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These are the notes of a “Topics in representation theory” class I taught in Princeton University
in the Fall of 2016. I tried to resist the urge to add things, but I succumbed in a few cases, most
notably the proofs of the spectral theorem in chapter V and of the character formulas in chapters
IV and VI. The problems are homework and final exam problems from various iterations of the
class, and are given with full solutions. [[]

Here are the main sources for the notes : The abstract representation theory results of chapter
I are mostly taken from Lam’s book [20]]. The results about representations of finite groups over
a field explained in chapters II and III can be found in Serre’s book [29], and the summary of
the representation theory of symmetric groups in chapter IV owes almost everything to Etingof’s
notes [[12]. The proof of the Peter-Weyl theorem in chapter V was strongly inspired by Tao’s
online notes [34]] and [33]. Finally, chapter VI was my attempt to specialize highest weight
theory to the Lie group SU(n) and the complex Lie algebra s[,,(C). T am not aware of a textbook
where this is done, but I used Humphreys’s book [[15]] as reference for the Lie algebra parts (the
general exposition and especially the proof of the Weyl character formula), and the introduction
of Knapp’s book [18] for the results about closed subgroups of GL,,(C). Also, the proof of the
Baker-Campbell-Hausdorff formula in section of chapter VI is due to Eichler (see [[10]).

The books and notes just mentioned are a very good source for anybody wanting to learn
more about the various topics touched upon in these notes. Let me also mention Sepanski’s
book [27] for the representation theory of compact Lie groups and semisimple Lie algberas,
Serre’s books [31]] and [30]] for a very different approach to many of the same topics (Lie groups,
Lie algebras, and their representations), and the book [8] of Demazure-Gabriel for more about
algebraic groups. Other standard (and excellent) references on algebraic groups are the books of
Borel ([4]), Humphreys ([14]) and Springer ([32]]). And of course, this short bibliography would
not be complete without a mention of Fulton and Harris’s book [13]], that covers many of the
same topics as these notes and contains innumerable examples and exercises.

The problems have been taken from all of these sources and many others, and I cannot claim
to remember the provenance of every single one of them. [| I will just indicate the source of a
few particular problems :

- Problem [VIL.1.9]is theorem (3.15) of Lam’s book [20].

- The problems about representations of GLy(IF, ) (problems|VIL.2.6{and [VII.2.8|to|VIL.2.15])
are giving some results of section 4.1 of Bump’s book [6].

- The problems about fields of definitions of representations (problems |VII.2.1|and [VIL.2.7)
are from sections 12.1 and 12.2 of Serre’s book [29]].

- The construction of Witt vectors in problem follows closely section I1.6 of Serre’s
book [28]].

There are two exceptions, both marked with (¥) : problem 6.9(5) and problem 7.3.6(2). In the first case, I
succumbed to laziness. In the second case, I discovered after giving the problem as an exam question that I did
not know any elementary proof.

2If T used your work without mentioning it, I am very sorry ! Feel free to yell at me and I will correct the oversight.



- The problems about Haar measures (problems [VIL.5.1| to [VI.5.3)) are adaptations of parts
of Tao’s blog entry [33].

- Most of the examples in problem [VIL.5.4|come from the examples and exercises in sections
1.1 and 1.2 of Sepanski’s book [27]].

- The starting point of the problems about linear algebraic groups (problems[VIL.6.5] [VII.6.6]
VIL.6.18] [VI1.6.17 and [VIL.7.1) is example (v) in chapter I of Serre’s book [31].

- Problem |VIL.6.16|is an example of the theory of sections 11.4.5- 11.4.6 of Demazure and
Gabriel’s book [8], though to be honest I adapted it from a similar problem about Lie
groups, i.e. problems 11-13 of chapter III of Knapp’s book [18].

- The problem on pseudo-characters (problem |VII.7.3) is extracted from Bellaiche’s notes
[2]] and also Dotsenko’s notes [9]].

- Finally, the problem on Schur-Weyl duality (problem [VII.7.4) is extracted from sections
4.18-4.21 of Etingof’s notes [12], and the problem on the algebraic Peter-Weyl theorem
(problem [VII.7.1)) also owes a lot to these notes.

The formal prerequisites for the class were the two undergraduate algebra classes at Princeton
(covering, among other things, the basic theory of groups, rings, and modules, and some Galois
theory), but some knowledge of measure theory and Hilbert spaces was also necessary in chapter
V. Here are the prerequisites chapter by chapter :

Chapter I assumes familiarity with groups, commutative rings and modules over them, and
also with tensor products (there is a review problem on that last point, see problem|VII.1. 1]

Chapter II assumes that the reader is familiar with chapter I and its prerequisites.

Chapter III assumes familiarity with chapters I and II.

Chapter IV can be read after chapter I and sections 1-3 of chapter II.

Chapter V is formally independent of the first four chapters, but it does assume that the
reader is familiar with the basic representation theory of finite groups in characteristic 0
(section 3 of chapter I and sections 1-3 of chapter II). It also requires knowledge of measure
theory (up to the Riesz representation theorem) and of Hermitian inner product spaces and
Hilbert spaces.

- Chapter VI is also mostly independent of the other chapters, but it depends on chapter V
via corollary [VI.8.4] It also assumes some familiarity with modules over noncommutative
rings and tensor products over fields.

I would like to thank all the students who took the class (Alexandre De Faveri, Timothy Rati-
gan, Alex Song, Roger Van Peski, Joshua Wang, Xiaoyu Xu, Murilo Zanarella and Roy Zhao)
and also my graduate assistant Fabian Gundlach for being an excellent audience, for asking stim-
ulating questions and for pointing out many mistakes in the lectures and in the problem sets.



Conventions : Unless otherwise specified, when we write ) ., z; (in some abelian group),
we will always be assuming that all but a finite number of the z; are 0, so that the sum is a finite
sum.

Also, N is the set of nonnegative integers, and we admit the axiom of choice.

M, (R) is the set of n x m matrices with coefficients in R, M,(R) = M,,(R),
GL.(R) = M,(R)*.

¢ A is the transpose of a matrix.
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| Abstract representation theory

.1 Semisimple rings

I.1.1 Definition and examples

In these notes, a ring will be a non necessarily commutative ring with unit.

Example 1.1.1.1.
- R = {0}, the only ring where 0 = 1.

- Some commutative rings : Z, A[T7, ..., T,] (polynomials in n indeterminates over a com-
mutative ring A) or A[T},i € I] (polynomials in a set of indeterminates indexed by ).

- Some noncommutative rings :
e M,(R) (n x n matrices with coefficients in a ring R).

e The group algebra R|G] of a group G with coefficients in a (not necessarily com-
mutative) ring R. As a R-module, this is the free R-module with basis G, that is,
R[G] = @D, R - g- The multiplication is induced by that of G, i.e. given by :

() () (2 )

geG geG g€G \hiha=g

Note that this definition also makes sense if G is a monoid.

e The free A-algebra over a set X, where A is a commutative ring, is the A-algebra
A(X) of noncommutative polynomials with indeterminates in X . In other words, it’s
the algebra of the monoid My whose elements are words on the elements of X and
whose multiplication is concatenation. (This M is called the free monoid on X.)

Definition 1.1.1.2. Let R be a ring. A left (resp. right) R-module is a commutative group M
with a biadditive map R x M — M, (a,z) — ax (resp. M x R — M, (x,a) — xa), such
that :

- lx = x (resp. x1 = z), Vo € M.
- (ab)x = a(bx) (resp. x(ab) = (za)b), VYa,b € R,Vx € M.

11



I Abstract representation theory

If we want to make it very clear that M is a left (resp. right) R-module, we write g M (resp.
Mpg) instead of M.

By convention, a R-module will be a left 2-module unless otherwise specified.
Remark 1.1.1.3. If the ring R is commutative, then the notions of left and right R-module coin-
cide.

Example 1.1.1.4. The ring R with left (resp. right) multiplication by itself is a left (resp. right)
R-module, called the left (resp. right) regular R-module and sometimes denoted by r R (resp.
Rp).

Let’s define a few notions for left R-modules. We obviously have similarly defined notions
for R-modules.

Definition 1.1.1.5. Let M be a R-module. A R-submodule (or submodule if R is clear) of M is
a subgroup N of M such that ax € N foreverya € Randz € N.

Example 1.1.1.6. A submodule of M = zR is just a left ideal of R.

Definition 1.1.1.7. If M is a R-module and N is a submodule of A, then the quotient group
M /N has a structure of R-module given by a(x + N) = az + N fora € R and z € M. This is
called a quotient R-module.

Definition I.1.1.8. Let M be a R-module and (M;);c; be a family of submodules of M.

We say that M is the sum of the M; and write M = )
r; € M suchthatz =3, xi

We say that M is the direct sum of the M; and write M = @,_, M; if, for every 2 € M, there
exist uniquely determined x; € M, such thatx = . _, z;.

se1 Mi if, for every x € M, there exist

iel
Definition 1.1.1.9. Let M, N be R-modules. A R-linear map (or R-module morphism) from M

to IV is a morphism of abelian groups ¢ /M — N such that p(ax) = ap(x) for every a € R and
x e M.

Definition I.1.1.10. An exact sequence of R-modules is an exact sequence of abelian groups
where all the abelian groups are 2-modules and all the maps are RR-linear.

Example I.1.1.11. Let ¢ : M — N be a R-linear map. Then Kerp C M and Imp C N are
submodules, and we have an exact sequence of R-modules :

0—>Kerp M —-N— N/Imp — 0.

Notation 1.1.1.12. Let M, N be two R-modules. Then we write Homg(M, N) for the abelian
group of R-linear maps from M to N. We also write Endg (M) for Hompg(M, M); this is a ring,
and its group of invertible elements (see definition|[.1.1.16) will be denoted by Autg(M).

'By our general convention, all but a finite number of the z; must be 0.

12



L1 Semisimple rings

Examples of modules 1.1.1.13.
- A Z-module is just an abelian group.

- R", seen as the set of n x 1 matrices with coefficients in R, is a left M, (R)-module with
the operation given by matrix multiplication. If we see R"™ as the set of 1 X n matrices with
coefficients in R, we similarly get a right R-module structure on it.

- Let A be a commutative ring. Then a A[T)-module is a A-module M with a A-linear
endomorphism (the action of T € A[T)).

- More generally, if A is a commutative ring and [ is a set, then a A[T;,i € I|-module is a
A-module M with a family (u;);cr of pairwise commuting A-linear endomorphisms. (The
endomorphism u; is given by the action of T; on M.)

- If A is a commutative ring and X is a set, then a A(X)-module is a A-module M with a
family (u;)qex of A-linear endomorphisms. (They are not required to commute with each
other anymore.)

- If A is a commutative ring and G is a group (or just a monoid), then a A|G|-module is a
A-module with a morphism of groups (or monoids) G — Aut4(M). This is also called a
A-linear representation of the group (or monoid) G on the A-module M.

Definition 1.1.1.14 (Ideals). Remember that a left ideal of R is a left submodule of zR, and a
right ideal of R is a right submodule of Rp.

An ideal of R is a subset [ of R that is both a left ideal and a right idealE] Then the quotient
abelian group R/I is also a ring.

Example 1.1.1.15. Take R = C[x, o], the ring of twisted polynomials over C in one indetermi-
nate x. Here o is the endomorphism of C given by the complex conjugation, and the indetermi-
nate = does not commute with the elements of C : if « € Candr € N, we ask that "a = 0%(a)z.

Then I, = R(z* — 1) and I, = R(x — i) are both left ideals of R. The first one, Iy, is also a
right ideal (so it’s an ideal) because x:2 — 1 is in the center of R (= commutes with every element
of R). But I, is not an ideal, because :

(x—i)i=xi+1l=—iz+1=—i(x+1i) & L.

Definition 1.1.1.16. An element a € R is called left invertible (resp. right invertible) if there
exists b € R such that ba = 1 (resp. ab = 1). In that case, b is called a left inverse (resp. right
inverse) of a.

If a is both left and right invertible, we say that it is invertible. In that case, if b, ' are elements

of R such that ab = b'a = 1, then we have b = V' and b is the unique element of R such that

ab = 1 (or ba = 1); we say that b is the inverse of a and write b = a~*.

2Unfortunately, this is not coherent with the convention that R-modules are left R-modules.
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I Abstract representation theory

We write R for the set of invertible elements of R; it’s a group, with the group law given by
the multiplication of R.

If R # {0} and R* = R — {0}, we call R a divison ring. Note that a commutative division
ring is just a field.
Example 1.1.1.17.
- The ring H of quaternions (see problem [VII.1.6)) is a division ring.

- Let V = @,y Qe; (a Q-vector space with a basis indexed by N) and R = Endg(V).
Define u,v,w € R by :

U(Gl) = €i+1 \) eN

sey =40 ifix0
v €i—1 ifi=0

. €0 ifi=0
wles) = { 0 ifi>0

Then vu = 1 and vw = 0, so v is right-invertible but not left-invertible. (If we had v'v = 1
with v’ € R, then we would have w = (u'v)w = «'(vw) = 0, which is not true.)

.1.2 Zorn’s lemma

The goal of this section is to state Zorn’s and show a typical use in algebra.

Theorem 1.1.2.1. The axiom of choice and Zorn’s lemma are equivalent, where Zorn’s lemma is
the following statement : ﬂ

Zorn’s lemma 1.1.2.2. Let X be a nonempty partially ordered set. Suppose that for every
Y C X that is totally ordered, there exists an upper bound of Y, that is, there exists v € X
such that y < x for everyy € Y.

Then X has a maximal element, that is, there exists ©t € X such that no other ¥’ € X is
strictly bigger than x. (In other words, every element of X — {x} is either smaller than x or not
comparable to x.)

When applying Zorn’s lemma, it is very important not to forget to check that the set X is
nonempty.

Example of application 1.1.2.3. Let R be a ring. Then R has maximal ideals.

3See theorem 5.4 of Jech’s book [16].
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Proof. Let X be the set of ideals of R, ordered by inclusion. Then X is not empty because
{0} € X. If Y is a totally ordered subset of X, then J = J,., ] is an ideal of R (because Y’
is totally ordered)ﬂ and it’s obviously an upper bound of Y. So X has a maximal element by
Zorn’s lemma.

]

1.1.3 Semisimple modules and rings

Definition 1.1.3.1. Let R be aring and M be a R-module.

1. We say that M is simple (or irreducible) if M # 0 and if the only R-submodules of M are
0 and M.

2. We say that M is semisimple (or completely reducible) if, for every submodule N of M,
there exists a submodule N’ of M such that M = N & N’. (In other words, if every short
exact sequence 0 - N — M — M /N — 0 of R-modules splits.)

Remark 1.1.3.2.

A simple R-module is semisimple.

The R-module 0 is semisimple but not simple.
- If M is semisimple, then every submodule and quotient module of M is also semisimple.
- If Ris a field (or a division ring), then every R-module is semisimple.

Example 1.1.3.3. - If n > 1, then R" is a simple M,,(R)-module (whether it is seen as a left
or right module).

- Let K be a field and M be a K[T]-module such that dimg (M) < +oo. Then M is a
semisimple K'[T]-module if and only if the endomorphism of M given by the action of T’
is semisimple (= diagonalizable over an algebraic closure of K).

Theorem 1.1.3.4. Let R and M be as above. The following are equivalent :
1. M is semisimple.
2. M is the direct sum of a family of simple submodules.
3. M is the sum of a family of simple submodules.
Lemma 1.1.3.5. If M # 0 and M is semisimple, then it has a simple submodule.

Proof. Let x € M — {0}, and set M’ = Rx. Then M’ is semisimple and nonzero, so we may
assume that M = M.

“Ifx,2’ € Jand a € R, then we can find I, I’ € Y such that z € I and 2’ € I’. AsY is totally ordered, we have
I cCI'orI' CI. Inthefirstcase, axz + 2’ € I C J, and in the second, ax +2' € I' C J'.

15
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We want to apply Zorn’s lemma to the set X of submodules N of M such that x ¢ M, ordered
by inclusion. This set is nonempty because it contains the zero submodule. If Y C X is totally
ordered, then N' = {J,y N’ is a submodule of M. (The proof is the same as in example[[.1.2.3])
Also, x ¢ N by definition of NV, so N is an element of X, and an upper bound of Y.

By Zorn’s lemma, X has a maximal element N. As x ¢ N, N # M. As M is semisimple,
there exists a submodule N’ of M such that M = N @ N’, and we have N’ # ( because N # M.

I claim that N’ is simple. Indeed, if there were a submodule 0 # N” C N’ of N, then we
would have N & N” ¢ X by maximality of N in X,sox € N & N”, butthen N & N" = M
(because M = Rx), and hence N” = N’, contradiction.

]

Proof of the theorem.
(i1)=-(iii) Direct sums are sums.

(i)=-(iii) Assume that M is semisimple. Let M’ be the sum of all the simple submodules of
M, and choose a submodule M” of M suchthat M = M'@&M"”. If M" # M, then M" #£ 0,
so by the lemma M" has a simple submodule N, but then we should have N C M’, which
contradicts the fact that M’ and M" are in direct sum. So M’ = M.

(iii)=-(i)&(ii) Let (M;);cs be the family of all simple submodules of M. We are assuming
that M = ., M;. Let N be a submodule of M. We will show that there exists J C [
such that

i€l

M=NaMm,

jeJ
This clearly implies (1), and we also get (i1) by taking N = 0.

To get this J, we want to apply Zorn’s lemma to the set X of subsets of K of I such that
the sum N + °, .- M is direct, ordered by inclusion. This set X is not empty, because
e X.

If Y C X is a totally ordered subset, let K = [ rey K "and let’s show that K € X
(and hence is an upper bound of V). Let n € N and (mg)rex € erK M, such that
n—+ ZkeK my, = 0. Let Ky C K be a finite subset such that m;, = 0 for k € K — K,
(this exists by our convention at the beginning). For every k € K|, there exists L, € YV
such that £ € Li. As Y is totally ordered and K is finite, there exists L. € Y such that
K D Ugeg, Lr- Then L € X, s0n + >, my, = 0 implies that n = 0 and mj, = 0
for every k € K;. By the choice of K, we get that n and all the my, k£ € K, are 0. So
K e X.

By Zorn’s lemma, X has a maximal element J. Let M' = N & ,.; M;. We want to
show that M = M’, so let’s show that M’ D M, forevery i € I. Leti € I. If M" 5 M;,
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L1 Semisimple rings

then M’ N M; = 0 (because M, is simple). But then the sum
M+ M; = (N+> M)+ M
jeJ
is direct, so J U {i} € X, and this contradicts the maximality of .J.
[

Definition 1.1.3.6. Let R be a ring and M be a R-module. We say that M is finitely generated
if there exists a finite family (x;);c; of M such that M = > ._, Rx;. We say that M is cyclic if
there exists x € M such that M = Rx.

iel
Theorem-Definition 1.1.3.7. Let R be a ring. The following are equivalent :
1. All short exact sequences of R-modules split.
2. All R-modules are semisimple.
3. All finitely generated R-modules are semisimple.
4. All cyclic R-modules are semisimple.

5. The left regular R-module r R is semisimple.

If these conditions are satisfied, then we say that the ring R is semisimple.

Remark 1.1.3.8. A priori, this notion should be called “left semisimple ring”, and we should have
a similarly defined notion of “right semisimple ring”. But we will see in section [[.1.10] that “left
semisimple” and “right semisimple” are actually equivalent.

Proof.
(1)<(ii) This follows directly from the definition of semisimple modules.
(i1)=-(iii)=(iv)=-(v) is obvious.

(v)=(i1) Let M be a R-module. If x € M, then Rx C M is a quotient of pR, so it’s
semisimple because p R is semisimple. As M = _, Rz, theoremI.1.3.4)implies that
M 1is semisimple.

]

Example 1.1.3.9.

- Division rings (and in particular fields) are semisimple, because their only left ideals are 0
and the whole ring.

- Z is not semisimple, because 27 C Z is a not a direct factor of Z.

3 A cyclic left (resp. right) ideal of R is also called a principal left (resp. right) ideal.
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- If Ris adivision ring and n € N, then M,,(R) is a semisimple ring.

Proof. As a left M, (R)-module, M,(R) is isomorphic to a direct sum of n factors R",
and we already know that R is a simple M, (R)-module.

]

We will now see another characterization of semisimple rings.

Definition 1.1.3.10. A R-module P is called projective if, for every surjective R-linear map
m: M — N and every R-linear map ¢ : P — N, there exists a R-linear map ¢ : P — M such
that 7y = .

P
v 7
// j‘p

¥

M—=N

Also, a R-module F' is called free if there exists a family (e;);c; of elements of F such that

F = EBie ; Re; and such that, for every i € I, the map R — Re;, a — ae;, is an isomorphism.

Example 1.1.3.11.

18

- Every free R-module is projective.

Proof. If F = @,.; Re;, let m : M — N be a surjective R-linear map and ¢ : P — N
be a R-linear map. For every i € I, choose z; € M such that 7(z;) = ¢(e;). Define a
R-linear map ¢ : P — M by ¢(e;) = z; for every i € I. Then it’s easy to check that

T = .
O

A direct summand of a projective module is projective.

Proof. Let P be projective, and suppose that P = P’'@ P”. Let’s show that P’ is projective.
Let 7 : M — N be a surjective R-linear map and ¢’ : P’ — N be a R-linear map. Let
p=¢'+0: P=P &P’ — N.As P is projective, there exists a map ¢ : P — M such
that ) = . Write ¢ = v’ + 1", where ¢’ (resp. ¢"") is amap P’ — M (resp. P" — M).
Then )" = ¢'.

]

A R-module P is projective if and only every exact sequence of R-modules
0— M — M — P — 0 splits.

Proof. If P is projective, then every such exact sequence splits by definition. Con-
verserly, if every such exact sequence splits, then applying this to the exact sequence
0> K — F — P — 0where ' = @,__p R, the map F' — P sends (a;)zep to

zeP



L1 Semisimple rings

Y sep @zv and K — F'is the kernel of this map, we see that P is a direct summand of the
free R-module F', hence is projective.

]

Lemma 1.1.3.12. Let P be a R-module. The following are equivalent :
1. P is projective.

2. P is a direct summand of a free R-module.

Proof. We saw that (ii) implies (i) in example Let’s show that (i) implies (ii). Suppose
that P is projective. Let M = @, p R, and define ¢ : M — P by ¢((az)zep) = D _4cp Gal-
Then ¢ is R-linear and surjective, so there exists a R-linear map v : P — M such that ¢y = idp.
So we have M ~ P @ Ker(y), and we have found a free R-module M such that P is a direct
summand of M.

O

Example 1.1.3.13. - By the structure theorem for finitely generated Z-modules, any finitely
generated projective Z-module is free. In fact, any projective Z-module is freeﬂ

- In the previous example, we could replace Z by any principal ideal domain.

- If R is a Dedekind ring (for example a principal ideal domain or the ring of integers in a
number field), any fractional ideal of R is a projective R-module.

- Over R :=7 x 7, P := 7 x {0} is projective (because P @ ({0} x Z) = R) but not free.

Theorem 1.1.3.14. Let R be a ring. The following are equivalent :
1. R is a semisimple ring.
2. All R-modules are projective.
3. All finitely generated R-modules are projective.

4. All cyclic R-modules are projective.

Proof. (1)< (ii) follows from the definition, and (ii) = (iii)=>(iv) is obvious.

(iv)=-(1) Suppose that all cyclic R-modules are projective. Let’s show that zpRR is a
semisimple R-module. Let / C R be a left ideal, then R/I is a cyclic R-module, hence
projective, and so the short exact sequence 0 — I — R — R/I — 0 splits, that is,
R~1®R/I.

]

6See theorem 3 and its corollary in Kaplansky’s paper [17].
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Remark 1.1.3.15. We have a dual notion of injective R-module (a R-module [ is injective if for
every R-linear injective map ¢ : [ — M, there exists a R-linear map ¢) : M — [ such that
¢ = idy). The analogue of theorem [I.1.3.14{is still true but harder to prove. |Z]

Remark 1.1.3.16. - A left ideal I of R is a simple R-module if and only if it is minimal

among nonzero left ideals of R. So if R is a semisimple ring, it has minimal nonzero left
ideals.

Assume that [ is a left ideal of R, and that the short exact sequence
0 - I - rR — R/I — 0 of R-modules splits, that is, that there exists a left ideal
Jof Rsuchthat R = [ & J. Write 1 = e + ¢/, withe € [ and ¢ € J. Then €2 = e,
¢? = ¢, and e’ = ¢'e = 0. (We say that e and ¢’ are orthogonal idempotents of R.) Also,

I = Reand J = Re'.

If moreover I and J are ideals, then IJ = 0, e and €’ are central in R, [ and J and rings
with respective units e and €/, and R = [ X J as rings.

Proof. We have e = e(e +¢') = €? + ec’ = ¢ withe,e? € [ and e’ € J, so e = €2 and
e¢/ = 0. Similarly, ¢*> = ¢’ and ¢’e = 0. Obviously, Re C I; conversely, if z € I, then
x=ux(e+ €)= mxe+ xe withze € I and ze’ € J, so x = xe € Re and ze’ = 0. This
shows that I = Re. The proof that J = Re’ is similar.

Assume that [ and J are ideals. The /J C I N J = 0. Leta € R. Then
a=ale+e)=ae+ae =(e+¢€)a=ea+¢a,

with ae,ea € I and ae’,e'a € J. As R = I & J, we have ae = ea and ae¢’ = ¢'a. If
moreover a € [ (resp. a € J),thenae = ea = aand ae’ = €’a = 0 (resp. ae = ea = 0 and
ae’ = €’a = 1). To finish the proof, let’s show that the map u : I xJ — R, (a,b) — a+b,
is an isomorphism of rings. We already know that it is an isomorphism of abelian groups
by hypothesis. Let a,a’ € [ and b, € J. Then

u((a,b))u((a’, b)) = (a+b)(a +b) = ad’ +ab +ba’ +bb' = aa’ +bb" = u((a,b)(d’,b")).

O

.1.4 Schur’s lemma

Theorem 1.1.4.1 (Schur’s lemma). Let R be a ring, M and N be R-modules, and v : M — N
be a R-linear map.

1. If M is simple, then u = 0 or u is injective.

2. If N is simple, then u = 0 or u is surjective.

7See theorem (2.9) of Lam’s book [20] and the remark following it.
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3. If M and N are simple, then u = 0 or u is an isomorphism.

In particular, if M is a simple R-module, then Endr(M ) is a division ring.

Proof. This follows from the fact that Ker v is a submodule of M and Im u is a submodule of
N.

]

I.1.5 Jordan-Holder theorem

Let R be aring and M be a R-module.

Definition 1.1.5.1.

o A Jordan-Holder series (or composition series) for M is a sequence of submodules
0 =M, C -+ C M C My = M of M such that M;/M;; is a simple R-module
foreveryi € {0,...,k — 1}. We say that the integer k is the length of the series.

e If a composition series for M exists, we say that M is has finite length. Then the length
lg(M) of M is the minimum of the lengths of all its Jordan-Hoélder series. If M is not of
finite length, we set 1g(M) = +o0.

e Two Jordan-Holder series (M;)o<i<r and (M])o<;<; are called equivalent if k = [ and
there exists a permutation o € & such that M;/M;y; ~ M! @) /M! (i)+1 for every
ied{0,....,k—1}.

Theorem 1.1.5.2. If M has finite length, then all its Jordan-Holder series are equivalent. In
particular, all the Jordan-Holder series of M have the same length, and the length of M is the
length of any of its Jordan-Holder series.

Lemma 1.1.5.3. Suppose as above that M has finite length, and let N be a submodule of M.
Then N and M /N have finite length, and in fact 1lg(N) < lg(M) and 1g(M/N) < 1g(M)..

Proof. Let M, C --- C My = M be a Jordan-Hoélder series for M such that k = 1g(M).
For every i € {0,...,k — 1}, (N N M;)/(N N M,4,) is a submodule of the simple module
M; /M, 1, so it is either O or M;/M,,. This means that, after deleting some steps to get rid of
zero quotients, the sequence N N M, C --- C N N My = N is a Jordan-Holder series for [V,
and so N has finite length < k& = lg(M).

The proof for M /N is similar : the image in M /N of the Jordan-Holder series M), C --- C M,
is a Jordan-Holder series for M /N after we delete some indices.

]
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Proof of the theorem. We do an induction on lg(A/). If 1lg(M) = 0, then M = 0. If lg(M) = 1,
then M is simple and the result is obvious. So suppose that 1g(M) > 2 and that the result is
known for all R-modules of strictly smaller length.

Let(S)=(0=M,C---CMyCMy=M)and (S")=(0=M/C---C M] C Mj=M)
be two Jordan-Holder series for M, and assume that £ = 1g(A/). (It is clearly enough to treat
this case.) If M; = Mj, then we can apply the induction hypothesis to //; (which has length
< k — 1 by the lemma or the existence of (.5)), and this finishes the proof.

So assume that M; # M. Then M; + M{ = M. Indeed, the image of M] by the obvious
map M — M /M is a submodule, so it is 0 or M /M, (because M /M; is simple). If it is 0,
then M| C Mj; then the submodule M, /M of the simple module M /M has to be 0 (if it were
M /Mj, then we would have M = M), hence M; = M], contradicting out assumption. So the
image of M in M /M; is equal to M /M;, which means that M = M; + Mj.

As M = M+ Mj, the obvious maps M7 /(M{NM;) — M /M, and M, /(MiNM]) — M /M
are isomorphisms, and in particular both M, /(M; N M]) and M7 /(M; N M) are simple. Take
a Jordan-Holder series 0 = Ny, C --- C Ny C Ny = M; N M (this exists by the lemma).
Then applying the induction hypothesis to M; (which has length < k£ — 1 because it has a
Jordan-Holder series of length & — 1), we see that its two Jordan-Holder series M, C --- C M,
and Ny C --- C Ny C M, are equivalent. In particular, s = k — 2, so M| has a Jordan-
Holder series of length £ — 1, i.e. Ny C --- C Ny C M/, which implies that /] also has
length < k& — 1. We can then apply the induction hypothesis to M| to see that its two Jordan-
Holder series M] C --- C Mjand N, C --- C Ny C Mj are equivalent. Finally, we have
shown that (S) is equivalent to Ny C --- C Ny = My N M] C M; C M, and that (5) is
equivalent to Ny C --- C No = My N M C M C M. As Mj/(M{ N M) ~ M/M, and
My /(M N Mj) ~ M/Mj, this show that (.S) and (S’) are equivalent.

]

This theorem justifies the following definition :

Definition 1.1.5.4. If M has finite length qnd (M;)o<;<x is a Jordan-Holder series for M, then
the simple R-modules M; /M, 1, counted with multiplicities, are called the Jordan-Hélder con-
stituents of M.

Corollary 1.1.5.5. If M has finite length and N is a submodule of M, then any Jordan-
Hoélder factor of N (resp. M/N) is also a Jordan-Holder factor of M, and we have
lg(M) =1g(N) +1g(M/N).

Proof. We already know that N and M/N have finite length by lemma Let
N, C -+ C Ny = Noand M C --- C M) = M/N be Jordan-Holder series for N
and M/N, and let M; be the inverse image of M/ in M, for every i € {0,...,l}. Then
N, C Nyo=N=M,C---C My= M is a Jordan-Holder series for M.

]
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.1.6 Artinian and Noetherian modules

Definition 1.1.6.1. Let R be a ring.

1. We say that a R-module M is Artinian (resp. Noetherian) if every strictly decreasing
(resp. strictly increasing) sequence of submodules of M is finite, that is, for any sequence
My D My D ... (resp. My C M; C ...) of submodules of M, there exists N € N such
that M; = M, forevery: > N.

2. We say that R is left Artinian (resp. left Noetherian) if the left R-module gz R is Artinian
(resp. Noetherian), that is, for any sequence Ip D [ D ... (resp. Iy C I; C ...) of left
ideals of R, there exists N € N such that [; = [, foreveryz > N.

Proposition 1.1.6.2. Let M be a R-module. Then M has finite length if and only if it is both
Artinian and Noetherian.

Lemma 1.1.6.3. Let M be a R-module.

1. If M # 0 and M is Artinian (resp. Noetherian), then it admits minimal (resp. maximal)
nonzero submodules.

2. If M is Artinian (resp. Noetherian), so is any submodule and any quotient of M is Noethe-
rian.

Proof. Point (ii) is obvious. In (i), we treat the Artinian case (the Noetherian case is similar).
Suppose that M has no minimal nonzero submodule and that M # 0. We construct by induction
on 7 an infinite strictly decreasing sequence (M, );cn of nonzero submodules of M, which will
prove that M is not Artinian. Take My, = M. Now let ¢ > 0, suppose that My 2 --- 2 M,
are constructed, and let’s construct M, ;. As M; cannot be a minimal nonzero submodule of M,
there exists a submodule M, of M such that 0 C M; .y C M;, and we are done.

]

Proof of the proposition. Suppose that M is Artinian and Noetherian. Let’s prove that M has
finite length. We construct by induction on ¢ a sequence (M;);cn of submodules of M such that,
forevery i € N, M; C M, and M, /M, is zero or simple.

Take My = 0. Now suppose that © > 0 and that M, ..., M, are constructed. If M; = M,
take M, .1 = M;. Otherwise, then by the fact that M is Artinian and by the lemma, M /M; has
a minimal nonzero submodule, and we take for M, its inverse image in M/. By minimality of
M; 1 /M, this R-module is simple.

We also know that M is Noetherian, so the sequence (M;);cy must stabilize to M after a finite
number of steps. As all the quotients M;, 1 /M, are wero or simple, we can extract from (M;);en
a Jordan-Holder sequence for M, and so M has finite length.

Now suppose that M has finite length, and let’s prove that M is Artinian and Noetherian. If
M is not Noetherian, then it has an infinite sequence of submodules My, C M; C .... But then
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lg(M;11) <lg(M;) + 1 forevery i € N, so lg(M;) > i, so lg(M) cannot be finite. Similarly, we
see that if M is not Artinian, then it cannot have finite length.

]

Remark 1.1.6.4.

If R is commutative, we recover the usual notions of Artinian and Noetherian ring.

As in the commutative case, any left Artinian ring is automatically left Noetherian. ﬂ This
is not true for modules.

If £ is a field and R is a k-algebra that is finite-dimensional as a k-vector space, then R is
left Artinian and left Noetherian. (Because every left ideal of R is a k-vector subspace.)

If R is a semisimple ring, then R is left Artinian and left Noetherian.

Proof. By theorem R = @, 4 I;, where the I; are left ideals of R that are simple
as R-modules. If we show that A is finite, then z R will have finite length, hence be an
Artinian and Noetherian R-module by proposition |I.1.6.2] and we will be done. To show
that A is finite, write 1 = ) ., x;, with z; € I; for every i € A and x; = 0 for all but a
finite number of i’s. Let B C A be a finite subset such that x; = 0fori € B. As R-1 = R,
wehave R = . Rr;,50 R =@, 1i, s0 B = A, s0 Ais finite.

[]

Example 1.1.6.5.

- Q[Ty,...,T,] is Noetherian but not Artinian (consider the sequence of ideals
(Ty) D (T?) D (T) D ...).

- Q[T;,7 € N] is neither Artinian nor Noetherian.

- Q[T /(T?) is borth Artinian and Noetherian.

1.1.7 Isotypic decomposition

Definition I.1.7.1. Let R be a ring. We write S(R) for the set of isomorphism classes of simple
R-modules.

Theorem 1.1.7.2. Let R be a ring and M be a semisimple R-module. For every S € S(R), let
Mg be the sum of all the submodules of M that are isomorphic to S. Then :

1. We have M = @ scgr) Ms.

2. There exist sets Is such that Mg ~ €p._,. S for every S € S(R).

i€lg

8See theorem (4.15) of Lam’s book [20].
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3. Let N be a submodule of M. If we write N ~ @Ses(R) Ng and Ng ~ @SEJS S as in (i)
and (ii), then, for every S € S(R), Ng = MsN M for every S € S(R) and we can find an
injection Jg — Ig.

In particular, if the set Ig is finite for some S € S(R), then |Is| depends only on M.

The nonzero M are called the isotypic components of M,and M = @ S(R) Mg 1s called the

isotypic decomposition of M. If I is a finite set for some S € S(R), we call |Ig| the multiplicity
of S'in M.

The following lemma will be used repeatedly in the proof of the theorem.

Lemma 1.1.7.3. Let M be a R-module, and suppose that there exists a simple R-module S
and s set I and an isomorphism ¢ : M = D,c; S. Then every simple R-submodule of M is
isomorphic to S.

Proof. Let N be a simple R-submodule of M, and suppose that /N is not isomorphic to S. Then
for every ¢ € I, the composition of the projection on the ith summand €,_, S — S and of ¢ is
a R-linear map N — S, which has to be zero by Schur’s lemma (theorem[[.1.4.T). But then ¢ is
zero on N, which implies that N = 0, contradicting the fact that N is simple.

]

Proof of the theorem. 1. First, note that ) s(r) Ms is the sum of all the simple submod-
ules of M. As M is semisimple, M = ZSGS(R) Mg. Now we want to show that
the sum is direct. Let S € S(R), let X = S(R) — {S}. We must show that
N = Mg N (X gex Mg) = 0. As N is submodule of M, it is semisimple, so, if it’s
nonzero, then it has a simple submodule. But if N’ is a simple submodule of NV, then
it’s a simple submodule of Mg, hence isomorphic to S, and also a simple submodule of
> srex Mg, hence isomorphic to an element of X . This is not possible. So N = 0.

2. As Mg is a submodule of the semisimple R-module M, it is semisimple. By theorem
My is the direct sum of a family of simple submodules. But every simple submod-
ules of Mg is isomorphic to S.

3. LetS € S(R). Then N is a sum of simple R-modules isomorphic to S, so Ng C Mg. On
the other hand, NV N Mg is a direct sum of simple submodules of /N, and all these simple
modules have to be isomorphic to S, so N N Mg C Ng.

So we may assume that M = Mg and N = Ng for some S € S(R), and we are reduced
to the following statement : If .S is a simple R-module and /, J are two sets such that we
have an injective R-linear map u : N := @._, S — M = @, S, then there exists an
injection J — I.

jeJ

We will only use this statement when [ and J are finite, and in that case it follows from
the Jordan-Holder theorem (theorem [.1.5.2)), but let’s see how to prove it general. For any
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R-modules M, Ms, let Hom (M, M) C Hompg(M,, M,) be the subgroup of R-linear
maps that are 0 outside a finite length submodule of M;. Then we have

Homp (N, S) = € Endg(S) € Homp(N, S) = [ [ Endg(S)

jeJ jeJ

and similarly

Homp (M, S) = @) Endp(S) € Homp(M, S) = [ [ Enda(S)

el i€l

Note that D := Endg(S) is a division ring by Schur’s lemma (theorem [[.1.4.1)),
that Homp (M, S) and Homg(N, S) are naturally D-modules (if f € Hompg(M,S) or
Hompg(N,S)andr € D,setr- f =ro f) and that Homy, (M, S) and Hom (N, S) are D-
submodules. Moreover, we have a map ¢ : Homg (M, S) — Homg (N, S), f — fou,
and it is clearly D-linear. If we can show that ¢ is surjective, we will done by linear alge-
bra. (More precisely, the incomplete basis theorem.) So let g € Homy (N, S). As M is a
semisimple R-module, there exists a R-submodule N’ of M such that M = u(N) & N'.
Define f : M — S by f(u(x) +y) = g(z) if x € N and y € N’. This makes sense
because u is injective, is clearly R-linear, and we have ¢(f) = g.

]

1.1.8 Simple rings

Definition I.1.8.1. A ring R is called simple if R # 0 and if the only ideals of R are 0 and R.

Remark 1.1.8.2. Note that the definition of a simple ring involves ideals, and that of a semisimple
ring involves left ideals. In particular, a simple ring has no a priori reason to be semisimple, and
indeed there exist simple rings that are not semisimpleﬂ So the terminology is a bit unfortunate.

Theorem 1.1.8.3. Let D be a division ring, n > 1 be an integer, and R = M,,(D). Let V = D".
We will write pV when we view V' as a left R-module by considering D" as a space of n x 1
matrices, and Vp when we view V' as the right D-module Dy;.

Then :
1. The ring R is simple, semisimple, left Artinian and left Noetherian.

2. R has a unique (up to isomorphism) simple left module, which is pV. As left R-modules,
rR and gV are isomorphic.

3. EHdD(V]D)) = R.
4. EHdR<RV) = D.
9See problem
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Proposition 1.1.8.4. If R is a ring and n > 1 is an integer, then any ideal I of M, (R) if of the
form I = M,,(J), where J is a uniquely determined ideal of R.

Corollary 1.1.8.5. If R is a simple ring, then so is M, (R) for everyn > 1.

Proof of the proposition. If J is an ideal of R, then M,,(.J) is clearly an ideal of M,,(R). Also, if
J,J' are two ideals of R such that M,,(J) = M,(J’), then it is obvious that J = J'. So we just
need to prove that any ideal of M,,(R) is of the form M, (.J).

Let I be an ideal of M,,(R), and let J be the set of (1, 1)-entries of elements of /. We’ll show
that .J is an ideal and that I = M,,(J).

First, let 2,y € J and let a € R. Choose matrices X,Y € I such that the (1, 1)-entries
of X and Y are x and y respectively. Then a X, Xa and X + Y are in I, and their respective
(1,1)-entries are ax, xa and = + y, so ax,za,z +y € J. So J is an ideal of R.

Now let’s denote by E;;, for 1 < ¢, j < n, the elementary matrices in M, (R). (So E;; has all
its entries equal to 0, except for the entry (7, j) which is equal to 1.) If X = (z;;) € M, (R), then
EinEkl = «TjkEjk-

Let’s show that I C M, (J). If X € I, thenforall j,k € {1,...,n}, E1;XEy =z, En € 1,
soxj; € J,andso X € M, (J).

Let’s show that M, (J) C I. Let X = (z;) € M,(J). Then X = >_,_, .., xi;Ejj, so it
suffices to show that all the z;;E;; are in I. Fix i,j € {1,...,n}. Choose Y € [ such that the
(1,1)-entry of Y is x;;. Then E;1Y Eyj = x;E;j € 1.

]

Proof of the theorem. Let’s prove (i). First, by the proposition, R is simple because D is. As a
left D-vector space, R is finite-dimensional. Since left ideals of R are ID-vector subspaces of R,
R is left Artinian and left Noetherian[]

Let’s prove that gV is a simple R-module. Take a nonzero [2-submodule W of rpV. We use
the same notation £;; as in the proof of the proposition (for the elementary matrices in R). Let
wy
we W —{0},and writew = | : |.Chooseig € {1,...,n} such that w;, # 0. Then

Wn,

= (w;}lEliO)w ew.
0

19This would also follow from the fact that R is semisimple.
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U1
Nowifv = | : | is any element of gV, then
Un
1
U1 0 . 0 0
U= : | ew
v, 0 0 0
andso W =V.

As the left R-module R is clearly isomorphic to gV, the ring R is semisimple.

Let’s prove (ii). It only remains to show that any simple R-module is isomorphic to gV. So
let M be a simple R-module. Choose © € M — {0}. Then the map u : RR — M, a — ax is
surjective (because its image is a nonzero submodule of M), so M is isomorphic to a quotient of
the R-module zR. As R ~ gpV" with gV, this implies that M ~ V.

Let’s prove (iii). Consider the map ¢ : R — Endp(Vp), @ — (z —— xa)). This map is
well-defined, because for every a € R, forevery x € V and A € D,

pla)(zA) = a(zA) = (ax)A = (p(a)(2))A,

so p(a) is D-linear. The map ¢ is obviously a map of rings, and we want to show that it is an
isomorphism.

Leta = (a;;) € R = M, (D) such that ¢(a) = 0. Then for every j € {1,...,n}, ife; € Vis
the element with jth entry equal to 1 and all the other entries equal to 0, we have

So a = 0. This proves that ¢ is injective.

Let w € Endp(Vp). Forevery j € {1,...,n},if e; € V is defined as above, write

37
u(e;) =
Qg
Let @ = (a;;) € M,(D). Then p(a)(e;) = u(e;) forevery j € {1,...,n}. As (e1,...,e,) is
obviously a basis of 1}, over D, this imples that (a) = u. So we have proved that ¢ is surjective.

Let’s prove (iv). Let £ = Endg(gV). We write the action of the ring £ on V' on the right,
that is, we write x(v) = vr forv € Vandx € E. Let¢ : D — E, A — (v —> v)). As
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for , this map is well-defined, i.e. () is R-linear for every A € D, and it is a morphism of
rings. We want to show that it is an isomorphism of rings. First, 1) is injective because n > 1
and D is a division algebra. Now let x € E. Define A € D by e;z = Ae; + Z;LZQ wje;, with

0
w; € 1D and where e;,...,e, € V are as in the proof of (iii). Let v = : € V, and let
Un
(%1 0 ... 0
a=|: : | € M,(D) = R. Then v = aey, so
v, 0 . 0
A U1)\
2
vr = (aey)r =aleyx) =a | .| | = : = VA
Up A
L,

So x = 1)(\), and 9 is surjective.
L

Corollary 1.1.8.6. If D, are two division rings and n,n’ > 1 are two integers such that
M, (D) ~ M,/ (D) as rings, then D ~ D' andn = n/.

Proof. Let R = M, (D) ~ M, (D'), and let M be the unique simple R-module (given by (ii) of
the theorem). By (iii) of the theorem, D' ~ Endz(M) ~ D. Hence

n = dimp(M) = dimp (M) = n'.

