
convolution product, 118
cuspidal representation of GL2(Fq), 222
cyclic module, 16

derivation, 185, 263
derivation of a Lie algebra, 133
differential polynomial ring, 185
direct sum of modules, 12
discrete valuation field, 236
discrete valuation ring, 235
division ring, 13
double centralizer property, 29
dual numbers, 276

eigenvalue, 128
equivalent Jordan-Hölder (or composition)

series, 21
equivariant map, 36
exact sequence of modules, 12
exterior algebra of a module, 155
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exterior powers of a module, 155

faithful Lie algebra representation, 132
faithful representation, 36
finite length R-module, 21
finitely generated module, 16
Fitting’s lemma, 80
free algebra, 11
free module, 18
fundamental weight, 160

Gelfand-Graev representation of GL2(Fq),
218

group algebra, 11

Haar measure, 109
Hecke algebra, 213
Hensel’s lemma, 238
highest weight, 160, 164
highest weight representation, 164
highest weight vector, 164
Hilbert space, 112

ideal, 13
ideal of a Lie algebra, 131
idempotent, 83
indecomposable module, 78
induction, 45, 197
injective module, 19
inner derivation, 185
invariant differential operators, 276
invariants, 48, 56
inverse, 13
invertible, 13
irreducible Lie algebra representation, 132
irreducible module, 15
irreducible representation, 36
isotypic components, 24
Iwasawa decomposition, 258

Jacobson radical, 33
Jacobson semisimple, 35
Jacobson-Morozov theorem, 273
Jordan-Hölder constituents, 22

Jordan-Hölder series, 20

Kostka numbers, 100
Krull-Schmidt-Remark theorem, 80

left Artinian ring, 22
left inverse, 13
left invertible, 13
left Noetherian ring, 22
left regular R-module, 12
left regular representation, 122
length of a R-module, 21
length of a Jordan-Hölder (or composition)

series, 20
Lie algebra, 131
Lie algebra of a closed subgroup of GLn(C),

140
Lie algebra of a linear algebraic group, 264
Lie bracket, 131
Lie subalgebra, 131
lifting of idempotents, 83
linear algberaic group, 263
local left Artinian ring, 78

Mackey’s formula, 65
Mackey’s irreducibility criterion, 67
Maschke’s theorem, 36
matrix exponential, 137
matrix logarithm, 139
modular function, 255
module, 11
monomial representation, 74
morphism of algberaic groups, 282
morphism of Lie algebras, 131
multiplicity of a simple module, 24
multiplicity of a weight, 160, 162
multiplicity-free, 215

nil ideal, 83
nilpotent ideal, 35
Noetherian R-module, 22
noncommutative polynomial ring, 11

opposite ring, 29
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order of a differential operator, 276
orthogonal group, 257
orthogonal idempotents, 19, 83
orthogonality of characters, 59

partition of an integer, 95
Peter-Weyl theorem, 124
Poincaré-Birkhoff-Witt, 275
Poincaré-Birkhoff-Witt theorem, 164
polar decomposition, 258
polarization, 287
polynomial function on a vector space, 269
positive roots, 163
principal series of GL2(Fq), 222
profinite group, 260
projection formula, 53
projective envelope (or cover), 83
projective module, 17
pseudo-character, 288

quaternions, 181
quotient module, 12

realizable over k (for a representation), 210
reduced trace, 190
regular functions on an algebraic group, 283
regular representation, 36
representation of a group on a module, 36
representation of a Lie algebra, 132
representation ring, 43
restriction, 45
right inverse, 13
right invertible, 13
right regular R-module, 12
right regular representation, 122
ring, 11
root system, 160
row subgroup, 96

Schur index, 211
Schur orthogonality, 59, 116
Schur’s lemma, 20, 57
Schur-Weyl duality, 303
semisimple Lie algebra representation, 133

semisimple module, 15
semisimple representation, 36
semisimple ring, 17
semisimplification, 300
sign representation, 39
simple module, 15
simple ring, 26
simple roots, 163
Specht modules, 100
special orthogonal group, 257
special unitary group, 142, 257
spectrum of an operator, 128
standard representation, 157, 269
Steinberg representation of GL2(Fq), 222
submodule, 12
subrepresentation, 36
subrepresentation of a Lie algebra represen-

tation, 132
sum of modules, 12
symmetric algebra, 267
symmetric powers, 267
symplectic group, 257

tensor algebra of a module, 134
tensor powers of a module, 134
tensor product of two modules, 173
topological group, 109
trivial representation, 39
trivial representation of a Lie algebra, 133

unimodular group, 255
unitary group, 142, 257
unitary representation, 113
universal enveloping algebra, 135
Urysohn’s lemma, 253

Verma module, 166

weight of a representation, 162
weight space, 162
weights of a representation, 160
Weil representation, 227
Weyl denominator, 163
Witt polynomials, 241
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Young diagram attached to a partition, 96
Young projector, 97
Young tableau corresponding to a partition,

96

Zorn’s lemma, 14
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de Jeunes Filles [Collection of the École Normale Supérieure de Jeunes Filles]. École
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