1.1.9 Double centralizer property

We have seen in theorem [I.1.8.3| that every M, (D) with D a division ring is simple. We’ll now
see a kind of converse of this. (Not an actual converse, as there are simple rings not of the form
M, (D).)

Definition 1.1.9.1. If R is a ring, we denote by R°P its opposite ring : it’s isomorphic to R as an
additive group, and its multiplication is given by

ab(in R°?) = ba( in R).

29



I Abstract representation theory

Theorem 1.1.9.2 (Double centralizer property). Let R be a simple ring and I be a nonzero left
ideal of R. Let D = Endg(I), and make I a right D°°-module by setting xu = u(z) if x € 1
andu € D.

Then the map [ : R — Endpes (1), a — (x — ax), is an isomorphism of rings.

Proof. 1t’s obvious that f is well-defined and is a morphism of rings.

Let’s show that f is injective. As [ # 0, Ker f # R (for example, 1 ¢ Ker f). As Ker f is an
ideal of R and R is simple, Ker f = 0.

Let’s show that f is surjective. Let E = Endpe (). Make I a left E-module by setting
hx = h(z), for every x € [ and h € E. Then, for every x € [ and h € FE, we have
hf(z) = f(hz). Indeed, ifa € I, thenr, : I — I,y —> ya,isin D, so

h(za) = h(r.(z)) = h(zr,) = h(x)r, = h(z)a,

and so
(hf(z))(a) = hza) = h(z)a = f(h(z))(a).

This imples that Ef(I) C f(I). But we know [ is a nonzero left ideal of R, so IR is a
nonzero ideal of R, hence /R = R as R is simple. Apply the morphism of rings f gives

F(I)f(R) = f(R). Finally,
E = Ef(R) = Ef(I)f(R) C J(I){(R) = f(R)

(the first equality holds because 1 € f(R)), and so f is surjective.
[]

Corollary 1.1.9.3. If R is a simple ring with a minimal nonzero left ideal, then there exists a
unique division ring D and a unique integer n > 1 such that R ~ M, (D).

In particular, a simple ring is left Artinian if and only if it is of the form M, (D) with D a
division ring and n > 1.

Proof. We already know that D and n are unique if they exist (by corollary |I.1.8.6]).

Let I C R be a minimal nonzero left ideal. Then [ is a simple R-module, so D := Endg([/) is
a division ring by Schur’s lemma (theorem [.1.4.1). Make I a right D°?-module as as in theorem
above. (Note that D°P is also a division ring.) By that theorem, R ~ Endpes (/). So we only
need to show that [ is finite-dimensional as a right D°P-vector space. Let £ = Endpe»(7), and
let
Es ={u € Elrk(u) < +o0},

where rk(u) is as usual the dimension (over D°P of the image of ). It’s easy to see that £y # 0,
and that /¢ is an ideal of £/. As EF ~ R is a simple ring, I/y = E. Hence the identity of [ is in
Ey, and [ is a finite-dimensional right D°P-vector space.
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The last sentence follows from theorem and the fact that a left Artinian ring admits
minimal nonzero left ideals (by lemma|[.1.6.3).

]

1.1.10 Structure of semisimple rings (Artin-Wedderburn theorem)

The goal of this section is to show that every semisimple is a finite direct product of rings of
the form M, (D), with D a division ring. This will imply in particular that the notions of “left
semisimple rings” and “right semisimple rings” coincide.

Proposition 1.1.10.1. Let Ry, ..., R, be rings, and let R = Ry X --- X R,,. Then every R-module
is of the form M = M, x --- x M,, with M; a R;-module for 1 <1 < n.

Proof. In R, write 1 = e + --- 4 e,, with ¢; € R;. Of course, as an element of Ry X --- X R,
e; 1s the n-uple with ith entry equal to 1 € R; and all the other entries equal to 0. Note that all
the e; are central in R, that e? = ¢, for every ¢ and that e;e; = eje; = 0 for¢ 4.

Let M be a R-module, set M; = e;M. Then R acts on M; through the obvious projec-
tion R — R;, so we just need to show that M ~ M; x --- x M,. Consider the map
w: M x...M, - M, (x1,...,2,) —> 1 + -+ + x,; this is a R-linear map by the pre-
vious remark about the action of R on the M;. If x € M, then x = ze; + --- + xe, with
xe; € M, for every 7, so u is surjective. Moreover, if x1 + - - - + z,, = 0 with x; € M, for every
i, then forevery j € {1,....n},0=¢;(x; + -+ + x,) = e;x; = x;. Hence u is injective.

[
Corollary 1.1.10.2. Suppose that R = Ry X --- X R, as in the proposition.
1. R is semisimple if and only if all the R; are semisimple.

2. Every simple R-module is of the form 0 x - - x 0 x M; x 0 x --- x 0, withi € {1,...,n}
and M; a simple R;-module.

Corollary 1.1.10.3. Let Dy, ..., D, be division rings, and n,,...,n, > 1 be integers. Then
R:= M, , (D) x---x M, (D,) is a semisimple ring, and its simple modules (up to isomorphism)
are D', ... D,

Conversely, we want to show that every semisimple ring is of this form.

Notation I.1.10.4. Let R be aring and / be a left ideal of R. In the rest of this section, we denote
by .#; C R the sum of all the left ideals I’ of R that are isomorphic to [ as R-modules. This is a
left ideal of R.

Theorem 1.1.10.5 (Artin-Wedderburn theorem). Let R be a semisimple ring. Let (I;);c4 be a

set of representatives of the isomorphism classes of minimal nonzero left ideals of R, and let
R, =, CR.
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Then A is finite, so we choose an identification A = {1, ... ,r}. Moreover, all the R; are rings
(with unit), R ~ Ry X --- X R, as rings, and for every i € {1,...,r}, there exists a unique
division ring D; and a unique integer n; > 1 such that R; ~ M, (D;).

Lemma 1.1.10.6. Let R be a ring and I be a minimal nonzero left ideal of R. Then . is an
ideal of R. (That is, it is also a right ideal of R.)

Moreover, if I and J are two nonisomorphic minimal nonzero left ideals of R, then .%;.9; = (.

Proof. The main point is that minimal nonzero left ideals of R are simple R-modules.

Let’s prove that .#; is a right ideal. Let I’ be a left ideal of R such that I’ ~ [ as R-modules,
and let a € R. We want to show that I'a C .#;. We have a surjective R-linear map I’ — ['a,
x — xa, and I’ is a simple R-module, so I'a = 0 or I'a ~ I'. In the first case, I'a C ¥} is

obvious; in the second case, I’a is another left ideal of R that is isomorphic to I, so we also have
I’(l C j[.

Now let J be another minimal nonzero left ideal of R, and suppose that .#;.#; # 0. Then
there exist left ideals I’, J’ of R and an element a of J' such that I’ ~ I, J' ~ J and I'a # 0.
As J' is a simple R-module and I'a C J’ is a nonzero submodule of J', we have I'a = J'. As
I’ is a simple R-module, the surjective map I’ — I'a, z — xa, is an isomorphism. So we get
R-module isomorphisms [ ~ [’ ~ ['a = J’ ~ J. This proves the second part of the lemma.

]

Proof of the theorem. As R is a semisimple ring, p R is a direct sum of simple submodules (=
minimal nonzero left ideals of R) by theorem|.1.3.4, So pR = €, 4, R; by theorem|.1.7.2, By
remark [[.1.6.4] (that says that semisimple rings are left Artinian and left Noetherian), this implies
that A is finite.

By the lemma, every . is an ideal of R. As R = _, R;, remark [l.1.3.16|implies that all
the R; are rings (with unit) and that R ~ R; X --- X R, as rings.

We now prove that all the R; are simple rings. Fix i € {1,...,r}. Let J # 0 be an ideal of
R;. We want to show that J = R;. As J is also an ideal of R, it contains a minimal nonzero left
ideal I of R (by remark [.1.3.16). By definition of I1,.. ., I,, there exists j € {1,..., } such
that / ~ I; as R-modules; as I C J C R;, we must have j = i. So R, = .¥;, = ;. Hence it
suffices to show that, if I’ is a left ideal of IR such that I’ ~ I, then I’ C J. Fix such a I’, and let
¢ : I = I' be an isomorphism of R-modules. As R is a semisimple ring, there exists a left ideal
I" of Rsuchthat R =1 @ I”. We write 1 = e + ¢’ withe € [ and ¢’ € I”. We have seen in
remark [L1.3.16]that €2 = e and I = Re. So

I'=p(I) = p(Re) = p(Re?) = p((Re)e) = p(le) = Ip(e) C J

(as J is also a right ideal of R).
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As R is semisimple, it’s left Artinian (by remark [[.1.6.4), so all the R; are left Artinian, so by
corollary [[.1.9.3|there exist uniquemy determined division rings D; and integers n; > 1 such that
R; ~ M, (D;) for every i.

]

Remark 1.1.10.7. Let R be a semisimple ring, and use the notation of the Artin-Wedderburn
theorem.

- Let K be a field, and suppose that 1 is a semisimple K -algebra that is finite-dimensional as
a K -vector space. Then its simple factors R; are also K -algebras, and so are the division
rings D;; of course, dimg(D;) < +oo. (This follows for example from the fact that
D; ~ Endg,(V;) = Endg(V;), where V; is the simple R-module corresponding to the
factor R;, see theorem|[[.1.8.3])

In particular, if K is algebraically closed, then all the D; are equal to K by problem|VII.1.3
so R~ M, (K)x---x M, (K).

- If R is commutative, thenn; = --- = n,, = 1 and all the [D; are commutative division rings
(i.e. fields), so R is a finite product of fields. This recovers the result of problem [VIIL.1.5]
but without the Noetherian hypothesis on R.

.2 Jacobson radical

We will just give some basic definitions and facts about the Jacobson radical of a ring (as much
as we need for our representation theoretic purposes).

The basic idea is that the Jacobson radical of a ring R should be the minimal ideal I of R
such that the ring R/I is semisimple. Actually, this is true if R is left Artinian, but the general
situation is more complicated.

Definition I.2.1. Let R be aring. The Jacobson radical of R is the intersection of all the maximal
left ideals of R. We will denote it by rad(R).

Remark 1.2.2. At this point, it looks like this should be called the left Jacobson radical of R, but
we will see in corollary that rad(R) is also the intersection of all the maximal right ideals
of R.

Definition 1.2.3. Let R be aring and M be a R-module. If x € M, the annihilator of x in R is
Anng(z) = {a € R|ax = 0}.
This is obviously a left ideal of R. Also, the annihilator of M in R is
Anng(M) = ﬂ Anng(z) = {a € R|Vx € M, ax = 0}.

zeM

This is also obviously a left ideal of R.
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Proposition 1.2.4. Let R be a ring and M be a R-module. Then Anng(M) is actually an ideal
of R.

Proof. We just need to show that it’s a right ideal. Let a € Anng(M) and b € R. Then for
every x € M, (ab)r = a(bxr) = 0 because «a is also in the annihilator of bz € M. Hence
ab € Anng(M).

]

Proposition 1.2.5. Let R be a ring and x € R. The following are equivalent :
1. x € rad(R).

2. Foreveryy € R, 1 — yx is left invertible. (See definition )
3. For every simple R-module M, x € Anng(M).

Proof.

(i)=-(ii) : Suppose that z € rad(R). Let y € R. If 1 — yx is not left invertible, then
R(1 — yx) C R, so there exists a maximal left ideal m of R such that 1 — yz € m. But
x € rad(R) C m, so yxr € m, so 1 € m, which is not possible.

(i)=-(iii) Let M be a simple R-module, and let m € M. If xtm # 0, then Rxm = M
(because Rxm is a nonzero submodule of M), so there exists y € R such that yzm = m,
i.e. (1 —yx)m = m. As 1 —yux is left invertible, this implies that m = 0, which contradicts
the assumption that xm # 0.

(ili))=-(i) Let m C R be a maximal left ideal. Then R/m is a simple R-module, so
x € Anng(R/m),ie. x(R/m)=0,ie. = € m.

]

Corollary 1.2.6. The Jacobson radical of R is the intersection of the annihilators of all the simple
R-modules. In particular, it is an ideal of R.

Corollary 1.2.7. The rings R and R/ rad(R) have the same simple modules.

Corollary 1.2.8. Let © € R. The following are equivalent :
1. z € rad(R).

2. Forally,z € R, 1 —yxz is invertible.

Proof. We already know that (ii) implies (i) by the proposition. Let’s prove that (i) implies
(ii). Let x € rad(R), and let y,z € R. As rad(R) is an ideal of R by a previous corollary,
xz € rad(R), so 1 — yxz is left invertible by the proposition, so there exists u € R such that
u(l—yzz) =1=u—uyzrz.
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Moreover, yzz € rad(R), so u = 1 + u(yzz) is left invertible by the proposition. As wu is left
and right invertible, it is invertible, and hence 1 — yxz is the (unique) inverse of u and is also
invertible.

]

As the characterization of rad(R) in the corollary above is unchanged if we reverse the order
of the multiplication in R, we get the :

Corollary 1.2.9. We have rad(R) = rad(R°P), where R°? is as in definition In other
words, the ideal rad(R) is also the intersection of all the maximal right ideals of R.

Remark 1.2.10. If I C rad(R) is an ideal of R, then rad(R/I) = rad(R)/I. In particular,
rad(R/rad(R)) = 0.

Theorem 1.2.11. Assume that R is left Artinian. Then the following are equivalent :

1. The ring R is semisimple.

2. rad(R) = 0.

Proof.

(i)=-(ii) If R is semisimple, then there exists a left ideal I of R such that pk R = [ $rad(R).
If rad(R) # 0, then I # R, so there exists a maximal left ideal m of R such that I C m.
But then I C rad(R), so rad(R) = R, which is only possible if R = {0}, and this
contradicts rad(R) # 0.

(i))=(@1) Let (m;);c4 be the family of all maximal left ideals of R. We have
rad(R) = (),c, ™. As R is left Artinian, there exists a finite subset B of A such that
rad(R) = ();czmy. (If this were not true, we could find a sequence By O B; D ... of
finite subsets of A such that (),c 5 m; 2 [);cp, Mi 2 - .., which would contradict the fact
that R is left Artinian.)

Now if rad(R) = 0, then the obvious R-module map rR — @, 5 R/m; is injective. As
each R/m, is a simple R-module, their direct sum over i € B is a semisimple R-module,
and so is its submodule ;R.

]

Corollary 1.2.12. If R is left Artinian, then R/ rad(R) is semisimple, and it has the same simple
modules as R.

Remark 1.2.13.

- In general, a ring R such that rad(R) = 0 is called Jacobson semisimple. Any semisimple
ring is Jacobson semisimple, but the converse is false. For example, if GG is any group, then
the groups algebras C[G] and R[G] are Jacobson (see theorem (6.4) of Lam’s book [20]),
but they are not semisimple if G is infinite by remark [[.3.3]

35



I Abstract representation theory

- A left (resp. right) ideal [ of R is called nilpotent if there exists n > 1 such that I™ = 0.

If R is left Artinian, then rad(R) is the largest nilpotent left (resp. right) ideal of R, see
theorem (4.12) of Lam’s book [20]. This is not true in general. For example, if R = Z,
(the ring of p-adic integers), then rad(R) = pZ, is not nilpotent.

Example 1.2.14.
- rad(Z) = ﬂp prime pZ = 0, even though Z is not semisimple. (Note that Z is not Ar-
tinian.)
- rad(Z,) = pZ, (where Z, is the ring of p-adic integers).
More generally, if A is a commutative local ring, then rad(A) is its unique maximal ideal.

- Let D be a division ring and R be the ring of upper triangular n X n matrices with co-
efficients in D. Then rad(R) is the set of strictly upper triangular matrices (i.e. upper
triangular matrices with zeroes on the diagonal). Indeed, let’s call this set J. Then J is an
ideal of R, and 1 — z is invertible for every x € J, so J C rad(R). Moreover, R/J ~ D"
is semisimple, so J D rad(R).

1.3 Applications to the representation theory of finite
groups

Let R be a ring and G be a group. Remember (exemple [I.1.1.1] that the group algebra
R[G] of G with coefficients in 1 is defined to be P, g, with the multiplication given by
(ag)(bh) = (ab)(gh) if a,b € Rand g,h € G.

Vocabulary 1.3.1. A R[G]-module is a R-module M with a R-linear action of G, i.e. a morphism
of monoids p : G — Endg(M). This is also called a ( R-linear) representation of G on the R-
module M, and denoted by (M, p), or just M if the action is obvious.

The representation (M, p) is called irreducible (resp. completely reducible or semisimple) if
the R[G]-module M is simple (resp. semisimple), and it is called faithful if p is injective.

A R|G|-linear map is also called a ( R-linear) G-equivariant map (or just a morphism of repre-
sentations). A sub-R[G|-module is also called a subrepresentation. If R is clear from the context,
we write Homg, Endg and Autg instead of Hom g, Endgjg) and Autgg.

The regular representation of G is the representation corresponding to the left regular R|G|-
module.

Lete : R[G] = R, Y 099 — D, - This is a surjective R-linear map of rings, called
the augmentation map. Tts kernel is the augmentation ideal of R[G].

A representation of G on the regular R-module rR (that is, a morphism of monoids
G — Endgr(grR) = R) is sometimes called a character of G. This terminology is mostly
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L3 Applications to the representation theory of finite groups

used when R is a field, and we will try to avoid it in these notes, because the word “character”
also has another meaning in representation theory. (As we will see in chapter II.)

Theorem L.3.2. Let R be a ring and G be a finite group. Then R|G] is a semisimple ring if and
only R is a semisimple ring and |G| is invertible in R.

If R is a field, this theorem is called Maschke’s theorem.

Proof.

< : Let M be a R|G]-module, and let N be a R|G]-submodule of M. As R is semisimple,
there exists a R-submodule N’ of M such that M = N @& N’, so there exists a surjective
R-linear map f : M — N such that f|y = idy. Define F': M — N by :

Fv)=1GI7" Y g7 f(gv)

geG

(here we use the fact that |G| is invertible in R).

We will prove that F' is R[G]-linear and that F}y = idy. First, F'is obviously R-linear. If
g € Gandv € M, then

F(gv) = |G Y h7 f(hgv) = |G| g > (hg) ™" f(hgv) = gF (v).

heG heG

So F'is indeed R[G]-linear. Next, let v € N. Then for every g € G, gv is also in N, so
f(gv) = gv. Hence

F(o) =G g7 flgv) =G g 'gv=.

geG geG

If we can show that M/ = N @ Ker(F), we will be done, because Ker(F') is a R[G]-
sundmodule of M thanks to the R[G]-linearity of F'. For every v € M, we have F'(v) € N,
hence F'(F(v)) = F(v),hence F(v—F(v)) =0and v = (v—F(v)+F(v) € Ker(F)+N.
Moreover, if v € N N Ker(F), then v = F(v) = 0. This finishes the proof that
M = N & Ker(F).

= : Assume that R[G] is semisimple. Then we have the augmentation map ¢ : RG] — R
(see . It makes R into a R[G|-module, which is automatically semisimple by as-
sumption. As R|G] acts on R through its quotient R|[G|/ Kere = R, the R-module R is
semisimple, and so R is a semisimple ring.

As in the Artin-Wedderburn theorem (theorem 1.1.10.59)), write
R = M, (D) x --- x M, (D,), with Dy,...,D, division rings and n4,...,n, > 1
integers. For every i, let R; = M, (D;); we have a surjective morphism of rings

R|G] — R;, and hence R; is also semisimple (this is the same proof as in the previous
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paragraph : g, R; is a semisimple R;-module). Also, |G| is invertible in R if and only if it
is invertible in every R;. For a fixed i € {1,...,r}, |G| is invertible in R; if and only if it
is invertible in [D;, if and only if it is nonzero in D, if and only it is nonzero in R;.

So we may assume that R = M, (D) with n > 1 and D a division ring, and we are now
trying to prove that |G| # 0 in R. Suppose that |G| = 0in R, andletz =} . g € R[G].
Then x is central in R[G]. Indeed, forevery y = > ., a9, we have

() ()

9€G g192=g geG geG

and
Ty = Z Z Qg g = (Za9> <Zg> .
9€G g192=9g geqG geG

Note that this does not use the fact that |G| = 0, but is true in any group algebra as long as
( is finite (otherwise, x doesn’t make sense).

Also,
i (Z 1) <Zg> = |G|z = 0.
geG geG

Let I = R[G]z. As R[G] is semisimple, there exists a left ideal J of R[G] such that
R[G] = I & J. By remark[[.1.3.16] there exists e € I such that e = ¢* # 0. But we have
e = yx with y € R[G], so e = % = (yx)(yz) = y*2? = 0, contradiction.

[]

Remark 1.3.3. If G is infinite and R # 0, then R[G] is never semisimple.

Proof. Let I be the augmentation ideal of R[G] (see[l.3.1). Suppose that R is semisimple. Then
there exists a left ideal J of R such that kR = I & J, and J # 0 because I /R[G]. Let
0#b=23,5B89 Foreveryh € G, (1—h)b € IN.J,so(l—h)b=0,ie b= hb. Hence
Brg = Bg for every g, h € G, which means that all the 3, are equal. As b # 0, at least one of the
f34 is nonzero, so all the 3, are nonzero, and this is only possible if G is finite.

]

Let k be a field and G be a finite group. Using the Artin-Wedderburn theorem (theorem

see also remark [[.1.10.7)) and theorem we get
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Theorem 1.3.4. 1. There are uniquely determined k-division algebras D+, . .. D, and inte-

gersny,...,n, > 1 such that dimg(D;) is finite for every i and
k|G]/ rad(k[G]) = M,,(D;) X --- x M, (D,).

A complete set of representatives of the isomorphisms classes of irreducible representa-
tions of G is given by Vi := D', ...V, := DI, and we have a G-equivariant isomor-
phism

k[G]/rad(k[G]) ~ V" @& --- V.

If k is algebraically closed, then D; = k for every 1, and so

> (dimy;, V)? Zdlmk Zn = dimg (k[G]/ rad(k[G))) < dimy,(k[G]) = |G,

where the first sum is taken over the isomorphism classes of irreducible representations of
G. This inequality is an equality if and only if the characteristic of k does not divide |G).

Definition 1.3.5. If R is a ring and G is a group, we denote by Si(G) the set of isomorphism
classes of irreducible representations of G on R-modules.

Remark 1.3.6. By the theorem above, Sy (G) is finite if & is a field and G is a finite group.
Example 1.3.7.

Fix R and G as above. The trivial representation of GG (over R) is the representation of G
on R given by the augmentation map R[G]| — R (see[L.3.1), i.e. by the trivial action of
G on R. We denote it by 1.

If GG is the symmetric group &,, and R is any ring, we denote by sgn the representation of G
on R given by the sign morphism G — {£1} composed with the obvious map {£+1} — R.

Example 1.3.8.

)

2)

Let G = G5 and k& be a field.

If char(k) # 2, then k[G] ~ k x k, where the first factor corresponds to the trivial repre-
sentation 1 and the second to the sign representation sgn.

If char(k) = 2, then 1 = sgn is the unique simple k[G]-module, rad(k[G]) is equal to the
augmentation ideal of k[G] (see|L.3.1)), and we have k[G]/ rad(k[G]) = k.

Let G = &3 and k be a field such that char(k) /6. We know that k[G] is a semisimple.

The only 1-dimensional representations of G3 (corresponding to the morphisms of groups
S3 — k) are 1 and sgn, and they are nonisomorphic because char(k) # 2.

Make &3 act on k? by

0 - (21,72,23) = (To-1(1), To-1(2), To—1(3))-
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3)

40

Let
VQ = {(ZBl,sz,l’g) € k’3|$1 +ZB2 —l—Ig = 0}

Then k* = V5, @ 1, and V5 is an irreducible subrepresentation of k. Indeed, if V5 were not
simple, it would be a sum of two 1-dimensional subrepresentations, so we just need to see
that neither 1 not sgn are isomorphic subrepresentations of V. Letv = (z,y, —x—y) € V4,
and suppose that 0 - v = v forevery o0 € G3. Thenx =y = —z — y, so 3z = 3y = 0, so
x =y = 0 as char(k) # 3, and hence v = 0. So V4 has no subrepresentation isomorphic
to 1. Now letv = (z,y, —x —y) € Vs, and suppose that o -v = sgn(o)v for every o € G3.
Thenxr = —y = z+y,sox =y = 0,sov = 0. So V5 has no subrepresentation isomorphic
to sgn.

We found three irreducible representations of G, of dimensions 1, 1 and 2. As
PP+114+22 =6 = |G|, there are no other irreducible representations of G, and we
have

k[G] ~ Endy(1) x Endg(sgn) x Endg(Vs) ~ k x k x My(k)

as k-algebras.

Remark. 1f char(k) = 2, then V4 is still an irreducible representation of 3, but we now
have 1 = sgn. The Jacobson radical rad(k[G]) is 1-dimensional over k, and we have
k[G]/rad(k[G]) ~ k x Ms(k).

If char(k) = 3, then 1 % sgn, but V5 is not irreducible anymore. In fact, we have an exact
sequence of k[G]-modules 0 — 1 — V5 — sgn — 0. The Jacobson radical rad(k[G]) is
4-dimensional over k, and we have k[G]/ rad(k[G]) ~ k X k.

Let GG be the quaternion group () = {1, i, +7, £5} C H, with the mutliplication given
by that of H. (See problem [VIL.1.§])
In problem |VII. 1.8} the following facts are proved :

RG] >R xR xR xR x H,

and so Sg(G) has 5 elements. More precisely, the elements of Sg(G) are :

e The trivial representation of G on R.

G —- R
e The representation of G on R given by the map ¢ 1,k +——1
t,] +— -1
G — R
e The representation of G on R given by the map ¢ +1,7 +——1
5k — =1
G —- R
e The representation of G on R given by the map ¢ +1,5 ——1
ik — -1
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e The (4-dimensional) representation of G on H given by the inclusion G C H* and
the action of H* on H by multiplication on the left.

Also,
C[G] ¥~ C x C x C x C x My(C),

and so S¢(G) has 5 elements. The first four are 1-dimensional and are just the tensor
products by C of the four 1-dimensional representations of G over R. The fifth is 2-
dimensional : to construct, we use the C-algebra isomorphism H ®r C ~ M5(C), which
splits the 4-dimensional representation of G on H ®r C (coming from the 4-dimensional
simple R[G]-module) into two isomorphic irreducible 2-dimensional representations.

Proposition 1.3.9. If G is a finite abelian group and k is an algebraically closed field, then every
simple k|G|-module is of dimension 1 over k.

Proof. Let V be a simple k[G]-module. Then any nonzero element v of V' gives a surjective
k-linear map k[G] — V (sending = € k[G] to zv), and so in particular V' is a finite-dimensional
vector space, and so is Endyg)(V'). The finite-dimensional k-algebra Endyg (V) is also a k-
division algebra by Schur’s lemma (theorem [L.1.4.1), so Endy¢ (V) = k by problem
Moreover, as G is abelian, k[G] is a commutative ring, so the action of any element of k[G]
on V' is k[G]-linear. This means that the action of k[G] on V' is given by a map of k-algebras
k[G] = Endgi) (V) = k € Endg (V). So for any v € V, the subspace kv is a k[G]-module of
V. As V is irreducible, this implies that dim (V) = 1.

]

Remark 1.3.10. The proposition above is false in general for infinite groups. For example, if
k = Cand G = C(T)*, then C(T) is a simple C|G]-module with the obvious action of G by
mutliplication, but it is not 1-dimensional over C.

The reason for this is that, if GG is infinite, then we cannot conclude from Schur’s lemma that
the algebra of endomorphisms of a simple k[G]-module if equal to k. However, if for example k&
is algebraically closed and uncountable, then we still have Endy) (V') = k for any simple £[G]-
module V' provided that either G is countable or dimy, V' is countable. |''| So for example, if we
suppose that GG is commutative and countable, and that % is algebraically closed and uncountable,
we can deduce that every simple k[G]-module is 1-dimensional over k.

Example 1.3.11. The proposition above is also false if the field % is not algebraically closed. For
example, take G = {%1,+i} C C* and k = R. Then C, with the obvious action of G, is a
2-dimensional irreducible representation of G over R.

"See lemma 2.11 of the book [3] of Bernstein and Zelevinski. The proof goes as follows : Let u € Endy¢(V),
suppose that u € k - idy . For every A € k, u — Aidy is G-equivariant and nonzero, so it is invertible by Schur’s
lemma; let vy = (u — Aidy ). Now choose x € V — {0}. Then it is an easy exercise to show that the family
(va(x))aek is linearly independent. If we assumed that dimy V' is countable, we get a contradiction. If we
assumed that G is countable, then this forces dimy, V' to be countable (because we have a surjective k-linear map
k[G] = V, a — ax), so we also get a contradiction.
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Example 1.3.12. Let G = Z/nZ (n > 1), and let k be an algberaically closed field.

- The case char(k) fn : Fix a primitive nth root (,, of 1 in k. The k-algebra k[G] is semisim-
ple, so k[G] ~ k x - - - x k, where the n factors k correspond to the n irreducible represen-
tations of GG given by the maps G = Z/nZ — k*, 1 — sz, forl < <n.

- The case char(k)|n : Let p = char(k), and write n = p"m, with m prime to p. Then
G =7Z/p"Z x Z/mZ. To give a 1-dimensional representation of (G, we have to give the
images a,b € k* of (1,0),(0,1) € Z/p"Z x Z/mZ by the map G — k* corresponding
to the representation. We must have a”" = 1, hence a = 1 because char(k) = p, and
b can be any of the m solutions of the equation ™ = 1 in k. So we get m irreducible
representations of G, and k[G|/ rad(k[G]) ~ k™.

.4 The representation ring

Definition 1.4.1. Let R be a ring.

1. We define K (R) to be the quotient of the free abelian group on the basis elements [ ], for
M a finite length™| R-module, by all the relations of the form [M] = [M’] + [M"], where
0— M — M — M" — 0is an exact sequence of R-modules.

2. We define PK (R) to be the quotient of the free abelian group on the basis elements [P],
for P a finite length projective R-module, by all the relations of the form [P] = [P']4[P"],
where 0 - P’ — P — P” — 0 is an exact sequence of R-modules.

We have an obvious map PK (R) — K (R), which is neither injective nor surjective in general.

Remark 1.4.2. The group K (R) (resp. PK(R)) is usually called the Grothendieck group of the
category of finite length (resp. finite length projective) R-modules.
Remark 1.4.3. Here are some easy properties of K (R) and PK(R) :
(1) The exact sequence 0 — 0 — 0 — 0 — 0 gives an equality [0] = [0] 4+ [0] in K(R) and
PK(R), so we get [0] = 0 in these groups.
(2) If we have an isomorphism of (projective) R-modules M — M’, then the sequence
0 — M = M’ — 0is exact, so [M] = [M'] + [0] = [M'] in K(R) (and PK (R)).
3)IfM =My DM, D -+ D> M, = 0 are R-modules, then [M] = """ [M,; ;/M,] in
K (R), by an easy induction on n.

Proposition 1.4.4. As a group, K(R) is the free abelian group with basis {{M], V € S(R)}
where S(R) is the set of isomorphism classes of simple R-modules (as in definition .

12See definition|.1.5.1
3Unfortunately, the notation is totally ad hoc.
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We will prove a similar statement for PK (R) in corollary [III.2.1{of chapter III.

Proof. Let S be the free abelian group on the set S(R), and denote by (exr) res(r) its canonical
basis.

Define ¢ : S — K(R) by @(en) = [M].

Define ¢ : K(R) — S as follows : If M is a R-module of finite length, then it has a Jordan-
Holder series M = My D M --- D M, = 0 by definition, and we set

n

¢([M]) = Z EM;_1/M;-

i=1
By theorem|[I.1.5.2] this does not depend on the choice of the Jordan-Holder series.

Let’s show that v is well-defined. If 0 — M’ — M = M” — 0 is an exact sequence of finite
length R-modules, we need to show that ¢([M]) = ([M']) + ¢([M"]). Choose Jordan-Holder
series M' = M} D> --- D M/ =0and M" = M D> --- D M) = 0. For 0 < j < m, let
M; = u='(M}). Then M = My D --- D My, = My D --- D M;, = 0 is a Jordan-Holder series
for M, which gives the desired equality immediately.

It is now obvious that ¢ and ) are inverses of each other.
]
Proposition 1.4.5. If R is a semisimple ring, then K(R) = PK(R), and, for all finite length
R-modules M, M', we have [M] = [M'] in K(R) if and only if M ~ M'.
Proof. If R is a semisimple ring, then every R-module is projective, so K (R) = PK(R).

Let M and M’ be two R-modules of finite length. As R is semisimple, we can write

M >~ @Dyegry NV and M’ =~ Dyegn) N®~. Then [M] = > nesr) "N[N] and
[M'] = > nesr rn[IV]. By proposition [L4.4] we have [M] = [M'] if and only if ry = rj
for every N € S(R), which is equivalent to M ~ M’.

[]

We now apply this to representations of groups. Let k be a field, and let GG be a group.

Definition 1.4.6. We write Ry (G) = K (k[G]), Px(G) = PK(k[G]) and Si(G) = S(k[G]) (that
last notation was already introduced in definition [[.3.5)).

We call Ry (G) is called the representation ring of G over the field k.

The name “representation ring” is explained by the following fact :

Proposition 1.4.7. We have a multiplication on Ri(G) given [M][M'] = [M @y M'|, and this
makes R (G) into a commutative ring, with unit element equal to [1)].
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Proof. As tensoring over a field preserves equal sequences, the formula [M|[M'] = [M & M|
does define a bi-additive map Ry (G) x Ri(G) — Ri(G). Everything else is clear.

]

Proposition 1.4.8. If M is a k[G] and N is a projective k|G|-module, then the k|G]-module
M ®y. N is also projective.

Proof. As N is projective over k[G], it is a direct summand of some free k[G]-module k[G]®7,
[Mand then M ®; N is a direct summand of M ®;, k[G]®! = (M ®; k[G])®!. So it is enough to
show that M ®y, k[G] is projective.

We will actually show that the k[G]-module M ® k[G] is free over k[G]. Let M be the k-
vector space M, considered as a representation of G with the trivial action. Define a k-linear
map u : M @y k[G] — M & k[G] by sending x ® g to gr ® g, if x € M and g € G. Then the
k-linear map v : M ®; k[G] — M ®;, k[G] that sends x ® gto g 'z @ gforz € M and g € G
is an inverse of u, so u is an isomorphism of k-modules. Let’s show that u is G-equivariant. Let
g,h € Gand x € z. Then :

h-ulx®g)=nh-(92®g) = (hgzr) ® (hg)
and
u(h - (r ® g)) = u(z ® (hg)) = (hgz) @ (hg)

are equal. Finally, we have found an isomorphism of k[G]-modules M ®y, k[G] ~ M ®; k[G]. As
M ®; k[G] is just a (possibly infinite) direct sum of copies of k[G], the k[G]-module M ®y, k|G|
is free.

]

Corollary 1.4.9. The tensor product over k induces a bi-additive map Ry (G) x P(G) — Pr(G),
which makes Py(G) into a Rk (G)-module, and the obvious map Pr(G) — Ry(G) is Ri(G)-
linear.

Remark 1.4.10. If G is a finite group, then a k[G]-module V' has finite length if and only if it is a
finite-dimensional k-vector space.

Proof. If dimy (V) is finite, then V' is Artinian and Noetherian as a k-module, so it is Artinian
and Noetherian as a k[G]-module, and hence has finite length by proposition|[.1.6.2

Conversely, suppose that V' is a finite length £[G]-module. Then V' has a Jordan-Holder series
V="V D - D>V, =0 Wehave dimy(V) = > " dimy(V;_1/V;), and each V;_;/V;
is a simple k[G]-module, so we only need to prove that every simple k[G]-module is a finite-
dimensional k-vector space. But we already saw this : a simple k[G]-module is a quotient of the
right regular module £[G], and dimy (k[G]) = |G| is finite.

]

14The free k[G]-module with basis 1.

44



1.5 Induction and restriction

Remark1.4.11. If G is a finite group and K /k is a field extension, then [V'] — [V ®j, K| induces
a morphism of rings R(G) — Rk (G).

This morphism is injective if char(k) = 0 or if K/k is a separable algebraic extension, [ but
it is not always surjective. We give counterexamples below.

Example 1.4.12.

(1) Take G = Z/nZ and k a field containing all the nth roots of unity and such that char(k) fn.
Then Ry (G) ~ Z™ as a group, and R, (G) is isomorphic to the group algebra Z[Z/nZ] as
aring. (See example[[.3.12])

(2) Take G = {#1,4i} C C*. Then, as groups, Rg(G) ~ Z3 (see example and
Re(G) ~ Z* (see proposition[[.3.9). The map Rr(G) — Re(G) is (a, b, ¢) — (a, b, ¢, c),
and it is not surjective.

(3) If G = Z/pZ and k is a field of characteristic p, then Ry (G) ~ Z as a ring, because the
only simple k[G]-module is the trivial representation. (See example [[.3.12])

(4) If G = {+£1,4i,+j, £k} C H* as in example [L.3.83), then, using the calculations of
this example, we get isomorphisms of groups Rg(G) ~ Z° and R¢[G| ~ Z5, and we see
that the map Rg[G| — Rc[G] is given by (a,b, ¢, d, e) — (a, b, ¢, d, 2¢). This is also not
surjective.

.5 Induction and restriction

Let R be aring and « : H — G be a morphism of groups. Then o a morphism of rings
¢ : R[H| — R|G]. In many applications, G is finite, « is the inclusion of a subgroup of G, and
R is a field, but we’ll do as much as we can in the general setting.

.5.1 Definitions

Definition 1.5.1.1 (Restriction). If M is a R|G]-module, we can see it as a R[H]-module by
making R[H] act via the morphism ¢ : R[H] — R[G]. The resulting R[H]-module is denoted
by Res& M (or o* M if we need to make « explicit) and called the restriction of M to H (along
Q).

If u: M — N is a morphism of R[G]-modules, we write Res% (u) : Res& M — Res% N for
the same map u, now seen as a morphism of R[H|-modules.

Remark 1.5.1.2. It is clear from the definition that Resg preserves exact sequences.

15See problem
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Hence, if a(H) has finite index in G and k is a field, Res% induces morphisms of groups
Res% : Ru(G) — Ri(G) and Pi(G) — Pi(H) (see definition [[.4.6), and the first morphism
is actually a morphism of rings. (The condition on « is needed to preserve the finite length
condition on the representations appearing in the definition of the representation rings.)

Definition 1.5.1.3 (Induction). If M is a R[H|-module, we set

Ind§ M = R[G] @gym M,
where R|H| acts on the left on R[G] via the morphism . This is called the induction of M from
H to G, and is sometimes also denoted by «; M.

If u: M — N is a morphism of R[H]-modules, we write Ind% (u) : Ind$ M — Ind% N for
the R[G]-linear map id gy ® w.

Definition 1.5.1.4 (Coinduction). If M is a R[H]-module, we set
ColInd$; M = Hom gy (R[G], M),

where R[G] is seen as a left R[H|-module via ¢ : R[H] — R[G|. We make this into a left
R[G]-module using the right regular action of R[G] on itself. More concretely, if + € R[G] and
u € CoInd$ M, then z - u is defined by (z - u)(y) = u(yz), for every y € R[H].

The R[G]-module CoInd$; M is called the coinduction of M from H to G, and it is sometimes
denoted by o, M.

If w ; M — N is a morphism of R[H]|-modules, we write
Colnd$(u) : ColndGM  —  CoInd$ N for the R[G]-linear map sending
v € Hompy (R[G], M) to w o v.

Remark 1.5.1.5. Here is a more concrete description of the coinduction. Let M be a R[H|-
module. Then restricting maps R[G] — M along the inclusion G C R[G] induces an isomor-
phism of R-modules

ColndG M 5 {f : G — M|Vh € HNg € G, f(a(h)g) = hf(g)}.
The action of GG on the right-hand side is given in the following way : If f : G — M and if
x € G, thenz - f: G — M is defined by (- f)(g9) = f(gz), forevery g € G.

Proof. Denote by 1) the R-module morphism defined above. It is injective because G generates
the R[H]-module R[G], so a R[H]-linear map v : R[G] — M is uniquely determined by its
restriction to G.

Let’s show that 7 is surjective. Let f : G — M satisfying the condition in the formula above,
and define a R-linear map u : R[G] — M by

U(Z Cgg) = Z cgf(9)-

geG geG
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1.5 Induction and restriction

If we can show that u is R[H|-linear, we’ll be done because we’ll then have ¢ (u) = f. But if
he Handz =), _.c,g € R|G], then

geG

u(hz) = u(Y_ csa(h)g) =Y _cpf(alh)g) =Y cohf(g) = hu(x).

geG geG geG

The last sentence of the remark is clear.

]

The analogue of remark [[.5.1.2] for induction and coinduction is more complicated (and not
always true). We will consider this question below.

1.5.2 Induction and exact sequences

The following obvious result will be used several times :

Proposition 1.5.2.1. If « : H — G is injective, then ¢ : R{H| — R|G| makes R[G] into a
free (left or right) R|H|-module. More precisely, let (g;)icr be a complete set of representatives
of a(H) C G (resp. G/a(H)) in G; then (g;)icr is a basis of R|G] as a left (resp. right)
R[H]-module. O

Definition 1.5.2.2. Suppose that G = {1}. Then, for every R[H]-module M, Ind}, M is called
the R-module of coinvariants of M under H and denoted by M.

Remark 1.5.2.3. 1t follows directly from the definition that My is the quotient of M by the R-
submodule generated by all Am — m, with h € H and m € M.

Theorem 1.5.2.4. For every exact sequence 0 — M’ — M — M" — 0 of R[H]|-modules, the
sequence Ind$; M’ — Ind% M — Ind$, M” — 0 is exact.

Moreover, we can also deduce that the sequence 0 — Ind$ M’ — Ind$ M — Ind$ M” — 0
is exact in the following two situations :

1. a: H — G is injective.
2. Ker(a) is finite, R is semisimple and | Ker(«)| is invertible in R.
Lemma 1.5.2.5. Let M be a R[H|-module.

1. If « : H — G is surjective, then Indg = Mxera, With the following action of G : For
every g € G and x € Mxe; o, choose preimage h € H of g by o and m € M of x by the
obvious quotient map, and then gx is the image in Mye, o of hm.

2. In general, Ind$, = Indg( i) MKera-
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Proof. 1. Letu : Ind M = R[G] @pi M — Myero be defined as follows : If a € R[G]
and m €, M, choose b € R[H] such that ¢(b) = a and take for u(a ® m) the image of b
in Mker - This does not depend on the choice of b, because Ker ¢ is the R[H|-submodule
of R[H] generated by all h — 1, for h € Ker , and it does define a map on R[G| @ g M,
because the formula for u(a ® m) is additive in a and m and takes the same value on
(ap(x),m) and (a,zm) if z € R[H].

Letv' : M — R[G] ®pim) M be the map m — 1 ®@ m. If m € M and h € Ker a, then
V(hm—m)=1® (hm)—1®@m=a(h)@m —1®m = 0.

So v’ defines a R-linear map v : Mkero — Indfl M.

It is now very easy to check that « and v are inverses of each other, and to read the formula
for the action of GG on M., On the definition of w.

2. This follows from the fact that Ind$; M = Indg( H) Ind%H) (which is just the transitivity
of ®) and from (i).

O

Lemma 1.5.2.6. Suppose that R is semisimple, and that G is a finite group such that |G| is
invertible in R. Then, for every exact sequence of R|G|-modules 0 — M' — M — M" — 0,
the sequence 0 — M/, — Mg — M, — 0 is also exact.

Proof. The hypotheses imply that the ring R[G] is semisimple (see theorem . By the first
part of the theorem (whose proof does not use this lemma), we only need to show that taking
coinvariants preserves injectivity in our situation. So let M — N be an injective R|G|-linear
map. As R[G] is semisimple, there exists a R[G]-submodule M’ of N such that N = M & M'.
It’s clear on the definition of coinvariants that N = M@ MY.. In particular, the map Mg — Ng
is injective.

]

Proof of the theorem. The first part follows from the general properties (more precisely, the right
exactness) of the tensor product.

Let’s prove the second part. In situation (i), the right R[H|-module R[] is free by proposition
[.5.2.1] so taking tensor products by R[G] over R[H] preserves exact sequences. Suppose that we
are in situation (i1). Then, by lemma Ind% M = Indg( 1) Mxker o for every R[H|]-module
M, and so the statement follows from lemma[[.5.2.6 and from situation (i).

]

Remark 1.5.2.7. The second part of the theorem is not true in general, because taking coinvariants
does not always preserve exact sequences.

16See any book on group homology, for example Brown’s book [[5].
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Corollary 1.5.2.8. Suppose that R = k is a field. If G and H are finite and char(k) does not
divide | Ker(c)|, then Ind$; induces a morphism of groups Ry,(H) — Ry (G).

Remark 1.5.2.9. Note that this is not a morphism of rings. For example, it sends the unit [1] of
Ri(H) to [K[G] @xia(i K]

1.5.3 Coinduction and exact sequences

Definition 1.5.3.1. Suppose that G = {1}. Then, for every R[H]-module M, Colndy, M is
called the R-module of invariants of M under H and denoted by M.

Remark 1.5.3.2. 1t follows directly from the definition that
M" = {m € M|Vh € H, hm = m}.
Theorem 1.5.3.3. For every exact sequence 0 — M’ — M — M" — 0 of R[H]|-modules, the

sequence 0 — Colnd% M’ — Colnd$, M — Colnd$; M" is exact.

Moreover, we can also deduce that the sequence 0 — Colnd% M’ — Colnd% M — Colnd% M” — 0
is exact in the following two situations :

1. a: H — G isinjective.

2. Ker(a) is finite, R is semisimple and | Ker(«)| is invertible in R.

Lemma 1.5.3.4. Let M be a R[H]-module.

1. If a : H — G is surjective, then CoIndg = MXere with the following action of G : For
every g € G and m € M¥® %, choose a preimage h € H of g by o, and then gm is defined
to be hm.

2. In general, CoInd¢ = CoIndg(H) MKere

Proof. 1. Letu : Colnd% M = Hompy(R[G], M) — MX® be defined as follows : If
f : R[G] — M is a R[H]-linear map, take u(f) = f(1). This is well-defined because, for
every h € Kera, hf(1) = f(a(h)1) = f(1).

Let v : M¥* — Hompy(R[G], M) be the map defined as follows : If m € M and
a € R|G], choose b € R[H] such that p(b) = a, and set v(m)(a) = bm. This does not
depend on the choice of b, because Ker ¢ is the R[H|-submodule of R[H] generated by all
h — 1, for h € Ker a.

It is now very easy to check that v and v are inverses of each other, and the statement about
the action of G on M¥e @ is obvious.

17But see corollary [.5.6.2|for a property that it does have.
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2. This follows from the fact that Colnd§ M = ColndS,, Colndy™ (ie. that

I
Hompg(R[G], M) = Hompgjamy(R[G], Hompgm (Rla(H)], M)) which is a general
property of Hom) and from (i).

]

Lemma 1.5.3.5. Suppose that R is semisimple, and that G is a finite group such that |G| is
invertible in R. Then, for every exact sequence of R|G|-modules 0 — M' — M — M" — 0,
the sequence 0 — M'C — MY — M"Y — 0 is also exact.

Proof. The hypotheses imply that the ring R[G] is semisimple (see theorem [[.3.2). By the first
part of the theorem (whose proof does not use this lemma), we only need to show that taking
invariants preserves surjectivity in our situation. So let M — N be an surjective R|G|-linear
map. As R|G] is semisimple, there exists a R|[G|-submodule N’ of M such that M = N & N'.
It’s clear on the definition of invariants that M¢ = N¢@ N’“. In particular, the map M — N¢
is surjective.

[]

Proof of the theorem. The first part follows from the general properties (more precisely, the left
exactness) of Hom.

Let’s prove the second part. In situation (i), the left R[H]-module R|[G] is free by proposition
so taking Hom g (R[G], ) preserves exact sequences. Suppose that we are in situation
(ii). Then, by lemma[[.5.3.4, Colndf; M = Colndg ;) M for every R[H]-module M, and
so the statement follows from lemma|[.5.3.5]and from situation (i).

]

Remark 1.5.3.6. The second part of the theorem is not true in general, because taking invariants
does not always preserve exact sequences.

Corollary 1.5.3.7. If R = k is a field, G and H are finite and char(k) does not divide | Ker(«)|,
then CoInd$; induces a morphism of groups Ry.(H) — Ri(G).

1.5.4 Frobenius reciprocity

Definition 1.5.4.1. Let M be a R[H]-module. @ We denote by &, the morphism
Res$ Colnd$ M — M sending u € Hompgm(R[G], M) to u(1) € M, and by 1y the mor-
phism M — Res% Ind$ M, m — 1 @ m.

Proposition 1.5.4.2. For every R[H|-module M, the maps €, and 0y are R|H|-linear.

18See any book on group cohomology, for example Brown’s book [3]].
Note that CoIndg is actually canonically isomorphic to Ind$, 77 in that case, by corollary m and proposition
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Proof. 1tis clear that 1y, is R[H]-linear. Let v € Hompy(R[G], M) and x € R[H|. Then
ev(z-u) = (x-u)(1) = u(x) = zu(l)
because u is R[H]-linear.
L
Theorem 1.5.4.3 (Frobenius reciprocity). Let M be a R|G|-module and N be a R[H|]-module.

1. The morphism of groups
® : Hompe) (M, Colnd$; N) — Hom g (Res; M, N)

sending u € Hom g (M, Colnd$ N) to ey o Res$;(u) is an isomorphism. It is R-linear
if R is commutative.

2. The morphism of groups
@' : Hompg)(Ind$ N, M) — Hompu (N, Res M)

sending u € Hompg(Ind$ N, M) to Res (u) o ny is an isomorphism. It is R-linear if R
is commutative.

Remark 1.5.4.4. This theorem is not specific to group algebras and stays true (with the obvi-
ous modifications in the definitions and the same proof) if we replace the morphism of rings
R[H] — R[G] by any morphism of rings R; — Rs.

Also, point (i1) follows from a more general statement, called the adjunction between & and

Hom. (See problem [VILI.1])
Proof. The statements about the R-linearity of ® and W if R is commutative are obvious.
Write Ry = R[H| and Ry = R[G].
1. Consider the map
U : Hompy (Res$; M, N) = Hompg, (M, N) —
Homp(g)(M, Colnd$; N) = Hompg, (M, Homg, (Rz, N))

sending u : M — N to the map ¥(u) : m — (a — u(am)). If u is R;-linear, then
U(u) sends M to Hompg, (R2, N), and we check easily that it is Ry-linear : indeed, for
every b € Ry and m € M, if a € R», then

Y (u)(bm))(a) = u(abm) = (¥(u)(m))(ab) = (b- (¥(u)(m)))(a).

To prove the statement, we only need to show that ® and W are inverses of each other.
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Let u be a R;-linear map from M to N. Then ¥(u) : M — Hompg, (R2, N) is the Rs-
linear map m — (a — u(am)), and ®¥(u) : M — N is the R;-linear map sending
m € M to (U(u)(m))(1) = u(m). So V& (u) = u.

Let v be a Ry-linear map from M to Hompg, (R, N). Then ®(v) is the R;-linear map
m +—— v(m)(1), and, for every m € M and a € Rs,

(PP(v)(m))(a) = P(v)(am) = (v(am))(1) = (a-v(m))(1) = v(m)(a).
So Ud(v) = w.
2. Consider the map
U’ : Hompys (N, Res% M) = Hompg, (N, M) —
Hom g (Ind§; N, M) = Homp, (Ry ®g, N, M)

sending a R;-linear map u : N — M to the Ry-linear map V'(u) : Ry ®r, N — M,
a®n +— au(n). (This map V' (u) is well-defined because (a,n) — au(n) is additive in
each variable, and because we have ¢(a)u(n) = u(p(a)n) if a € R;.)

To prove the statement, we only need to show that &’ and U’ are inverses of each other.
Let u be a R;-linear map from N to M. Then for every n € N,
'V (u)(n) = V'(u)(1®@n) =u(n).
So &'V (u) = u.
Let v be a Ry-linear map from Ry ®pg, N to M. Then for every a € Ry andn € N,
V' (v)(a®@n)=ad (v)(n) =av(l®@n) =v(a®@n).
So V'd'(v) = w.

1.5.5 Comparing induction and coinduction

Proposition 1.5.5.1. Suppose that o : H — G is injective, and let M be a R[H]|-module.
Then we have a canonical isomorphism of R[G]-modules between Ind$, M and the set of
f + G — M such that [ is supported on a finite union of right cosets of H in G and that
Vh € HVg € G, f(a(h)g) = hf(g).

The action of G on the second module is given in the following way : If f : G — M and if
x € G, thenx - f: G — M isdefined by (x - f)(g) = f(gx), for every g € G.

Proof. See problem [VII.1.12
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Corollary 1.5.5.2. Suppose that o« : H — G is injective. Then, for every R[H|-module M, we
have a canonical R[G]-linear injective map Ind%, M — Colnd$, M.

If moreover the image of a has finite index in G, this map is an isomorphism.

Proof. This follows immediately from remark [[.5.1.5]and proposition|[[.5.5.1
[

Proposition 1.5.5.3. Suppose that « : H — G is surjective. Then, for every R[H|-module M,
we have a canonical R|G)-linear map

Colnd$ M = M¥"® — Ind% M = Mxera,

induced by the identity of M.

If moreover R is a semisimple ring, Ker(«a) is finite and | Ker(a)| is invertible in R, then this
morphism is always an isomorphism.

Proof. We have Colnd$ M = M¥Xe® and Ind; M = Mke o by lemmas |1.5.3.4] and [1.5.2.5]
which gives the map.

Suppose that R is a semisimple ring, that K := Ker(«) is finite and that | K| is invertible in
R. Then R[K] is a semisimple ring by theorem[[.3.2] so there exists a R[K]-submodule N of M
such that M = M¥ @ N. Hence Mg = (M%) & N = M¥ @& Nk, which show that the map
u: M¥ — My induced by id,; is surjective.

To show that w is injective, we construct its inverse. Consider the R-linear map v’ : M — M
sending m € M to ﬁ > gex gm. This makes sense because | K| is invertible in R, and it clearly

lands in M%. Also, v'(gm — m) = 0 for every g € K and m € M, so v’ induces a map
v: Mg — MX, and it is easy to check that v is the inverse of u.

[]

1.5.6 The projection formula

In this section, we assume that the ring R is commutative.

Proposition 1.5.6.1. If M is a R[H]-module and N is a R[G]-module, then we have a canonical
R[G|-linear isomorphism

Ind% (M ®g (Res% N)) ~ (Ind$, M) @z N.
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Proof. We write
M, =Ind$ (M ®g (Res% N)) = R[G] @ (M @5 N)

and
M, = (Indf; M) ®p N = (R[G] @ M) @g N.

Note that there is obvious R-linear isomorphism between ); and Mo, but it is not R|G]-linear
in general.

Instead, consider the R-linear maps

{ M, — M,
Pl weow) — (98v)e (guw)

and
MQ — M1

w:{ GOV O — g® e (g w)).

It’s easy to see that these maps are well-defined and inverses of each other, so we just need to
check that ¢ is G-linear. Let g,h € G and v € M and w € N. Then

p(h(g@(vaw))) = ¢((hg)®(vew)) = ((hg)@v)@(hgw) = h((g@v)@w) = hp(g@(VOwW)).

O

Corollary 1.5.6.2. Suppose that R is a field k. (So that Ri(G) and Ry, (H) are rings.) Then, for
every x € Rx(H) and y € Ry(G), we have

Ind% (2 Res% (y)) = (Ind% z)y.

In other words, if we make Ry(G) act on Ry(H) via the morphism of rings Res%, then
Ind% : Ry(H) — Ri(G) is Ry(G)-linear.

In particular, the image of Ind$, is an ideal of Ry, (G).

1.5.7 The case of finite groups

We now suppose that the groups GG and H are finite. Then we know that :

1. For every R[H|-module M, ‘there is a canonical R[G]|-module map
Colnd§, M — Ind$ M. If « is injective, or if R is a semisimple ring and | Ker c|
is invertible in R, this is an isomorphism. (By corollary[[.5.5.2] proposition|[[.5.5.3]and the
transitivity of induction and of coinduction.)

2. Res% preserves exact sequences. If « is injective or if R and semisimple and | Ker o] is
invertible in R, so do Ind$ and CoInd%. (By remark |1.5.1.2] and theorems [1.5.2.4| and

[[.5.3.3)
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In this chapter, unless otherwise specified, £ will be a field of characteristic 0 and all the groups
are finite. So for any group G, the k-algebra k[G] is semisimple (see theorem of chapter I).

A representation of a group G will be a representation of GG on a finite-dimensional k-vector
space, i.e. a finite length £[G]-module, and we’ll usually write Hom instead of Homy¢j. The
regular representation of G is the representation corresponding to the left regualr k£[G]-module.

II.1 Characters

I1.1.1 Definition

Let G be a group.

Definition II.1.1.1. A function f : G — k is called central if for all g, h € G, f(gh) = f(hg).
We write ¢ (G, k) for the k-algebra of central functions from G to k.

Definition II.1.1.2. Let (V, p) be a representation of G. The character of V is the function

.{G — k
VoL g — Te(plg)).

Proposition I1.1.1.3. Let (V, py) and (W, pw ) be representations of G. Then :
1. xv(1) =dimg V.
2. xv € (G, k).
3. xvew = Xv + Xw.

4. Xve,w = XvXw-
Remember that the action of G on V' ®;, W is defined by g(v ® w) = (gv) ® (gw).

Proof. Only point (iv) is not trivial. Choose k-bases (eq, ..., e,) and (f1,..., f,,) of V and W.
Let g € G. In the chosen bases of V' and W, write py (¢g) and pw (g) as matrices (z;;)1<i j<n and
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I s

in this basis is (xi,i’yj,j’)1§i,i’§n,1§j,j’§m- Hence

Xvew(9) =D ) wiay, = (Z xi,i)(z vid) = Xo(9)xw(9).

i=1 j=1

Corollary I1.1.1.4. The map V —— xv induces a morphism of rings Ry (G) — € (G, k).

Remark 11.1.1.5. Let K /k be an extension of fields. Then, for every representation of G over k,
we have xvg,x = Xv, S0 we get a commutative diagramm

Ri(G) — € (G, k)

l !

Rk (G) —¢(G,K)

where the horizontal arrows are those of the previous corollary, the left vertical arrow is given by
[V] — [V ®; K| and the right vertical arrow is the obvious inclusion.

Remark11.1.1.6. If V is a representation of GG, we have a k-algebra map k[G] — Endy(G), so we
can extend yy to a function xy : k[G] — k, and properties (iii) and (iv) of proposition [II.1.1.3
still hold.

Definition II.1.1.7. Let V, W be representations of G.

- The k-vector space Homy (V, W) becomes a representation of G if we make g € G act by
(g- f)(v) =gf(g '), for f € Homy(V,W)andv € V.

- In particular, V* := Homy(V, k) is a representation of G (we use the trivial action of G on
k), and we have (g - f)(v) = f(¢g'v) forallg € G, f € V*andv € V.

Definition I1.1.1.8. (See definition of chapter 1.) For every representation V' of GG, we set
Ve={veV|Vgecaq, gv=nu}

This is the space of invariants of G in V.

Remark 11.1.1.9. If V and W are representations of GG, then
Homg (V, W) = Homy (V, W)©°.

Proposition I1.1.1.10. Let V, W be representations of G. Then the map

Ve, W — Homk(V, W)
1w — (v f(v)w)

is a G-equivariant isomorphism.
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Proof. Let’s call this map ¢. It is well-defined because the map V' x W — Homyg(V, W),
(v,w) — (v +— f(v)w), is k-bilinear.

First we show that ¢ is G-equivariant. Let f € V*,w € W, g € Gand v € V. Then

(e(g(f @w)))(v) = (e((gf) @ (gw)))(v) = (9.f)()gw = f(g~"v)gw,

and
(ge(f @ w))(v) = g(e(f @w)(g~'v)) = gf (g~ 'v)w.

Let’s show that ¢ is bijective. Let (e;);c; be a basis of W as a k-vector space. Then
we have a k-linear isomorphism u : @, ; Homy(V, k) — Homy(V, W) sending (fi)ics to
v — >...; [i(v)e;, and a k-linear isomorphism v : @, ; V* = V* @, W sending (f;)icr
to Y .c; fi ® e;. Now we just have to notice that ¢ = u o v L

O]
Proposition IL.1.1.11. Let V, W be representations of G. Then, for every g € G :
L xv-(9) = xv(g~");
2. Xtom vy = xv (g~ )xw(9).
Proof. Point (ii) follows from (i) and from propositions [[[.1.1.3| and [I.T.1.10] Let’s prove (i).

Write p for the action morphism G — End (V). Choose a basis % of V' as a k-vector space, and
let M be the matrix of p(g)~! in %. Then g acts by the matrix *M on V*, so the result follows
from the fact that Tr(M) = Tr(*M).

]

I1.1.2 Orthogonality of characters

Let’s first reformulate Schur’s lemma in our situation.

Theorem II.1.2.1 (Schur’s lemma). Let V,W be irreducible representations of G. Then
Homy (VW) = 0 unless V.~ W, and Endy (V) is a finite-dimensional k-division algebra.
If moreover k is algebraically closed, then End, (V') = k.

Also, remember (definition of chapter I) that Si(G) is a set of representatives of the
isomorphism classes of irreducible representations of GG over k.

Proof. Everything but the last sentence follows from theorem |I.1.4.1] of chapter 1 and the fact
that dimy, (1) is finite. The last statement follows from problem [VII.1.3

]
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Theorem I1.1.2.2. Let V. W be representations of G. Then
1 _ 1 .
il > xvlg Hxwlg) = il > xv+(9)xw(g) = dimy.(Homg (V, W)).

geG geG

We will use the following two lemmas, which are particular cases of the theorem.

Lemma 11.1.2.3. Suppose that k is algebraically closed, and let (V, p) be an irreducible repre-

sentation of V. Then
/0 ifvV#£1
2 xvl(9)= { Gl Va1

geG

Proof. Extend p : G — Endy(V) to p : k[G] — Endy(V), and letc = > ;g € k[G]. Then ¢
is central in k[G] (in fact, hc = ch = c for every h € G), so p(c) € End,(G) is a G-equivariant
endomorphism of V. By Schur’s lemma, there exists A € k such that p(c) = Aidy, and so we
have

ZXV(C) = Tr(p(c)) = Adim V.

geG

Moreover, for every h € G,

Ap(h) = p(c)p(h) = p(ch) = p(c) = Aidy.
So, if A # 0, then V' ~ 1, and then of course

d oxvlg=> 1=1Gl.

geG geqG

Lemma I1.1.2.4. Let V be a representation of G. Then

S v lg) = [G] dimy (V).

geG

Proof. By remark|II.1.1.5|and problem VII.2.1[(1), we may assume that £ is algebraically closed.
Write V' = @yycg, () W™ Then

ZXV(Q): Z HWZXW(Q)-

geG WeSk(G) geG

By lemmalll.1.2.3] this is equal to ny |G]|.

On the other hand, if W € Si(G) and W =~ 1, then W% = 0 (because W is a subrepresen-
tation of ). So V¢ = 1™, and dim, (V) = ny.

]
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Proof of the theorem. By proposmonsl [.1.1.3land[IL.T.1.1T1]

|G| ZXV XW g |G| ZXV XW g |G| ZXHomk VW) (g>

geG geG geqG

By lemma and remark [[I.T.1.9] this is equal to
dimy, (Homy, (V, W)¢) = dimy,(Homg(V, W)).

[
Corollary I1.1.2.5. IfV and W are irreducible and nonisomorphic, then
> xv-(9hw(g) = 0.
geG
Proof. This follows from the theorem and from Schur’s lemma.
[

Corollary I1.1.2.6. Suppose that k is algebraically closed, and let V be a representation of G.
Then V is irreducible if and only ifdeG xv+(9)xv(g) =

Proof. The theorem says that ) ., xv+(9)x.(9) = |G| dimg(Endg(V)).
If V is irreducible, then Endy (V') = k by Schur’s lemma.

Conversely, suppose that 3 - xv+(9)Xv(g) = [G|. Write v = D¢, V2™ where the V; are
irreducible and pairwise nonisomorphic. Then by corollary and what we just saw above,

D oxv-@xv(9) = > ming Y xve(9)x(9) = |G Y ni.
geG ijel geG i€l
So only one of the n; can be nonzero, and moreover it has to be equal to 1. Hence V' is irreducible.

]

Remark 11.1.2.7. If we don’t assume that £ is algebraically closed, then the same proof shows
that any representation V' of G satisfying > . Xv+(9)X»(9) = |G/ has to be irreducible.

Corollary I1.1.2.8. The family (xv)ves, () is linearly independent in € (G, k).

Proof. Suppose that 3 g ) awxw = 0, with ays € k. Then, for every V' € Si(G), we have

=> (> awxw @)=Y awd xwl9h(9) = avlGl,

9eG WeS,(G WeSk(G) geG

hence oy = 0.
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Corollary I1.1.2.9. For any representations V, V' of G, we have V ~ V' if and only if xy = xv.
In particular, the map Ry(G) — € (G, k) is injective.

Proof. Write' V. = @peq W™ and V' = Byeg o W Then
Xv = ZWGSk(G) nwxw and xyr = ZWGSk(G) Ny Xw-

By corollary |I.1.2.8} xy = xv if and only if ny = nj;, for every W € Si(G), which is also
equivalentto V ~ V",

]

I.1.3 Characters and representation ring

Theorem I1.1.3.1. Suppose that the field k is algberaically closed. Then the family (xw )wes, ()
is a basis of € (G, k).

Lemma I1.1.3.2. If f € € (G, k) is such that

> F@)xw-(g) =0

geG

forevery W € Si.(G), then f = 0.

Proof. If p : G — Endy (V) is a representation of GG, we set

p(f) = fl9)p(g) € Endy(V).

geG

Then, for every g € G,

p(9)p(f) = flg)plgh) =D f(g)plghg™ g) = flghg™ )plghg™p(g) = p(f)pl9),

heG heG heG

because f is a central function. So, if V' is irreducible, then p(f) € Endg (V) = k (by Schur’s
lemma), hence we can write p(f) = Aidy with A € k, and we have

Adim(V) = Tr(p(f)) = > fl9)xv(g) =0,

geG

which gives A and finally p(f) = 0.

By semisimplicity of k[G], we get that p(f) = 0 for any representation p of G. Applying this
to the regular representation p,., gives

0= preg(/)1 =Y f(9)g

geG
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in k[G], i.e., f(g) = 0 forevery g € G.
0

Proof of the theorem. We already know that this family is linearly independent, so we just need
to show that it generates €(G, k).

Let f € € (G, k). Forevery W € Si(G), let

Zf g)Xw=(g)-

gEG

If we knew (xw )wes,(c) Was a basis €' (G, k), this oy would be the coefficient of f correspond-
ing to yy, by corollaries [[I.1.2.5|and [[L.1.2.6] So we set

F=Fr= > awxw,

WeSg (G)

and we try to prove that f* = 0. For every W € Sy (G), using corollary [I.1.2.5| gives

D Flaxwe(9) =D F@xw(9) = aw Y xwl(g)xw-(9) =0,

geG geG geG

so the result follows from the lemma.

O
Corollary 11.1.3.3. Suppose that k is algberaically closed. Then we have
|Sk(G)| = dimg € (G, k), and this is also equal to the number of conjugacy classes in
G. O
Corollary 11.1.3.4. Suppose that k is algebraically clsoed. Then the map Ry(G) — € (G, k),
(V] — xv, of corollary|ll.1.1.4|induces an isomorphism of k-algebras Ri,(G) @2k = €(G, k).

O

Remark 11.1.3.5. Many of the results of the previous three sections are true for any field k£ (whose
characteristic does not divide |G|). The most important results that require k to be algebraically
closed are and theorem (more precisely, the fact that the characters of irreducible
representations generate ¢’ (G, k)) and its corollaries|II.1.3.3|and [I1.1.3.4]

I1.L1.4 Thecase k =C

Proposition I1.1.4.1. Let k be any field, and let (V, p) be a representation of a group G. Then
for every g € G, all the eigenvalues of p(g) are |G|th roots of 1 in k.
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Proof. Let g € G. We have p(g!°!) = p(g)I¢! = idy, hence the characteristic polynomial of p(g)
divides 76l — 1.

]

Corollary I1.1.4.2. Let (V,p) be a representation of V over C. Then, for every g € G,
xv-(9) = xv(g)-

Proof. Let g € G, and let \, ..., \, be the eigenvalues of p(g) (with multiplicities). Then

xve(@) =xv(g ) = AT 4 A=A A

O

Corollary I1.1.4.3. Define a Hermitian inner product on the finite-dimensional C-vector space

¢ (G,C) by
fi-fa= ’—é”Zfl(g)W-

geG

Then (Xw)wesc(c) is an orthonomal basis of € (G, C).

1.2 Representations of a product of groups

Let GG; and G5 be two groups. If V; (resp. V%) is a representation of GGy (resp. Gs), then Vi ®; Vs
becomes a representation of G; X G with the action (g1, g2)(v1 ® v2) = (g1v1) ® (gov2).

It is easy to show (see proposition [II.1.1.3)) that
Xvigpva (915 92) = X3 (91)xva (92)-

Theorem I1.2.1. Suppose that k is algebraically closed, and let V' (resp. V3) be a representation
of Gy (resp. Gs).

1. The representation V| @i Vy of Gy x Gy is irreducible if and only if both V| and V5 are
irreducible.

2. Every irreducible representation of G| X G is of the form V| @y, V5.

This theorem is proved in problem[VIL.2.4] This same problem also contains a counterexample
to point (i) if & is not algebraically closed.
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1.3 Characters and induced representation

Remember that in the present setting, the induction and the coinduction coincide (see section
of chapter I).

We fix a finite group G, and we assume again that k is any field whose characteristic does not
divide |G|.

Notation. If fi, fo € € (G, k), write (f1, f2)¢ (or just (fi, fo) if G is clear from the context) for

ﬁ S Ak =S Alg ) k).

geG geqG

Note that (f1, fo) = (f2, f1), and that this differs slightly from the inner product of section|II.1.4
if k =C.

With this notation, theorem [II.1.2.2] becomes : For any representations V' and W of G, we
have
(xv,xv) = dim,(Homg(V, W)).

I.3.1 Character of an induced representation

Let H be a subgroup of G.

Definition IL3.1.1. If f € ¥(H, k), define Ind$, f : G — k by

md§ flg) = — S f(s7gs).

|H| s€Gls—1
gs€H

Theorem IL3.1.2. 1. Forevery f € €(H, k), Ind$ f € €(G, k).
2. If V is a representation of H, then Indg XV = XindG v

Proof. It’s easy enough to prove (i) directly, and we can also deduce it from (ii). (Indeed, we
may assume that k is algebraically closed, and then any f € € (V, k) is a linear combination of
characters of representations.)

Let’s prove (ii). Let (V, py/) be a representation of H, and write (W, pyy) = Ind%(V, py). Let
G1,-- -, g be asystem of representatives of G/H. Then k[G] = @;_, g;k[H], so

W = k[G] RV = @m;
=1

ISee problem |[VII.2.16|for a generalization to a morphism H — G that is not necessarily injective.
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with
Wi = gik[H] ®pm V-

Let g € G. Then we have 0 € &, and hy,...,h, € H such that gg; = go(;)hs, for every
i € {1,...,r}. Then pw(g)(W;) = W, for every i. Choose a basis (ey, ..., e,) of V. Then
foreveryi e {1,...,7}, (gi®e1,..., 9 @ e,) is a basis of W;, and we have

pw (9)(9: ® €5) = Go(i) ® pv(hi)es.

So
Tr(pw(g) Y Tr(pv(h) = > flg;'99)-

ilo(i)=i ilg; '9g:€H
But we have G = [[;_, ¢;H and, if s € g;H, then :
(a) s 'gs € H if and only if g; 'gg; € H;

b) f(s7'gs) = f(9: " 99:)-
This finishes the proof.
[

Remark 11.3.1.3. If f € €/(G, k), we write Res$; f for fiz. Then Res$; yy = Xres¢ v fOr every
representation V' of G.

1.3.2 Frobenius reciprocity with characters

We still assume that [ is a subgroup of G.

Theorem I1.3.2.1. If f| € € (H, k) and f, € € (G, k), then

(f1,Res fo)u = (Ind f1, f2)c-
Compare with theorem of chapter I.

Proof. We can deduce this theorem from theorem of chapter I : We may assume that % is
algebraically closed, and then ¢'(G, k) and € (H, k) are generated by characters of representa-
tions, so we may assume that fixy and fo = xw, with V' (resp. W) a representation of H (resp.
G). Then, by theorem the left hand side is equal to dimy(Homy (V, Res$; W)) and the
right hand side to dim;(Home(Ind% V, W)).

But it is also very easy to prove the theorem directly. Indeed, we have

a 1
(f1,Resy f2)n = T > A fah).

heH
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On the other hand,

(Ind fi, f2)e =

56G|5*1956H

2,
G

Z . filsTgs)falsgs)
G s€G|s—1gs€H

—|ZZf1 ) fa(h |H|Zf1 ) fa(h

heH seG heH

7 Z fi(s7'gs) falg)
L
|H

?
1
|G|
1
|G|

11.3.3 Mackey’s formula
Let R be aring, let G be a finite group, and let H, K be subgroups of GG. In this section, we will
consider representations of these groups over R.

Let (V,p) be a representation of H. The question we want to answer is : What does
Res% Ind% V look like ?

Let g1, ..., g, be a system of representatives of the double classes in K"\ G/H. In other words,
we have .
G=][KguH
=1

Foreveryi € {1,...,r},let H; = gngi_l N K, and let (V;, p;) be the representation of H; on V'
given by p;(h) = p(g; ' hg,)-

Theorem I1.3.3.1 (Mackey’s formula). We have an isomorphism of R[K]-modules

Res% Ind% V ~ @ Indgi Vi

=1

Proof. For every j € {1,...,r}, let (2;);cs, be a system of representatives of K /H;. Then
{z;9;,1 < j <r,i € I,;} is a system of representatives of GG/ H. Indeed,

G = HngH HH:@ H;g;H = HHmng H;g;)H = HHQ;ng
j=liel; j=liel; Jj=liel;
(because g;lngj C H for every j).

SoW :=Tnd%V = D), W;, where W; = @, ig;k[H] @uim V. Note that W; C Wis
stable by K.
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Fix j € {1,...,r}. Let’s show that the R[/K]-modules I¥; and Indgj V;; are isomorphic. (This
will finish the proof.) Consider the R2-linear map ¢ : Indgj V; — Wj sending ) . [ Ti @i to
>ier,(igj) @ v;. Consider the R-linear map ¢ : W; — Indgj Vj sending 3, ep (2ig;) ® v; to
Y ic 1, Ti ® Vi It is clear that ¢ and ¢/ are inverses of each other. So we just need to show that ¢
is K-linear. Lety € K. Then we have 0 € &;; and h; € Hj, 1 € I}, such that yx; = w,;)h; for
every ¢ € I;. Then

yO wmen) = o) () @v) =0 (Tawhi) @v:) = 0O 2o @ (pi(hi)v;)

icl; icl; icl; icl;
= SO(Z Zo(i) @ (P(gflhigj)vi)) = Z(xa(i)gj) ® (P(gflhigj)vi)
i€l i€l
= > (@omhigy) @vi =Y (yrig;) @ v = yp(d_ x: @ v;)
il icl; il

(we use the fact that gj_lhi g; € H to move it from the right to the left of a tensor product).

1.3.4 Mackey'’s irreducibility criterion
Fix a finite group GG. We come back to our field of coefficients %, and we suppose that char(k)

does not divide GG and that k is algebraically closed.

Notation. If V and W are representations of G, we write

(V.Wha = (xv, xw)e = dim, Homg(V, W).

Let H be a subgroup of G and (V, p) be a repersentation of H. Even if V' is irreducible, it is
not always true that IndG V' is irreducible. (For example, Ind ml= k[G] is only irreducible if

G = {1}.) So we want a criterion to decide when Ind$, V is irreducible.

For every g € G, write H, = gHg™ ' N H, and define two representations p? and Res,(p) of
H,onV by

- pg(h) = p(g~"hg):
- Res,(p) () = p(h).
Theorem I1.3.4.1. The following are equivalent :
1. W :=nd$ V is irreducible.

2. V is irreducible, and for every g € G — H, Hompy, (p?, Resy(p)) = 0 (i.e. p? and Resy(p)
have no common irreducible subrepresentation).
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Proof. We use the fact that IV is irreducible if and only if (W, W)s = 1. (This is corollary
[1.1.2.6]) Let’s calculate (W, W) . The Frobenius reciprocity formula (theorem [I1.3.2.1)) gives

(W, W) = (V,Resf W)y.
Mackey’s formula (theorem |I1.3.3.1) gives

Res% W ~ @ Indgg(pg),
geH\G/H

hence

WW)e= > (V,Indf (0))gr=>_ (Indjj (p?),V)n.
geH\G/H geH\G/H

Using the Frobenius reciprocity formula again show that this is equal to

> (0% Resg(p))a

geH\G/H

Note that all the terms in this sum are > 0. Also, if g € H, then H, = H and p, ~ Res,(p) = p,
so (p?, Res,(V )y = (V,V)n.

Finally, we see that W is irreducible if and only if (W, W)s = 1, if and only if
(V,Vg = 1 and (p? Resy(p))y = 0 for every ¢ € G — H, if and only V is irreducible
and Homp, (p?, Resy(p)) = O forevery g € G — H.

]

1.4 Artin’s theorem

Let k and G be as before. We write R(G) = Ri(G).

We still use the notation (V, W) of section [I[1.3.4, As this number is an integer and only
depends on Yy and xy, it induces a symmetric Z-bilinear map

(,,)e: R(G) x R(G) — Z.
Proposition I1.4.1. Write R(G)g = R(G) @z Q.
1. The Z-bilinear map ., .)¢ : R(G) x R(G) — Z induces a Q-linear isomorphism
R(G)g = R(G)j i= Homg(R(G)g, Q)
sending x to y — (z,Y)¢-

2. Let H be a subgroup of G. If we use the isomorphism of (i) to identify R(G)g and R(H)qg

with their duals, then the transpose of Ind$, is Res.
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Proof. 1. Denote by (ey)ves, (o) the basis ([V])yes, (q) of R(G)g, and by (e},) the dual
f. y K (G) #(G) Q y (ey

basis. By theorem and corollary the map of (i) sends each ey to a nonzero
multiple of ej,.

Note that, if k is algebraically closed, then this map sends each ey to ej, itself by corollary
I1.1.2.6, and it actually induces an isomorphism R(G) = Homgz(R(G), Z).

2. This is just a reformulation of the Frobenius reciprocity formula (theorem [[1.3.2.1])
0

Theorem I1.4.2 (Artin). In this theorem, we don’t assume that k is algebraically closed (but we
do suppose that char(k) = 0).

Let X be a set of subgroups of G. Consider the map
Indy = €P Ind§; : @) R(H) — R(G).
HeX HeX
Then the following are equivalent :

1. G= UHeX UgeG gHg™

2. Indx ®7Q is surjective, that is, for every x € R(QG), there exists an integer d > 1 and
elements vy € R(H), H € X, such that

dr = Z Ind% 2.

HeX

Proof.

(ii)=-(1) We use the hypothesis that char(k) = 0 to identify R(G)q and R(H )g to subrings
of (G, k) and € (H, k) (via characters, see corollary [I.1.1.4).

Let S = Upyex Ugeq9Hg™'. Thenif H € X and 2y € R(H)q, Ind% 2 is zero on
G — S. By (ii), this implies that z = 0 on G — S for every © € R(G)g. By theorem
I1.1.3.1] this implies that, for every f € (G, k), fc—s = 0. Hence G — S = @.

(1)=-(ii) To show that Ind x ®7Q is surjective, we just need to show that it transpose (a
Q-linear map between the dual spaces) is injective. By (ii) of the proposition above, the
transpose of Indx ®7zQ is

D Res? : R(G)g — €D R(H)q.

HeX HeX

To show that this map is injective, it suffices to show that the sum of the restriction maps

€(G.k) —~ P ¢ (H. k)

HeX
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is injective. (As in the first part of the proof, for every subgroup H of G, R(H)g injects
naturally in ¢’(H, k) because char(k) = 0.) But this follows directly from condition (i).

]

Corollary I1.4.3. Take for X the set of cyclic subgroups of G. Then Indx ®7Q is surjective.

If k is algebraically closed, we can reformulate this result as follows : For every representation
V' of G, there exist cyclic subgroups C1, . .., C,. of G, 1-dimensional representations V; of C; and
rational numbers o, . . . , o, such that

V] = Z a; Indg, [Vi].

Proof. The family X satisfies the condition of Artin’s theorem, because every g € G is an
element of the cyclic subgroup that it generates.

The reformulation when £ is algebraically closed follows from the fact that every irreducible
representation of a commutative group is 1-dimensional in that case (by proposition [[.3.9] of
chapter I).

]

I1.5 Brauer’s theorem

In this section, we assume that G is a finite group and that k& is an algebraically closed field of
characteristic 0. [] We write R(G) = Rx(G), and we use characters to identify R(G) to a subring

of (G, k) (by corollary II.1.1.4).

Definition IL.5.1. Let p be a prime number. A finite group H is called p-elementary if
H = C x P, with C a cyclic group of order prime to p and P a p-group.

For every prime number p, let X (p) be the set of p-elementary subgroups of G. Let X be the
union of all the X (p) for p prime.

Theorem I1.5.2 (Brauer’s theorem). Let

Indy = @5 Indf; : € R(H) = R(G).

HeX HeX

Then Indx is surjective.

>There is a generalization of Brauer’s theorem for characteristic 0 fields that are not algebraically closed; see
section 12.6 of Serre’s book [29].
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Theorem 11.5.3. Let p be a prime number, write |G| = p"m with p prime to m, and let V,, be the
image of

Ind, .= €5 Indf;: @ R(H) - R(G).

HeX(p) HeX(p)

Then m € V,. In particular, R(G)/V,, is a finite group of order prime to p.

Proof that theorem[IL.5.3] implies theorem[[1.5.2} We have Im(Indy) = > ;. . Vp s0
R(G)/Im(Indy) is a finite group of order prime to every prime number, i.e., the trivial group.
[]
Proof of theorem
(1) Letn = |G| and @ = Z[1,(,, ..., C k, where (, is a primitive nth root of 1 in k.
Then :

e Forevery x € R(G), x (seen as a function on G3) takes values in &. Indeed, for every
representation (V, p) of G and every g € G, p(g) has eigenvalues in & by proposition
I1.1.4.1} and so yy(g) € 0.

e We have 0 N Q = Z. Indeed, let « € &6 N Q, and let f € Q[T] be its minimal
polynomial over Q. Then f € Z[T] as « is integral over Z (as an element of &), and

deg(f)=1lasa € Q.

e By the previous point, the map € /Z — (€ ®z Q)/Q is injective, so &'/Z is torsion-
free, so it is free as a Z-module, so & itself has a Z-basis of the form (1, a1, ..., a,).

e The image of 0 ® Ind, : @D x () O ®z R(H) = 0 @7 R(G) is 0 ®z V), and we
have (0 ®z V,) N R(G) V. Indeed we have

0 @7V, = V@GB%VC@@@ZR( @@az

=1

and,ify =2+ >, aux; € O @z V), (with z,x; € V}), then x € R(G) if and only
if all the z; are 0.

By the last point above, it suffice to prove that m € 0 ®z V.
(2) The character 6

If C'is a cyclic group of GG of order c, then let

cC —= Z

Oc : NN c ifC':.(x>
0 otherwise.

M : ‘G’ = ZCCG cyclic Il’ldg(ec)
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Proof. Let 0, = Ind% f¢. Let 2 € G. Then

O (z) = % Z Oc(srs™) = Z 1.

s€G|szs—1eC se€G|(szs—1)y=C
For for every s € GG, sxs~! generates exactly one cyclic subgroup of G. Hence

Y @) => 1=1G|

CCG cyclic seG

Claim : For every cyclic subgroup C of G, O € R(C).
Proof. By induction on ¢ := |C/|. The result is obvious if ¢ = 1. If ¢ > 1, then the previous

claim gives
c= Y Idfs=0c+ > Indjos.

BCC cyclic BCC cyclic
We have ¢ € R(C'), and all the f5 € R(B) for every B C C by the induction hypothesis,
so this gives ¢ € R(C).
O]

(3) Claim: Let f € ¢ (G, Z) such that f(G) C nZ. (Remember that n = |G|.) Then we can
write

f= > adndfac,

CCG cyclic

with o € € and z¢ € R(C).
In particular, f € 0 ®z R(G).
Proof. Write f = nf’, with f" € €(G,Z). We have n = 30 cyeiic Ind§ 6, hence

f= > Mdf@c)f'= >  Indg(fcResg f')

CCG cyclic CCG cyclic

by corollary [1.5.6.2] of chapter I. Write fo = 6 Res& f'.

Let’s show that fo € € ®z R(C) for every C' C G cyclic. (This will finish the proof.)
Note that fo € €(C,Z), and f(C) C |C|Z. So for every x € R(C), then

(ferx)e = ﬁ S felo)(a) € 6,

zeC

and hence
fo=>_ (fo.xw)oxw € € @z R(C).

Wes,(C)
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(4) Anelement z € G is called p-unipotent (resp. p-regular if its order is a power of p (resp.

prime to p).

Claim : For every = € G, there exists a unique pair (z,, x,) of elements of G satisfying
the following conditions :

(a) x, is p-regular and x,, is p-unipotent;
(b) x =z, 2y = T2y

Moreover, z,. and x,, are powers of x.

Proof. First, if x, and z, satisfy (a) and (b), then they have to be powers of x. Indeed,
let a (resp. b) be the order of x, (resp. x,). Then (a,b) = 1, so there exists an integer
N > 1 such that a divides N and N = 1 mod b, and then ¥ = 2¥zY = z,, and
N =gxt =,

Let’s show the uniqueness statement. So suppose that we have two paits (z,,z,) and
(x!,x!) satisfying (a) and (b). By (a), we can find an integer NV > 1 such that
" = ()" = 1and 22" = x,, («.)*" = 2. Then using (b), we get 2*" = x, = z/,
and this also gives x,, = z,.

Let’s show the existence statement. By the first part of the proof, we may assume that
G is generated by z, hence that G is cyclic. So we may assume that G = Z/nZ and
xr = 1. Write n = p"m with p not dividing m. By the Chinese remainder theorem,
G ~7Z/p"Z x Z/mZ, and we can take x,, = (0,1) and z,, = (1,0).

]

Claim : Let x € 0 ®z R(G) be such that x(G) C Z, let € G, and write * = x,z, as
above. Then x(z) = x(z,) mod p.

Proof. We may assume that G = (x). Let x1, ..., X, be the characters of the irreducible
representations of GG over k, which are all 1-dimensional by proposition [[.3.9| of chapter 1.
We write x = >, a;X;, With a; € 0. Let ¢ = p” be the order of z,,. Then z? = x4, so,
forevery i € {1,...,n}, x;(2)? = xi(z,)? (x; is compatible with multiplication because
it is the character of a 1-dimensional representation). So

n n T

x(x) = (Z aixi(r))! = Z alxi(x)? = Zafxi(xr)q = x(z,)? mod p0O.

=1 =1 i=1

As x(z), x(z,) € Z and pO N7 = pZ, we get x(z)? = x(x,)9 mod p. Finally, as we
know that a? = a mod p for every a € Z, this implies that x(z) = x(z,) mod p.

]

(6) If x € G, we write
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(7)

I11.5 Brauer’s theorem

(This is the centralizer of x in G.)

Claim : Let x € G be p-regular. Let H = C' x P be p-elementary, with C' = (z) and
P C Zg(c) a Sylow p-subgroup (i.e. such that p does not divide | Z;(x)/P|). Then there
exists ¢ € 0 ®z R(H) such that ¢»(H) C Z and that, if ¢/ = Ind$, +/, then :

() ¥'(z) #0 mod p;
(ii) ¢'(s) = 0, for every s € G a p-regular element that is not conjugate to .
Proof. Let c = |C|and p" = |P|. Let

cC — Z

Ve c ify=x
y = 0 otherwise.

As Yo (C) C cZ, e € O @7 R(C) by (3). Let
(H=CxP — Z
s T D e
Then v € 0 ®z R(H). (Indeed, if vc = ZVesk,(C) ayxy with ay € O, then
V=2 ves () WXVely-)
Let s € G be p-regular. Then

Ve =— 3w,

o’
P yeGlysy—leH

Lety € G. If ysy™! € H, then ysy~! € C (because ysy~* is p-regular), so ¢ (ysy~') # 0
if and only ysy~! = x. Hence v'(s) = 0 if s is not conjugate to z. Also,

Y(r) = — Z Y(z) = ]% Z 1= ]%|Zg(x)] #0 mod p.

yEG|yzy~ 1=z Y€Zg(2)

[]

Claim : There exists ¢ € & ®; V,, such that ¢(G)) C Z and ¢(x) # 0 mod p for every
z €.

Proof. Let (x;);c; be a system of representatives of the p-regular conjugacy classes in G.
For every i € I, we can find by (6) a ¢; € 0 ®z V), such that ¢,(G) C Z, ;(z;) # 0
mod p and ¢;(x;) = O for every j # i. Let = >, 4. Theny € 0 ®zV, and
W(G) C Z. If x € G, write x = x,x, as in (4). Then there exists a unique 7 € I such that
x, 1s conjugate to x;, and we have (again by (4))

bla) = bla,) = (e;) = ¥(2) 0 mod p.
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II Characteristic 0 theory

(8) As before, write n := |G| = p"m with p prime to m. Let’s prove that m € V,,
which is the statement of the theorem. For this, choose a ¢ € & ®z V, as in (7). Let
N = p(p") = [(Z/p"Z)*|. Then forevery ¢ € Z prime to p, /¥ =1 mod p". So for every
r e G ()N =1 mod p". Som(yN — 1) € (G, Z) takes its values in nZ, and by (3)
this implies that m(¢yN — 1) € O ®7V,. As 0 @7V, is an ideal of & @7 R(G) by corollary
[1.5.6.2]of chapter I, myN € € ®7 V. Finally, we get m = myY —m(¢pN —1) € O @7V,

]

Definition I1.5.4. A representation V' of G is called monomial if there exists a subgroup H of G
and a 1-dimensional representation W of H such that V = Ind% V.

The following corollary is often called “Brauer’s theorem” too.

Corollary IL5.5. For every representation V of G, there exist monomial representations
Vi,...,V, of G and integers ny, . .., n, € Z such that, in R(G), we have an equality

V)= Y milvi

Thanks to theorem [I1.5.2] this corollary is immediate once we have the following proposition.

Proposition I11.5.6. Let p be a prime number and H be a p-elementary group. Then every irre-
ducible representation of H is monomial.

Lemma I1.5.7. Let P be a p-group, and suppose that P is not abelian. Denote by Z(P) the
center of P. Then there exists an abelian normal subgroup A of P such that Z(P) C A.

Proof. The quotient P/Z(P) is a nontrivial p-group, so its center is nontrivial. Choose
A" C Z(P/Z(P)) cyclic of order p, and let A be its inverse image in P. Clearly Z(P) C A, and
A is normal in P because it’s the inverse image of a normal subgroup of P/Z(P). Also, A is
abelian because it is generated by Z(P) and by a lift of a generator of A’.

]

Proof of the proposition. Write H = C' x P, with C' cyclic of order prime to p and P a p-
group. By theorem irreducible representations of H are all of the form V; ®; V5, where
Vi (resp. V%) is an irreducible representation of C' (resp. P). By proposition of chapter
I, Vi is 1-dimensional, so we just need to show that V5 is monomial (If V5, = Indg/ W, then
Vi @y Vo = Indg, pr (Vi @ V)

So we may assume that H = P is a p-group. We prove the result by induction on |P|. If P
is abelian (for example if | P| = p), then every irreducible representation of P is 1-dimensional
by proposition of chapter I. So assume that P is not abelian. Let (V, p) be an irreducible
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1.6 First application of Brauer’s theorem : field of definition of a representation of G

representation of P. If Kerp # {1}, then applying the induction hypothesis to P/ Ker pf| we
see that p is monomial. So we may assume that p is faithful.

By the lemma, there exists a normal abelian subgroup A of P such that Z(P) C A, where
Z(P) is the center of P. Let V =V, @ - - - @ V,, be the isotypic decomposition of Res’;, V. (See
section of chapter 1.) Because A is abelian, proposition [[.3.9] of chapter I implies that A
acts on each V; through a morphism of groups p; : A — k*. We can’t have V; = V, because
otherwise p(A) would be contained in the center of p(P), so A would be contained in the center
of P (as p is faithful), which contradicts the choice of A.

Letge Pandi € {1,...,n}. Then, ifv € V;and y € A,

p(W)p(g)v = p(9)p(g~ yg)v = p(9)pi(9~ yg)v = pi(g~ yg)p(g)v

(because A is normal in G and p;(g~'yg) € k). So p(g) sends V; bijectively to the isotypic
component of Res’, V' corresponding to the map H — k*, y — p;(¢~'yg). In other words, the
action of P on V' permutes the V;, so we get an action of P on the set {V3,...,V,,}. As V is
irreducible, this action is transitive. Hence all the V; are isomorphic as k-vector space, and so

1
dim, V; = --- =dim; V,, = —dim, V.
n
Let

H ={g € G|p(g)V1 = V1},

then H is a subgroup of G and |G/H| = n > 1, thatis, H /G. As H stabilizes V;, we
get a representation of H on Vj, which we will denote by Vy;. Define ¢ : Indg Vg — V by
w(g®wv) = p(g)v. This map ¢ is well-defined by definition of H, and it is clearly G-equivariant.
Itis surjective because V' = > . p(g)Vi. Moreover, we have

so ¢ is an isomorphism, and V' ~ Indg Vy as representations of GG. Also, as V' is irreducible,
Vy 1s irreducible. Applying the induction hypothesis to / (and the transitivity of induction), we
see that V' is monomial.

]

1.6 First application of Brauer’s theorem : field of
definition of a representation of &

In this section, we assume that k is a field of characteristic 0 and denote by & an algebraic closure
of k. Remember that the map R;(G) — Ry(G) is injective (by corollary [II.1.2.9).

3 And using problem [VII.1.14
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II Characteristic 0 theory

Theorem 11.6.1. Let m be the least common multiple of the orders of all the elements of G. Then,
if k contains all the mth roots of 1 in k, the map Ri(G) — Rz (G) is an isomorphism.

Using problem |VII.2.7] we get the following reformulation.

Corollary 11.6.2. Under the hypothesis of the theorem, every representation of G over k is real-
izable over k. (That is, is of the form V &y, k, where V' is a representation of G over k.)

Proof of the theorem. Let x € Ryz(G). By Brauer’s theorem (in the form of corollary [II.5.5),

there exist subgroups Hy, ..., H, of G, 1-dimensional representations (V1, p1), ..., (Vs p,) of
Hy, ..., H, over k and integers nq, ..., n, € Z such that

r = Z n; Indy [Vi].
i=1
Leti € {1,...,r}. Forevery g € H;, pi(g) € k™ is a mth root of 1, so it is actually in £, and so

[V;] is in the image of Ry (H;) — Ry (H;). Hence z is in the image of Ry(G) — Ry(G).
[]
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Il Comparison between characteristic
0 theory and characteristic p theory

If k is a field of characteristic p and G is a finite group of order not prime to p, then the ring k[G]
is not semisimple anymore, but it is still left Artinian.

So to understand what happens a bit better, we’ll start with some generalities about modules
on not necessarily semisimple rings.

lll.1 Indecomposable modules

In this section, R is a ring. Unless otherwise specified, any R-module will be assumed to be of
finite length, hence to have a Jordan-Holder series. See sections and of chapter I for
definitions of all these terms.

Remember that we defined the Jacobson radical rad(R) of R in definition of chapter I
as the intersection of all the maximal left ideals of R. By corollaries [[.2.6 and [[.2.12] of chapter
I, rad(R) is an ideal of R, the quotient R/ rad(R) has the same simple modules as R, and it is a
semisimple ring if R is left Artinian.

l1l.1.1 Definitions

Definition IIL.1.1.1. If M is a R-module, we write rad(M) = rad(R)M. This is a submodule
of M.

Remark 111.1.1.2. Suppose that R is left Artinian. Then a R-module M is semisimple if and only
if rad(M) = 0.

Proof. If rad(M) = 0, then M is a R/ rad(R)-module, so it is semisimple because R/ rad(R)
is a semisimple ring.

If M is a semisimple R-module, then M = &, , M; with all the M; simple , by theorem
I.1.3.4| of chapter I. On each M;, R acts through R/ rad(R) by proposition of chapter I, so
rad(R)M = 0.

]

77



III Comparison between characteristic 0 theory and characteristic p theory

Definition II1.1.1.3. A R-module M is called indecomposable if for every direct sum decompo-
sition M = M' @ M"”, we have M’ = 0 or M" = 0.

Remark 111.1.1.4. If M is simple, then M is indecomposable. The converse is false.

For example, take R = F,[Z/pZ] and M = gR. Then M is indecomposable but not simple.

lll.1.2 Noncommutative local rings

Definition ITL.1.2.1. A (possibly noncommutative) ring S is called local if S # {0} and S has a
unique maximal left ideal.

Remark 111.1.2.2. If S is a commutative ring, then it is local in the sense of definition [III.1.2.1}if
and only if it is local in the usual sense.

Theorem II1.1.2.3. Let S be a ring. The following conditions are equivalent :
1. Sis local.

S has a unique maximal right ideal.

rad(S) is a maximal left ideal of S.

rad(S) is a maximal right ideal of S.

S # {0} and, for every x € S, either x or 1 — x is invertible.

S/ rad(S) is a division algebra.

S # {0}, and every x € S —rad(9S) is invertible.

N S RN D

Note that if S is local, then rad(.S) is the unique maximal left ideal and the unique maximal
right ideal of S. It is also the unique maximal ideal of S, but in the noncommutative case, a ring
that has a unique maximal ideal is not necessarily local.

Proof. The equivalence of (i) and (iii) follows from the definition of rad(.S), and the equivalence
of (ii) and (iv) follows from corollary of chapter I. Also, (vii) implies (v) by corollary
of chapter I (which implies that 1 — x is invertible if x € rad(S)), and it’s clear that (vii) implies
(vi).

Let’s prove that (iii) implies (vii). Let x € S — rad(S). We want to show that z is invertible.
We have Rz ¢ rad(S). As rad(S) is a maximal left ideal of R, this implies that Rz = R, so

there exists y € R such that yz = 1. If xy € rad(5), then, by corollary of chapter I,
1 — yxy = 0 is invertible, which is impossible because S # {0}; so xy & rad(S). Reasoning as

I'This condition is actually equivalent to the fact that S/ rad(S) is a simple ring, so a counterexample is a simple
ring that is not a division algebra. See problem [VII.1.9|for an example of such a ring.
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III.1 Indecomposable modules

before, we see that there exists z € .S such that zzy = 1. So y is left and right invertible, hence
invertible, and x = y‘l 1s also invertible.

A similar reasoning shows that (iv) implies (vii).

Let’s prove that (v) implies (iii), (iv) and (vi). Let z € S — rad(S). By corollary of
chapter I, there exist y, z € .S such that 1 — yxz is not invertible. By condition (v), this implies
that yxz is invertible, hence that x = y 127! is also invertible. So any left (resp. right) ideal of S
that strictly contains rad(.S) contains an invertible element, hence is equat to S. This gives (iii)
and (iv). For (vi), we have just seen that any element of S that is not in rad(5) is invertible, so
every nonzero element of S/ rad(.S) is invertible.

Let’s prove that (vi) implies (iii). Let x € S — rad(S). By (vi), there exists y € S such that
yz € 1 +rad(S) and zy € 1+ rad(S). By corollary [[.2.8]of chapter I, this implies that 2y and
yx are invertible, hence that x (and y) are invertible. So any left ideal strictly containing rad(S)
contains an invertible element, which gives (iii) as before.

]

Let’s consider the particular case of left Artinian rings.

Proposition II1.1.2.4. Let S be a left Artinian ring. Then rad(S)Y = 0 for N big enough. In
fact, if n = 1g(sS), then rad(S)™ = 0.

In particular, every element of rad(S) is nilpotent.
Proof. Let S = Iy D I, D --- D I, = 0 be a Jordan-Holder series for ¢S. The [; are
left ideals of S, and I;/I;;; is a simple S-module for every i € {0,...,n — 1}. As rad(5)

annihilates every simple S-module, we have rad(S)1; C ;4 forevery i € {0,...,n — 1}, and
sorad(S)" = rad(S)"I, C I, = 0.

[
Corollary II1.1.2.5. Let S be a left Artinian ring. Then the following are equivalent :
1. S is local.

2. Every element of S is nilpotent or invertible.

Proof.

(i)=(ii) Let = € S, and suppose that x is not nilpotent. Then = ¢ rad(S) by the proposi-
tion, so x is invertible by theorem [[II.1.2.

(i1)=-(i) If x € S is nilpotent, then the sum ano 2" is finite, hence defines an element of
S, and this element is an inverse of 1 — x. So (ii) implies that x or 1 — =z is invertible for
every x € .S, and theorem [[II.1.2.3|says that S'is local.

]
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lll.1.3 Fitting’s lemma

Proposition II1.1.3.1 (Fitting’s lemma). Let R be a ring and M be a R-module of finite length.
Let f € Endg(M). Then, for n big enough,

M = Ker(f") & Im(f").

Proof. As M has finite length, every non-increasing (or non-decreasing) sequence of R-
submodules of M has to stabilize, by proposition Applying this to the non-decreasing
sequence (Ker(f™)),>o and the non-increasing sequence (Im(f™)),>0, we find an integer N > 0
such that, for every n > N, Ker(f") = Ker(f"™) and Im(f") = Im(f™*).

Let n > N, and let’s show that M = Ker(f™) & Im(f").

First, if z € M, then f™(x) € Im(f?"), so there exists y € M such that f"(z) = f*"(y), and
soz — f*(x) € Ker(f") and x = f"(z) + (x — f*(z)) € Im(f") + Ker(f™). This proves that
M =Im(f") + Ker(f").

Now take = € Ker(f") N Im(f"). Write x = f"(y) with y € M. Then
y € Ker(f?") = Ker(f™), sox = f"(y) = 0. This proves that Ker(f™) N Im(f™) = 0.

]

Corollary II1.1.3.2. Let R and M be as in the proposition. Then M is indecomposable if and
only if Endg(M) is local.

Proof. Suppose that M is indecomposable, and let f € Endz(M). Then there exists an integer
n > 1 such that M = Ker(f") @ Im(f™). As M is indecomposable, either Im(f") = 0, and
then f is nilpotent, or Ker(f™) = 0 and Im(f™) = M, and then f" is invertible, and so is f.

Suppose that M is not indecomposable, and write M = M’ & M", with M', M" £ 0.
Let 7 : M — M’ be the projection with kernel M”. Then 7 is not invertible because
Kerm = M"” # 0, and 1 — 7 is not invertible because Ker(1 — 7) = M’ # 0. So Endg(M) is
not local.

]

11.1.4 Krull-Schmidt-Remak theorem

Theorem I11.1.4.1. Let M be a R-module (of finite length). Then we have M = M, & - - - & M,
with the M; indecomposable. Morover, the M; are uniquely determined up to reordering.

Proof. Existence of the decomposition : We do an induction on 1g(M). If 1g(M) = 1, then
M 1is simple and the result is obvious. If 1g(M) > 2 and M is not indecomposable, write
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III.1 Indecomposable modules

M = M @& M" with M', M" # 0. Then lg(M'),1g(M") < 1g(M), so we can apply the
induction hypothesis to M’ and M"” to get the result.

Uniqueness of the decomposition : Assume that M = M, & --- & M, = M{ & - - - & M{ with
all the M; and M ]’ indecomposable. We do an induction on r. If » = 1, M is indecomposable
and the result is obvious. Suppose that » > 2. For every j € {1,...,s}, let u; € Endg(M;)
be the composition My — M — M ]’ — M — M, where all the maps are obvious injections
or projections. Then idy;, = > 7_, uj, so there exists j such u; ¢ rad(Endg(M;)). We may
assume that 7 = 1.

As M, is indecomposable, End g (M) is local by corollary so u, is invertible by the-
orem|[IL.1.2.3] Write u; = vw, where w is the composition M; < M — M| and v is the compo-
sition M/ < M —» M. Then (u] 'v)w = idyy,, so w is injective and M| = w(M;)®Ker(u; 'v).
As M is indecomposable and w(M;) # 0, Ker(u; 'v) = 0, hence w is an isomorphism, and so
is v.

Letx € M;N (.-, M!). Then the projection of x on M| is 0, so w(x) = 0, so z = 0 since w

Jj=2""]
is injective. Hence M, and > M ]’ are in direct sum. Moreover, if x € M, then the surjectivity

of w implies that there exists z; € M; such that z — z1 € 2122 M]’ So M = M; + 222 Mj’
Finally, we get M = M; & P isa M +and M, =~ Mj. The result now follows from the induction

hypothesis, applied to M /M, ~ @;_, M; ~ P;_, M.
[

lIl.1.5 Projective indecomposable modules

Remember that projective modules are defined in definition [[.1.3.10] of chapter L.

Proposition II1.1.5.1. Let P be a projective R-module, M be a R-module and I be an ideal of
R. Then the reduction modulo I map

Homp(P, M) — Homp(P/IP, M/IM) = Homp,(P/1P, M/IM)

is surjective.

Proof. Denote by # : P — P/IP and 7 : M — M/IM the projections. Let
u € Homg(P/IP, M/IM). We have a commutative diagram

P--Y_sM

|

P/IP — M/IM

As 7’ is surjective and P is projective, there exists a map v’ : P — M such that 7'u’ = um.
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Corollary II1.1.5.2. Assume that R is left Artinian. Let P be a projective R-module of finite
length. Then P is indecomposable if and only if P/ rad(P) is simple.

Lemma I11.1.5.3. If M is a nonzero R-module of finite length, then rad(M) # M.

Proof. Let M’ C M be a maximal proper submodule. Then M /M’ is simple, so rad(R) acts
trivially on M /M’, so rad(M) = rad(R)M C M.

]

Proof of the corollary. 1f P is not indecomposable, write P = P& P, with Py, P, nonzero. Then
P/rad(P) = Py/rad(P) @ P2/ rad(P,), and P,/ rad(P;), P,/ rad(P,) # 0 by the lemma, so
P/rad(P) is not simple.

Now assume that M := P/rad(P) is not simple. As R is left Artinian, R/ rad(R) is semisim-
ple, so M is a semisimple module, and so we can write M = M; & M, with M;, My # 0. Let
m € Endg (M) be the composition M — M; — M, where the maps are the obvious projection
and inclusion. By the proposition, there exists 7 € Endg(P) such that 7 mod rad(P) = ;.
Then neither 7 nor 1 — 7 are invertible (because neither 7 nor 1 — 7, are), so Endg(P) is not
local, so P cannot be indecomposable by corollary

]

Notation I11.1.5.4. We write PI(R) for the set of isomorphism classes of finite length projective
indecomposable R-modules, and S(R) for the set of isomorphism classes of simple R-modules.

Proposition III.1.5.5. Suppose that R is left Artinian and left Noetherianﬂ Then the map
P +—— P/rad(P) induce a bijection PI(R) — S(R).

Proof. This map is well-defined by corollary

Let’s show that it is surjective. Let M be a simple R-module. Any z € M — {0} gives a
surjective map R — M (sending a € R to ax). As rRR is a R-module of finite length, we
can apply the Krull-Schmidt-Remark theorem to it and write R = P, & --- & P,, where the
P; are indecomposable module that are automatically projective as direct summands of a free
module. Then R/ rad(R) = D]_, P,/ rad(F;) surjects to M, and every P;/ rad(F;) is simple by
corollary so M is isomorphic to one of P;/ rad(P;) by Schur’s lemma (theorem|[.1.4.1]
of chapter I).

Let’s show that the map of the proposition is injective. Let P, P’ be two projective in-
decomposable modules of finite length, and suppose that we have a R-module isomorphism
u : P/Ker(P) = P'/Ker(P'). By proposition there exists a R-module map
u' : P — P'such that u = v mod rad(R). Let N C P’ be a proper maximal submodule.
Then P’/N is simple, so rad(R)(P'/N) = 0, so rad(P’) = rad(R)P" C N. As P'/rad(P’) is

ZNote that “left Artinian” implies “left Noetherian”, see theorem (4.15) of Lam’s book [20].
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III.1 Indecomposable modules

simple, this implies that N = rad(P”’), and that rad(P’) is the unique proper maximal submodule
of P. As u/(P) ¢ rad(P’) (because u is surjective), u/(P) = P’, and so «’ is surjective. As P’
is projective, we have P ~ P’ @ Ker(v'). But P is indecomposable, so Ker(u') = 0, and v’ is
an isomorphism.

]

Remark 1M1.1.5.6. If M is a simple R-module, its inverse image in P/(R) is a “minimal” pro-
jective R-module such that P — M. This is called a projective envelope or projective cover of
M. In fact, projective envelopes exist for any finite length R-module, and they are unique up
to isomorphism. For more about them, see section 24 of Lam’s book [20] (projective covers are
introduced in definition (24.9).)

lll.1.6 Lifting of idempotents

Definition II1.1.6.1. Let S be aring. An element e € S is called idempotent if e? = 2.

Theorem I11.1.6.2. Let S be a ring, and let I be an ideal of S such that every element of I is

nilpotent. ﬂ Let e € S/I be idempotent. Then there exists e € S idempotent such that e = e
mod [.

Proof. Note that f := 1—gis also idempotent, and that we have €f = fe = 0. (We say that € and

f are orthogonal idempotents.) The idea is to try to lift both € and f to orthogonal idempotents
of S.

Let e be any lift of S, andlet f =1 —e. Thenef = fe € I,ande+ f =1 mod I. By the
assumption on I, there exists k > 1 such that (ef)* = e* f* = 0. Note that e¥ = €* =& mod 1.
Lete/ =¢*and f' = f*. Thene'f' = f'¢’ =0,ande’ + f' = e + fF =2+ f =1 mod I. Let
r=1—(e'+f"). Asxz € I, there exists n > 1 such thatz" = 0. Sou := 1+z+z*+-- -+ 2"
is an inverse of 1 — x = ¢’ + f’, and it commutes with ¢’ and [’ (because x does). Let ¢’ = ue’
and f” = uf’. Then ¢” =€ mod I (because u = 1 mod I), we have ¢" " = f"¢” = 0, and
"+ f"=wule+ f)=1. So ()2 = (") + " f" = €'(e" + f") = €, and we have our
idempotent lift of €.

O

Corollary I11.1.6.3. Let S be a ring and I be an ideal of S. Suppose that the obvious map
S —= S = I'&nn S/I™ is an isomorphism. Then any idempotent of S/1 lifts to an idempotent of
S.

Proof. Lete € S/I be idempotent. By the theorem, we can construct by inductiononn > 1 a
sequence of idempotents e,, € S/I™ such that e; = € and that e, lifts e, for every n. Then
e := (en)n>1 is an element of S, and its preimage in S is an idempotent lifting e.

3This is called a nil ideal, and is not the same as a nilpotent ideal.
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III Comparison between characteristic 0 theory and characteristic p theory

lll.2 Application to representation rings in positive
characteristic

Let R be a ring. Remember that we defined (in definition of chapter I) PK(R) to be the
quotient of the free abelian group on the basis elements [P], for P a finite length projective R-
module, by all the relations of the form [P] = [P’] + [P"], where 0 — P’ — P — P” — Ois an
exact sequence of R-modules.

Corollary IIL.2.1. 1. PK(R) is a free Z-module with basis ([ P)) pcpi(r)-

2. If P and P" are projective R-modules of finite length, then P ~ P’ as R-modules if and
only if [P] = [P'] in PK(R).

Proof. Point (i) is proved just as for K (R) (see the proof of proposition of chapter I).

To prove (ii), take P and P’ as in the statement, and write P = P, ®---®P,, P = P{&- - -® P,
with the P; and the P; indecomposable (by theorem|[II.1.4.1). The F; and P; are also automati-
cally projective, so they are in PI(R).

By theorem [[II.1.4.1] again, P =~ P’ if and only if there exists a bijection
o:{l,...,7r} = {1,...,s} such that P, ~ P;(i) for every i € {1,...,r}. By point (i),
this is equivalent to [P] = [P'].

O

We now suppose that k is a field and that G is a group.

We write P, (G) for K P(k[G]) (as in definition of chapter I), and we also write PI;(G)
for PI(k[G]).

Remark 111.2.2. We have seen in corollary of chapter I that the tensor product over k£ defines
a Rx(G)-module structure on Py (&), and that the obvious map Py(G) — Ry (G) is Ry (G)-linear.

Remark 111.2.3. By proposition of chapter I, proposition [[II.1.5.5] and corollary [[T1.2.1]
Ri(G) and P(G) are free Z-modules of the same rank. But we still do not know what the
map Pr(G) — Ry (G) is like ! (Unless G is finite and char(k) f|G], then it is just the identity.)

In fact, we can prove that this map is injective and that R, (G) /P« (G) is a finite p-group, where
p = char(k), but this is far from obvious. See theorem [I1.8.2
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ll.3 Representations over discrete valuation rings

Let A be a commutative ring and G be a finite group. We assume that every A[G]-module is of
finite type over A (unless otherwise specified).

Definition II1.3.1. We denote by P, (G) the quotient of the free Z-module on all the [P], for P
a projective A[G]-module that is of finite type as a A-module, by the relations [P] = [P'] + [P"],
for every exact sequence 0 - P' — P — P" — 0.

Remark 11.3.2. If A — A’ is a morphism of commutative rings, then P — P ®, A’ induces a
morphism of groups P, (G) — Pa/(G).

Indeed, if P is a projective A[G]-module, then it is a direct summand of some free A[G]-
module F', and then P ®, A’ is a direct summand of the free A’[G]-module F' @, A'.
Proposition I11.3.3. Ler P be a A[G]-module. Then the following are equivalent :

1. P is a projective A|G|-module.

2. P is projective as a A-module, and there exists u € End, (P) such that

Va € P, Zgu(g_lx) = .

geG

Proof. We write Py, for P seen as a A-module. Let Q) = A ®, Fy. We have a surjective A[G]-
linearmap g : QQ - P, x ® y — xy.

I claim that the map ¢ : Endy(F) —  Homug(P,Q) sending u to
> gecd ® ug™t o — >gecd ® u(g~'z) is well-defined and an isomorphism of
A-mdules.

Indeed, it is easy to see that p(u) is A[G]-linear for every u € End,(FP), so ¢ is well-defined.

Let’s show that ¢ is injective. Let u € End, (). Note that Q = D . 9@ I as a A-module.
So, if x € P is such that

0=p(u)(z) =Y goulg'z),

geG
we have u(g~'x) = 0 for every g € G, and in particular u(z) = 0. Hence we have u = 0 if
p(u) = 0.

Let’s show that ¢ is surjective. Let v € Homag (P, Q). Then we can write
v(x) = Y eq 9 ® ug(z) for every z € P, with the uy in End, (Fp). By A[G]-linearity of v,
forevery h € Gand z € P,

v(hlr) = Zg ® ug(}fl@ = Z(hilg) ® ug(z),

geG geG
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III Comparison between characteristic 0 theory and characteristic p theory

s0 ug(x) = up-1,(h'g) for every g,h € G and x € P. In particular, u,(z) = uy(g~'z) for
every g € Gand x € P, and so v = p(uy).

Now we come back to the proof of the proposition.

(i)=(ii) If P is projective, it’s a direct factor of some free module A[G]!). As A[G] is a
free A-module, A[G](I ) is also free as a A-module, so P, is projective. Also,asq: () — P
is surjective and A-linear, there exists a A-linear map s : P — () such that ¢s = idp. Write
s = p(u), with u € End(F). Thenidp = gs = ) ., gug™", which gives (ii).

(i))=(@1) If P, is a projective A-module, then () is a projective A[G]-module. Also,
s = p(u) : P — @ satisfies ¢gs = idp, so P is a direct summand of @), hence is also
a projective A[G]-module.

[]

Now we will specialize to the case that A is a discrete valuation ring. Remember that discrete

valuation rings were defined in problem

Theorem II1.3.4. Suppose that A is a discrete valuation ring with residue field k and maximal
ideal m.

1. If P is a A[G)-module that is free of finite typd'|over A, then P is a projective A[G]-module

ifand only if P := P ®, k is a projective k[G]-module.

2. If P and P’ are projective N|G]-modules, then P ~ P’ as A[G]-modules if and only if

P @y k>~ P ®x k as k|G]-modules.

3. Suppose that the discrete valuation ring A is complete. (See problem |VI.3.3\) If P is a

projective k|G|-module, then there exists a unique (up to isomorphism) projective A|G]|-
module P such that P ~ P ®, k.

Proof. 1. We already know that P is a projective k[G]-module if P is a projective A[G]-

module. Let’s prove the converse. Suppose that P is a projective k[G]-module. By
proposition |[[1.3.3 there exists @ € Endy(P) such that >° _, gug™" = idp. As P isa
projective A-module, there exists by proposition [[II.1.5.1|a v € End, (P) lifting w. Then
U =3 o gug~t € Endyg(P) is equal to idy modulo m. So det(u’) = 1 mod m, so
det(u') € A, sou' is invertible, and we have 3° . g(u(u')"")g~" = idp. By proposition

[11.3.3|again, P is a projective A[G]-module.

. Letu : P®y k = P’ ®, k be an isomorphism of k[G]-modules. By propositions|[II.1.5.1]

there exists a A[G]-module map u : P — P’ lifting u. We want to show that u is invertible,
and for this it suffices to show that it is an isomorphism of A-modules. This follows from
Nakayama’s lemma, but we can also do it directly : We know that P and P’ are projective
A-modules of finite type, hence they are free A-modules of finite type. Their ranks are

“Equivalently, projective of finite type.
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III.4 The cde triangle

equal, because they are equal to the dimension over k of P ®, k ~ P’ ®, k. If we choose
A-bases of P and P’, then the matrix A of u in these bases is square, and det(A) # 0
mod m because @ is invertible. Hence det(A) € A*, and w is an isomorphism of A-
modules.

3. The uniqueness follows from (i1). For the Existgr}ce, using the fact that P is projective (and
of finite type as a k-module), write F' = P ® P, with F' = k[G]®", let F = A[G]®", and
_II.I.S.I

let B = Endy(g)(F). Then the map B — Endy g (F) is surjective by proposition

so it identifies Endyg)(F') with B/mB. Let € € Endyg)(F) be the projection on P with
kernel P By corollary (which applies because B is a free A-module of finite
type, so its ideal mB satisfies the condition of the corollary), there exists an idempotent
e € B lifting e. Then we have F' = Im(e) @ Ker(e), and P := Im(e) is a projective

A[G]-module such that P ®, k = Im(e) = P.
O]
Corollary IIL3.5. If A is a discrete valuation ring with residue field k, then P — P® k induces

an injective map v : Pp(G) — Py (G). This map is bijective if A is a complete discrete valuation
ring.

Proof. We have already seen that the map exists. Let’s show that it is injective. Every element
of PA(G) can be written as [P] — [P’] where P, P’ are two projective A[G]-modules. So let P, P’
be projective A[G]-modules such that [P ®, k] = [P’ ®, k|. By corollary this implies
that P ®, k ~ P’ ®, k as k[G]-modules. By (ii) of the theorem, this implies that P ~ P’ as
A[G]-modules. Finally, the last sentence follows directly from (iii) of the theorem.

[]

lll.4 The cde triangle

In this section, we fix a complete discrete valuation ring A with uniformizing element w, maxi-
mal ideal m = (w), residue field k and fraction field K, and we assume that char(K’) = 0.

We want to construct a commutative triangle

Rk (G)
The map c is the obvious map, and e is the composition

PL(G) S PA(G) 5 Pr(G) = Ric(G).
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III Comparison between characteristic 0 theory and characteristic p theory

Let’s now define d. Let V be a K[G]-module. Let M; C V be a A-lattice, i.e. a finite type
A-submodule of V' such that KM; = V. After replacing M; by ) geq YMi1, we may assume

that M is stable by G. Then M, := M; ®, k is a k[G]-module. This k[G]-module obviously
depends on the choice of M, but we have the following :

Theorem I11.4.1. With notation as in the paragraph above, [M1] € Ry(G) only depends on V.

Hence we can define d by setting d([V]) = [M;] (notation as above) and extending by addi-
tivity.
Remark 111.4.2. Suppose that G C G’, with G’ another finite group. If M is a G-stable A-lattice
in V, then M| := Indg M, is a G’-stable A-lattice in Indg V', and so we have
d([Indg V]) = [(Indg M; ®4 k)] = [Indg (M} @, k)] = Indg d([V]).

In other words, d is compatible with induction.

Proof of the theorem. Let M, be another GG-stable A-lattice of V.

Case where wMy C My C My : Let N = M;/M,. This is a k[G]-module (because
wM; C My). From wMy C wM; C My C My, we get an exact sequence of k[G]-modules

0—>N—>M2Z:M2®Ak’:M2/’wM2—>M1—>N—>O.

So, in Ry.(G), we get [N] — [M] + [M5] — [N] = 0, hence [M,] = [M).

General case : Multiplying M5 by a high enough power of @, we may assume that M, C M;.
There also exists n > 1 such that @w"M; C M,. We prove the result by induction on n. We
already did the case n = 1, so suppose that n > 2, and let M3 = " ' M; + M,. Then :

- @ IM; C M3 C My, so [M3 ®, k] = [M,] by the induction hypothesis;
- wMsy C My C Mj, so [M3 ®j k| = [My ®, k] by the case n = 1.

Putting these two together, we are done.

lI.5 Representations over a field of characteristic p /|G|

We keep the notation of the previous section, and we also assume that p := char(k) does not
divide |G]|.

Theorem IIL.5.1.  I. Every k[G]-module is semisimple.

2. Every A|G|-module that is projective as a A-module is projective as a A[G]-module.

88



III.6 Brauer’s theorem in positive characteristic

3. The map d : Rx(G) — Ri(G) is an isomorphism, and so are ¢ and e. Also, d induces a
bijection Sk (G) = Si(G).

Proof. Point (1) follows from theorem |I.3.2| of chapter I, and point (i1) follows from (i) and theo-
rem[lI1.3.4, By (i), P;(G) = Rx(G), and cis just the identity morphism. Obviously, de = idg, ()
and e([Sk(G)]) C Sk(G).

So we just need to show that d is injective. Let V,V’ be two K[G]|-modules such that
d([V] = [V']) = 0, let M C V, M'" C V' be G-stable A-lattices, and let M = M ®,\ k,
M = M' @, k. We have d([V] — [V']) = [M] — [M'] = 0in Re(G). As p J|G|, this implies
that M ~ M’ as k[G]-modules, hence M ~ M’ as A[G] by theorem and so V ~ V' and
Vi=[V']=0.

O

lll.6 Brauer’s theorem in positive characteristic

Keep the notation and assumptions of section |[II.4} and assume that & is algebraically closed and
K contains all |G|th roots of 1 in K. (See section 17.2 of Serre’s book [29] for a version of this
theorem that doesn’t assume £ algebraically closed.)

By theorem [IL.6.1| of chapter II, the map Ry (H) — Ryi(H) is an isomorphism for every
subgroup H of G. We do not assume anymore that p := char(k) is prime to |G/|.

Theorem I11.6.1. The maps

Ind:= P P di: P B Ru(H) = Ri(G)

fprime He X (¢) {#p prime He X (¢)

and

Ind := QB Indf;: € P Pu(H) - Pi(G)

fprime He X (¢ l#p prime He X ({)

are both surjective.

(See section of chapter Il for the definitions of all the terms.)

Proof. Let 1k (resp. 1) be the unit element in Rx (G) (resp. Rx(G)). Obviously, d(1x) = 1.

By Brauer’s theorem (theorem [I1.5.2] of chapter II, which applies thanks to theorem [II.6.1| of
the same chapter), we can write

]lK— Z Z IHdHLL'H,

£ prime He X (¢
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III Comparison between characteristic 0 theory and characteristic p theory

for some xy € R (H). Applying d to this equality gives
1, = Z Z Ind$ 2,
£ prime HeX ({)

with 2y = d(zg) € Ru(H). Soif y € Ri(GQ) (resp. y € P(G)), then corollary [1.5.6.2] of

chapter I gives
y=yle= > Y Indf(zyResGy),

£ prime He X (¢)
and 2%; Res$ (y) is in P (H) if y € Px(G), because Res%; sends Py (G) to Py (H).

lIl.7 Surjectivity of d

We keep the notation and assumptions of section

Corollary IIL7.1. If k is algebraically closed and K contains all the |G|th roots of 1 in K, then
d : Rg(G) — Ri(G) is surjective.

Remark 111.7.2. This result is actually true without the hypothesis on k£ and K, see section 16.1
of Serre’s book [29]].

Lemma I11.7.3. Suppose that G = P x H, with P a p-group and H of order prime to p. Then
P acts trivially on every semisimple k|G|-module.

Proof. We just need to show that P acts trivially on every simple k[G]-module. Let M be a
simple k[G]-module. As P is a p-group, its only irreducible representation over k is the trivial
representation, by problem so M? # 0. (Choose a minimal nonzero k[P]-submodule
of M, it has to be a simple k[P]-module, hence it is the trivial k[ P]-module, and so it is included
in M¥)) As G = P x H (so P is normal in (3), the action of G preserves M*. As M is simple,
MP = M, and so P acts trivially on M.

O

Proof of the corollary. By theorem we may assume that G is (-elementary, for some
prime /. Write G = C' x G’, with C' cyclic of order prime to ¢ and G’ a ¢-group. If ¢ = p, let
P =G"and H = C. If { # p, write C' = C}, x C? with C,, a p-group and C” of order prime to p,
andlet P = Cj, and H = C? x GG'. In both cases, we have written G = H x P, with P a p-group
and H of order prime to p.

Let M be a simple k[G]-module. By the lemma, P acts trivially on M. So M is a simple k[H]-
module. By theorem [[IL.5.1} there exists a simple K [H]-module V' such that d([V]) = [M]. We
see V as a K'[G]-module by making P act trivially, and then we still have d([V]) = [M].

]
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1.8 Injectivity of ¢

Let k be a field of characteristic p > 0, and G be a finite group.

Proposition IIL.8.1. If G is a p-group, then Py(G) ~ Z, Ry(G) ~ Z, and the map
Pi(G) — Ri(G) corresponds to multiplication by p" := |G|.

Proof. We have seen in problem that the only simple k[G]-module is 1, so the Z-
rank of Py (G) and Ry (G) is 1, the isomorphism Ry(G) = Z sends [M] to dimy M, and also
k[G]/rad(k[G]) = k. So k[G] is local (and left Artinian), and every element of k[G] is nilpotent
or invertible by corollary In particular, the only idempotents of k[G] are 0 and 1.

We know that k£[G] is a projective k[G]-module, let’s show that it is indecomposable. Suppose
that k[G] = M; @ M,, with M1, and I, two left ideals of k[G]. By remark [[.1.3.16] of chapter
I, we get two idempotents ey, e if k[G] such that [; = k[G]e; and I, = k[G]e,. As the only
idempotents of k[G] are 0 and 1, this implies that /; = 0 or I, = 0.

So we have found the unique projective indecomposable finite length k[G]-module that sur-
jects to 1, and it is k[G] itself. Now the last assertion follows from the fact that, in R (G),
[k[G]] = dimg(k[G])1 = p"1.

]

Theorem I11.8.2. Assume that k is algebraically closedf| Then c : Py(G) — Ry (G) is injective,
and its image contains p"Ry(G), where p™ is the biggest power of p dividing |G/|.

Proof. In the proof, we will use a complete discrete valuation ring A with residue field £ and
algebraically closed characteristic zero fraction field K. The existence of such a A is almost

proved in problem

We first prove that Im(c) D p"Ri(G). By theorem we may assume that G is ¢-
elementary for some prime number ¢. Then, as in the proof of corollary we can write
G = H x P with P a p-group and H of order prime to p. The trivial k[H]-module is projective
(because k[H| is a semisimple ring), so k[P] (with trivial action of H) is a projective k[G|-
module, and k[P] = |P|1 € Ry(G) (by proposition[[I.8.1) is in the image of c. As Im(c) is an
ideal of Ry (G), this gives the conclusion.

Now let’s prove that c is injective. We already know that Ry (G)/ Im(c) is a torsion group. As
Pi(G) and R, (G) are free Z-modules of the same finite rank, this forces ¢ to be injective.

]

Corollary IIL8.3. The map e : Pi(G) — R (G) of section is injective.

>This is not necessary, see section 16.1 of Serre’s book [29].
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1.9 Image of the map ¢

We keep the notation and assumptions of section [lIL.4} and we assume that £ is algebraically
closed and that K contains all the |G/th roots of 1in K }°

Definition II1.9.1. An element x € G is called p-singular if x is not p-regular, i.e. if p divides
the order of .

Remember that we have an injective morphism of rings Rx(G) — € (G, K), (by corollary
I1.1.2.9|of chapter II), and use it to identify Rk (G) to a subring of €' (G, K).

Theorem I11.9.2. An element x € Rk (G) is in the image of e if and only if x(g) = 0 for every
p-singular element g of G.

Lemma I11.9.3. Suppose that G = H x P, with P a p-group and H of order prime to p. Then :
1. k[G] = k[H] @y k[P).
2. rad(k[G]) = k @ rad(k(P)) = k ®y, I, where I. is the augmentation ideal of k[P] (see
of chapter I).
3. A k[G]-module M is projective if and only if M ~ N ®, k|P], with N a k|H|-module.

4. A A[G]-module M is projective if and only if M ~ N @ A[P], with N a A|H|-module that
is free (of finite type) over A.

Proof. 1. Obvious.

2. Let I = k ®y, I.. Then k|G|/I ~ k[H] is semisimple, so / C rad(k[G]). Also, I acts
trivially on every simple k[G]-module by lemmallll.7.3} so I C rad(k[G]).

3. If M = N ®,, k[P] with N a k[H]-module, then N is a projective k[H |-module because
k[H] is semisimple, so it is a direct summand of a free k[H]-module, so M is a direct
summand of a free k[G]-module, hence projective.

To prove the converse, we may assume (by theorem that M is a projective
indecomposable k[G]-module. Then N := M /rad(k[G])M is a simple k[G]-module,
so P acts trivially on N by lemma so N is also a simple k[H]-module. Let
M = N ®j, k[P], then M is a projective k[G]-module by what we just saw, it is in-
decomposable because M’/ rad(k[G])M = N is simple (use corollary , and so
it is isomorphic to M by proposition

4. If M ~ N ®, A[P] as in the statement, then M is a free A-module and M ®, k is a
projective k[G]-module by (iii), so M is a projective A[G]-module by theorem [[I1.3.4,

Conversely, let M be a projective A[_G] -module. Then M = M ®, k is a projective k[G]-
module, so, by (iii), we have M ~ N ®j, k[P] with N a k[H]-module. By theorem[11.3.4

® Again, this is not necessary, as explained in section 16.1 of Serre’s book [29].
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again, there exists a projective A[H]-module N such that N ®, k. Then M’ := N ®, A[P]
is a projective A[G]-module by what we just saw, and M’ @, k ~ M &, k, so M ~ M’
by theorem [I11.3.4

]

Proof of the theorem. Let’s prove that any element in the image of e satisfies the condition of
the theorem. Let M be a projective A[G]-module, let V' = M ®, K. We want to show that
xv(g) = 0if g € G is p-singular. Fix a p-singular g € G. We may assume that G = (g), so G
is cyclic, so we can write G = H x P with P a p-group and H of order prime to p. Then by the
lemma, M = N ®, A[P], with N a A[H]-module that is free over A. If we write g = (g1, g2)
with g; € H and g, € P, then we have xv(9) = Xwme,kx(91)Xk[P)(92). As g is p-singular,
92 # 1,50 xx(p|(92) = 0 and hence xv(g) = 0.

Now let’s prove that any element of Ry (G) satisfying the condition of the theorem is in the
image of e. Solet x € Rk (G) be such that x(g) = 0 for every p-singular g € G. By Brauer’s
theorem (theorem([[I.5.2]of chapter II, which applies thanks to theorem[[I.6.T]of the same chapter),
we can write 1 = ), Ind% (15, where we take the sum over elementary (=/-elementary for
some prime ¢) subgroups H of G and ¢y € Ry (H). Using corollary [[.5.6.2]of chapter I, we get

x =xl = Zlndg Ind% (xu),
H

with xg = ¥y Resf, X- Clearly, for every H and every g € H, chiy(g) = 0 if g is p-singular. It
suffices to show that x is in the image of e : Pr(H) — R (H) for every H. In other words,
we may assume that G is elementary.

As in the proof of corollary [[IL.7.1] write G = H x P, with P a p-group and H of order prime
top. If g3 € H and go € P — {1}, we have x(g1, go) = 0 by assumption. So there is a function
f € €(H, K) such that x(g1, g2) = f(g1)Xxx(p)(g2) forevery (g1,92) € H x P =G. If Wisa
representation of H over K, then

Z 3 (X, xwerp)a = (f, xw)u(Xk(p), X1p)p = (f, Xw)H,

so (fyxw)u € Z, hence f is in Rg(H) and not just ¥(H,K). (Because
f = Ywesem{fsxw)mxw- by corollaries [[1.1.2.5] and [[1.1.2.6] and theorem of
chapter I1) Write f = > g ) nw[W], with ny € Z. By theorem @, for every
W € Sk(H), there exists a projective A[H|-module My, such that W ~ My, ®, K. So if
T = wes,m) wMw ®x A[P]] € PA(G), we have d(z) = x.

]
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IV Irreducible representations of the
symmetric group G,, over C

The goal of this chapter is to explain the classical description of irreducible representations of
G, in terms of partitions of n and to give a formula for their characters.

IV.1 Partitions

Fix a positive integer n.

Definition IV.1.1. A partition of n is a finite sequence A = (\y, ..., \,) such that
- ALz 2 A
Mt A =0

We write &?(n) for the set of partitions of n.

Definition IV.1.2. The lexicographic order on Z(n) is the total order relation given by :
(M, sA) > (1, .., ps) if and only if there exists ¢ < min(r, s) such that \; = p; for
1 <j<tand \; > ;. lexicographic order on partitions

The following result is clear.

Proposition IV.1.3. Using the decomposition into cycles with disjoint supports of elements of
S,,, we get a bijection

{conjugacy classes in &,} = P(n)
o +—— sequence of the lengths of the cycles in the decomposition
of o, ordered in decreasing order.

In particular, there is a bijection & (n) ~ Sc(&,,), where Sc(S,,) is the set of isomorphism
classes of irreducible representations of &,, over C. We will see that there is actually a canonical
bijection Z(n) ~ Sc(6,), so we get a canonical bijection between Sc(S,,) and the set of
conjugacy classes in G,,; this is special to &,, and is not the case for a general finite group.
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IV Irreducible representations of the symmetric group S,, over C

IV.2 Young tableaux and Young projectors

Definition IV.2.1. Let A = (Aq,..., ) € Z(n). The Young diagram Y, attached to A is the

following diagram where there are r rows and the ith row has ); cases.

A Young tableau T), corresponding to A is a filling of the cases of the Young diagram Y, with
the number 1, ..., n without repetitions. (Note that Y, has exactly n cases.)

If T’ is a Young tableau corresponding to A, the row subgroup Pr, (resp. the column subgroup
Qr,) of G, is the subgroup of ¢ such that ¢ maps every element of {1 ..., n} to an element in
the same row (resp. in the same column) of 7).

Example IV.2.2. If T}, is equal to

1 2 3| ... N\
A1+l | A1 +2 e . A1t+A2
n—1 n
then Pr, = S, 1is the subgroup of o € G,, stabilizing the sets

TS TUIND V) U 5 MNES ISR VINID VS USRUIS O VN IR RIS ISR WIS W
Remark IV.2.3. We have Pr, N Qr, = {1}.

Indeed, if o € Pr, N Qr,, then for every i € {1,...,n}, o(i) is in the same row and in the
same column of T, as i, which forces o (i) = i.
Remark IV.2.4. Let A € & (n). If Ty is a Young tableau corresponding to A and o € G, then,
applying o to all the entries of T, we get another Young tableau corresponding to A. This gives
an action of &,, on Young tableaux corresponding to A. If 7§ = o7}, then Pr = oPr,c™! and

R = oQr0 !
Definition IV.2.5. Let A € #(n), and let T be a Young tableau corresponding to \. We define
two elements ay, by € Q[&,,] by
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IV.2 Young tableaux and Young projectors

and

The Young projector corresponding to 7T} is

C)\ = a,\b)\.

Note that these elements depend on T, but we only indicate the dependence on .

Remark 1V.2.6. An easy calculation shows that a3 = ay and b3 = by. Also, because
Pr, N Qx = {1} (see remark |[IV.2.3), we have no cancellations in the sum

e\ = Z sgn(7)oT,

CTGPTA 77'€QT/\
so ¢y # 0.
Now we prove some basic properties of these elements.

Proposition IV.2.7. Let \, u € & (n), and choose corresponding Young tableaux T and T),.

Then, for every o € &, we have

0 ifA>nu
CL/\O'b#Z 0 if)\:uandagéPTAQTA
sgn(q)axby if \ = pand o = pq, withp € Pr, and q € Qr,.

Proof. We start with the following easy observation (that was already used implicitely in remark

IV2.6): if p € Pr, and g € Qr,, then
axp = Z (op) = ax

O'EPT/\

and

ab, = 3 sen(o)(go) = sen(a) 3 sen(go)(go) = sgn(q)b,.
o€QT, o€QT,
In particular, if s = pg with p € Pp, and ¢ € Qr,, then
aysby = (a\p)(gby) = sgn(q)axby.
Now suppose that we can prove that Pr, N SQTHS*1 contains a transposition 7. Then we have

axsb, = (axt)s(s7'7sb,) = ayssgn(s ' 7s)b, = —aysb,,
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IV Irreducible representations of the symmetric group S,, over C

hence aysb, = 0. So we just need to prove that Pp, N sQTus_l contains a transposition if p < A,
orif A\ = pand s & P, Qr,.

First note that, thanks to remarl.< [V.2.4, we can find a Young tableau T}, corresponding to /.
such that Qr, = sQTusfl. Also, if we make an element of ()7v, act on the Young tableau T},
this won’t change its column group. Now let’s suppose that Pr, N sQTus‘l = Pr, NQry doesn’t
contain a transposition. Write a;; for the entries of T, where a;; means the entry on the :th row
and jth column. Let o be the element of &,, such that o(T)) = T;L. Then, for 2 < j < Aq,
o(ay;) is not in the same column as o(a;) (otherwise the transposition 7 = (ay1, a;;) would be
in Pr, N QT;L). After making an element of QTL act on Tl; (which doesn’t change the problem, as
we saw), we can also assume that all the o(a;;), 1 < j < Ay, are in the first row of T}’L. And so

in particular, \; < p;.

Next, for 2 < j < Ay, 0(ag;) is not in the same column as o (as;) (otherwise the transposition
T = (@91, az;) would be in Pr, mQTﬁ). After making an element of QT; acton T/L, Wwe can assume
that all the o(ag;), 1 < j < Ao, are in the first two rows of T7,.

Applying the same reasoning to all the rows of T}, we conclude that, after making an element
of QT/L act on T}, the images by o of the entries in the ith row of T are all in the first i rows of
TL, for every i. In particular, \y +--- + \; < g + - - - + p; for every <.

Suppose that A = . Then using the reasoning above, we can actually make it so that the
images by o of the entries in the ith row of T) are all in the ith row of 7", for every 7. In other
words, o € Pr,.

This already proves that Pr, N Qr; contains a transposition if A > 4. Suppose that
Pr,. N SQTA3*1 = Pr, N Qsr, doesn’t contain a transposition. By what we saw above,

sQr, N Pp, # @,1.e. s € Pp,Qp,.
[
Corollary IV.2.8. Let A\, n € G,,, and choose corresponding Young tableaux T\ and T),.
1. We have a C[&,]b, = 0if u < .
2. Let ! : C[S,] — C be the C-linear function defined by

5(0'): 0 ifang,\QTA
sgn(q) ifo =pq, withp € Pr, and q € Qr, .

Then, for every x € C[S,], we have

ayxby = l(x)ayby = L(z)cy.

3. We have
9 n!
oy = —)C)\,

dim@(V,\
where V, = C[G,,]cx.

98



IV.3 Partitions and irreducible representations

Proof. Point (i) and (ii) are obvious consequences of the proposition. Let’s prove (iii). By (ii),
we have

Ci == a)\(b)\a)\)b)\ = f(b,\a)\)C)\.

Let a = c(byay) € C, and let u be the C-linear endomorphism of C[&,,| given by right multi-
plication by c,. We have u?> = au by the calculation above, so the eigenvalues of u are all in
{0, a}, hence

Tr(u) = ark(u) = adimc(V)).

On the other hand, we have, by remark

cy=1+ Z +o,

ceEP\Qx—{1}

n!

so, using the basis of C[S,,] given by &,,, we see that Tr(c,) = n!, hence o = T s

IV.3 Partitions and irreducible representations

Definition IV.3.1. Let A = (A,...,\,) € Z(n). Let &, C &, be the subgroup of elements o
stabilizing the sets {1,..., At} {+1, ..., A+ X}, o {0+ 4+ 1+1, .o+ N}
(as in example [[V.2.2)).
We also set
U, = Indgz ls, = C[G,] ®cle, C = C[6, /6.,

where &, acts on the last C-vector space through its action by left translations on S,, / &,.

Proposition IV.3.2. Choose a Young tableau T\ corresponding to A\. Then we have
Uy, ~ C[6,]ay as C[&,,]-modules.

Proof. By remark and example we may assume that Pr, = &,. Then, if
0,0 € &, we have ca) = d'a, if and only 0 &) = ¢’ G,. Let (0;);c; be a system of rep-
resentatives of &,, / &,. Then the o;a, have support in pairwise disjoint subsets of S,,, so they
are linearly independent over C. (Where the support of an element x = ) _ a,0 € C[G,] is
the set of 0 € &,, such that a,, # 0.) So the (0;a,);c; form a C-basis of C[&,,]a,.

In particular, we can define a C[S,,]-linear map u : Uy = C[&,, / &,] — C[S,]a, by sending
0 &, to oay, for every 0 € &,,. This sends the basis (0; & );c; of C[&,, / &,] to the basis
(0;ay)ier of C[&,]ay that we just defined, and so it’s an isomorphism.

]
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IV Irreducible representations of the symmetric group S,, over C

Theorem IV.3.3. For every A\ € & (n), we choose a Young tableau T corresponding to )\, and
we set, as in corollary Vi = C[&,]c.

Then V) is an irreducible representation of G,,, and we have
K
Uy=Via PV,
pm>A
or some K\ € N. (This integers K, are called the Kostka numbers.)
1 1

Moreover, the isomorphism class of the representation V) only depends on )\ (and not on the
choice of T\), and the map & (n) — Sc(S,,), A — V), is a bijection.

The representations V), are called the Specht modules.

Example 1V.3.4.
- Take A = (n) (the biggest element of & (n)). Then &, = &,, and Q7, = {1} for every

choice of T}, so
Ay = C)\ = E g

ceG,
and U)\ = V)\ = ]lgn.

- Take A = (n — 1,1). Then 6, = &,,_; x &; C &, and U, is the representation of S,
on C" that permutes the coordinates. The only element of &?(n) bigger than A is (n),
so Uy = V) & 1, and V), is isomorphic to the subrepresentation of U, = C" equal to
{(x1,...,2,) € C"ay + -+ +z,, = 0}

- Take A = (1,...,1) (the smallest element of &?(n)). Take S, = {1} and Qr, = &,, for
every choice of T)\. So U), is equal to the regular representation C|[S,,]. We know that

Cl&,)~ P vedmeV

VESC(Gn)

as C[6,,]-modules. The only irreducible representations that appear with multiplicity 1
are the 1-dimensional representation, that is, 1 and sgn. As 1 = V|,), we must have

-----

Lemma IV.3.5. Let R be a ring, and let e, f € R be two idempotents. (That is, ¢* = ¢
and f* = f.) Then the map eRf — Hompg(Re, Rf) sending v € eRf to the R-linear map
fz : a — ax is an isomorphism of groups.

Proof. Let’s prove that this map is injective. Let xz,y € eRf such that f, = f,. Then
0= fule)— f,(e) =e(x—y). Asz—y € eRf and €* = ¢, we have e(x — y) = = — ¥,
andsox —y = 0.
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IV.3 Partitions and irreducible representations

Now we prove that the map = —— f, is surjective. Let f € Hompg(Re, Rf), let z = f(e).
Then z = f(e?) = ef(e) € eRf. Also, for every a € Re, f(a) = f(ae) = af(e) = ax. Hence

]

Proof of the theorem. Let A\, u € &(n). Then, by the lemma and (iii) of corollary [[V.2.8| (that
says that Sc, is idempotent for some § € C*), we have

Homc[@n}(V)\, VM) = C)\C[Gn]cﬂ.

By (i) and (ii) of corollary [IV.2.8] this is equal to O if A > pu, and, if A = g, it is
equal to ¢(byC[S,]ay)cx C Ccy. Note also that 3 = ﬁq # 0 1is in ¢\C[S&,]cy, so

cnC|6,,lexn = £(b,C|6S,,]ay)cy is not equal to {0}, and so it is equal to Cc,.
AC[G,]en A n]Ax)Cx q q A
In particular, we have shown that dim¢ Endc(s,, (V\), and this implies that V), si irreducible.

Also, the ffirst part of the calculation above implies that Vy % V,, if A > pror A < p. As the
lexicographic order is a total order, this means that V) 2V, is A # p.

So we see that the map & (n) — Sc(6,,), A — V), is an injection. As its source and target
have the same cardinality, this map is bijective, and every irreducible representation of G, is
isomorphic to one of the V).

Now let’s prove the decomposition of U, given in the theorem. By what we just saw (and the
semsimplicity of C[&,,]), we have Uy = @ peP(n) VM@K‘“, for some K, € N. Using the lemma
and corollary again, we get

0 ifA>p
Homc[gn]<U)\, VM) = aﬂf[@n]cﬂ = aM(C[Gn]a,\)bA == { CCA i\ = L.
(If A = p, we have a,C[&,,]cy # 0 because it contains aycy = ¢y # 0.) So K, = 1 and
Kﬂ/\ =0 lfﬂ < A\

It just remains to show that the isomorphism class of V), doesn’t depend on the choice of the
Young tableau 7. Thanks to the decomposition of U, that we just proved, we can prove this
by descending induction on A € Z(n). Also, the case of the biggest element (n) of H(n) is
obvious (see example[TV.3.4). So we are done. [

]

Corollary I1V.3.6. Every irreducible representation of G, is realizable over Q. (See corollary

of chapter I1.)

"We could also use remark [[V.2.4] which shows that changing the Young tableau conjugates cy by an element of
S,.
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IV Irreducible representations of the symmetric group S,, over C
IV.4 Characters of the irreducible representations V),

The strategy to calculate the character of V) is similar to the strategy that we will use to calculate
characters of irreducible representations of sl,(C) in section [VI.14.4{VI.14.6| of chapter VI :
First we calculate the chatacter of the induced representation Uy, which is much easier. Then we
deduce tha character of V), using the fact that U, is the direct sum of V), and some factors V),
with g > ), the fact that V), is irreducible and some dark magic.

Definition IV4.1. If 0 € &, we write C (o) for the conjugacy class of ¢ in &,, and let
Zs, (0) = {1 € 6, |T0 = o7} be the centralizer of o of &,,.

Proposition IV4.2. Let 0 € S,,. Then

Ze, (0)] = [ el

r>1

and
n!
— —CT’
Her C’"!r

where, for every r > 1, c, is the number of cycles of length r in the decomposition of o into a
product of cycles with disjoint supports.

C(o)]

Proof. Let 7 € Zg, (o). Then 7 has to send the support of each cycle of o to the support of
any other cycle of the same length, and it must also respect the cyclical order given by o on the
support of these cycles. This gives an isomorphism

Zs, (o) ~ [[((Z/r2)" x &,)

r>1

(where &, acts on (Z/rZ)“ by permuting the entries of the r-uples), hence

|Zs, (o) = [ ] err

r>1
Now note that C'(0) = &,, /Zs,, (o). So we get
n!
C .
(U) Hr21 CT!’I"CT
O
We fix some N > n For every r > 0, let

PT)=P(Ty,...,Ty) =T + -+ T € Z[T,..., Ty).
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IV.4 Characters of the irreducible representations V'

Theorem IV.4.3. Let A = (\,...,\g) € P(n)ando € S,,. Set \; =0ford+1<i<N.

Then xu, (o) is the coefficient of T* := [[X, T, in the polynomial [[,51 B-(T), where, for
every v > 1, ¢, is the number of cycles of length r in the decomposition of o as a product of
cycles with disjoint supports.

Proof. Remember that U, = Indg’; 1. We use the formula for the character of an induced
representation (theorem [[I.3.1.2] of chapter II). It gives :
1
XUA(O-): |6,\’ Z 1= ’6 |’ZGn( )‘|6)\m0< )’

TEG, [T~ loTEG)

where Zg, (0) and C(0) are as in definition [IV.4.1
First, we have G, ~ &), x --- X 6,,,50 |G, | = Hle \! = Hf\il Ai!. Second, by proposi-

tion|IV.4.2]
Zs, (o) =[] '

r>1

Finally, we have to calculate | S, NC(o)|. The conjugacy class C'(o) is the set of permutations
in G,, that have c, cycles of length r for every r > 1. So its intersection with &, is a finite
disjoint union of the following conjugacy classes in &, ~ G,, x...6,, : The product for
t =1,...,d of the conjugacy class in &), of permutations with ¢; , cycles of length r for every
r > 1, for every family (¢;,)1<a<,,>1 such that, for every r > 1, ¢, = Zfl ¢;» and for every

i=1

i€{l,...,d}, \i = > 5, rciy. The cardinality of this product of conjugacy classes is

d
Al

. )
i=1 IL,51 ciplrer

by proposition|[V.4.2] We can actually take ¢ in {1, ..., N} without changing the result, because
A = 0fori > d.

Putting all this together, we get

XU,\( = H ZH

' C’I‘ i
11 Z1»>1 C,L21HT>1C“”T
where the sum is over families (c; ) as above. This is equal to

ZH Hr>1 Cri-

CT"L

On the other, for every > 1, we have

N

N er | .

cr=ci,rt+ten,r 1 li=1 Cir® =1
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IV Irreducible representations of the symmetric group S,, over C

So the coefficient of [\, T;* in [I,5: P (T) is indeed equal to >, Y, W where

the sum is over families (ci’r) as above.

[]

Let A(T) = A(Th, ..., Tn) = [],<;<j<n(Ti — Tj). This is also equal to the Vandermonde
determinant

TN—I TN—l TN—l
1 2 DY N
det : : :
T T ... Ty
1 1 - 1

Theorem IV.4.4. Let A = (\,...,\g) € P(n)ando € S,,. Set \; =0ford+1 <1i < N.

Then xv, (0) is the coefficient of [ [, T ™" in the polynomial A(T) [I,51 B(T)", where,
for every r > 1, ¢, is the number of cycles of length r in the decomposition of o as a product of
cycles with disjoint supports.

Lemma IVA4.5. Let A\ = (Ay,...,\y) € ZN be suchthat \; > -+ > A\y. Let 7 € Gy, and let 1
be the N-uple of integers (\+7(1)—1, ..., An+7(N)—N), rearranged to be in non-increasing
order. Then | > )\, and we have . = X\ if and only if T = 1.

Proof. Letig € {0,..., N} be an integer such that \; = y; for every 1 < i < 4. Let’s show that
7(i) = i forevery 1 < i < iy and that, if 50 < N — 1, then p;,11 > A\i,+1. This clearly implies
the lemma (applying the result to the biggest i with the above property.)

We reason by induction on 4. If 75 = 0, then the first statement is obvious, and the sec-
ond statement is true because p; is the biggest of all the \; + 7(i) — i, s0 1 < i < N, so
1 > A+ 7(1) — 1 > Aq. Suppose that iy > 1 and that we know the result for iy — 1. First we
have to prove that 7(iy) = 4. We have p;, > A\;+7(i)—iforig < i < N,s0 i, > Ny +7(i0) —o.
As i, = Ny, this gives 7(ig) < ig. But 7(ip) € {ig,..., N} (because 7(i) = i for 1 < i < iy,
SO T(io) = 4. Next, if ig < N — 1, then

Hig+1 = sup (/\l + T(Z) — l) Z /\i0+1 + T(io + 1) — (Zo + 1) Z )‘io+17
io+1<i<N

because 7(ig + 1) € {iop +1,..., N} as 7

77777

]

Lemma IV.4.6 (Cauchy determinant). Consider the N x N matrix Ax with coefficients in
Q@1,-- - an, Vi, yw) given by Ay = (31 )1<ij<n.

Then we have

Hl<l<]<n($ i) (y; — yi).

det{dn) = Hn (@i —y;)
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IV.4 Characters of the irreducible representations V'

The matrix Ay is called the Cauchy matrix, and its determinant is called the Cauchy determi-
nant.

Proof. We prove the result by induction on N. It’s obvious for N = 1, so suppose that N > 2
and that we know the result for N — 1.

We  have  det(Ay) - See, sen(M I (i = ye@) L S0
In(xi,y;) = det(A) Hf\g:l(:p, — y,) is a homogeneous polynomial of degree N (/N — 1). Also,
if we have z, = x; (resp. y, = y,) for two distinct , s € {1,..., N}, then A has two equal rows

(resp. columns), so det(A) = 0. Hence fn(zi,y;) = ¢l icjon(®; — 2:)(y; — vi), for some
¢ € Q*. Now multiply the first column of Ay by x; — y; and set z; = y;. We get a matrix B
whose determinant is equal to (z1 — ;) det(AN)}Il:y1 and alsoto fy_1(Z2, ..., TN, Y2, .-, YN)-
The first expression for this determinant is equal to

(M@ = 20) (w5 = 21)) (Tacicyen(a — 70 (s — w)
1 (2 — o) T o (n — ) T o (i — )

By the induction hypothesis, this is equal to

C(_l)Nil(_1>(N71)/(N72)/2f]\7(‘1;27 < TN Y2, - 7yN) = C<_1)N(N71)/2fN(‘r27 ce ey TN, Y2, - - 7yN>7

c

N(N-1)/

and so ¢ = (—1) 2, which finishes the proof.

]

Proof of the theorem. Write x, = xv,, and let x\ be the function on conjugacy classes in G,
defined in the statement of the theorem. First we want to show that

X,)\ = Xx+ Z b)xux;n

B>
for some integers by, € Z.

Let o and the ¢, be as in the statement of the theorem. By definition, x/\ () is the coefficient
of [TX, 7™~ in A(T) [[,>1 P-(T). As A(T) is equal to the Vandermonde determinant
written above, we have

N
AT) =Y sen(r) J]7" 7.
TEGN =1

So x4 (o) is equal to the sum over 7 € Gy of sgn(7) times the coefficient of [, TV~

in [IY, TN [[,5, P(T), ie. of sgn(r) times the coefficient of Y, 79 in
Her PT (T)cr.

Let 7 € Gy, and denote by g, = (gr1,...,4,n) the N-uple of integers
(M +7(1) = 1,--- + Ay + 7(IN) — N), rearranged to be in non-increasing order. Observe
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IV Irreducible representations of the symmetric group S,, over C

that the polynomial HT>1 (T)C" is symmetric in the variables 7}, because all the P,.(T) are. So

the coefficient of [T, 7 """ in 1.5, P-(T)* is equal to the coefficient of 1Y, 7. Also,
if one of 1, ; is negtaive, then this coefficient is 0, because there are no negative powers of the 7;
in [[,~, P-(T)°. Note that saying that none of the 1., is negative is the same as saying that /.,

is a partition of n (because of course S i, = SN (N 7(i) — i) = S0, ).

n of sgn(7) times the coefficient of Hf\il T/ in [[,5, £(T). By theorem XA (o)
is equal to the sum over all 7 € Gy such that p, is a partition of n of XUu(O' . Note also
that, by lemma [[V.4.5] m for every 1 € Sy, we have . > A, and that g, = X if and only if
7 = 1. Hence ) = xu, +>_ u>a X, for some integers ay, € Z. Using the decomposition

U=V, &P V.2 of theorem [TV.3.3] we get that

V>,u

So we get that x\ (o) is equal to the sum over all 7 € &y such that p, is a partition of
*IV4 3

X,)\ =X\t Z b)\,uXw
B>

for some integers by, € Z.

Remember the Hermitian inner product - on % (&,,, C) defined in corollary [II.1.4.3|of chapter
II. By that same corolllary,
u>A
So, to finish the proof, we just need to show that x/, - X}, i.e. (by definition of -) that

> M) =nl.

ceG,

By the decomposition of elements of G,, into products of cycles of disjoint supports, conjugacy
classes in &,, are given by family (c¢,)>1 of nonnegative integers such that n = > ., re, (¢, is
the number of cycles of length 7 in the decomposition of any element of the conjugacy class). If
¢ = (¢;)r>1 is any such family and C., then, by proposition [[V.4.2}

n!

—.
Her cplrer
1

So x4 - x4 is the sum over all such families (c;),>1 of Mo aner times the square of the co-
- r>1 %7

efficient of Hfil T in A(T) [, P-(T). Note that, if we take an arbitrary family
(¢r)r>0 of nonnegative integers that are almost all 0, then the coefficient of Hf\il TAN= in
A(T)[I,; P(T)r is O unless ) o, ¢, = ZZ]\LI A; for degree reasons. So, in the formula for
XA - X4 that we just got, we can take the sum over all families (c,),>¢ of nonnegative integers
that are almost all 0, and we get that X} - X} is the coefficient of [T\, [T}, 7, Syt in
A(T)A(U)S(T,U), where

O I |

YA
(CT)TZIEN =1 =

‘Cg‘ =
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IV.4 Characters of the irreducible representations V'

where the sum is over families (¢, )>; of nonnegative integers that are almost all 0.

But we have

I (2

T.T‘>1T 3,j=1

?) M) (5 5) -

r>1 1,7=1 r>11,5=1

N N 1
o (= 3 st - 10)) = T -
. 1Y

1,j=1 2,j=1

So by lemmallV.4.6, A(T)A(U)S(T, U) is the determinant of the N x N matrix (= )1<ij<n-
and we have

N

ADAD)ST,U) = 3 Sgn(T)H%an(i).

TEGN

Remember that } - \} is the coefficient of [T\, H;V=1 TN JA 777 in this formal series. If
T # 1, then there exists r € {1,...,N} such that s := 7(r) > r. In the formal power series

expansion of HZ 1 W T, and U must have the same exponent in each term. In particular,

H¢:1 H =1 Ti’\ N ;\ +N 7 does not appear in this expansion, because the exponent A, + /N —1r
of 7, in this product is greater than the exponent A\; + N — s of U,. So x} - X4 is the coefficient

N N Xi+N—iprAj+N—j . N 1 :
of [[;2, [[;=, T} U; in[[,_, 1—r.0;> 1-e. 1, and we are done.

]
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V Representations of compact groups

V.1 Topological groups, Haar measures,
representations

Definition V.1.1. A topological group is a topological space G with a group structure such that
the maps G* — G, (z,y) — xy, and G — G, X —— 271, are both continuous.

When we talk about a measure on a topological group GG, we will always mean a measure on
the o-algebra of Borel sets in G, i.e. the o-algebra generated by the open subsets of G.

Theorem V.1.2. IZ] Let G be a compact Hausdorff topological group. Let € (G,C)
be the C-algebra of continuous functions from G to C, with the norm ||.|« given by

1fllce = sup,ec 1 (E)]-

Then there exists a unique C-linear map \ : € (G, C) — C such that :
1. Xis positive, i.e. \(f) > 0if f(G) C Rx,.

2. Nis left invariant, i.e. X(f) = M(f(g.)), for every f € €(G,C) and every g € G (where
f(g.) is the function x — f(gzx)).

3. Xis right invariant, i.e. \(f) = M(f(.g)), for every f € €(G,C) and every g € G (where
f(g.) is the function x — f(xg)).

4. A1) =1

Moreover, \ is continuous, there exists a unique probability measure dg on G such that, for

every f € €(G,C),
Af) = /G F(9)dg.

and this measure also satisfies

/G F(g)dg = /G f(g™)dg,

for every measurable function f : G — C.

'See theorem 5.14 of Rudin’s book [26] for compact groups and chapter VI of Loomis’s book [21] for the general

case. See also problems VII.5.1|, VIL.5.2|and VH.S.3}
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V' Representations of compact groups

We say that dg is a bi-invariant (or left and right-invariant) probability Haar measure on G.

In the rest of this chapter, if we have a compact Hausdorff topological group (G, the notation
dg will always mean a bi-invariant probability Haar measure on G.

Remark V.1.3. If we only assume that G is locally compact, then we can find nonzero C-linear
maps satisfying (1) and (ii) (resp. (i) and (iii)), and they are unique up to multiplication by a
nonnegative real number. These functions are also continuous, and the corresponding measures
on G are called left-invariant (resp. right-invariant) Haar measures. If d;g is a left-invariant Haar
measure on (7, then there is a unique right-invariant Haar measure d,.g on G such that

/G F(9)dvg = /G f(g™ ),

for every measurable function f : G — C.

Example V.14.

- A finite group G with the discrete topology is a topological group. A left and right-invariant
Haar measure on G is given by dg(A) = |A|/|G].

- Let G = U(1) := {z € C||z| = 1}, with the topology induced by that of C. This is
a topological group, and we have an isomorphism of topological groups R /Z 4 U(1),

t — e (where R/Z is given the quotient topology). We get a Haar measure on G by
taking, for every measurable f : G — C,

[ o= [ o= [ rean

where dt is the usual Lebesgue measure on R. By the way, not that dt itself is a Haar
measure on the topological group (R, +).

Definition V.1.5. Let GG be a topological group and V' be a normed C-vector space. Then a
(continuous) representation of G on V' is an abstract representation of G on V' such that the
actionmap G x V — V, (g,v) — gv, is continuous.

Remark V.1.6.
- The definition makes sense if V' is any topological vector (over a topological field).

- With notation as in the definition, let End(1") be the C-algebra of continuous endomor-
phisms of V. We put the operator norm on End(V), and consider a continuous representa-
tion of G on V. Then the action of every g € GG on V' is a continuous endomorphism of V/,
so we get a map G — End(V'). But this map is not continuous in general. (See problem

VILS5.7|for a counterexample.)

- With notation as in the previous remark, if p : G — End(V) is an abstract represen-
tation of G on V' that is continuous for the weak* topology on End(V'), then it is not
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V.2 Finite-dimensional representations

necessarily a continuous representation. (For example, take for G the group of invertible
elements of End(V'), with the topology induced by the weak* topology on End(V), and
for p : G — End(V') the inclusion. This is not a continuous representation of G on V'.)

So we see that we have to be a bit careful with the notion of continuous representation in
general. In the following two sections, we will see what happens in the particular case of finite-
dimensional vector spaces, and in that of unitary representations on Hilbert spaces.

V.2 Finite-dimensional representations

Definition V.2.1. If V' is a normed C-vector space, we denote by End (V') the C-algebra of
continuous endomorphisms of V', and we put on it the topology given by the operator norm. We
write GL(V') for End(V')*, with the topology induced by that of End(V/).

Remember that, if V' is a finite-dimensional C-vector space, then all norms on V' are equiva-
lent. So V' has a canonical topology, and so does End (V) (as another finite-dimensional vector
space).

Proposition V.2.2. Let V' be a normed C-vector space and p : G — GL(V') be a morphism of
groups. Consider the following conditions.

(i) The map G x V' — V, (g,v) — p(g)(v), is continuous (i.e. p is a continuous represen-
tation of G on V).

(ii) Foreveryv € V, the map G — V, g — p(g)(v), is continuous.
(iii) The map p : G — GL(V') is continuous.

Then we have (iii)=(i)=(ii). If moreover V is finite-dimensional, then all three conditions
are equivalent.

Proof.
(1)=-(ii) is obvious.

(ii)=(iii) : Suppose that V' is finite-dimensional, and let (e, . . ., e, ) be a basis of V, and let
||| be the norm on V' defined by || >°7 | x;€;|| = supy<;<, |z:|. We use the corresponding
operator norm on End(V') and still denote it by ||.||. Let go € G and let ¢ > 0; we are
looking for a neighborhoord U of gy € G suchthat: g € U = ||p(g) — p(g0)|| < €.

For every ¢ € {l,...,n}, the function G — V, g —— p(g)(e;), is contin-
uous by assumption, so there exists a neighborhood U; of ¢y in G such that :
g €U = |lp(9)e;) — plgo)(e)] < e/n. Let U = (;_, U;. Thenif g € U, for ev-
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V' Representations of compact groups
eryv =y . x;e; €V, wehave

lp(g)(v) = pg0) (V)| < Z lz:llllo(g)(e:) = p(go) (el < Z |zile/n < e]jv]l,

which means that ||p(g) — p(g0)]| < €.

(ii1)=-(1) : Let go € G, vy € V, and € > 0. We want to find a neighborhood U of g and G
andad > Osuchthat: g € U and ||[v — vg]| < 0 = ||p(9)(v) — p(g0)(vo)]| < €.

Choose a § such that 0 < § < m, and let U be a neighborhood of gy in G such that
g € G =|plg) —plg)ll < sqocrrey- Then, if g € U and llv — vol] < 6, we have

lv]l < ||vol| + 9, and hence

lo(g)(v) = p(go) (vo)l 1p(9)(v) = p(go) (W) [ + [lp(g0) (v) = p(g0) (o)

le(9) = plgo) vl + llp(go)lllo = vol
oo 1) eoll ) + lleto)lld
e/2+e/2=e.

IN A INIA

]

For finite-dimensional continuous representations of continuous groups, we can define subrep-
resentations, irreducible representations, direct sums, semisimple representations, tensor prod-
ucts, Homs and duals just as in the case of finite groups. Also, Schur’s lemma (in the form of

theorem [[I.1.2.1] of chapter II) still holds with exactly the same proof. We will see in the next
section what happens to Schur orthogonality (theorem of chapter II), after we introduce

unitary representations : in the case of compact Hausdorff groups, once we formulate it correctly,
it still holds.

V.3 Unitary representations

V.3.1 Definition and first properties

Remember that a (complex) Hilbert space is a C-vector space V' with a Hermitian inner productﬂ
such that V' is complete for the corresponding norm. If V' is a finite-dimensional C-vector space
with a Hermitian inner product, then it is automatically complete, hence a Hilbert space.

Notation V.3.1.1. Let VV and W be Hermitian inner product spaces. For every continuous C-
linearmap 7" : V. — W, we write 7" : W — V for the adjoint of 7', if it exists. (It always does
if V and W are Hilbert spaces.) If V' is a subspace of V, we write V'* for the orthogonal of V.
Finally, we write U(V") for the group of unitary endomorphisms of V.

2We will always assume Hermitian inner products to be C-linear in the first variable.
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V.3 Unitary representations

Proposition V.3.1.2. If V is a Hilbert space and p : G — U(V') is a morphism of groups, then
the following are equivalent :

1. Themap G xV =V, (g,v) — p(g)(v), is continuous.
2. Foreveryv € V, themap G — V, g — p(g)(v), is continuous.

Definition V.3.1.3. If V' is a Hilbert space, a unitary representation of G on V' is a morphism of
groups p : G — U(V) satisfying the conditions of the proposition above.

Remark V.3.1.4. Note that p is not a continuous map in general. (Unless dim¢ V' < +o00, in
which case p is continuous by proposition )

Also, note that we don’t need the completeness of V' in the proof, so the proposition is actually
true for any Hermitian inner product space.

Proof of the proposition. We already seen in proposition that (i) implies (ii). Let’s prove
that (ii) implies (i). Let go € G, vy € V, and € > 0. We want to find a neighborhood U of g in G
andad > Osuchthat: g € U and ||[v — vg|| < 0 = ||p(9)(v) — p(g0)(vo)]| < e.

Choose a neighborhood U of g in G such that: g € U = ||p(g)(vo) — p(g0)(v0)]| < €/2, and
take § = £/2. Then, if g € U and ||v — vy|| < 6§, we have

1p(g)(v) = plgo)(vo)ll - < llp(g)(v) = p(g)(wo)ll + ll(9)(v0) = p(go) (w0l
< lp(g)llllv = voll + /2
< €/24¢/2=¢,

because p(g) € U(V), so p(g)]| = L.
]

Remark V.3.1.5. If p : G — U(V) is a unitary representation of G on a Hilbert space (V, (., .)),
then, for every G-invariant subspace W of V, the subspace W+ is also G-invariant. Indeed, if
w € V+and g € G, then, for every v € W,

(v, p(g)w) = (p(g)~'v,w) = 0,
so p(g)w € V*+.

In particular, if W is a closed G-invariant subspace of V, then we have V = W @ W+ with
W+ a closed G-invariant subspace. If V is finite-dimensional, then every subspace is closed and
this shows that every unitary representation of G on V' is semisimple.

Theorem V.3.1.6. Assume that the group G is compact Hausdorff. Let V be a finite-dimensional
C-vector space and p : G — GL(V') be a continuous representation of G on V. Then there
exists a Hermitian inner product on V' that makes p a unitary representation.

Remark V.3.1. If V is irreducible, we can also prove that this inner product is unique up to a

constant. See problem
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V' Representations of compact groups

Proof of the theorem. Let (.,.)o a Hermitian inner product on V. We define (.,.) : V. x V — C
by the following formula : for all v, w € V,

(0, 0) = / (p(9)0, plg)w)odg

(remember that dg is a bi-invariant probability Haar measure on (). We clearly have
(p(g)v, p(g)w) = (v, w) for every v,w € V and g € G, so we just need to show that (., .)
is a Hermitian product on V. It’s clearly a Hermitian product, so we just need to show that it is
positive definite. Let v € V' — {0}. Then the function G — R, g — (p(g)v, p(g)v)o, is continu-
ous and takes positive values. As G is compact, there exists € > 0 such that (p(g)v, p(g)v)e > €
for every g € G, and then we have (v,v) > ¢ > 0.

]

Corollary V.3.1.7. If G is compact Hausdorff, then every finite-dimensional continuous repre-
sentation of G is semisimple.

V.3.2 The operators 7},

The following construction will be used several times in proofs below.

Definition V.3.2.1. Let V' and W be Hermitian inner product spaces; we denote both inner
products by (.,.). If v € V and w € W, we define the C-linear map 7,),, : V' — W by
Tﬁw(;ﬂ) = (z,v)w.

Note that the map V' — Homc(V, W), v — T, is semi-linear.

v,W?

Proposition V.3.2.2. 1. Foreveryv e Vandw e W, T.," =TJ .
From now, we suppose that Vand W are finite-dimensional.

2. The T°

v,wW?

3. If V. =W, then for everyv,w € V, Tr(T} ) = (w,v).

forv eV andw € W, generate Homc(V, W) as a C-vector space.

4. Forevery vi,vy € V and wy,wy € W, we have

Te(T° , TO 7)) = (wy, wy) (va, vy).

v1,W1 T V2, W2
Proof. 1. Letx € Vandy € W. Then

(Tyu(@),y) = ({z,v)w,y) = (z,0)(w,y) = (&, 0){y, w) = (z, (y,w)v) = (2,T, ,(y)).

2. If we choose orthonomal bases (e;)1<i<n, of V' and (f;)i<j<m of W, then, for every
ie{l,...,n}and 5 € {1,...,m}, the matrix of ng’fj in these bases is the m X n with
(i, 7)-entry equal to 1 and all other entries equal to 0. These clearly generate the C-vector
space M,,,(C).
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V.3 Unitary representations

3. Let (vy,...,v,) be an orthogonal basis of V' such that v; = v. Then

o 1y _ ) (uvpw ifi=1
Tow(vi) = { 0 otherwise.

Asw=> 1", é:}”gévz, this gives the result.

4. Foreveryy € W,

T3 i Toran (W) = T Tty (9) = T, ({9 w2)02) = (y,w2) (v, 01 )w1.

V1,w1 T v2, W2 V1, w1 w2,v2 v1,W1

Choose an orthogonal basis (y1, . . ., y,) of W such that y; = wy. Then

0 0 %) = (y1,y1)(v2, v1)wy  ifi=1
Lo Tones (00) = { 0 otherwise.

Aswy =) 0, Ej”;’g y;, this gives the result.

V.3.3 Schur orthogonality
In this section, G is a compact Hausdorff group, and we will only use finite-dimensional complex
continuous representations of G.

Definition V.3.3.1. Let p : G — GL(V) be a continuous representation of G on a finite-
dimensional complex vector space. Remember that the map xy : G — C, g — Tr(p(g)),
is called the character of the representation (V p).

By proposition [V.2.2] xy : G — C is a continuous map.

Theorem V.3.3.2. Let V, W be continuous representations of G on finite-dimensional complex
vector spaces. Assume that V and W are both irreducible. Choose G-invariant Hermitian
inner products on 'V and W, that will both be denoted by (., .). Then for every vi,vs € V and
wy,wy € W,

{gwy, wy) = (vg,wa) iV =W
dg = dlmcv<vl7wl><v2,UI2> lf
/G (guy, v9) (g1, we)dg { ; =

Proof. If v e Vandw € W, let
Ty = / gTB’wgfldg € Home(V, W),
G

where Tq?, » 18 as in definition |V.3.2. ll Then 7, ,, is G-equivariant, so, by Schur’s lemma, 7}, ,, = 0
if V£ W,and,if V =W, thenT,, = c(v, w)idy with ¢(v,w) € C..
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V' Representations of compact groups

Suppose that V' = W, and let’s calculate ¢(v, w). We have

c(v,w) dime V = Tr(T, ) = / Tr(gTy .9 )dg = Tx (T} ,),
G

so, by proposition|V.3.2.2} c(v, w) = g (w, v).
Now let I = [, (gv1,v2){gw:, ws)dg. We have
I = /<9U17U2><91w2>w1>d9
= j( g~ 'wa, wi)guy, va)dg

(
= j(gTﬂmg‘lwz,vﬁdQ
= <Tw1 'Ul( )U2>

?

sol =0ifV ~ W, and

1
dim@ %

I = C(wl,U1)<UJ2,U2> = (vl,w1><vg,w2)

ifV~W.
[]

Corollary V.3.3.3 (Schur orthogonality). Let V, W be continuous representations of G on finite-
dimensional complex vector spaces. Assume that V' and W are both irreducible. Then

——, [0 V=W
/GXV(Q)XW(Q)dQ—{ 1 ifV~W.

Proof. Choose G-invariant Hermitian inner products on V' and W, and fix orthonomal bases
(v1,...,v,) of V and (wy, ..., w,) of W, that we should to be equal if V' = W. Then we know
that, for any C-linear endomorphism u of V' (resp. W), we have Tr(u) = >, (u(v;), v;) (resp.

Tr(u) = Y 7%, (u(w;), w;)). In particular, for every g € G,

n

xv(g) = {gvi,vi)

i=1

and .
Z guwj, w;).

Hence
n m

/XV 9)xwlg dg—ZZ/ g, vi)(gw;, w;)dg.
G

=1 j=1
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V.4 The space L*(G)

By the theorem, this is equal to 0 if V' 22 W, and, if V = W, it’s equal to

n m

1
dime V Zzwiﬂfﬁ(vi,vﬁ =1.

i=1 j=1

]

Corollary V.3.34. If V is a finite-dimensional continuous representation of G, write
V=8B, V™ where the V; are irreducible. (This is possible by corollary ) Then

/G xv(g)fPdg =) n?.

el

In particular, V' is irreducible if and only if [ |xv(g)[*dg = 1.

V.4 The space L*(G)

From now on, we take G to be a compact Hausdorff group and dg to be a bi-invariant probability
Haar measure on G.

V.4.1 Definition and actions of (¢

Definition V.4.1.1. We write L?(G) for the quotient

{f:G—=C measurable|/ |f(9)|?dg < +o0}/{f:G— C measurable|/ |£(9)|*dg = 0}.
G a

This is a Hilbert space for the Hermitian inner product given by

i fo) = / h(@R)ds

If f € L2(G), we write || f]l» = /(F, f).

Definition V.4.1.2. If z € G and f if a function from G to C, define R, f,L.f : G — C by
Ly(g) = L(zg) and Ry(g) = R(gx).

Proposition V.4.1.3. Let x,y € G.

1. The operators defined above induced endomorphisms L, and R, of L*(G), with the fol-
lowing properties :
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2. L,R,= R,L, R,R, = Ry, and L,L, = L,,.

3. R = R;!' = Ry, and L} = L' = L,-1. In particular, R, and L, are unitary
endomorphisms of L*(Q).

Proof.

Let f1, fo : G — C be measurable functions. Then, using the right and left invariance of dg, we
get

(Rofo Ruf) — /G (1 (92)Falge)dg — /G 59 Fa@)dg = (fr, f2)

and

(Lofis Lof) — /G (w9 Falwg)dg = /G £ () Tal9)dg = (o, fo).

So R, and L, preserve both spaces in the quotient defining L?(G), and hence they induce en-
domorphisms of L?(G). Also, the equalities above show that these endomorphisms are unitary,
which gives half of (iii). The other half of (iii) will follow from (ii), so let’s prove (ii). Let
f € L*(G) and g € G. Then we have

(LoRyf)(g) = (Ryf)(xg) = f(xgy) = (L.f)(9y) = (RyL.f)(g),
(LaLyf)(g9) = (Lyf)(xg) = f(yzg) = (Layf)(9)

and

(R Ry f)(9) = (Byf)(gx) = fg2y) = (Ray f)(9),

which proves (ii).

]
Definition V.4.1.4. If f is a function G — C, we define a function f: G — Cby f(g) = f(g71).

Proposition V.4.1.5. This defines a unitary endomorphism f —— fof L*(G).

Proof. Let f : G — C be a measurable function. Then

/G Fla D)2y = /G £ (9)|dg

(because the group G is compact, so the Haar measure dg is equal to its own pullback by
g — g~ !, see theorem [V.1.2), which implies every statement in the proposition.

]
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V.4.2 The convolution product

Definition V.4.2.1. If f,, f» € L2(G), define f;  f» : G — C by

Q)I/Gﬁ(gx)fg(:cl)dx.

This function is called the convolution product of f; and fs.

Remark V.4.2.2. If we want this definition to make sense, we should be more careful. First, if
f1, f2 : G — C are measurable and L?, then we can define f; x f, : G — C by the formula above.
Then, if one of f; and f; happens to be negligible (i.e. if [,,|f1(g)|*dg = 0or [ |f2(g)|dg = 0),
then it is easy to see that the function f; * f5 is identically zero. So the convolution indeed goes
to the quotient and makes sense for fi, fo € L?(G). Note that, unlike f; and f,, the function
f1 * f2 is well-defined everywhere.

Proposition V.4.2.3. 1. Forany fi, fo € L*(G), f1 * fs is a bounded function on G, and we
have || fi * falloo < || f1ll2]| f2]l2, where ||.|| s is the supremum norm.

In particular, fi * fo € L*(G), and || f1 * fall2 < || f1ll2]| f2]|2-

2. The convolution product is associative, and distributive with respect to addition.

In other words, it makes LQ(G) into an associative C-algebra (with no unit, unless G is

finite).

Proof. 1. Letg € G. Then

|[fixfa(g)] = !/Gfl(gx)fz Hdx| = I/ Lyf0) fo(@)de| < |[Ryfullall fall = |l fullal foll2

by the Cauchy-Schwarz inequality and propositions [V.4.1.3| and [V.4.1.5] This gives (i).
(The second part of (i) follows from the fact that dg is a probability measure.)

2. The distributivity is obvious. Let fi, f, f3 € L*(G), and let g € G. Then :

((Fr% f2) * Fo)lg) = /G (f1 # o) (ga) fo(o o = /G ( /G f1(gzy) foly™)dy) fo(a ) da,
while
(1 (fox fo)) / F1(92)(fo # fo) (V)= = / £1(92) / folz ) f( )t

Using Fubini’s theorem, the change of variables z — y and ¢t — y 'z, and the fact that
dg is a bi-invariant Haar measure on GG, we see that these two expressions are equal.

]
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Remark V.4.2.4. Tt is also true that f; * fo is continuous for every fi, f» € L*(G), but we will
not need it here. To prove this, note that, by (i) of the proposition (and the bilinearity of %), if
f1 (resp. fo) is the limit in L?(G) of a sequence (f1.,)n>0 (resp. (fa.n)n>0), then the sequence
(fin * fon)n>o converges to fi x fo in L*°(G). Now use the fact that continuous functions
are dense in L?*(G) (see theorem 3.14 of Rudin’s book [23]]), and that the convolution of two
continuous functions is continuous.

Definition V.4.2.5. Let f € L?*(G). We define endomorphisms L;, R; of L*(G) by
Ly(f1) = f= frand Re(f1) = f1* [.

By proposition[V.4.2.3| we get :
Corollary V.4.2.6. 1. These operators are well-defined and continuous, and we have
L1 < 1Fllz IR < 11 Fll2- F]
2. Forany fi, f> € LQ(G>, Lf1Rf2 = szLfv RflRfQ = Rf1*f2 and Lfth = sz*fl'

2>

Moreover :
Proposition V.4.2.7. 1. Forevery f € L*(G), R} = Ryand L; = L.
2. Forevery f € L*(G)andx € G, R,Ly = LyR, and R;L, = L, R;.

Proof. 1. We only prove the first equality, the second one is similar. Let fi, fo € L*(G).
Then :

(Ry(f1), o) = /G (s F)(9) Falg)dy = /G /G f1(g2) £ (2) Folg)dady.

1

After the change of variables y = gx ™", we see that this is equal to

/G/Gfl(y)mf(x)dxdy.

After the change of variables z = 27!, we see that this is equal to

/G /G Fi) =D (=) dzdy = /G L) Dy = (1, R3fo).

2. We only prove the first equality, the second one is similar. Let h € L*(G) and g € G.
Then

(RaLs(1)(g) = (f * h)(g) = /G f(gzy)h(y)dy,

while

(LyRo(B)(g) = (f * (Rah))(g) = /G Flg2)h(=12)dz.

3In fact these are equalities, see remark [V.4.2.9
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V.4 The space L*(G)

The change of variables z = xy (and the fact that the measure on G is right-invariant)
show that these two expressions are equal.

]

Theorem V.4.2.8. For every f € L*(g), there exists a sequence (f,)n>o0 of functions in L*(G)
such that :

1. ﬁl = fnfor everyn > 0.
2. || full2 = 1 for every n > 0.
3. f* fo— fin L*(G)asn — +oc.

Proof. Let ¢ > 0. Choose a neighborhood U of 1 in G such that U = U —! and that, for
.. ) 1

any r,y € ~U, |R.f — fll2 < . (This is possible by corollary [V.4.2.6) Let h. = oo Lu-

Obviously, h. = h. and ||h.|2 = 1. Moreover, we have

(=) = [ flarheta)ds = < [ rlgayas

for every g € G, so

(F+h)9) = 110) = 7 | (Rers(Dle) = o))

and

I k)= £13 = [ 1(F *De)(a) — Flo)ldg
N ol(U)? /GxeU(Rw1f—f)(9)(Ry1f—f)(g)dxdydg

! (Ry-sf — f, Rysf — f)dady

 —

<

I
S
—

1(1U)2 UxU
< R.1f — R -1f — dxd
< g | WRes = fIalRy ] = fldry
1
< - 2d d — 2
~ ol U)Q/Ung xy :

(by the Cauchy-Schwarz inequality and the choice of U).
Now take f,, = hy/on.
[]

Remark V.4.2.9. In particular, this implies that ||R¢|| = ||f||.. We have a similar result where
we take the convolution by f on the left (the proof is exactly the same), and it implies that

ILslF = 1[fl2-
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V' Representations of compact groups

Theorem V.4.2.10. For every f € L*(G), the endomorphisms R and L of L*(G) are compact.
Lemma V4.2.11. If fi,fs : G — C, define a function f, @ fo : G x G — C by

(f1® f2)(g1, 92) = f1(91) f2(g2). This induces a C-linear map L*(G) ®c L*(G) — L*(G x G),
which is injective with dense image.

Proof. Take a Hilbert basis (e;);c; of L?(G). Then the family (e; ® e;); jer of L*(G x G) is
clearly orthonormal, and we see easily that any function on L?(G x G) that is orthogonal to all
the e; ® e; 1s 0 almost everywhere, hence 0.

[]
Lemma V4212 For every K € L*G x G), define a Ty : L*(G) — L*G) by
(T (W)(x) = [ K (2, y) f(y)dy. Then || Tic|| < [[K]l2.
Proof. This is an easy calculation.

O

Proof of the theorem. We prove the result for L ¢; the proof for I; is similar.

Consider the function K : G x G — C, (z,y) — f(zy™'). Then K € L*(G x G), so
by the lemma, there exists families of functions (g;)sc; and (h;)ic; in L?(G) such that the sum
>ier 9i @ h; converges to K in L?(G x G). Note also that Tx = Ly.

For every finite subset J of I, let S; = ZMGJ gi ®h; € L*(G x G) and Ty = Ts,. Then, for
every h € L*(G), forevery z € G,

Z/ y)gi(x)h;(y)dy = Z/ (y)dy)gi().
(1,7)€J? i€eJ jeJ

In other words, for every h € L*(G), Tyh is in the finite-dimensional subspace of L?(G) spanned
by the g;, 2 € J. Hence the operator 7; has finite rank.

To show that L is compact, it suffices by theorem to show that it is the limit of the
operators 1’y as J becomes bigger. But this follows from the second lemma and from the fact
that K is the limit of the S;.

[]

V.4.3 The regular representations

Definition V.4.3.1. We make G x G act on L*(G) by (z,y) - f = L,-1R,f = R,L,1f, i.e.
((z,9) - f)lg) = f(z™ gy) forevery g € G.

4See definition
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V.5 The Peter-Weyl theorem

The restriction of this action to the first (resp. second) factor of G x G is called the left (resp.
right) regular representation of G.

Proposition V.4.3.2. The representation of G x G on L*(G) defined above is continuous, and so
it’s a unitary representation.

Proof. We already know that L,-1 R, is a unitary endomorphism of L*(G) for any =,y € G
by proposition so we just need to show that the representation is continuous, and to
check this, by proposition it suffices to show that, for every f, € L?(G), the map
G x G = L*@G), (z,y) — L,-1R, fo, is continuous.

So fix fo € L*(G), and let zg, 50 € G and ¢ > 0. Choose f : G — C continuous such
that ||fo — fll2 < ¢/3. [| As G is compact and f is continuous, f is uniformely continu-
ous, so their exists a neighborhood U of 1 in G such that, for any =,y € U, for any g € G,

f (™ gy) — flg)| < /3.
Ifx € xoU and y € yoU, then

|LamtRyf = Lya Ry flls = \/ /G Fatgy) — flag gyo)ldg < /3,

SO
HLm*lRny - L:cglRyofOH2 < HL:C*lRny - melRnyQ""
[ Lo Ry f — nglRyof”2 + HLmo—lRyof - nglRyof0H2
< Nf = folla+ 5+ 1f = foll2
< e

V.5 The Peter-Weyl theorem

We still assume that G is a compact Hausdorff group.

Definition V.5.1. We write G for the set of isomorphism classes of irreducible continuous repre-
sentations of G on finite-dimensional complex vector spaces. F_’]

Let (V,,p) € G. We fix once and for all a G-invariant Hermitian inner product {(.,.)
on V,. Note that G x G acts on Endc(V,) ~ V) ®c V in the usual Way that is, by

(91,92) - u = p(g1)up(g2) "

5See theorem 3.14 of Rudin’s book [23].
®If G is a finite group, this was denoted by S¢(G) in chapters I and II.

"By proposition|II.1.1.10of chapter II.
8See section |I1.2]of chapter II.
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V' Representations of compact groups

The Hilbert-Schmidt inner product on Endc¢(V,) is given by the formula (u, v) yg = Tr(uv*),
where v* is the adjoint of v for the chosen G-invariant inner product (., .) on V. It’s a Hermitian
inner product, and we check easily that it is G x G-invariant (because p(g) is unitary for every
g € Q).

We define ¢, : Endc(V,) — L*(G) by ¢,(u)(g) = Tr(p(g)~* o u), for any u € Endc(V,) and
g € G. For every u € Endc(V),), the function g — Tr(p(g)~" o ) is continuous on G, hence
L? because G is compact. So ¢, is well-defined.

Theorem V.5.2. 1. For every (V,,p) € G, Endc(V,) is an irreducible representation of
G x G. Also, if (V,,p) % (Vy,p'), then Endc(V,) 2 Endc(Vy).

2. For every (V,,p) € G, the map t, : Endc(V,) = L*(G) is G x G-equivariant, the map
dim(V,)/2, is an isometry, and (dimc V)¢, sends the composition in Endc(V,,) to the
convolution product in L*(G).

3. Themap 1 =@ catp: D,cqEnde(V,) — L*(G) is injective and has dense image.
In other words, as a representation of G x G and as C-algebra (without a unit),
L*(G) ~ @ Ende(V,),
peG
where ~ means “completion”.

Lemma V.5.3. Let V be a Hilbert space wih a unitary representation of G, and let V1, Vo C V be
finite-dimensional irreducible subrepresentations of GG. Then either V| ~ V5, as representations
of G, or (v1,v9) = 0 for any vy € V| and vy € V4 (i.e. V} and Vy are orthogonal in V).

Proof. We know that V" is stable by G and that V = V, @ V' (remark [V.3.1.5)). So the or-
thogonal projection = : V — V, is G-equivariant, hence the composition V; € V' 5 V5 is
G-equivariant. If V; % V5, then this G-equivariant map V; — V5 has to be 0 by Schur’s lemma,
which means that V; C V;-.

O
Proof of the theorem. Let’s prove (i). Let p € G. Then XEnde(v,) (91, 92) = Xv,(91)xv,(g2),

by the definition of the action of G x G on End¢(V,), section of chapter II and corollary
[1.1.4.2)of the same chapter. By the Schur orthogonality formula (corollary[V.3.3.3)) and corollary

[V.3.3.4] we have
| enset s 0o = ( / rxvp<gl>rzdg1) ( / ’XVp(gz)’2d92> Y
GxG G G

and so End¢(V),) is irreducible. Moreover, if (V,, p’) is not isomorphic to (V) p), then, by
corollary |V.3.3.3| again,

(XEnde (V) XBnde (V) £2(GxG) = (XV,0 XV, ) 12(6) XV, XV, ) 12(6) = 0,
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V.5 The Peter-Weyl theorem

and so End¢(V,) and End¢(V,,) are not isomorphic.

Let’s prove (ii). Fix (V,, p) € G. First we prove that ¢, is G x G-equivariant. Let z,y € G
and u € Endc(V),). Then, for every g € G,

Lolp(@)up(y) ") (g) = Tr(p(g) ' plx)up(y) ") = Tr(p(z ™ gy) 'u) = (Lo-1 Ryr,(u))(g).

Then we prove that (dime V)2 is an isometry. Let uy,us € Endc(V,). We wan tto show
that

(dime Vp){e,(ur), Lp(u2)>L2(G) = (u1,u2)gs.

Remember the operators 7}, from definition [V.3.2.1, By proposition [V.3.2.2(ii), End¢(V},) is
spanned by the 70, for v, w € V,, so we may assume that u; = T , and uy = T . , with

v,w? v1,W1 v2,w2”

v1, V2, w1, we € V,. Using proposition [V.3.2.2(iii) and the obvious fact that p(g)Tﬁw = T£ gw fOr
every g € Gandv,w € V, we get

(1), 1 (112)) = / Te(p(g) 0, VTR(p () 179, 02 )dg
= f(glvhwﬁ(g_lw%vﬁdg

= f(gvz,w2><gv1,w1>d9
G

1

- dimcx/vp<v2avl><w17w2>7

where the last equality comes from theorem [V.3.3.2] Finally, by proposition [V.3.2.2{iv), this
equal to mwl, U2) HS-

Now we prove that (dim¢ V)¢, sends the composition in End¢(V),) to the convolution product
in L?(G). Again, by proposition [V.3.2.2]ii), we only need to check this for two elements of
Endc(V,) of the form uy = T, and uy = T with vy, ve, w1, we € V,. Let g € G. By

V1,W1 v2,w2?

proposition [V.3.2.2(iv) and (i), we have
tp(wrun)(9) = Tr(p(9) ' Ty T ) = (p(9) w1, v2) (w5, v1).

On the other hand, by proposition[V.3.2.2(iii) and theorem we have

(tpur) * tp(u2))(g) = /TY(P(I)_IP(Q)_IT&M)TF(P(I)T32,w2)de
= f(ﬂ(x)_lp(g)_lw%Ul><ﬁ($)w2aUz>dl’
= /c (p(z)ws, v2)(p(x)v1, p(g)~ wr)dx

“ 1

TR AL AT
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V' Representations of compact groups

Let’s prove (iii). First we prove that . is injective. Let u = (u,) .5 € D g Endc(V,) be such
that t(u) = 0. Then Y 5 t,(u,) = 0. By lemma and part (i), the subspaces ¢,(Endc¢(V,))
are pairwise orthogonal to each other, so, for every p € @,

B 1

0= (epup), t(w)) = (tp(up), tplup))

(up,up),

where the last equality comes from (ii). This implies that all the u, are 0, and so u = 0.

It remains to show that the image of ¢ is dense in L?(G). First we prove that every finite-
dimensional G-subrepresentation of L?(G) is contained in Im(:), where we make G acton L?*(G)
by the left regular action. As finite-dimensional representations of GG are semisimple (corollary
, it suffices to show that, for every p € G and every G-equivariant map v : V, — L*(G),
we have Im(u) C Im(¢). Fix p € G and u : V, = L*(G) a G-equivariant map. Letv € V.
Then for every f € L*(G) and every g € G,

(u(@)* N)g) = Jgulv)ge)f(z_ )dx

where we used the G-equivariant of « in the 4th equality, and we are using again the operators
O if deﬁnitionm This shows that u(v) * f € Im(c,) for every f € L*(G). By theorem
we can find a sequence (f,,)n>0 in L?(G) such that u(v) * f,, — u(v) as n — +o0. This
shows that u(v) € Im(t,). As Im(s,) is a finite-dimensional subspace of L*(G), it is closed in
L*(G), and so u(v) € Im(c,) C Im(c).

Now we show that Im(¢) is dense in L?*(G). This is equivalent to saying that Im(¢)* = 0.
So let f € Im(¢)*. By what we just proved, f is orthogonal to every finite-dimensional G-
subrepresentation of L%(G). Let h € L*(G) be such that h = h. By proposition and
theorem the endomorphism Ry, of L?(G) is self-adjoint and compact. Hence, by the
spectral theorem (theorem [V.6.5), Ker(R;,) is the orthogonal of the closure of the direct sum of
the eigenspaces Ker(R;, — )\isz(G)), A € R*, which are all finite-dimensional. As R}, is G-
equivariant by proposition these eigenspaces are all stable by (G, and so f is orthogonal
to all of them, hence f € Ker(Ry), i.e. f+h = 0. Now theorem [V.4.2.8|gives a sequence (h,, )50
of elements of L?(G) such that hy, = hy, for everyn > 0and f xh, — fasn — +oo. Applying
what we just saw gives f * h,, = 0 for every n > 0, and finally f = 0.

[]

Corollary V.5.4. As both the left and the right regular representation of G, L*(G) is isomorphic
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V.6 The spectral theorem

to
—_—

@ dim¢ Vp

Py

peé

Remark V.5.5. Let GG be a finite. Then, by theorems and of chapter I, we have an
isomorphism of C-algebras

ClG]~ [ Ende(V),

where S¢(G) is the set of isomorphisms classes of irreducible representations of G' on C-vector
spaces. We also have, by the Peter-Weyl theorem, an isomorphism of C-algebras

L*(G) ~ [ [ Endc(V,).

pe@G

Of course, G = Sc(G), and the two isomorphisms are related by the C-algebra isomorphism

I3G) 3 CG], fr— ﬁ S f9)s.

geG

V.6 The spectral theorem

This section contains some reminders about compact operators and the spectral theorem.

Definition V.6.1. If Vi, 5 are two Hilbert spaces over C and 7" : V; — V5 is a contin-
uous C-linear map, we say that 7' is compact if the set T(B) C V; is compact, where

B ={ve Villlv] = 1},

Theorem V.6.2. Let Vy, V; be Hilbert spaces. We write Hom(V, V3) for the space of continuous
C-linear maps from Vi to Vs, and we consider the topology on it defined by the operator norm.
Then, for every T' € Hom(V, V3), the following conditions are equivalent :

1. T is compact.

2. T is a limit of finite rank elements of Hom(V}, V3).

Lemma V.6.3.  [. Every finite-rank operator is compact.

2. The space of compact operators T : Vi — Vs is closed in Hom(V7, V5).

Proof. Point (i) follows from the fact that the closed unit ball of a finite-dimensional C-vector
space is compact. Let’s prove (ii). Let (7},),>0 be a sequence of compact operators in
Hom(V3, V3), and suppose that it converges to 7' € Hom(V;, V3). Let (z,),>0 be a sequence
in B. We want to find a subsequence (y,),>0 such that (T'(y,)),>0 converges in Va; as V5
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is complete, it suffices to find (y,),>0 such that (7'(y,)).>0 is a Cauchy sequence. We con-
struct a sequence z(") = (xg))nzo of subsequences of (x,),>¢ in the following inductive way
. Take 20 = (Zn)n>0. If 7 > 1, suppose 21 constructed, and take for (") a subsequence
of ("= such that (Tr(xg)))nzg is a Cauchy sequence. (This is possible because 7, is a com-
pact operator.) Finally, set 4, = z/”. Let’s show that (T'(yn))n>0 is a Cauchy sequence. Let
e > 0. Choose m > 1 such that |7 — T,,|| < ¢, and N > m such that, for any r,s > N,
[T (287 = T (25| < € (this is possible because (217,50 is a subsequence of (z4™),150 for
every r > m). Then, if r, s > N, we have

1T (yr) = T(ys) |l < [T = To) (e )l + 1T (e — ) | + 1T = T)(ys) [ < 3¢,
because vy, vy, € B.
[

Proof of the theorem. The implication (ii)=>(i) follows directly from the lemma. Let’s show that
(ii) implies (i). Let 7" € Hom(V}, V4) be a compact operator. Let (17,,),,>0 be a sequence of finite-
dimensional subspace of V5 such that V;, = Un>0 W,, and, for every n > 0, let 7, : Vo — W,, be
the orthogonal projection. Set T}, = 7, o7 Then, for every x € V;, T,,(z) — T(y) as n — +oo.
Let’s show that we actually have 7,, — T in Hom(Vj, V5). Lete > 0. As W is compact,
we can find z1,...,z, € B such that, for every y € B, there exists i € {1,...,r} such that

|T(x;) — T'(y)|| < e; note that, for every n > 0, we then have

IT0(y) = To(za)ll = lmn(T(y) = T(za)ll < T (y) = T(w:)|| <e.

Choose N > 0 such that, forevery i € {1,...,r}andeveryn > N, ||T,,(z;) =T (z;)|| < e. Let’s
show that, for n > N, we have ||T;,, — T'|| < 3e. Fixn > N. If y € B, choose i € {1,...,7}
such that ||7'(y) — T'(z;)|| < e. Then we have

IT(y) = Tu() |l < T () = T(a)ll + 1T () = Talza) | + [ Tn(2:) = Tu(y)]| < 3e.

O

Note that the proof of (ii)=-(i) in the theorem above still works of V; and V5, are general
Banach space, but the proof of (i)=-(ii) does not. (And in fact, it is not true that a compact
operator between Banach spaces is always the limit of a sequence of finite rank operators. See
Enflo’s paper [11] for a counterexample.)

Definition V.6.4. Let V' be a Hilbert space, and let 7" be a continuous endomorphism of V. We
say that A € C is an eigenvalue of T if Ker(T — Aidy) # {0}. We denote by Spec(T") C C the
set of eigenvalues of 7', and call it the spectrum of T'.

Theorem V.6.5 (Spectral theorem). Let V' be a Hilbert space over C, and let'T : V — V
be a continuous endomorphism of V. Assume that 'I' is compact and self-adjoint, and write

V) = Ker(T — Aidy) for every A € C.
Then :
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1. Spec(T) C R.

2. If A\, € Spec(T') and X\ # p, then V,, C V.

3. If X € Spec(T') — {0}, then dim¢ V), < +o0.

4. Spec(T) is finite or countable, and its only possible limit point is 0.
5

- D iespecr) Vo is dense in V.

Proof. Points (i) and (ii) follow from the fact that 7" is self-adjoint just as in the finite-dimensional
case.

Letr > 0. Let W = @‘ A>r Va. Choose a Hilbert basis (e;)ie; of W made up of eigenvectors
of T, i.e. such that, for every i € I, we have T'(e;) = \;e; with |\;| > r. If [ is infinite, then
the family (7'(e;));cr cannot have a convergent (non-stationary) subsequence. Indeed, if we had
an injective map N — I, n — 1, such that (7'(e;, )),>o converges to some vector v of V, then
Ai, €i, — v, so v is in the closure of Span(e;,,n > 0). But on the other hand, for every n > 0,
(v,€;,) = limy, 5 100(N;, €i,.,€i,) = 0, s0ov € Span(e;,,n > 0)*. This forces v = 0. But
|v|| = limy,—s 400 || Aiy €4, || = 7 > 0, contradiction.

7:’IL
As T' is compact, this show that I cannot be infinite, and gives (iii) and (iv).

Let’s prove (v). Let W' = € ESpec(T) Vi, and W = W’'*. We want to show that W = 0.
So suppose that W # 0. As T is self-adjoint and W’ is clearly stable by 7', T(W) C W.
(If v € W, then for every w € W', (T'(v),w) = (v,T(w)) = 0.) Note that Ty has no
eigenvalue, so in particular Ker(7") = {0}, hence ||Tjw | > 0. Let B = {x € W]|||z| = 1}.
As |Tiw|| = sup,ep [(T'(x), )|, there exists a sequence (x,),>o of elements of B such that
(T'(xn), xn) — Xasn — +o0, where A = =£||Tjyy||. Then

0 < T (xn) = Azl = 1T (@a) [I* + X[ |* = 2M(T (@), @) < 23* = 2X{T (), Ta)

converges to 0 as n — +oo, so T'(x,) — Az, itself converges to 0. As T' is compact, we may
assume that the sequence (7'(x,,)),>0 has a limit in W, say w. Then T'(w) — Aw = 0. But 7" has
no eigenvalue in W, so w = 0. But then T'(x,,) — 0, so (T'(x,,),z,) — 0,50 A = 0 = ||Tjw ||, a
contradiction.

]
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VI Representations of Lie algebras :
the case of s[,(C)

The goal of this chapter is to explain the representation theory of the semisimple complex Lie
algebra sl,,(C), and its relation to the representation theory of the compact group SU(n). We will
start with a few general definitions and quickly specialize.

VI.1 Definitions

Let £ be a commutative ring with unit. In this chapter, by an associative k-algebra, we will
always mean an associative k-algebra with unit unless otherwise specified.

Definition VI.1.1. A Lie algebra over k (or k-Lie algebra) is a k-module g with a k-bilinear map
[.,.] : g X g — g satisfying the following conditions /

1. forevery X € g, [X, X] = 0;
2. (Jacobi identity) for all XY, Z € g, [X, [V, Z]] + [V, [Z, X]] + [Z, [X, Y]] = 0.

The operation [., ] is called the Lie bracket of g.

Remark VI.1.2. If we apply condition (i) to X + Y, we get [X,Y] + [V, X] = 0, ie. : (i)
[X,Y] = —[X,Y], forany X,Y € g. This condition is equivalent to (i) if 2 is invertible in k, but
not in general.

Definition VI.1.3. Let g be a Lie algebra over k.
1. A (k-)Lie subalgebra of g is a k-submodule § of g such that [h, h] C b.
2. An ideal of g is a k-submodule a such that g, a] C a.

3. If b is another Lie algebra over k, a morphism of (K-)Lie algebras is a k-linear map
u: g — hsuchthat u([X,Y]) = [w(X),u(Y)] forall z,Y € g.

Remark VI.1.4. If g is a k-Lie algebra and a is an ideal of g, then condition (i) implies that
[a, g] = [g, a] =C a. So for Lie algebras, there is not distinction between left and right ideals.

The following proposition is obvious.
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VI Representations of Lie algebras : the case of sl,,(C)

Proposition VI.1.5.  [. Ifgis a k-Lie algebra and a is an ideal of g, then the Lie bracket of g
defines a bracket on the quotient k-module g/a, and this makes g/a into a k-Lie algebra.

2. If u : g — b is a morphism of k-Lie algebras, then Ker u is an ideal of g, Imu is a Lie
subalgebra of b, and u induces an isomorphism of Lie algberas g/ Ker u = Im w.

Example VI.1.6.

- Any k-module V' becomes a Lie algebra with the trivial Lie bracket [.,.] = 0. Such a Lie
algebra is called a commutative Lie algebra.

- If A is an associative k-algebra (with or without unit), we define the commutator bracket
[.,.] : Ax A — Aby [a,b] = ab— ba, for every a,b € A. This makes A into a Lie algebra
(condition (i), condition (ii) follows from the associativity of A).

Note that the Lie algebra (A, [.,.]) is commutative if and only if the associative algebra A
is commutative.

- Let V be a k-module. Then the associative algebra Endy (1) together with its commutator
bracket is a Lie algebra, which will be denoted by gl (V') (or gl(V) if k is clear from the
context).

If V= k™, we write gl,,(k) = gl,,(V).
- Here are some Lie subalgebras of gl, (k) :
sl (k) ={X € gl,(k)|Tr(X) =0}
b, (k) = {X € gl,(k)| X is upper triangular}
u, (k) = {X € gl,(k)|X is strictly upper triangular}

t,(k) = {X € gl,(k)|X is diagonal }

o,(k) ={X € gl,(k)|X +'X =0}
Note that u, (K) is an ideal of b, (k), and that the quotient b,,(k)/u, (k) is isomorphic to
the commutative Lie algebra t,, (k).

Definition VI.1.7. A representation of a k-Lie algebra g on a k-module V' is a morphism of Lie
algebras u : g — gl(V'). We use V, u of (V, u) to refer to the representation. Sometimes we omit
u from the notation and write X v for u(X)(v) (X € g, v € V).

Moreover :
- We say that the representation is faithful if u is injective.

- A subrepresentation of (V,u) is a submodule W of V' such that for every X € g,
u(X)(W) Cc W.

- The representation (V, ) is called irreducible if V' # 0 and if the only subrepresentations
of Vare 0and V.
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- The representation (V, u) is called semisimple if for every subrepresentation W of V', there
exists another subrepresentation W’ of V such that V =W @ W".

Remark V1.1.8. By using a Zorn lemma argument as in theorem of chapter I, we could
show that a representation of g is semisimple if and only if it is a sum of irreducible subrepre-
sentations. |'| But in the case of most interest to us, which is the case where £ is a field and both g
and V are finite-dimensional over k, we can prove this fact by an easy induction on dimy, V' and
so we don’t need Zorn’s lemma.

Example VI.1.9.
- The trivial representation of gisthe mapu =0:g — k.
- Tr: gl,,(k) — kis a nontrivial representation of gl, (k) on k.

- The adjoint representation : Consider the map ad : g — gl(g) sending X to the endomor-
phism Y —— [X, Y] of g. Then this is a map of Lie algebras, i.e. a representation of g on
itself, and we call it the adjoint representation.

Indeed, if X, X5,Y € g, then

ad([Xy, Xo]) (V) = [[X1, Xo], Y] = —[V, [ X1, X3]],
while
[ad(X1), ad(Xo)](Y) = [Xy, [Xo, Y]] = [Xo, [X0, Y]] = [X0, [Xo, V]| 4 [Xo, [V, X4 ]],
and these are equal by the Jacobi identity (condition (ii) of definition[VLI.T).

Remark V1.1.10. The adjoint representation has many interesting properties. For example :

(1) For every X € g, ad(X) is actually a derivation of g. That is,
ad(X)([Y,Z]) = [V,ad(X)(2)] + [ad(X)(Y),Z] for all Y,Z € g. (This is just a
reformulation of the Jacobi identity.)

(2) The set of derivations of g is a Lie subalgebra of gl(g), and the image of ad is an ideal of
this Lie subalgebra. ]

Remark VI.1.11. If k is a field of characteristic 0, then Ado’s theorenﬂ says that every finite-
dimensional Lie algebra over £ admits a faithful representation on a finite-dimensional k-vector
space.

'In fact, once we see in corollary [VI.2.2.3| that representations of g are the same as modules over its universal
enveloping algebra, we can just apply theorem [.T.3.4]of chapter I directly.

2See problem |VII.6.4
3See Ado’s paper [1].
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VI.2 Universal enveloping algebra

VI.2.1 The tensor algebra of a k--module

Let V be a k-module.

Definition VI.2.1.1. The nth tensor power of V (over k) is

™V =V &V,
—_———

n times
with the convention that 7°V = k.
The tensor algebra of V' is
v =1V
n>0

The k-linear maps 7"V ®; T™V — T™T™V sending (v1 ® - ® v,,) ® (w1 @ -+ @ wy,) to
(M Qu, QW ®- - ®w,) gives T*V the structure of a (graded) associative k-algebra, with
unitl € k =T°V.

We denote by ¢ the obvious k-module inclusion V = TV < T*V.

These objects satisfy the following universal properties.

Proposition VI.2.1.2. 1. Let W be another k-module. Then we have a canonical bijection

Homy (T"V, W) = {n-linear maps V" — W}.

2. Let A be an associative k-algebra (with unit). Then the map
Homk_algebras (T*‘/? A) — Homk—modules(v7 A)

sending ¢ : T*V — A to pu is a bijection.

Proof. Point (1) is just the universal property of the tensor product.

Let’s prove point (ii). First, let 1, ps : T*V — A be two k-algebras maps such that ¢t = pot.
As T'V generates the k-algebra T*V, this implies ¢o; = . Next, letu : V' — A be a map of
k-modules. For every n > 1, the k-multilinear map V" — A, (vq,...,v,) — u(vy) ... u(vy,)
induces a k-linear map varphi,, : T"V — A. We also write ¢ : k — A for the structural map.
Then ¢ := P,,o, ¥n : T*V — Ais a k-algebra map (by definition of the product on 7*V), and
YL =u.

]
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VL2 Universal enveloping algebra

VI.2.2 The universal enveloping algebra of a Lie algebra

Definition VL.2.2.1. Let g be a Lie algebra over k. A universal enveloping algebra of g is a pair
(t,U(g)), where U(g) is an associative k-algebra with unit and ¢ : g — U(g) is a morphism of
Lie algebras from g to U(g) with its commutator bracket, such that :

For every other pair («, A) with A an associative k-algebra with unit and o : ¢ — A a mor-
phism of Lie algebras from g to A with its commutator bracket, there exists a unique morphism
of k-algebras ¢ : U(g) — A such that o = .

Theorem V1.2.2.2. Let g be a Lie algebra over k. Then :
1. A universal enveloping algebra of g exists.

2. If (t1,U1(g)) and (12, Ux(g)) are two universal enveloping algebras of g, then there exists
a unique isomorphism of k-algebras ¢ : U1(g) — Us(g) such that pi1 = to.

Moreover; if (1,U(g)) is a universal enveloping algebra of g,then (g) generates U(g) as a
k-algebra.

Because of point (i1), we usually talk about the universal enveloping algebra of g. We also
often omit ¢ from the notation.

Proof. Let’s prove (ii). With the notation of the theorem, there exist a unique morphisms of
k-algebras ¢ : Uy(g) — Ux(g) and ¢ : Us(g) — Usx(g) such that pu; = 19 and ¥iy = ;. We
just need to show that they isomorphisms. But ¢t and idy, ) are two morphisms of k-algebra
satisfying iy = idy,(g)t2 = 2, 80 b = idy,(g). Similarly, Y = idy, (g).

Let’s prove (i). We have defined in definition the tensor algebra 7*g of g (seen as a

k-module) together with a k-linear map ¢ : g — T™*g, and, by proposition |VI.2.1.2, composition
with ¢ induces a bijection, for every associative k-algebra with unit A,

Homk—algebras (T*ga A) — Homk—modules (gv A)

Let [ be the two-sided ideal of 7™ x g generated by the elements X ® Y — Y ® X — [ X, Y], for
X,Y € T'g = g. Take U(g) = T*g/I. We still write ¢ for the composition g - T*g — U(g).
Let A be an associative k-algebra with unit. Then, for every k-module map v : g — A, if
¢ : T*g — A s the corresponding k-algebra map, we have

uwisaLliealgebramap < VXY €g, u([X,Y]) = u(X)u(Y) — uw(Y)u(X)
& VXY g, p([X,Y]) = o(X)p(Y) — p(Y)p(X)
< o(l)=0
< induces a k-algebra morphism U(g) — A.
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In other words, composition with ¢ induces a bijection
Homk—Lioalgcbras(U (9), A) = Homy_modules(g, A).
So (¢,U(g)) is a universal enveloping algebra of g.
The last sentence follows directly from the construction of U(g).
[]

Corollary VI.2.2.3. Let g is a Lie algebra over k, and let (1,U(g)) be its universal enveloping
algebra.

1. For every k-module V, the map
Homk—algebras(U(g)7 Endk(v>> — Homk—Lie algebras (gv g[k(v>)
sending o to @ o L is a bijection.

In other words, giving a representation of g on V' is the same as giving a U(g)-module
structure on V' (compatible with the k-module structure).

2. If V and W are representations of g, hence also U(g)-modules by (i), and if u : V — W

is a k-linear map, then u is a morphism of representations if and only if it is U(g)-linear.

We can reformulate this corollary informally by saying that representations of g are “the same”
as U(g)-modules. ﬂ So all the general results of section |I.1|of chapter I apply to representations
of Lie algebras.

Proof. 1. This is just the universal property of U(g).

2. If u is U(g)-linear, then it is a morphism of representations because g acts on V' and W
through ¢ : g — U(g).

Conversely, suppose that u is a morphism of representations. Then it is linear under the
k-subalgebra of U(g) generated by «(g). But that subalgebra is equal to U(g) itself.

O
V1.3 The matrix exponential
From now on, we will mostly specialize to the case k = C.
Fix an integer n > 1, put the usual Euclidian norm ||.||, on C" and denote by ||.|| the corre-
sponding operator norm on M, (C). That is, for every A € M, (C), we have
[A = sup  [JAX].

xecn, | X|=1

“In more precise terms, we have an equivalence of categories between the two.
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VI.3 The matrix exponential

Then we clearly have ||AB|| < ||A|||B|, for any A, B € M, (C).

Definition V1.3.1. The matrix exponential is the map exp : M, (C) — M, (C) defined by

1
exp(A) = e = Z ;!A’".

r>0

Proposition VI.3.2. . The series defining exp(A) converges absolutely for every
A € M,(C), and exp is a C* mapy)|

2. Forevery A € M, (C), we have

ietA — AetA — etAA.
dt

In particular, the differential of exp at 0 is given by

dexpo = idMn((C)-

3. If A, B € M,(C) commute, then 8 = eAel = eBeA,
In particular, for every A € M, (C), ete™ = I,,, so e* € GL,(C).

4. For every A € M,(C) and S € GL,(C), we have ¢545™" = SeAS—1, &4 = te and
6A* — (GA)*.

5. Forevery A € M,(C), det(e?) = T4,

Proof. 1. Let A € M,(C) and every r > 0, we have || A"|| < ||A||". So the series defining
exp converges absolutely on every closed ball of M,,(C) centered at 0. This implies that it
defines a C*° map.

tr

2. Thanks to (i), we can calculate the derivative of e'4 = >~ _ A" term by term, and then

the result is obvious.

To deduce the formula for d exp,, note that, for every A € M,,(C),

d
dexpy(A) = %em Y

3. This is proved just like the similar formula for real (or complex) numbers.

4. This is obvious.

Tt is even complex analytic.
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5. By (iv), we may assume that A is upper triangular. Let Ay, ..., A\, be the diagonal entries
of A. Then e is upper triangular with diagonal entries e, . . ., e, which gives the result.

]

We will need a generalization of point (ii) for later use.

Proposition VI.3.3. Let X € M,,(C). Then d exp y (the differential of the matrix exponential at
X) is given by

1
deXpX(A)—/ e X Ae1=9X ds
0

forevery A € M, (C), and dexpy is invertible (as a linear map from M,,(C) to itself).
Proof. Let’s first prove the formula for dexpy. Let A € M, (C). By definition, we have

o Loxpa x
deXPX(A)—P_{%t(@ —e™).

For every k > 0, define an endomorphism L, of M,,(C) by
k
Li(B) =) X'BX*™.
=0

Then, for every k > 0,
(X +tA) = X + Ly (A) + O(#?).
So ]
X+tA _ X 2

k>0

which gives
1
dexpy(A) = E Hri) 1>!Lk(A).

k>0

On the other hand, using the (easy) fact that

/1 sFish2ds = —kl!kz!
0 (k]_ _I_ k:2 + 1)'

for all k1, ko > 0, we see that

1 1 1
/ e X A Xds = Z / sMXMA(1 — s) XM ds
0 0
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and this is clearly equal to dexp (A).

Now let’s show that d expy is invertible. We write X = Y + N, with Y diagonalizable, N
nilpotent and YN = NY'. Then, by the first part,

1
deXpX = Z mTk’l’
El>0

where .
Tri(A) = N’“(/ s"(1 — s)leY A1)V ds) N
0

Using the fact that Y and N commute (and Fubini’s theorem), we see that the operators 7}
commute with each other. Because [V is nilpotent, the map 7} ; is nilpotent as soon as k > 1
or [ > 1. Putting these two facts together, we see that d expy is invertible if and only if T is
invertible. As Ty = d expy,, this means that are reduced to the case where X is diagonalizable.

So let’s assume that X is diagonalizable and prove that dexpy is invertible. As

dexpgyg-1 = Sdexpy S~', we may assume that X is diagonal. Let x,...,x, be its diag-
onal entries. Let A € M,,(C), and write A = (a;;). Then the (7, j)th entry of dexpy(A) is
1 ey if 2 — 1
sxi ,,  (1—8)x; _ a;;e i nx; = Zj
/0 € e Yds { a;j==——(e —1) otherwise.
Ti—;

So, if dexpy(A) = 0, then A = 0. As dexpy is an endomorphism of M, (C), this suffices to
prove that it is invertible.

O

The matrix logarithm : For B € M,,(C), if | B|| < 1 or B is nilpotent, let

log(I, + B) = Z(—1)T—1%BT.

r>1

This series converges absolutely in every closed ball of { B € M,,(C)|||B|| < 1}, hence defines
a C'™ function log :  — M,,(C), where B = {A € M, (C)|||A — I,.]| < 1}.

Proposition VI.3.4. Forany A € M,,(C) such thatlog(A) is defined, we have exp(log(A)) = A.

Note however that log(exp(A)) = A does not hold in general, even if n = 1, simply because
there are many matrices A such that exp(A) = I,,.

Proof. Consider the formal power series f(t) = > ., £ and g(t) = ZTZl(—l)“lg in C[[t]].

Then we have f(g(t)) = ¢ in C[[t]], because f(g(t)) = t because this equality holds for any
t € Csuch that |t| = 1.

139



VI Representations of Lie algebras : the case of sl,,(C)

If A € M,(C), we can deduce from this that exp(log(A)) = A as long as all the double series
log(exp(A)) converges absolutely. If A = I, + B with B nilpotent, then this double series is a
finite sum. If A = [,, + B with || B|| < 1, then the proof is the same as in the case n = 1, using
the fact that || B"|| < || B||" for every > 0.

]

V1.4 The Lie algebra of a closed subgroup of GL,(C)

The open subset GL,,(C) of M, (C) (with the induced topology) is a topological group. We will
show how to associate a Lie algebra to any closed subgroup G of GL,,(C). What is really going
is that GG has a canonical Lie group structure, and the Lie algebra of GG will be the tangent space of
G at 1. But we can prove this directly, without knowing anything about Lie groups or manifolds.

Definition VI.4.1. Let GG be a closed subgroup of GL,,(C). Then the Lie algebra Lie(G) of G
is the set of X € gl,(C)(= M,(C)) such that there exists a C*° function ¢ : R — M,,(C) with
¢(R) C G, ¢(0) =1, and ¢(0) = X.

Note that Lie(GL,(C)) = gl,,(C).

Theorem V1.4.2. Let G be a closed subgroup of GL,,(C). Then Lie(G) is a R-Lie subalgebra
of g, (C) and, for every g € G and X € Lie(X), gX g~ ' € Lie(G).

Proof. Let X,Y € Lie(G), and let cx,cy : R — M,(C) be C* functions such that
cx(R),ey (R) € G, ¢x(0) = ¢y(0) = I, and ¢ (0) = X, ¢, (0) = Y. Let A € R and
g € G. Then :

(1) Consider ¢; : R — M,(C), t — cx(At). Then cis C*, ¢1(R) = ¢x(R) C G,
c1(0) = ex(0) = I, and ¢} (0) = A (0) = AX. So A\X € G.

(2) Consider ¢ : R — M,(C), t — cx(t)cy(t). Then cp is C°, (R) =C G
(because G is a subgroup of GL,(C)), (0) = c¢x(0)ey(0) = I,, and
4(0) = 5 (0)ey (0) + ¢x(0)cy(0) =X +Y.So X +Y € G.

(3) Consider c3 : R — M, (C), t — gex(t)g~'. Then c3 is C, c3(R) = gGg~' = G,
c3(0) = gex(0)g™" = I,,, and &(0) = gcx (0)g™! = gXg™'. So gXg~' € G.

(4) Finally, consider ¢, : R — M,(C), t = cy(t)Xey(t)™'. Then ¢4 is C* and

cs(R) C Lie(G) by (3). As Lie(G) is a R-subvector space of M, (C) by (1) and (2), it
is closed in M,,(C), and ¢(0) € Lie(G). Let’s calculate ¢/, (0). First, using the fact that
d d

7 (Cy(t)Cy(t)_l) = %]n =0,

we see that
—(ey(t)™h) = —ev (1) ey (Hev (1)

140



V1.4 The Lie algebra of a closed subgroup of GL,,(C)

So
cyt) =y () Xey () — ey () Xey (1) (ey (),
and Lie(G) 5 ¢4(0) =YX — XY.
L

If we want to actually calculate Lie algebras of closed subgroups of GL,,(C), we need a char-
acterization that’s easier to use. This is the goal of the following theorem.

Theorem VI.4.3. Let G be a closed subgroup of GL,,(C). Then
Lie(G) = {X € gl,(C)|Vt € R, ¥ € G}.

Lemma VI44. Let ¢ : R — M,(C) be a C* map such that ¢(0) = I,, and let X = (0).
Then, for everyt € R,

: tyk _ X

k:EI:IFloo C<k) c

Proof. Remember from section that we have the C* function log, defined in a neighbor-
hood U of I,, in M,,(C), and satisfying exp(log(A)) = A for every A € U. Fix £ > 0 such that
c(t) e Uif |t| <e. Letd:] —e,e[— M,(C),t — log(c(t)). This is a C* map, and we have

2/(0) = dlogy(c'(0)) = (dexpy,) ' (X) = X.

By Taylor’s formula, d(t) = tX + O(t?).
Now let ¢ € R. Choose an integer N > 1 such that [{/N| < e. Then if £ > 1 and
¢e€{0,...,N — 1}, we have

t tX t2 tX 1
d - _ 1y
S 2y ey VG R A yx )

So (Nk + €)d(57t) = tX + O(), and

t

t
Nige

Nk +¢

NEH — oxp((Nk + €)d( ) = exp(X + O(%))

Making k tend to 400, we get lim,_, o ()" = exp(X).
]
Remark V1.4.5. Applying this lemma to the function ¢ : R — R, ¢t — 1 + ¢, we recover the

classical result that
lim (1+L)F =e¢".

k—4o00
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Proof of the theorem. If X € gl,(C) is such that ¢/* € G for every t € R, then the C™ map
c: R — M,(C), t — e, has image contained in G, sends 0 to [,,, and satisfies ¢/(0) = X. So
X € Lie(G).

Conversely, let X € Lie(G), and let’s prove that e € G for every t € R. Choose a C*° map
¢: R — M,(C) such that ¢(R) C G, ¢(0) = I,, and ¢(0) = X. Lett € R. By the lemma,
e = limy 400 ¢(£)". We have ¢(£)* € G for every k > 1. As G is a closed subgroup of
GL,,(C), this implies that their limit e'* is also in G.

O

Example V1.4.6.

- Take G = SL,(C) := {g € GL,(C)|det(g) = 1}. As det(e"¥) = %) forevery t € R
and X € gl,(C), we immediately get

Lie(G) = s,(C) = {X € gl (C)|Tr(X) = 0}.

- Take G = GL,(R). I claim that Lie(G) = gl,(R). Indeed, if X € gl,(R), then
etX € GL,(R) for every t € R. Conversely, let X € gl,,(C) be such that ¢/* € GL,(R)
for every ¢ € R. Then (' — I,,) € g, (R) forevery t € R, so

d 1
X=—¢e% = lim ~(" -1, €gl,(R).

dt t=0 t€R,t—0 t

- Take G = U(n) := {g € GL,(C)|gg* = I,}. (This is called the unitary group.) 1 claim
that
Lie(G) =u(n) :={X € ¢l,(C)|X + X* =0}.
Indeed, if X € u(n), then X* = — X, so X and X* commute, so, for every ¢t € R,

[ — pt(X+X") X tX* (etX)<etX)*7

and therefore e!* € U(n). Hence u(n) C Lie(G).
Conversely, let X € Lie(G). Then e'Xe!*" = I, for every ¢t € R, hence

_ 4 exe _ .
O—E(e e )tZO—XJrX,

and X € u(n). So Lie(G) C u(n).
- Take G = SU(n) := U(n) N SL,(C). (This is called the special unitary group.) Then

Lie(G) = u(n) Nsl,(C) = {X € gl,(C)|X + X* = 0 and Tr(X) = 0}.

This Lie algebra is denoted by su(n).
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- Similarly, if O(n) = {g € GL,(R)|X*X = I,,} and SO(n) = O(n) N SL,(R), then
Lie(O(n)) = Lie(SO(n)) = so(n) := {X € gl (R)|X + ‘X = 0}.

Note that O(n) and SO(n) have the same Lie algebra, unlike U(n) and SU(n). This is
because SO(n) is the connected component of 7,, in O(n).

- For every commutative ring k, let B,,(k) (resp. U, (k), resp. T, (k)) be the group of upper
triangular matrices (resp. upper triangular matrices with 1s on the diagonal, resp. diagonal
matrices) in GL,, (k). Then, if k = R or C,

Lie(B,(k)) = b,,(k)

Lie(U,(k)) = u,(k)
Lie(T,(k)) =t
(see example for the notation).
- If G is a finite subgroup of GL,, (C), then Lie(G) = {0}.

The next theorem is the down-to-earth version of the statement “Lie((G) is the tangent space
of Gatl,”.

Theorem VI.4.7. Let G be a closed subgroup of GL,(C), and let g = Lie(G). Then there
exist neighborhoods V of I,, in GL,(C) and U of 0 in gl,,(C) such that exp : U — V isa
diffeomorphism (= C*° and bijective with C* inverse) and that exp(U Ng) =V N G.

Proof. Let W be a R-subspace of gl,(C) such that g & W = gl,(C). Consider the map
¢ : gl,(C) - GL,(C) sending A + B to e“e? if A € gand B € W. Then, for A € g
and B € W, we have

©(A+ B) = (I, + A+ O(A*))(I, + B+ O(B?*) =1, + A+ B+ O(AB, BA, A*, B?),

so dpg = idpy,(c). By the inverse function theorem, there exists neighborhoods U; of 0 in g, U,
of 0in W and V of 1 in GL,,(C) such that ¢ : U; x Uy — V' is a diffeomorphism.

Now let’s show that, after shrinking U, (and consequently V'), we have expfl(V NG) = U,
ie. exp : Uy — G' NV is a diffeomorphism. Suppose that this is not the case. Then we can find
a decreasing sequence Wy = Uy D W1 D W5 D ... of neighborhoods of 0 in W such that every
neighborhood of 0 in WW contains one of the W, and that, for every » > 0, there exist A, € U
and B, € W, — {0} such that p(4,, B,) = erePr € G.

As(,zoWr = {0}, B, = 0asr — +oo. LetY, = ﬁBr; then ||Y,|| = 1. As the unit
sphere of W is compact (because W is finite-dimensional), we may assume that the sequence
(Y,),>0 has a limit, say Y. Then Y € W and Y # 0 (because ||Y|| = 1). We want to show that

e’ € Lie(G) for t € R, which will imply that Y € g and contradict the fact that g N W = {0}.
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Lett € R. Forevery r > 0, if m, = |;57]. then we have m,[|B,|| < ¢ < (m, + 1)[|B,]].

So m,||B,]] — tasr — +4oo. Now note that, for every r > 0, efr € G (because
0(A,, B,) € eMePr € G, and et € G), so e B € G. As e Br = BV e get
emrlIBeYr e G Making r — oo and using the fact that G is closed in GL,(C), we get
Y € G.

]

VL.5 From groups representations to Lie algebra
representations

This is the analogue of problem [VIL.6.5| but for closed subgroups of GL,(C) instead of linear
algebraic groups.

Everything works thanks to the following proposition, which generalizes problem 2).

Proposition VLI.5.1. Let ¢ : R — GL,(C) be a continuous morphism of groups. Then there
exists a unique B € M, (C) such that c(t) = ¢'B, Vt € R.

Proof. The uniqueness of B follows from the fact that %6“3 li=o = B.

For the existence, choose § > 0 such that ||g — I,,|| < d|| = det(g) # 0. As c is continuous,
there exists e > O such that [t <& = ||c(t) — ¢(0)|| < 6. Let A = [ ¢(t)dt. Then

leL — Al = | / (e(0) — e(t))d ]| < [eti=cs

0
so || I, — e 1A|| <4, sodet(e7tA) #£ 0, so A is invertible.
As c is a morphism of groups, c¢(t + s) = ¢(t)c(s) forall t, s € R. Lett € R. Then

/tt+6 c(s)ds = ¢(t) /Oec(s)ds = c(t)A,

c(t) = ( /t ” c(s)ds) AL

C(t) = (et +¢) — (D) A7 = e(0)B,
where B = (c(g) — I,)A~L. As ¢(0) = I,,, we finally get c(t) = !B,

SO

Hence cis C', and
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VI.5 From groups representations to Lie algebra representations

Theorem VL.5.2. Let G be a closed subgroup of GL,,(C) and H be a closed subgroup of
GL,,(C). Let p : G — H be a continuous morphism of groups. For every X € Lie(G), the
map cx : R — GL,,,(C), t — p(eX), is a continuous morphism of groups, hence, by propo-
sition it is of the form t — 'Y for a uniquely determined Y € M,,(C). We write
Y = dp(X). Then

1. Forevery X € LieG, we have

d

—p(e")]i=o-

dp(X) = -

2. Forevery X € LieG, dp(X) € Lie H.
3. dp : LieG — Lie H is a morphism of Lie algebras.
4. Forevery X € LieG and g € G, p(eX) = e®X) and dp(gX g~") = p(g)dp(X)p(g)~".

Remark V1.5.3. If we knew differential geometry, we would say that dp is the differential of the
map patl € G.

Remark V1.5.4. As exp(Lie G) contains a neighbourhood of 1 in G (by theorem [V1.4.7), dp
determines p on G° (the connected component of I,, in G).

Proof. Point (i) follows immediately from the definition of dp(X), and (ii) follows immediately
from the definition of Lie H and the fact that cx (R) C H.

The first assertion of (iv) just follows from the formula p(e**) = €!@(X) (which is the def-
inition of dp(X)), taking ¢t = 1. For the second assertion of (iv), consider ¢ : R — H,

t — p(g)p(e)p(g)~". Then
c(t) = p(ge™g™") = p(e'X),
SO
p(9)dp(X)p(g)~" = (0) = dp(gXg~").
We prove (iii). Let X, Y € LieG and A\ € R.

(a) We have
ox(t) = P(ektx) = cx(At),

SO

6t‘dp()\X) 6t)\dp(X) )

Taking derivatives at 0 gives dp(AX) = Adp(X).

(b) Letc: R — H C GL,(C), t — p(eX)p(e?)p(e! X)L As ¢ = exeye_(x4y), the
map c is C*, and we have ¢/(0) = dp(X) + dp(Y) —dp(X +Y).
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VI Representations of Lie algebras : the case of sl,,(C)

By lemma|VI.4.4] for every t € R,

A\
lim ¢ (—) — et (0),
k—+oo k’

So we just need to prove that, for ¢ fixed,

Fix t € R. Then
c <£) = (e%Xeéye_%(XW)) =p(I, + O(%)),
” £\" 1 1
() = ottt + 060" = ol + O,
and this tends to p(I,,) = I,,, as k — 400, by continuity of p.

(c) Letc : R — LieH, t — dp(e*Ye X). As dp is a R-linear map between finite-
dimensional R-vector spaces, it is C* and equal to its own differential at every point. So
the chain rule gives ¢/(0) = dp([X, Y]).

On the other hand, by (iv), ¢(t) = p(e)dp(Y)p(e=%), so

d(0) = dp(X)dp(Y') — dp(Y)dp(X) = [dp(X), dp(Y)].
0

In particular, every continuous representation p : G — GL,,(C) of GG gives rises to a repre-
sentation dp : LieG — gl ,(C) of the Lie algebra of G. Note that dp is a much simpler objet
than p (we don’t have to worry about continuity or derivability conditions, for example, as they
follow automatically from R-linearity). So we would like to understand the representations of GG
through the representations of its Lie algebra. This raises two questions :

Question 1 : Does dp determine p ?

Answer : We have already seen the answer : dp determines p on G°. So it’s a good tool to
understand p if G is connected, not so much if G is finite.

Question 2 : Is every Lie algebra map u : LieG — gl,,(C) equal to dp, for some continuous
group morphism p : G — GL,,(C) ?

Answer : Not in general. Compare the cases G = S! € C* and H = R.y C C* (both
connected). Every representation of Lie(H) (on a finite-dimensional C-vector space) comes
from a representation of H, but this is not true for representations of Lie(G). For example, the
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VI.5 From groups representations to Lie algebra representations

T

R-linear map R — C, v ~— £, is not the differential of a continuous morphism of groups
p : St — CX, because every such p is of the form z — 2" for some n € Z by problem

2) (or proposition [VL.5.1)).

The difference is that H is simply connected and G is not. In general, we can tell which
u: LieG — gl,,,(C) lift (or integrate) to GG, but the formulation of the answer uses the language
of root systems. In the particular case where G is simply connected and connected, every w lifts.

In section [VI.8, we will do by hand the case of G = SU(n) (which is connected and simply
connected).

Remark V1.5.5. If g € G and X € Lie G, let Ad(g) and ad(X) be the endomorphisms of Lie(G)
defined by Ad(g)(Y) = gYg ! and ad(X)(Y) = [X,Y]. Then Ad : G — GL(LieG) is a
continuous morphism of groups.

We have seen that

Yo = X,V
that is,

(A )imo = ad(X).
In other words, ad = d Ad (which gives again the fact that ad : Lie G — gl(Lie 7) is a morphism
of Lie algebras), and so we get

X — Ad(e).

Remark V1.5.6. If g is a k-Lie algebra and (V3,u;) and (V5,u;) are representations of g, we
define representations of g on V; ®; V5 and Homy(V3, V5) by :

X(v1 @ v2) = (w1 (X)v1) ® vz + v1 @ (u2(X)v2)

and

X =uy(X)op —pou(X),

for X € g, v; € Vi, vy € Vo and ¢ € Homy(V7, V3). In particular, taking V5, = k with the trivial
representation, we get a representation of g on V;* = Homy(V1, k) given by X = —¢p o uy(X).

The justification for this is the following (apart from the fact that these formulas do indeed
define representations) : If g is the Lie algebra of a closed subgroup G of GL,(C) and we have
u; = dpy and ug = dpy with p; : G — GL(V}) and ps : G — GL(V4) continuous finite-
dimensional representations of G on complex vector spaces, then the representation of g on
Vi ®c Vs (resp. Home(V7, V3)) defined above is obtained by deriving the representation of G on
this space. (See problem [VIL.6.20]) Also, the trivial representation of g is clearly the differential
of the trivial representation of .
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VI Representations of Lie algebras : the case of sl,,(C)
V1.6 The Baker-Campbell-Hausdorff formula

This is is formula that allows us to express the multiplication in G in terms of the sum and bracket
of Lie GG (at least in a neighbourhood of 1).

It has many proofsﬂ but here we’ll follow a quick and purely algebraic proof due to Eichler.
(See the paper [10]].)

Here is the setup : Let Q{t1,...,tn} C Q{{t1,....tn}} be the rings of polynomials resp.
power series in N noncommuting indeterminates tq,...,¢ty. The degree of an element of
Q{t1,...,ty} is defined in the obvious way.

Let L C Q{ty,...,tx} be the Lie subalgebra generated by ¢y,...,ty. Elements of L are

sometimes called Lie polynomials. (Note : L is called the free Lie algebra on the set {t1,...,tx}.
Also, it’s easy to see that Q{t1, ..., ¢y} is the universal envelopping algebra of L, but we won’t
need that fact.) [/]

Proposition VL.6.1. We have L = @,,.,, Ly, where L,, is the space of homogeneous degree n
n >0
polynomials in L (by convention, 0 is in every L,,).

In other words, if f € Q{t1,...,tx} is a Lie polynomial, then its homogeneous degree n part
is also a Lie polynomial.

Proof. Obviously, we have tq,...,ty € @nZO L,, C L, so we just need to show that ®n20 L, is
a Lie subalgebra of Q{t,,...,ty}, i.e. is stable by [.,.]. But we clearly have [L,,, L,,] C Ly m.

]

Now let ¢, s be two noncommuting indeterminates, and consider the formal power series

¢ =3 el
og() = - 1y e o - 1))

n>1

Because the constant term of efe® € Q{{t,s}} is equal to 1, the formal power series
log(e'e®) € Q{{t, s}} makes sense. Write

log(e'e’) = Z F.(t,s),

n>0

with F),(t, s) homogeneous of degree n. It’s easy enough to calculate the first few terms :

1
Fo(t,s) =0, Fi(t,s)=t+s, Fy(t,s)= §[t7 s].

6See for example theorem 7.4 of chapter IV of part I of Serre’s book [31]].
7See theorem 4.2 of chapter IV of part I of Serre’s book [31]] for a proof.
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V1.6 The Baker-Campbell-Hausdorff formula

Theorem VI.6.2 (Baker-Campbell-Hausdorff formula). For every n > 0, F,(t,s) € L, ie.
F,.(t,s) is a Lie polynomial, i.e. F,(t,s) is obtained from t and s using only vector space
operations and the commutator bracket.

Proof. By induction on n. We have already checked the cases n = 0,1,2. Let n > 3, and
suppose that we know the theorem for any m < n — 1. Introduce a third noncommuting inde-
terminate u. We have (e’e®)e” = e’(ee") in Q{{¢, s, u}}, hence log((e’e®)e*) = log(ef(e®e")),

hence
(%) ZF ZF (t,s), ZF ZF S, u)

If i > n+ 1, then Fj( +°° ° Fy(t,s),u) and Fy(t, 57 Fj(s,u)) only have homogeneous

components in degree > n + 1 As for F,,( +°° 1 F;(t,s), ) and F,(t, Zj:“f F;(s,u)), they only
have homogeneous components of degree > n and their degree n homogeneous components are
F,.(t+ s,u) and F,(t, s + u) respectively.

By the induction hypothesis, if i <n — 1, then F;(3°7", ' Fi(t,s),u) and Fj(t, > i ' Ei(s,u))
are Lie polynomials, and their homogeneous components also are Lie polynomials by proposition
Also, if i > 2, the difference Fi(3_ ;=) Fj(t,s),u) — Fi(3_5-, ' Fy(t,s),u) only has
homogeneous components in degree > n + 1 If i =1, Fi(t,s) = t + s, so the difference
above is just Z F;(t, s), it only has homogeneous components in degree > n, and its degree
n homogeneous component is F},(t, s). Similarly, we see that

Z_:EtZF (s,u) ZFZ(tZ_:F](S,u))

i=1 j=1

only has homogeneous components in degree > n, and its degree n homogeneous component is
F.(s,u).

And so finally, if we look at the degree n homogeneous components in the equality (*) above,
and omit the parts that we know are Lie polynomials by the induction hypothesis, we are left
with

F.(t+ s,u) + F,(t,s)

on the left-hand side and
F.(t,s+u)+ F.(s,u)

on the right-hand side. So these two polynomials are equal modulo L. We also know that
F,(t,s) is homogeneous of degree n, and that F,, (A, ut) = 0 for every \, u € Q (because At
and pt commute, so log(eMett) = (X + u)t, and because n > 2).

Now we just have to prove the following fact : Let f € Q{{¢, s}} be such that :
(1) f(t+s,u)+ f(t,s) = f(t,s+u)+ f(s,u) mod L;
(2) f(AMt, As) = A" f(t, s) for every A € Q;
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VI Representations of Lie algebras : the case of sl,,(C)

(3) f(At,ut) =0 forevery A\, u € Q.
Then f € L.
Here is the proof of this fact :
Substituting © = —s in (1) (and using (3)) gives :
(4) f(t,s) =—f(t+s,—s) mod L.
Substituting s = —t in (1) (and using (3)) gives

(5) f(s,u) =—=f(=s,s+u) mod L.

Hence (5), then (4), then (5), then (2), we get
(6) f(t7 8) - _f(_ta L+ S) = f<87 _(t + S)) = _f(_87 _t> - (_1)n+1f(87 t) mod L.
Now substituting u = —%s in (1) gives :
(1) f(t,s) = f(t,s/2) = f(t+s,—s/2) mod L.
And substituting t = —1s in (1) gives :

() f(s,u) = f(s/2,u) — f(—s/2,s+u) mod L.

We apply (7) to both terms in the right-hand side of (8) (and use (2)) to get :
f(s,u) =2""f(s,u)=27"f(—=s,s+u)— f(s/2+u, —u/2)+ f(s/24+u,—s/2—u/2) mod L.

Applying (4) to the last two terms of the right-hand side of the equality above and (5) to the
second term gives :

f(s,u) =27"f(s,u) +27"f(s,u) + 27" f(s +u,u) — 27" f(u,s +u) mod L,
which by (6) becomes
f(s,u) =2"""f(s,u) +27"(1 + (—=1)")f(s +u,u) mod L,

and finally

—n

2
©)  flsw) =5 A+ (1)) f(s +u,u) mod L.
If n is odd, this gives f(s,u) € L. If n is even, replacing ¢ by ¢t — s in (4) and applying (9) gives

—f(t,—s) = f(t—s,5) = m(l + (=)™ f(t,s) mod L,
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V1.7 Representations of sly(C)

hence : 5n
(10) f(t,—s) = —m(l + (=)™ f(t,s) mod L.
Now if we use (10) twice, we get :
£(1,5) = (g (0 + (C1))f(t,5) mod L,

hence f(t,s) € L, because —%1— (1 + (—=1)") # 1.

1—

V1.7 Representations of sl,(C)

The following results are proved in problem [VII.6.10):

Theorem VL.7.1. (i) For every n > 0, there is exactly one irreducible (n + 1)-dimensional
representation W, .1 of sla(C) (up to isomorphism), and it is given by the following for-
mulas : There is a basis (v, . . ., v,) of Wy such that

00/ """ Yo otherwise

10 0 otherwise
1 0 )
(O _1) cv; = (n — 20)v;.

(ii) For every finite-dimensional representation u of sly(C), u ((1) _01) is semisimple (= di-

agonalizable).

Corollary V1.7.2. For every C-Lie algebra map u : sl3(C) — gl,,(C), u ((1) 1

ple (= diagonalizable) element of gl,,(C) = M, (C), and its eigenvalues are in Z.

> Is a semisim-

Proof. We get the integrality of the eigenvalues of u <(1) _01) by considering a filtration

0=V, C Vi C--- CV;=C"by subrepresentations such that each V;/V;_ is irreducible.
O

0
(= diagonalizable) element of gl,,(C) = M, (C), and its eigenvalues are in iZ.

Corollary V1.7.3. For every R-Lie algebra map u : su(2) — gl (C), u (Z —Oz) is a semisimple
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VI Representations of Lie algebras : the case of sl,,(C)

Proof. Note that sly(C) = Csu(2) C gl,(C), and this induces sly(C) ~ C ®p su(2). Define a
C-Lie algebra map v : sl5(C) — gl,,(C) by v(a ® X) = au(X) if a € C, X € su(2), and apply
corollary [VI.7.2[to v.

]

V1.8 Lifting representations of su(n)

Notation VL.8.1. If ay,...,a, € C, we write diag(a,...,a,) for the diagonal matrix with
diagonal entries aq, . . ., a,.

Theorem VI.8.2. Let u : su(n) — gl,,(C) be a morphism of R-Lie algebras. Then there exists
a unique continuous group morphism p : SU(n) — GL,,(C) such that w = dp.

Remember that this means that, for every X € su(n), e**) = p(e

Proof. First, we have already seen that p is unique (because SU(n) is connected, hence generated
by a neighbourhood of I,,, and exp(su(n)) contains a neighbourghood of 1).

(1) Let’s show that, for every X, Y € su(n),
u(eXYe ™) = ety (Y)e X,

Indeed 1
Vet = Ad(e)(Y) = eM(y) =) —(ad(X)"(Y).

n>0

As u o ad(X) = ad(u(X)) o u (because u sends brackets to brackets), this show that
u(eXYe ) is equal to

S () (V) = () = Ad(e O w(¥)) = " Ou(y)e )

n>0

(2) Now let’s show that every element of SU(n) and every element of su(n) is conjugate by an
element of SU(n) to a diagonal matrix. Indeed, if A € su(n) or SU(n), then A is normal
(ie commutes with A*), so, by the spectral theorem, A is diagonalizable in an orthonormal
basis (ey, ..., e,), ie there exists S € U(N) (the change of basis matrix) such that SAS™!
is diagonal. But after replacing e, by some det(S) ‘e, (which doesn’t change the fact
that the basis is orthonormal, because | det(S)| = 1), we may assume that det(S) = 1, ie
S € SU(n).

8 Actually, we’ll see during the proof that exp(su(n)) = SU(n).
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VI8 Lifting representations of su(n)

The map exp : su(n) — SU(n) is surjective. Indeed, let ¢ € SU(n). By (2), there exists
S € SU(n) such that SgS~—! = diag(ay,...,a,). As SgS~* € SU(n), a1, ...,a, € U(1)
and their product is 1. So we can find p4,...,u, € iR such that e#* = a; for every 7
and > p; = 0. Let X = diag(p, ..., i), then X € su(n), so S™'XS € su(n), and
eSTIXS = §1eX G — g,

Let X,Y € su(n) such that e¥ = e¥. We want to show that e“X) = ¢*(¥), By (2), X and
Y are diagonalizable. Let ay, ..., a, (resp. by, ..., b,) be the eigenvalues of X (resp. Y).
After changing the order of the b,, we may assume that e = ¢* forevery r € {1,...,n}.
Asthe a, and b, areiniR and )", a, = > b, = 0, this implies that a, = b, + 2i7k,,
with k. € Zand >"_ k. = 0.

Forevery r € {1,...,n— 1}, let h, = diag(0,...,0,1,—1,0,...,0), and let s, be the set
of elements A = (a;;) of su(n) such that a;; = Ounless ¢, j € {r,r+1}. Then s, ~ su(2),
and ih, € s,. By corollarym V1.7.3| (applied to wy, ), u(ih,) is semisimple (in M,,(C)) and
all its eigenvalues are in iZ. In particular, e*(?>") = J .

Now let g € SU(n) be such that gX g~ = diag(ay, ..., a,). By the previous paragraph,
forevery ly,...,l,_1 € Z,

n—1

exp(u(gXg™" + Z 2il,why)) = exp(u(gXg™)),

r=1
SO

n—1
exp(u(X + Z 2il,mg " h.g)) = exp(u(X)).
r=1
(We also have similar equalities withtout the “u”, but they are obvious.)

This means that we can, without changing eX and e“*Y), replace as,...,a, with

a; + 2imey, ..., a, + 2ime, for any ¢y, ...,c, € Z suchthatc; + --- + ¢, = 0. Also,
we have a similar result for Y.

In particular, we may assume that X and Y have the same eigenvalues, ie that they are
conjugate. Write Y = SXS~! with S € SU(n). We have Se* S~ = e¥ = ¥, so we can
write S = ¢Z with Z € su(n) and Z centralizing e*. (Writing C" as a sum of eigenspaces
of X and choosing a basis adapted to that, we may assume that S is a matrix diagonal by
blocks, and we just need Z to be diagonal by blocks with the same block sizes, which can
clearly be accomplished.)

We have eX Ze=X = Z, so using (1) gives e“Xu(Z)e X) = u(Z), so u(Z) centralizes
e, s0 %) also centralizes e*(X),

Next, using Y = e?Xe 7 and using (1) again gives u(Y) = e*@u(X)e %), hence
V) = eulZ) euX)e=ulZ) - Ag (%) centralizes e“N), we get e“X) = (V).

By (3) and (4), we can define p : SU(n) — GL,,(C) using the formula p(e*) = ¢“X), for
every X € su(n).

153



VI Representations of Lie algebras : the case of sl,,(C)

(6) Let X,Y € su(n) be small enough (i.e. close enough to 0) so that log(eXe¥) and
log(e*X)e*(Y)) make sense. By the Baker-Campbell-Hausdorff formula (theorem ,
we have

log(e¥e”) =) F,(X,Y),
n>1
with the F;, Lie polynomials in two noncommuting indeterminates. As u is a map of Lie
algebras, u(F,(X,Y)) = F,(u(X),u(Y)) for every n. So

u(log(e¥e")) = log(e"Den™),

so p(eXeY) = p(eX)p(e¥). In other words, if g and h are in a small enough neighbourhood
of I, in SU(n), then p(gh) = p(g)p(h).

(7) Lety : R — GL,(C) be an analytic map (i.e. locally given by a converging power series),
and assume that y(R) C SU(n). Then I claim that p o v : R — GL,,(C) is also analytic.

To prove this, let ¢, € R, write gy = (o) and pick X € su(n) such that eX° = gq. Then,
because d expy, is invertible (see proposition , there exist neighbourhoods U (resp.
V) of Xg (resp. go) in su(n) (resp. SU(n)) such that exp induces a bijection U = V,
and because exp is analytic and has invertible differential everywhere on U, the inverse
(:V S Uofexp: U = Vis also analytic. Also, by the same proof as in theorem
after shrinking U and V, we have £(V N SU(n)) = U N su(n).

Now choose € > 0 such that y(]tg —e,tg+¢[) C V. Thenon |t, —¢e,ty+ <[, poyis equal
to exp ou o £ o v, which is analytic.

(8) Let X,Y € su(n). Consider the maps c¢;,co : R — GL,,(C) defined by
ci(t) = p(e™e™) and cy(t) = p(e)p(er). By (7), ¢ and ¢, are both analytic.
By (6), ci(t) = ca(t) if |t| is small enough. By the identity theorem, ¢; = ¢y, [| so
ple¥e’) = ci(1) = ca(1) = p(e¥)p(e).

Finally, by (3), we see that p is a morphism of groups.

(9) In a neighbourhood of I, in SU(n), p is equal to exp ou o log, hence it is continuous. As p
is a morphism of groups, it is continuous everywhere.

]

Remark V1.8.3. Let G be a closed connected subgroup of GL,(C) and g = Lie(G). Let
p : G — GL,,(C) be a continuous representation of G on C™, and let u = dp : g — gl,,(C).
Let W be a complex subspace of C™. Then W is stable by G if and only if it is stable by g.

Proof. Suppose that W is stable by g. Let X € g. Then u(X)4(W) C W for every d € Z>o, so,
as W is closed in C™, e*X) (W) C W, i.e. p(eX)(W) C W. As exp(g) generates G, this shows
that W is stable by G.

9See corollary 1.2.6 of Krantz and Parks’s book [19]. Another way to prove this is to observe that ¢; and co, as
real analytic functions on R, both extend to complex analytic functions on a neighbourhood of R in C and to use
the identity theorem for complex analytic functions.
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Conversely, suppose that W is stable by G. Let X € g. Then p(e!*)(W) C W for every
t e R,ast (p(e®) — I,)(W) C W forevery t # 0. As X = lim; ot ' (p(e!™*) — I,,) and W
is closed in C™, u(X)(W) C W.

[
Corollary V1.8.4. We have bijections

HomeLl'e alg(ﬁ[n((:), g[m(C)) :> HomeLie alg(ﬁu(n), g[m((C)) (i HomGT,COm(SU(n), GLm(C)>,

where the first map is given by restriction along the inclusion su(n) C sl,,(C) and the second
map is p — dp.

In particular, using corollary of chapter V, we get that every representation of sl,,(C)
or su(n) on a finite-dimensional complex vector space is semisimple.

Proof. The only thing that we have not yet proved is the fact that the first map is bijective.
This follows from the fact that the obvious map su(n) g C — sl,(C), X ® a — aX, is an
isomorphism.

Indeed, this map is surjective because if X € s[,,(C), then X = 3(X — X*) + £((X + X*) /i)
with X — X* (X — X*)/i € su(n), and then it is an isomorphism because
dimg(su(n)) = dime(sl,(C)) = n? — 1.

O

VI.9 Some irreducible representations of SU(n)

VI.9.1 The exterior algebra

Definition VI.9.1.1. Let k£ be a commutative ring and V' be a k-module. Remember from def-
inition the tensor algebra T*V = @@, ., T"V, where T"V = V®" for n. > 1 and
TV = k. For every n > 0, let I,, be the submodule of 7"V generated by all elements of the
form v; ® - - - ® v, such that there exists ¢ € {1,...,n — 1} withv; = v;q. Let I = @, o, I
It is clear that the product of 7%V sends [,, @ TV and T"V & I,,, to I, 4, for every n, m > 0.
So I is a two-sided ideal of T*V/, and we can form the quotient A" V' = T*V/I, which is called
the exterior algebra of V. We have A"V = @, ., A"V, where A"V = T"V/I,. For every n,

A"V 1is called the nth exterior power of V.

We usually denote the product in ™V by A (instead of ®).

Remark V1.9.1.2. Note thatif z,y € V,thenz Az =yAy=(x+y)A(z+y)=0(3Gn \"V),
so x Ay = —y A x. As the symmetric group S, is generated by the transpositions (z,7 + 1), we
conclude that, for all v,...,v, € Vando € G,

(%) V1) A === AN Ug(n) = Sgn(a)vr A -+ Ay,
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Let W be another k-module.

Definition V1.9.1.3. We say that a multilinear map u : V" — W is alternating if, for every
v=(v1,...,v,) € V", if there exists i € {1,...,n — 1} such that v; = v;;1, then f(v) = 0.

Remember that Homy,(7T"V, W) is the k-module of multilinear maps V" — W. By the very
definition of A"V, Homy (A"V, W) C Homy(T™V, W) is the submodule of alternating maps.

Now suppose that V' is free of finite rank over k, and choose a basis (eq, ..., e4) of V.

Proposition V1.9.1.4. For every n > 0, the k-module \"V is free of finite rank, and a basis of
A"V is given by the family e;, \--- Ne; ,withl <ip < --- <1, <d.

In particular, \"V = 0ifn > d—+ 1.

Proof. Fixn > 0, let A be the set of (iy,...,i,) € Z%such that1 < i, < --- < i, < d, and, for
every o = (iy,...,1,) € A, lete, =e€;, A+ Nej, .

(A) The family (e,)aca is generating : We know that the family (e;, ® -+~ ® €5, )i, .. inef1,....d}
is a basis of 7"V, so the family (e;, A---Ae;, )iy, inc{1,...,dy generates A"V, By formula
(*) above, the family (e;, A--- A€, )i, inefl,..d}in<-<i, also generates A"V. But by the
definition of A"V, e;, A---Ne;, = Oif there exists r € {1,...,n— 1} such that i, = i,,;.
So we are left with only the e, o € A.

(B) The family (e,)ac4 is linearly independent : Let (e, ..., e}) be the basis of V* dual to
e1,...,¢eq). Leta = (i1,...,1,) € A. We define a multilinear map e : V" — k by the
P €q y
following formula : For every (vq,...,v,) € V",

n

e (v, .., v,) = Z sgn(o) H e; (Vo(r)-

ceGy, r=1

This is obviously multilinear, and I claim that it is alternating. Indeed, let
(v1,...,v,) € V", suppose that we have r € {1,...,n — 1} such that v, = v, 1, and let
7 be the transposition (r,r + 1) € &,,. Choose a subset S of &,, such that §,, = S LI S7.
For every o0 € G,,, we have

hence

er (v, ..., 0,) = Z sgn(o) H e; (Vo(s)) — Z sgn(o) H e; (Vo(s)) = 0.

oeS s=1 oeS s=1

As e}, is alternating, it gives a linear map A"V — k, that we still denote by e,. Now note
that by definition of e}, we have €},(e,) = 1 and €},(e3) = 0 for every 5 € A — {a}.

This shows that the family (e, )ac4 is linearly independent.
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]

Remark V1.9.1.5. Suppose that g is a Lie algebra over k and that we have a representation of g
on V. Then the induced representation on 7"V (defined in remark [VI.5.6) obviously has [,, as a
subrepresentation, so we get a representation of g on A"V,

VI.9.2 Exterior power representations

Definition V1.9.2.1. The standard representation of sl,(C) is by definition the inclusion
sl,(C) C gl,(C). The corresponding representation of SU(n) is the inclusion SU(n) C GL,(C),
and it is also called the standard representation. For every d € Z>, consider the induced repre-
sentations of SU(n) and sl,,(C) on E, := AY(C™).

Note that the standard representation of s[,,(C) also integrates to a continuous representation of
SL,,(C) (given by the inclusion SL,,(C) C GL,(C)), so the representation SU(n) on E, extends
to a continuous representation of SL,,(C), whose differential is the representation of sl,,(C) that
we just defined.

Proposition V1.9.2.2. For every 0 < d < n, the representation E is irreducible.
Remark V1.9.2.3. We know that E; = 0 for d > n.

Proof. Let (ey,...,e,) be the standard basis of C". For 1 < i < n — 1, we denote by X; the
matrix in M, (C) defined by
e ifj=it1
Xiej = { 0 otherwise
(that is, X; is the elementary matrix often denoted by E; ;). Then X; € sl,(C) (because
Tr(X;) = 0).If1 <4y < -+ < ig < n, then

TV eil/\~~-/\ez-r71/\eir_1/\e,-r+l/\'--/\eid ifi=4.—1land i, <4, — 1
Xilewh:--neiy) = { 0 otherwise.
So if

X = (XagXgg1. - X)) (Xg1 Xggo - Xpo) .. (XaXo ... Xa),
where we take the product in the universal enveloping algebra U of sl,,(C) (which also acts on
Ey),then, forl <1 <--- <ig<n,

_JenNn---Neg ifi,=n—d+rforeveryr
X(ei A€, _{ 0 otherwise.

Now let’s prove that F; is irreducible. Let V' be a nonzero subrepresentation of E,;, choose
v eV —{0}, write

V= E iy, ideil/\-~~/\eid,

1<iy < <ig<n
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and choose 1 < j; < -+ < jg < nsuchthataj ;, # 0. Let g € SL,(C) such that, for every
re{l,...,d}, g(ej,) = £e,_44r. Then gv € V, and the coefficient of €,,_411 A --- A e, in gv
is nonzero, so we may assume that j, = n — d 4+ r. We may also assume that a,,_ .
If we apply X to v, we also get an element of /. By the calculation above, Xv =¢e; A--- Aeg,
soe;p A---Aeg € V. Nowtake 1 <i; < --- < iy < n. Pick an element g of SL,,(C) such that
g(e,) = £e;, forevery r € {1,...,d}. Theng(ey A--- Neg) = £e;, A--- Ne;, € V. We have
seen that V' contains a basis of F4, so V = Ej.

n—d = 1.

[]

VI.10 Characters

We now introduce a new incarnation of the character of a representation.

Definition VI.10.1. If GG is a topological group, let R.(G) be the quotient of the free module on
the generators [V/], where V' is a continuous representation of G on a finite-dimensional C-vector
space, by the relations [V] = [V'] + [V"], for every exact sequence 0 — V' — V — V" — 0 of
continuous finite-dimensional representations of G. We put a multiplication on R.((G) by setting
[V][W] = [V ® W]. This is a commutative ring, called the (continuous) representation ring of
G.

The proof of the following proposition is exactly the same as the proof of the similar proposi-
tion of chapter I for finite length modules over a ring.

Proposition VI.10.2. As in definition let’s denote by G the set of isomorphism classes of
continuous irreducible representations of G on finite-dimensional C-vector spaces.

Then R.(G) is the free Z-module on the [V], V € G.

Let 7, be the subgroup of diagonal matrices in SU(n). So 7. is canonically isomorphic
to {(u1,...,u,) € U1)"|uy...u, = 1}. We make the group W := &, act on T, by
a(ul, c. ,un) = (ug(l), c. ,ug(n)).

Let D = {(a,...,a) € Z", a € Z}, and let X* = Z"/Z. We make W act on Z" by

o(ai,...,an) = (Go(1) - - - o)) Note that W preserves D, hence we get an action of 1/ on
X*.

Note that, as 7, is a commutative compact group, ﬁ is just the set of continuous group
morphisms 7, — C* by problem [VIL.5.5

Then the usual multiplication of functions makes i a commutative (discrete) group.

10The set of isomorphism classes of continuous irreducible representations of T, see definition
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Define a map Z" — T, by sending (a1, ..., an) € Z" t0 (uq, . .., up) — u* ... u%. This is
a morphism of groups and it sends D to 1, so it descends to a morphism of groups ¢ : X* — T,
which is clearly an isomorphism. Also, for every a € X*,u € T, and o0 € W,

toa)(u) = t(a)(ou).

Set G = SU(n).

For every continuous finite-dimensional representation V' of G, the restriction of V' to 7. is a
continuous finite-dimensional representation of 7., hence a direct sum of elements of 7¢.. Using
the isomorphism 7. ~ X*, we can see xv/|z, as an element of Z[X*] (the group algebra of X*)
with nonnegative coefficients. This construction goes to the quotient in R.(G) and induces a
morphism of groups x : R.(G) — Z[X"].

Theorem VI.10.3. (i) x is a morphism of rings.
(ii) x is injective.
(iii) The image of X is contained in Z|X*|, where W acts on Z|X*| through its action on X*
(and Z[X*1V is the space of invariants of W )[TT

Proof. Point (1) just follows from the formula yyew = xvxw (see proposition|lI.1.1.3[of chap-
ter II).

Point (ii) follows from the Schur orthogonality relations (corollary of chapter V) as
in the case of finite groups. Indeed, these relations imply that (xv),.a is an orthonormal
family in L?(G), hence linearly independent. Note that all the elements in this family are
in €(G)¢ (where € (G) is the set of continuous functions G — C, and G acts on € (G) by
(9- f)(x) = f(gzg™)). As every element of G is conjugate in G to an element of 7../"”| the re-
striction map ¢’ (G) — (1) induces an injection ¢’ (G)¢ — €(T,), so the family (xv|z,)yca
is linearly independent in €’ (7..). Now using the linear independence of characters of irreducible
representations of 7., which follows from the Schur orthogonality relations, and the isomorphism
v : X* = T, we can identify Z[X*] to a subring of ¢'(T.), and all the xyr., V € G, are in this
subring, and of course they still form a linearly independent family. As xy 7, € Z[X*] is just
x([V]), and as ([V]), g is a basis of R.(G) over Z, this gives the result.

To prove (iii), take a finite-dimensional representation V' of G and an element 0 of W = G,,.
Then the corresponding permutation matrix A € GL,,(C) (defined by A,; = 1if j = o(i) and
0 otherwise) is in U(n), so there exists ¢ € U(1) such that g := cA € G. By definition of the
permutation matrix, for every u = diag(u1, ..., u,) € T., gug~! = AuA~! = ou, hence

xv(ou) = xv(gug™) = xv(w).

By the compatibility of ¢ : X* = T, with the action of W (established above), this shows that
X([V]) € Z[X~]7.

"t’s actually a subring.
12See (2) of the proof of theorem|V1.8.2} but this should be a lemma.
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]

Example VI.10.4. Let (e, ..., e,) be the canonical basis of Z", and denote by (e, ..., €,) its
image in X *. (Not a basis anymore.) To avoid horrible confusions, for every A € X*, we denote
by ¢, the corresponding element of Z[X*].

If V is the representation £, of section 9.2, then

X([VD = Z CEi1+"‘+€id'

1<i1 < <ig<n

This just follows from proposition |V1.9.1.4

VI.11 Weights

In this section, we still take G = SU(n), and we use the notation of the previous section. All the
representations of G are on complex vector spaces.

Definition VI.11.1. The Bruhat order on Z" is the (partial) order relation defined by : If
a = (ay,...,a,) and b = (by,...,b,) are in Z", then @ < b if and only if a; < by,
a1 + as S b1+b2,...,a1+...an_1 S b1—|—"'+bn_1 anda1+---+an :b1++bn (Note
the last relation !)

This obviously goes to the quotient and induces an order relation on X*, still denote by <.
Also, for every A\i, Ao, p € X7,

A< Ao :>)\1+u4)\2+u

Definition VLI.11.2. Let V' be a continuous finite-dimensional representation of G. Then the set
of weights of V, denoted by A(V'), is the subset of A\ € X* such that the coefficient of ¢, in
X([V]) is nonzero. That coefficient is called the multiplicity of the weight X in V.

If V is irreducible, we say that A € A(V') is a highest weight of V' if it’s maximal in A(V") for
the Bruhat order. [

Finally, we let AT C X* be the subset of elements that have a lift (a1, . .., a,) in Z" such that
ay > -++ > a,. (Then this is true for every lift.)

Remark V1.11.3. The root system ® of GG (or Lie G) is by definition the set of nonzero weights
of the adjoint representation of G on LieG (i.e. the representation of G corresponding to
ad : Lie(G) — gl(LieG@)). It plays an important role in understanding weights in general
and has nice properties. For example, every weight in ® has multiplicity 1 and ® contains a basis
of X™.

3This is not the correct definition of highest weights for general (possibly infinite-dimensional) representations

of 51,,(C), but it is equivalent to the correct definition for irreducible finite-dimensional representations. See
definition|VI.14.1.1|for the correct definition.
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Example VI.11.4. If V = E,, then the elemente; +--- + ¢, = (1,...,1,0,...,0) (with d 1’s)
is the biggest element of A(V") (for the Bruhat order), so it’s the highest weight of V. We denote
this element of A™ by w,. (This is called a fundamental weight of G or Lie G.)

Theorem VI.11.5. (i) For every A\ € A", there exists a unique (up to isomorphism) irre-
ducible (continuous finite-dimensional) representation W, of Lie G (or GG) such that ) is
the highest weight of W, and every irreducible representation of Lie G is of that form.
This gives a bijection AT = G.

(ii) The morphism x : R.(G) — Z[X*|" is an isomorphism.

Remark VI.11.6. This theorem (mutatis mutandis) stays true in more general situations (for rep-
resentations of the Lie algebra), but we have to use things like the action of the universal en-
velopping algebra of Lie G on a representation of GG (and the Poincaré-Birkhoff-Witt theorem
about this universal enveloping algebra) to show that every irreducible representation V' has a
unique highest weight, which is bigger than all the other weights of V. And then it takes quite
a bit of work to construct the W), (and especially to show they’re finite-dimensional), and then
we still have to say for which A\ the representation W, lifts to a representation of the group.
But here, because everything is explicit, we can just cheat (and we’ve already seen that lifiting
representations to the group is automatic in our case).

Proof. First let’s prove that, for every A € AT, there exists some irreducible representation W),
of GG that has \ as its unique highest weight. Choose a lift (a;,...,a,) of A in Z", and set
d; = a; — a;;q for every i € {1,...,n}. Note that the d; are nonnegative (because A € A™)
and do not depend on the lift. Consider the representation V = EY™ ®@¢ - - @¢ Efffl’f’l of G.
Then the weights of V' are the dy A\ + - - - + d,,_1\,—1, Where ); is a weight of £, for every 7. In
particular, A(V') has a biggest element, which is dyw+- - -+d,,_1w,_1 = A, and this element has
multiplicity 1. Now if V' = €, V; is the decomposition of V' into irreducible representations,
then A(V) = (J,c; A(V;), so one (and only one) of the V; must have A as a weight. We take 1/
equal to this V;. Note that all the weights of W) are < A (because this is true for elements of
A(V), and A(Wy) € A(V)). In particular, if A # u, we cannot have W, ~ W,,.

For every A € X*, we define an element d), € Z[X*| by

= > o= Y o

cEW/W) HEW A

where Wy = {0 € W|o(A\) = A}. Then d, is obviously in Z[X*]", and the family (dy)ca+ i8
a basis of Z[X*]" over Z. (Simply because AT is a set of representatives of X*/V.)

Let R be the subgroup of R.(G) generated by the [W,], A € AT. This is a free group
with basis ([W])rea+, because Wy o W, if A # p. Let ¢ be the restriction of the injection
X : R(G) — Z]X*]" to R. For every A € AT, we have

o([Wh]) = dx + Z Ay,

H=A
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with ay,, € Z. This means that, in the given bases of R and Z[X*]", the (infinite) matrix of ¢ is
lower triangular with 1’s one the diagonal, and this implies that ¢ is invertible. In particular, ¢ is
surjective. As ¢ is the composition of the injective maps x and R C R.(G), this means that x is
also surjective, hence an isomorphism (giving (ii)), and that R = R.(G) (giving (i)).

]

Remark V1.11.7. It follows easily from the construction of W given in the theorem that we have,
forall A\, n € AT,

Wa®@ W, =W, & P W

V<A p

Indeed, this is already true for the tensor product of the bigger representations of the form
V=E @c-- Q¢ Ef?f’f‘l that are used in the proof.
Remark VI.11.8. In general, it is not so easy to write the irreducible representation of G with
highest weight \ explicitely. [¥] Butif A = (,0,...,0), then W) is simply the dth symmetric
power of the standard representation. (See problem |[VI.6.14])

VI.12 More about roots and weights

VI.12.1 Weights of infinite-dimensional representations

Let t denote the subspace of diagonal matrices in g := sl,,(C); it’s a commutative Lie subalgebra,
equal to {(z1,...,2,) € C"|x; + --- + x, = 0}. We write t* for the dual space of t. Note
that the obvious map Lie(7,) ®g C — t (sending X ® a to aX) is an isomorphism. So for
every element p of fc, the complexification of dp is a map of Lie algebras t — C; as t is
commutative, this is just an element of t*. Remember that we identified 7, to X* (before theorem
[VL.10.3). Using this, the map above sends the class of (ai, . .., a,) € Z" in X* to the linear map
(x1,...,2Tp) — a1y + ... a,x, on t. In particular, it is injective, and we will use it to identify
t* and X* @, C.

Let V be a representation of sl,,(C) on a C-vector space. In this section, we do not automati-
cally assume that representations are finite-dimensional.

Definition VI.12.1.1. Let A € t*. The weight space of A in V is
V) ={veVVX et X v=AX)v}.

Any nonzero element of V() is said to be of weight \. We say that \ is a weight of V' if
V(X)) # 0, and then its multiplicity is dimc V().

Remark V1.12.1.2. If A € X* and V is a finite-dimensional, these definitions agree with the ones
in definition [VL.11.2

1“But see problem |[VIL.7.4

162



VI.13 The Weyl character formula

VI.12.2 Roots

Remember that the set @ of roots of g is the set of nonzero weights of g in its adjoint representa-
tion on itself. An easy calculation shows that, for A € t¥,

t itA=0
g\) =S CE; ifA\=¢ —¢; withi#j
0 otherwise,

where E;; € M, (C) is the matrix with (¢, j)-entry equal to 1 and all the other entries equal to 0.

So ® = {€;—¢;,1 # j}. The set of positive roots is by definition ®* := {€; —¢;,7 < j} (these
are the weights with weight space contained in the space of strictly upper triangular matrices),
and the set of simple roots is A = {&; — €;,1,1 <i <n — 1}. Note that ® = & I (—P™) and
that A is a basis of t*.

If o =¢; —¢e; € ®, we write X, = F;; (it’s a generator of the weight space of o), Y, = X_,
and H, = E;; — E;j, and we let s, be the C-subspace of g generated by X, Y, and H,. It’s
clear that s, is actually a Lie subalgebra, and that it is isomorphic to sly(C).

VI.13 The Weyl character formula
For every A € A%, let xa = x([W)]) € Z[X*V. We write X3 = X* ®; Q and
P =32 aco+ @ € X§. Using the isomorphism X* = Z"/Z(1, ..., 1) defined above, we get

_(n—l n—3 1—n>
p_ 2 ) 2 )ttt 2 .

Definition VI.13.1. The Weyl denominator is

A=c, [J (1 -ca) €zZ[Xg].

acdt

It follows easily from the definition that A is not a zero divisor in Z[Xg] (in fact, it is invertible
in a suitable “completion” of Z[X], see example [VI.14.4.3|below), and that

A= H (Ca/2 - Cfa/Q)-

acdt

Theorem VI.13.2. In Z[X{)], we have an equality

Axy = Z 39”(0)00(A+p)-
oceW
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VI.14 Proof of the Weyl character formula

This requires a little bit more knowledge of the theory of highest weights.

V1.14.1 Highest weights

Let V' be a representation of g (not necesarily finite-dimensional). An easy calculation shows
that, if A € t* and a € @, then X, - V() C V(a+ A).

Definition VI.14.1.1. We say that v € V is a highest weight vector if it’s a weight vector of
some weight (in particular, v # 0) and X, - v = 0 for every positive root o. We say that A € t*
is a highest weight of V if V has a highest weight vector of weight A. Finally, we say that V'
is a highest weight representation of g if there exists a highest weight vector v € V such that
V=g-w.

Let b (resp. n) be the subspace of upper triangular (resp. strictly upper triangular) matrices
in g. These are both Lie subalgebras, n is an ideal of b, and the quotient b/n is canonically
identified to t. Note that the X, for « € ®* form a basis of n. So a weight vector v of V' is a
highest weight vector if and only n-v = 0. In other words, a nonwero element v of V' is a highest
weight vector of weight A € t* if and only if, for every X € b, X - v = A\(X)v, where we used
the isomorphism b/n = t to see \ as a Lie algbera morphism b — C.

This observation (and the fact that g is generated by t and the X,, « € &, and that
Xo V(N C V(a+ A) forevery @ € ® and A € t*) immediately implies the following re-
sult :

Proposition VI.14.1.2. If V' is a highest weight representation of highest weight )\, then V is
generated by weight vectors, the weights of V' are all of the form X — Y o+ noo with the
ng > 0, and the multiplicity of X in V' is 1.

VI1.14.2 The Poincareé-Birkhoff-Witt theorem and the Casimir
element

Let (z1,...,2n5) (N = n? — 1) be any basis of g as a C-vector space. By problem
the monomials 27" ...z, r1,...,ry € Z>, generate the universal enveloping algebra Ug as
a C-vector space. By problem these elements are actually linearly independent in Ug
(because their images in Ugl,,(C) are linearly independent), so they form a basis of Ug. This
fact, which is true for a general Lie algebra over any field (or even over a commutative ring, as
long as we assume that the Lie algebra is free as a module over this ring) is called the Poincaré-
Birkhoff-Witt theorem and proved, for example, in theorem 4.3 of chapter III of part I of Serre’s
book [31]].
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Let n~ be the subspace of strictly lower triangular matrices in g. If we apply the Poincaré-
Birkhoff-Witt theorem to the basis {Y,,a € T} U{H,,a € A} U{X,,a € T} of g, ordered
so that the elements of the first set (who form a basis of n™) are smaller than those of the two
other sets (whose union forms a basis of b), then we see that we have an isomorphism of C-vector
spaces Ug/Ub ~ Un~.

Definition VI.14.2.1. The Casimir element of g is the element ¢ of Ug defined by

= %ZHijLZXaYa.

aEA acd

The following fact can be checked by a direct calculation (see problem [VIL.6.21)).
Proposition V1.14.2.2. The element c is central in Ug.

In particular, by Schur’s lemma, the Casimir element acts by a scalar on every irreducible
finite-dimensional representation of g.

Here is another result that makes the Casimir element very useful :

Proposition V1.14.2.3. Let V be a representation of g (not necessarily finite-dimensional) and
v be a highest weight vector of V' of weight A € t*. Then

= (A +p,A+p) = (p,p))v,

where p = 3" 4+ « as before and (.,.) is the symmetric bilinear map t* x t* — C corre-

sponding to the quadratic form (A1, ..., \,) — 5 Z?:_ll()\i — Xit1)% (Remember that we have
identified t* to the quotient C*/C(1,...,1) = X* ®z C by making (A1, ..., \,) correspond to
the linear map (1, ...,x,) — M1+ ... \yZy.)

Proof. Let (A1,...,\,) € C" be arepresentative of \.
Ifa=7¢ —¢y €A, then H2 - v = (N — \1)2
Ifaoec —dT,thenY, €n,soY,-v=0and X, Y, -v=0.
Ifa=¢ —¢€ € ", then X, -v =0, so

XoYo - v=[Xo,Yo] v =Y, Xo -v=H, -v=_(N—\)v.

So we get

c- U—(%Z)\—Az_,_l > ()\i—)\j)>v

1<i<j<n

which is the desired result.
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VI1.14.3 Verma modules

Definition VI.14.3.1. Let A € t*. We see ) as a Lie algebra map b — C by using the isomor-
phism b/n = t as before. This gives a representation of b, hence also of Ub, on C, which we "1l
denote by C,. As Ub is a subalgebra of Ug, we can see Ug as a right U b-module in an obvious
way. The Verma module of highest weight ) is

Vi =Ug®yp Ch.

It’s a left U g-module, hence also a representation of g.

Proposition V1.14.3.2. The representation V) is a highest weight representation of g of highest
weight \.

Let v # 0 be vector of V of a weight A\ (we know that v is unique up to scaling by the first
sentence). If we chose an ordering oy, . . ., «,, of ®%, then a basis of V (as a C-vector space)
is given by the Y ... Y mv with 1, ... 1 € Zxo, and the vector Y ...Y™v has weight
A= (rion + .. Ty

Proof. The vector 1® 1 € Ug®y, Cy = V) is clearly a highest weight vector of weight \, unless
it is 0. It also generates the Ug-module V), so it cannot be 0, because V), # 0. This proves the
first sentence. The rest follows from the Poincaré-Birkhoff-Witt theorem, applied to the same

basis of g as in|VI.14.2]
O]

Proposition V1.14.3.3. Let V be a highest weight representation of g of highest weight \. Then
we have a surjective g-equivariant map Vy — V.

It’s easy to see that this map is unique up to scaling. (Using the fact that A has multiplicity 1
in V.) So in a way the Verma module is the universal highest weight representation of highest
weight .

Proof. Let v be a weight \ vector of V. By the discussion of highest weights in b acts
on v through the map A : b — C, so we have a Ub-linear map C, — V sending 1 to v. This
extends to a Ug-linear map V), — V' by the universal property of the tensor product, and this map
is surjective because V' = g - v.

]

In particular, if A\ € AT, we get a surjective map Vy, — W,. In fact :

Proposition VI.14.3.4. (i) If V is a highest weight representation of g, then it has a unique
irreducible quotient.
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(ii) If V is an irreducible highest weight representation of highest weight A\ € t*, then it is
isomorphic to the quotient of V\\ given by (i).

We denote the unique irreducible quotient of V) by W), even when A € A™. By (ii), this does
not conflict with the notation introduced previously in the case A € A*.

In fact, this construction generalizes to other semisimple Lie algebras and gives a way to
construct the irreducible highest weight representations. The hard part in general is showing that
W, is finite-dimensional if and only if A € AT,

Proof. Note that, by the previous two propositions, 1/ (hence also all its subquotients) is gener-
ated by weight vectors.

Let A be the highest weight of V, and let W be the sum of all the subrepresentations of V' that
don’t contain a vector of weight \. If W’ is any proper subrepresentations of V/, it’s generated by
weight vectors by the observation above, and none of the weights of 1/’ is A (because A\ has mul-
tiplicity 1 in V'), and so W’ C W. So W is actually the sum of all the proper subrepresentations
of V.

This implies easily that V/W is irreducible. Indeed, let Z be a proper subrepresentation of
V/W. Then so the inverse image of Z in V' is a proper subrepresentation, hence contained in W,
so Z = 0.

Now let W/ be another subrepresentation of V' such that V/W is irreducible. Then V/W’ £ 0,
so W is proper, so W’ C W. As V/W’ is irreducible, this implies that W' = W (otherwise
W /W' would be a nonzero proper subrepresentation).

Finally, let’s prove (ii). If V' is as in (ii), then, by the previous proposition, there exists a
surjective g-equivariant map V\, — V', so V' is isomorphic to an irreducible quotient of V). Then
the uniqueness in (i) implies the conclusion.

]

VI.14.4 Characters of Verma modules

If V is a (possibly infinite-dimensional) representation of g, we would like to define its charac-
ter as ), dim(V(X))cs, which would recover the definition of x([V]) for finite-dimensional
representations. But that sum won’t be in Z[X*| or even Z[t*] in general because the weight
spaces V() could be infinite-dimensional, and the sum could also be infinite. We can make the
first problem go away by imposing conditions on V' (for example, that it be a highest weight
representation), and we make the second problem go away by enlarging the target ring.

First, let’s extend the Bruhat order from X™ to t*.

Definition VI.14.4.1. If A\, u € t*, we say that A < pif p — A = > _4+ naa, with the n, in

acd
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Z>y. (This is of course a very restrictive condition.) It’s easy enough to see that this gives back
the previous definition if A and p are in X*.

Definition V1.14.4.2. For every A € t*, let
Ch={petiusr\}={ - Z Ny Mo € Lo}

aedt

We define A to be the set of formal sums xetr @xCx, Where ay € Z, such that there exists
Ay, A € tsuch that, if A & C\, U---UC,_, then ay = 0. This contains Z[X*|, and it’s
easy to see that the formulas defining the addition and multiplication on Z[X*| still make sense
for elements of A, and that this makes A into a commutative ring.

Example VI.14.4.3. If « € &%, then ) . c_,, is an element of A. As it is obviously the
inverse of 1 — c_,, this show that 1 — c_, is invertible in A for every o € ®*, hence so is the
Weyl denominator A introduced in section 13. In particular, this gives a proof of the fact that A
is not a zero divisor in Z[X3].

Proposition VI.14.4.4. (i) Let V be a highest weight representation of g. Then
Xv = Dy dime(V(X))en is an element of A.
(ii) If V =V,, then
XV = € H (1—ca) = A_IC/\er'
aedt
Note that we are asserting in particular that all the weight spaces of V' are finite-dimensional.

Definition VI.14.4.5. If V is a highest weight representation of g, we call the xy defined above
the character of V. (Hence the notation.)

Remark V1.14.4.6. The character xy does not determine V' in general, because V' has no reason
to be a semisimple representation.

Proof of the proposition. Let \ be the highest weight of V. We have seen that there exists a
surjective g-equivariant map V), — V. Since (ii) implies that dimc (V' (u)) is finite and equal to 0
unless 1 < A, it is enough to prove (ii).

So let’s assume that V' = V). We have seen in proposition [VI.14.3.2| that the Poincaré-
Birkhoff-Witt theorem gives a basis of V), : Choose a highest weight vector v in V), and an
ordering o, . . ., a,, of @1, Then the Yor.. Yymuforry, ..., m, € Zxo form a basis of V), and
each Y! ... Y v is of weight \ — " | r;;. This means that for every u € t*,

dime(V()) = {(r1, -+ rm) € ZZglp = A = (rion + - + rmam) }.
This is precisely the coefficient of c)_, in
TR | 3
acdt acdt+ r>0

which proves the result. (The second equality follows directly from the definition of A.)
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VI.14.5 Jordan-Holder series of Verma modules

We would now like to relate the characters of V3, and W), at least when A € X*.

Proposition VI.14.5.1. Let V be a highest weight representation of g of highest weight \. Sup-
pose that A € X*.

Then V has a filtration V= Vy D Vi D Vo D ... such that, for every r, V,./V,.1 is of the
form W, with i < Xand (u+ p,pe+ p) = (A + p, A+ p). (The pairing (.,.) was defined in
proposition )

Actually this result is still true without the assumption on A, but it’s a bit harder to prove.

Proof. Let S be the set of € X* such that (u + p, u + p) = (A + p, A + p). The last condition
defines a compact subset of X* ®7 R (since (., .) is positive definite on X* ®7 R). Since X* is
discrete in X* ®7 R, the set S is finite. Let

d(V) = dimc V(p).
nes
We have seen that the V(1) are finite-dimensional, so d(V) is finite. We prove the proposition
by induction on d(V').

If V is irreducible,we are done. Otherwise, it contains a proper nonzero g-subrepresentation
W. Since V is generated by weight vectors, so is W, so W contains at least one highest weight
vector v. m Let i be the weight of v. After shrinking W, we may assume that W = g - v, so that
W is a highest weight representations of highest weight ;. Now by proposition the
Casimir element ¢ € Ug acts by (A + p, A\ + p) — (p, p) on V, and by (. + p, u + p) — (p, p) on
W.Since W CV, A+p, A+ p) = (u+ p, u+ p). Hence W and V/W are both highest weight
representations, and d(V/W) and d(W) are both < d(V'). If d(V') = 1, this gives a contradiction
and shows that V' had to be irreducible (and hence we’re done). If d(V') > 1, this shows that we
can conclude by applying the induction hypothesis to V/WW and W.

[]

Let’s write x) = xw, and Xy = xv,.

Corollary VI.14.5.2. There exist integers ay, € Z such that

/ 2 : /
XA = X + aA;LXp,?
<A
(ntp,ut+p)=(A+p,A+p)
for every A € X*.

15See section 24.2 of Humphreys’s book [15]].

16Take any weight vector v in W, say of weight . If X, - v = 0 for every o € ®%, then v is a highest weight
vector and we are done. Otherwise, replace v by a nonzero X, - v. This will be a weight vector of weight 1 + «,
and we apply the same procedure to it. This has to end after a finite number of steps, because all the weights of
W are < .
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Proof. Let’s write D, for the set of y € t* such that u < Aand (4 p, u+p) = (A +p, A+ p).
We have seen in the proof of proposition that this is a finite set if A\ € X*. By this
proposition (and the fact that A has multiplicity 1 in V)), we know that there exists nonnegative
integers by, such that

X/)\ =X\t Z b)\uXu-
HED

Inverting these relations gives the result.

VI.14.6 End of the proof of the Weyl character formula
Let A € A*. By corollary [VI.14.5.2| and the calculation of the X}, in proposition [VI.14.4.4 we

know that there exists relatives integers a,, such that ay = 1 and

AX)\ = Z AuCutp,

HED

where D), is the set of 1 € X* such that 4 < Asand (1 + p, u + p) = (A + p, A+ p). As in the
proof of proposition|VI.14.5.1] D, is finite (because it’s the intersection of a compact subset and
a discrete subset of X* ®7 R).

Let o € W. We already know that o(x») = x. On the other hand, if « = €; — €, is a positive
root (i.e. if i < j), then o(a) = €,(;y — €4(;) is aroot, and it’s positive if and only if o(i) < o(j).

As
A= 1] (casp = c-ap);

acdt
this shows that 0(A) = sgn(o)A, hence o(Ax,) = sgn(o)Ax,, hence, for every p € D,, if
o(p+p) = p' + p, then a, = sgn(o)a,.

In particular,
Axy = Z sgn(0)cortp) + R,

oceW
with R € Z[Xg]. To finish the proof, we have to show that R = 0.
If R # 0, there exists ¢ € D, such that a,, # 0 and p1 + p & W(\ + p). After replacing p1 + p

by o(u + p) for some o € W, we may assume that ;2 4 p is dominant and not equal to A + p. As
1< A, we can write

A +p) = (+p) =D naa,

acdt

with ng, € Z>g. As (A + p, A+ p) = (u+ p, i + p), this gives

0=2(u+p, Znaa) + (Znaa, Znaa) = QZna(a,,u +p)+ (Z NaQ, Znaa).
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As p + p is dominant, (1 + p, ) > 0 for every a € ®*. So we get (>, no, >, nacr) = 0,
hence Za nea = 0. But then A = p, a contradiction.
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VIl Exercises

VII.1 Chapter | exercises

VIl.1.1 Review of tensor products

Let M be aright R-module and N be a left R-module. Their fensor product over R, denoted by
M &g N, is the quotient of the free abelian group with basis M x N by the subgroup I generated
by the elements :

(x + 2 y) — (z,y) — (¢, y), forevery z, 2’ € M and y € N

(x,y+v)— (x,y) — (x,y), forevery x € M and y,y' € N;

(xa,y) — (z,ay), forevery x € M,y € N and a € R.
If (z,y) € M x N, we write z x y for its image in M ®r N.

If A and B are left (resp. right) R-modules, we write Hompg(A, B) for the group of R-linear
morphisms from A to B. If R = 7Z, we write Hom instead of Homp. (In that case, A and B are
just abelian groups, and Hom(A, B) is the set of morphisms of groups from A to B.)

(1). Now let M and N be as above, and let P be an abelian group. We see Hom(V, P) as a
right R-module by the formula: Va € R,Vf € Hom(N, P),Vz € N, (f-a)(z) = f(ax).
We define a map ¢ : Hompg(M,Hom(N, P)) — Hom(M ®pr N, P) by setting, if
f € Homp(M, Hom(N, P)) and (z,y) € M x N, o(f)(x @ y) = f(x)(y).

Show that Hom (N, P) is indeed a right R-module and that the map ¢ is well-defined and
an isomorphism of abelian groups.

(2). Similarly, if N is a right R-module and M is a left R-module, then Hom(/N, P) has a
natural left R-module structure (given by (a- f)(z) = f(za)) and we have an isomorphism
Hompg(M,Hom(N, P)) = Hom(N ®g M, P).

(3). Let M and N be as in (2), let S be another ring, and suppose that N is a
(S, R)-bimodule, that is, that there is a left S-module structure on N such that :
Va € S,Vx € N,Vb € R, a(zb) = (ax)b.

Show that N ®r M has a natural left S-module structure and construct, for every left
S-module P, a natural left R-module structure on Homg(/N, P) and an isomorphism of
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.

abelian groups Homg (M, Homg(N, P)) = Homg(N ®g M, P).

Let K be a field and n a positive integer. Set R = M,,(K) (the ring of n X n matrices with
entries in K) and M = K". We make M, (K) act on K" on the left by seeing K™ as the
space of n x 1 matrices (= column vectors) and using matrix multiplication. Similarly, we
make M, (K) act on K™ on the right by seeing K™ as the space of 1 X n matrices (= row
vectors) and using matrix multiplication. In that way, M becomes a left R-module and a
right R-module.

Calculate M ®@g M.

Solution.

(1).

174

Let’s show that Hom(N, P) is a right R-module. It is clear that the map (f,a) — f - a
is additive in f € Hom(N, P) and @ € R. Let f € Hom(N, P) and a,b € R. We have to
show that f - (ab) = (f - a) - b. But, for every z € N,

(f - (ab))(z) = f((ab)x) = f(a(br)) = (f - a)(bx) = ((f - a) - b)(x).

Let’s show that  is well-defined. Let f € Hompg(M, Hom(N, P)). The formula for ¢(f)
above gives a function from M x N to P, which extends by linearity to a morphism of
groups from the free abelian group with basis with basis M x N to P; let’s call it F'. We
have to show that F' is zero on the ideal I defined above. So let x, 2’ € M, y,y' € N and
a € R. We have :

F((x+2',y) — (z,y) — (", y) = flz+2")(y) — f(@)(y) — f(@')(y) =0
by additivity of f,

F((z,y+y) — Fz,y) — F(z,y') = f()(y +¢) — fx)(y) = f(z)(x) =0

by additivity of f(z), and
F(za,y) = F(z,ay) = f(za)(y) = f(z)(ay) = (f(z) - a)(y) = f(z)(ay) =0

by R-linearity of f and the definition of the R-module structure on Hom(N, P).
It’s clear that ¢ is additive in f.

Let’s show that ¢ is an isomorphism by constructing its inverse, which we’ll call ¢. If
g € Hom(M ®g N, P), define ¢/(g) € Homg(M, Hom(V, P)) by setting, for z € M and
y € N, (¢(9)(x))(y) = g(z ® y). The map ¢(g)(x) is a morphism of groups because
elements of the form (z,y + v') — (z,y) — (x,y) are in I, and the map ¢ (g) is R-linear
because elements of the form (x + 2’,y) — (x,y) — (2/,y) and (za,y) — (z,ay) are in I.
Also, 1 is clearly additive in g.

Let’s show that ¢ and 1) are inverses of each other. For every f € Homg(M, Hom(N, P)),
we have ¢(p(f)) = f by definition. If g € Hom(M ®g N, P), then g and ¢(¢)(g)) are



2).
3).

.
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both additive, and equal on elements of M ®pr NN of the form x ® y; as those elements
generated the group M @ N, p(¥(g)) = g.

This is a particular case of part (3).

Let X be the free abelian group with basis N x M, so that N @z M = X/I. We make
S acton X by s (n,m) = (sn,m), if s € S, m € M andn € N, and extending
this by additivity. This is not a left S-module structure, and [ is a S-submodule (be-
cause N is a (S, R)-bimodule), so we get a left S-module structure on N ®px M such that
s(n®m) = (sn) @mforevery s € S,m € M andn € N.

Now let P be a left S-module, and let’s put a left R-module structure on Homg(V, P). If
f € Homg(N, P) and r € R, wedefine r- f by (r- f)(z) = f(xr), for every x € N. This
respects sums, 1 € R acts trivially, and, if 1,79 € R, f € Homg(N, P) and x € N, we
have

((rira) - [)(@) = flariry) = (r2 - f)(wr) = (r1- (r2- f))(2).

So we do get a left R-module structure on Homg (N, P).

Let’s construct inverse isomorphisms
¢ : Homg(M, Homg(N, P)) = Homg(N @ M, P)

and
¥ : Homg(N ®p M, P) = Hompg(M, Homg (N, P)).

We can use almost the same formulas as in (1). If f € Hompg(M, Homg(N, P)) and
(z,y) € M x N, we set o(f)(y ® ) = f(z)(y). If g € Homg(N @r M, P),
define and (z,y) € M x N, define ¢¥(g) € Hompg(M,Homg(N, P)) by setting
(¥(g)(x))(y) = g(y ® ). The verification that these are well-defined and inverses of
each other is also almost the same as in (1). We set things up so that everything will
be compatible with the S-actions. For example, say that we wanted to check that, for
f € Hompg(M,Homg(N, P)), ¢(f) is indeed S-linear. We take s € S, v € M and
y € N, and then

p(f)(s(y @ x)) = o(f)((sy) @ x) = fz)(sy) = s(f(2)(y)) = s(e(f)(y © x)),
as f(x) is S-linear.

Things will be more clear if we write M ®p M as Mi,(K) Qu,,x) Mn1(K), where
M,,(K) acts on both sides by the matrix product. (This is the same, by the definition of the
two actions of R on M)

by
Lete=(1 0 ... 0) € M,(K)and f = b= | | € My(K)
b,

is such that b; = 1, then there exists X € M, K such that eX = e and Xb = f, and then
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e®b=e® f. As these elements b generate the K -vector space M,,;(K'), we see that e @ b
is in the line spanned by e ® f for every b € M,,;(K). We show similarly that, for every
a € My,(K), a® fis in the line spanned by e ® f. Finally, we get dimy (M @ M) < 1.

Consider the map ¢ : M, (K) Qum,, (k) Mu(K) — M (K) = K defined by
¢(a ® b) = ab. This map is well defined, because (a,b) — ab is additive and a and
b, and because, for every a € Mi,(K), b € M, (K) and X € M,,(K), we have
(aX)b = a(X B). Note also that p(e® f) = 1, so ¢ is surjective. As dimg (M Qg M) < 1
and dimy (K') = 1, this implies that ¢ is an isomorphism.

O

VIl.1.2 Some properties of projective modules

(1).

2).

fo - M — M — M'" — 0 is an exact sequence of left modules over a
ring R, with M" projective, and if N is a right R-module, prove that the sequence
0> NRrM — Nr M — N®pr M"” — 0is still exact.

fo - M — M — M' — 0 is an exact sequence of left modules
over a ring R, and if N is a projective right R-module, prove that the sequence
0> NRRM — Nz M — N ®r M" — 0is still exact.

In fancy terms, this is saying that projective modules are flat. E]

Solution.

(D.

).

As M" is projective, the exact sequence 0 — M’ — M — M"” — 0 splits, so it
is isomorphic to the exact sequence 0 — M’ — M' & M" — M" — 0 (where

the map are (idM: 0) and ( 0 ). When we tensor by N, we get the sequence

id p
0> NegM — (NegM') & (NegM') - N®g M’ — 0 (with similar maps),
which is obviously exact.

We only need to check that the map M'®r N — M ®pr N is injective. (The other exactness
properties are a general property of the tensor product, and are true without any condition
on N.) Choose a right R-module N’ such that /' := N & N’ is a free R-module. Then we
have a commutative square

M/®RN—>M®RN

| |

M/®RF—>M®RF

ISee 24.20 of Lam’s book [20] for a definition.
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where all the arrows except the top horizontal one are known to be injective. This implies
that the top horizontal arrow is injective too.

U

VII.1.3 Division rings

We say that a ring R is a division ring if it is nonzero and if every nonzero element of R is
invertible (that is, for every a € R — {0}, there exists b € R such that ab = ba = 1). If K
is a commutative ring and R is a ring, we say that R is a K -algebra is R is a K-module and :
Va,b € K,Vz,y € R, (ax)(by) = (ab)(zy). If R is a division ring and a K -algebra, we also say
that it is a division algebra over K.

(D.

).
3).

Let K be an algebraically closed field and R be a division algebra over K that is finite-
dimensional as a K -vector space. Show that R = K.

Give an example of a finite-dimensional noncommutative division algebra over RR.
Give an example of a noncommutative division algebra over C.

Hint : If K is a field and o is an automorphism of K, let K((t, o)) be the ring of Laurent
series with coefficients in K, where we twist the multiplication by setting t"a = o"(a)t",
for everyn € Z and every a € K. Show that K ((t,0)) is always a division ring (and it’s
a division algebra over the subfield of K composed of o-invariant elements).

Solution.

(1).

2).
A3).

As K is a field, the map of rings K — R, A — X - 1 is injective. Let’s show that
it is surjective. Let a € R. The map m, : R — R, v —— ax is K-linear (be-
cause I? is a K-algebra), R is a finite-dimensional K -vector space and K is algebraically
closed, so m, has at least one eigenvalue. In other words, there exists A € K such that
Ker(m, — A -id) = Ker(m,_») 0. This implies that @ — X is not invertible. As R is a
division algebra, we geta — A = 0,iea = ) € K.

See problem [VII.1.6

We take the hint. First, let L = {x € Klo(z) = z}. Then L is a subfield of K, and
elements of L commute with ¢, so they commute with every element of K ((¢,0)) (because
elements of K ((¢,0)) are of the form ) art”for some n € Z and some a, € K). So
K((t,0)) is a L-algebra.

Now we show that K ((¢,0)) is a division ring. Let f € K((¢,0)) — {0}, and write

2This sum, as well as the other sums appearing in this proof, is not assumed to have only a finite number of nonzero
terms.
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f =" sp art", with a,, # 0. Then

f= E ath””—t"E 0 " (apin)t" = "0 " (ay) E o " (a;  apyn)t"

r>0 r>0 r>0

As t"o™"(a,) is invertible (its inverse is 0~ "(a, ) 't™™, we just have to show that the
second factor is invertible. That is, we may assume that f = 1 + g, with g = >, b,1".
Just like in the case of usual power series, we can show that Y _,(—1)"¢g™ makes sense
and is the inverse of 1 + g. -

Now to find a noncommutative division algebra over C, we apply the construction above
with K = C(z,y) and o defined by o(z) =y, o(y) = =.

0

VIl.1.4 Ideals of rings of matrices
Let K be a field, n be a positive integer and R = M,,(K) be the set of n x n matrices with entries
in K.

(1). Give a list of left ideals of R.

(2). Which of these are ideals ?

(3). We say that a € R is a left (resp. right) zero divisor if there exists b € R — {0} such that
ab = 0 (resp. ba = 0). Show that an element of R is a left zero divisor if and only if it’s a
right zero divisor.

(4). We say that a € R is left (resp. right) invertible if there exists b € R such that ba = 1
(resp. ab = 1). For a € R, show that the following are equivalent :

- a 1s left invertible;
- a is right invertible;
- a1s not a zero divisor.

(5). Which of the equivalences of (3) and (4) stay true in M,,(Z) ?

Solution.

(1). For every subspace V' of K", let
Iy ={A € M,(K)|VYv e V Av = 0}.

This is obviously a left ideal of M, (K). Moreover, the ideal [y, determines V, as
V' = er, Ker(A). Let’s show that every left ideal is of that form.
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So let I be a left ideal of M,,(K). Let

V= ﬂ Ker(A),

Ael

a subspace of M,,(K). By definition of V', we have I C Iy. Let’s show that I = Iy, that
is, that every matrix with kernel cnotaining V' is in /. Suppose that we have shown :

(%) For every vy, wy € K™ and every subspace W of K™ such that K" =V & Kvy & W,
there exists A € I such that W C Ker(A) and Avy = wy.

Let’s show that this implies the result. Let A € Iy,. Let (vy,. .., v,) be a basis of K" such
that (vy,...,v;) is a basis of V, where i = dim V. By (%), for every j > ¢ + 1, there exists
A; € I such that Aju; = Avj and Aju, = O fork # j. Then A = A; 11 +--- + Ay, so
Ael.

Now let’s prove (*). Fix vy, wo, W as in the statement of (x). If we can find A € I such
that Avy ¢ A(W), then we are done; indeed, in thet case we can find B € M, (K) such
that BW = 0 and BAv, = wy, and then BA € I satisfies the conclusion of (x). So let’s as-
sume that, for every A € I, Avg € AW. Let (e, ..., e,) be the canonical basis of K™ and
i = dim V' + 1. Without loss of generality, we may assume that (eq, ..., e;_1) is a basis of
V,e;i =vpand (e;41,...,€,)is abasis of W. Let A € I, and let r be its rank. We can find
a invertible matrix B € M, (K) such that (BAe;,1,...,BAe,) = (e1,...,€,,0,...,0).
Write BAvy = BAe; = Y7 Aj(A)ej.  Then A\j(A) = 0 for j > r and
Avg =377 1 Nj-i(A)Ae; (because BAvy = Y7, 1 Aj—i(A) BAe;, and B is invertible).
Now let A’ be another element of I, let 7’ be its rank, choose B’ € G L, (K) and define
the \;(A’) as above. We claim that, for every s < min(r, '), A\;(4) = A\;(A’). Indeed, fix
such a s, and consider the elementary matrix E ; (with entries 1 at the coordinates (s, s)
and O everywhere else). Then

As(A)es ifj=i
E,sAe; = ¢ e ifj=s+1 ,
0 otherwise

and similarly for A’. So E; ;(A—A")(e;) = (As(A) —As(A"))e;, and E; ((A— A’) sends all
the othere; t0 0. As B, ((A—A") € I, E; s(A—A')e; € E; s(A—A")W by our assumption.
So As(A) = As(A’). This means that we can find \q, ..., \,—; € K (with \; = 0for j > r)
such that, for every C' € I, Cvg = > 7, Aj—iCe;. Butthen vg — (3°7_, | Ajse;) is in
the kernel of every element of 7, hence in V, which is absurd. This finishes the proof of

().

Only 0 and M, (K) are ideals in M, (K). To prove this, we use the notation [, from
the previous question. It follows immediately from the definition of Iy that, for every
subspace V' of K™ and every invertible A € M, (K), IvA = [4v. Soif Iy is a left ideal,
then V' = AV for every invertible A € M, (K). This is only possible if V' = 0 (then
Iy = M,(K))or V = K" (then Iy, = 0).
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3).

).

4).

We say that a € R is a left (resp. right) zero divisor if there exists b € R — {0} such that
ab = 0 (resp. ba = 0). Show that an element of R is a left zero divisor if and only if it’s a
right zero divisor.

Let a € M,(K) Then a is a left zero divisor if and only if Ker(a) # 0, and a right zero
divisor if and only if the rank of a is < n. But that these two conditions are equivalent, and
that they are also equivalent to the fact that a is not invertible.

Let a € M,(K). Then a is left invertible if and only if Ker(a) = 0, and right invertible
if and only its rank is n. We know that these two conditions are equivalent. The last
equivalence is already proved in the answer of (3).

If a is an element of M, (Q), then we can write @ = A\a/, with A € Q* and a' € M, (Z).
From this, it follows easily that elements of M,,(Z) are left (resp.) right zero divisors in
M,,(Z) of and only if they are left (resp. right) zero divisors in M,,(Q). So the equivalence
of (3) stays true.

Let a € M,(Z). If there exists b € M, (Z) such that ab = 1 (resp. ba = 1), then a is
invertible in M, (Q), b = a !, and we also have ba = 1 (resp. ab = 1). So the first two
conditions of (4) are still equivalent. They imply the last condition by the remark above
about zero divisors, but the converse is not true. For exemple, 2 (ie twice the identity
matrix) is not a zero divisor, but it is also not invertible in M,,(Z).

O

VII.1.5 Commutative semisimple rings

We say that a ring R is simple if it is nonzero and its only ideals are 0 and R. We say
that R is semisimple if for every R-module M and every R-submodule N of M, there ex-
ists another R-submodule N’ of M such that M = N @ N’ (that is, such that the map
N x N'— M, (z,y) — x + y is an isomorphism).

Now take R a commutative ring.

(1).
Q).

If R is simple, show that R is a field.

Assume R semisimple, nonzero and Noetherian
(a) Show that we have R = R’ x K (as rings), with K a field.
(b) Show that R is a direct product of fields.

Solution.

(1).

Let a € R — {0}. Then Ra is a nonzero ideal of R, so Ra = R, so a is invertible.

3The last hypothesis is unnecessary, and is removed in theorem [[.1.10.5|of chapter I.
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Let I be an ideal of R. As R is semisimple, there exists another ideal .J of R such that
R =1@®J.If e; (resp. ey) is the image of 1 € R by the obviousmap R — R/J = I
(resp. R — R/I = J), then it is a unit element for the multiplication in I (resp. J),
and we have 1 = e; +e;. So I and J are commutative rings, and we have R = I x J
as rings. Now if we take [ to be a maximal ideal, then J = R/I will be a field. Note
that / is also a semisimple ring, as ideal of [ are just ideals of R contained in /.

By the previous question, we can construct a descending sequence of ideals
Iy=R D> 1 DI, D ... and an ascending chain of ideals Jy =0 C J; C Jy, C ...
of R such that R = J; x [; for every i € N and each [;/I;,; is a field or zero. As
R is Noetherian, the sequence (.J;);ey becomes constant, so R is the product of the
nonzero I;/1; .1, which are all fields.

O

VIl.1.6 The R-algebra of quaternions

Let H be the R-algebra R & Ri & Rj & RE, with the multiplication given by :

o P=j2=k =1

o ij=—ji =k, jk=—kj=i ki=—ik=j.

Note that we have an obvious embedding C = R & R: C HI, so H is a C-vector space, but not

a C-algebra.
(1). Why is H not a C-algebra ?
(2). Show that H is a division ring. (Hint: If v = a + bi + ¢j + dk € H with a,b,c,d € R, its
conjugate is defined tobe ¥ = a — bi — c¢j — dk. What is 2% ?7)
(3). Show that H ®g C ~ M,(C) as C-algebras. (You can use an embedding H C M, (C)
given by choosing a C-basis of H.)
(4). Show that C®g C ~ C x C as C-algebras. (If you’re getting mixed up, try giving different
names to the ¢ in the two factors C of the tensor product.)
Solution.

(1). If H was a C-algebra, then we would have ab = ba for every a € C and b € H. This is not

true (just take @ = ¢ and b = 7).

(2). If x = a+ bi + cj + dk, then 2T = Tz = a® + b* + ¢ + d*. So 2T € R, and it is zero if

and only if z = 0. Now if x # 0, then %E is an inverse of = (on both sides).

(3). As a C-vector space, H = C @ Cj ~ C2 Making H act on itself by left multi-

plication, we get a C-linear map v : H — Hom¢(H,H) ~ M,(C), and this map
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).

is a map of algebras because the multiplication of H is associative (if a,b,x € H,
u(ab)(z) = (ab)z = a(bx) = u(a)(u(b)(z))).

Consider the C-linear map v : H®pz C — M,(C) that sends a ® A to Aa. This a C-algebra
map, because

v((a@A)(b® p) = v((ab) ® (An)) = (Au)(ab) = (Aa)(ub)

(we use the fact that M5(C) is a C-algebra, ie that scalar matrices commute with every
other matrix).

Let’s calculate the images of 1,4, j, k € H by u. We have

o= (5 V) ur= (5 9w = (5 5) maum= (L 5.

These four matrices generate M>(C) as a C-vector space, so v is surjective. As H ®@g C
and M,(C) are both C-vector spaces of dimension 4, v is an isomorphism.

Let R=C®prCand S = C x C. We want to construct C-algebra maps ¢ : R — S and
.5 — R.

There are two ways to see ¢. First we can consider the R-basis (1,7) of the second C in
the tensor product. Then R = C® 1 C®i,and we set p(a®@1+b®1i) = (a+ib,a —ib).
Or we just set p(z ® y) = (ry,xy) and extend this by linearity. These clearly give the
same C-linear map, and the fact that it respects multiplication is obvious on the second
description.

Define ¢ : S — Rby ¢(z,y) = T @ 1 + ¥ @ i. Then ¢ is C-linear, and it is clearly
the inverse of ¢ (use the first description of ).

0

VII.1.7 Simple modules over some commutative rings

(1).
).

(3).

Write a list of all the simple modules over Z, Q, C[z], Q[z] (up to isomorphism).

Let I" = Z/pZ and R be the group algebra k[I'], where k is a field. Write a list of all the
simple modules over R (up to isomorphism).

01
GLy(F,) == M,(F,)*, and use this injection I' C M;(F,) to make I' act on F>. This
gives M := IF?D the structure of a module on R := F,[[']. Find a Jordan-Holder series for
M. 1Is M a semisimple R-module ?

Identify the group I' of the previous question with the subgroup (1 *) of

Solution.
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(1). Let R be a ring and M be a simple R-module. Choose x € M — {0}. Then the map
rR — M, a — ax is surjective (its image is a nonzero submodule of M), so M ~ R/I
with [ a left ideal of R. As M is simple, / is maximal. Conversely, for every maximal
left ideal I of R, R/I is a simple R-module. So to list all the simple R-module up to
isomorphism, we just have to find all the maximal left ideals of R.

If R = 7, this shows that the simple R-modules are the Z/pZ with p a prime number.
If R = Q, the only simple R-module is Q. If R = Clz], the simple R-modules are all
(up to isomorphism) of the form C[z]/(x — a), with a € C. Note that C[z]/(z — a) is
the C[x]-module C, where x acts by multiplication by a. Finally, if R = Q|x], the simple
R-modules are all of the form Q[z]/(f), with f a monic irreducible polynomial in Q|x].

(2). Note that R ~ k[z]/(2? — 1). So any R-module M is also a k[z]-module, and the R-
submodules of M are its k[x]-submodules; in particular, M is simple as a R-module if and
only if it is simple as a k[z]-module. So to find the simple R-modules, we just have to find
the simple k[x]-modules on which z” acts as 1. By the beginning of (a) (and the fact that
k[x] is a PID), every simple k[z]-module is isomorphic to a k[x]/(f) with f € k[x] monic
irreducible. Note that 2 acts as 1 on k[x]/(f) if and only if f divides z” — 1. Finally, the
simple R-modules are the k[x]/(f), with f an irreducible factor of 27 — 1. (In particular,
there are only finitely many isomorphism classes of simple R-modules.)

(3). The identification is given by x +— é :f Note that by (b) and the fact that
2? — 1 = (z — 1)? in F,[z], we know that the only simple R-module is F, with the

trivial action of I.

Let (e, e2) be the canonical basis of IF]%. Then M, := F,e; is a R-submodule of M, and
both M, and M /M, are simple, so we’ve found our Jordan-Holder series. The R-module
M is not semisimple as we cannot write M = M; & M, with M, another submodule.
(Otherwise, M, would be isomorphic to M /M, so M be isomorphic to IF% with the trivial
action of I', but this is not the case.)

O

VII.1.8 Group algebra of the quaternion group

Remember the R-division algebra H of problem [VIIL.1.6 Let Q be the subgroup
{+1, +i,+j, £k} of H*, and let R = R[Q] and R¢c = C[Q](= R ®x C).

(1). Show that there exists a R-algebra R’ such that R ~ R’ x H (as R-algebras).

(2). Find the isotypic components of R, and the multiplicities of the simple constituents (=
Jordan-Holder constituents) of M.

(3). Write R as a product of simple R-algebras.
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.
4).

Write a list of all the simple R-modules (up to isomorphism).

Write R¢ as a product of simple C-algebras and find all the simple R¢-modules (up to
isomorphism).

Solution.

(D.

2).

3).

184

Note that () is isomorphic to the group I' generated by the elements c_;, ¢;, ¢;, sat-
isfying the relations : ¢, = 1, ¢ = ¢ = c_1, c.1¢; = Ge_y, €16 = ¢ie_q,
cicj = c_icjc;. We get the isomorphism ¢ : Q — I' by setting «(—1) = c_q, 1(i) = ¢,
t(j) = ¢;, (k) = ¢icj and, for a € {i,7,k}, t(c_a) = c_1t(cy). So R is isomorphic
to the quotient of R{x_1, 2, x;) by the ideal generated by 22, — 1, 27 — z_, %2 —x_q,
TiX_y — T_1%4, ;X1 — x_1x; and x;x; — x_x;7;. A basis of the R-vector space R is

(1,x_1, 2, ), 212, 12, 27, x_12;2;) (simply because R = R[Q)]).

We construct a R-algebra map ¢ : R — H by sending z_; to —1, z; to ¢
and z; to j. This ¢ is obviously surjective, so its kernel is dimension 4. As
1+x, 2 + 212,20 + 3, ;25 + v_12,2; are all in Ker ¢ and linearly indepen-
dent (by the description of the basis of 12 above), they form a basis of Ker ¢ as R-vector
space, and we see also that Ker ¢ is the ideal of R generated by 1 +x_; (as 1 + z_; is
central, the left (or right) ideal is generates is an ideal). Let I be the R-subspace of R gen-
eratedby 1 — oy, v, — 217, x5 — x_1%;5, T;0; — T_q12;7, then we have R = Ker o @ 1
and [ is also the ideal of R generated by 1 — z_; (again, the left, right and two-sided
ideals generated by 1 — x_; are equal because 1 — x_; is central). So we have written
R = Kery @ I with Ker ¢ and [ ideals of R, which implies that R’ := Kerp and [
are rings and that R = R’ x [ as rings, by remark in chapter I. (Also, these are
obviously R-subalgebras of R, because they are R-subspaces.) It remains to notice that
I~ R/Kerp~H.

We already know that H is a simple R-algbera, because it’s a division alge-
bra.  So it remains to decompose R’. Note that ' = R/(x_; — 1), so
R~ R[t;,t;]/(t7 — 1,87 — 1) ~ R[t;]/(t7 — 1) ®r R[t;]/(t; — 1). By the Chinese
remainder theorem, R[t]/(t* — 1) ~ R[t]/(t + 1) x R[t]/(t — 1) ~ R x R. So we finally
get

RRxR) g (RxR)~RxRxRxR

(using R ®g R ~ R).

We have see that R ~ R x R x R x R x H as R-algebras, and all these factors are
simple R-algebras, so they are the simple submodules of z R. Now we have to calculate
the action of R on them. We already now the action on H. The four other factors are
R[t;]/(t; £ 1) ®r R[t;]/(t; £ 1) (with the four possibilities for the signs), with R acting
by sending x_; to 1, z; to ¢; and z; to ¢;. As R-algebras, these are all isomorphic to R. As
R-modules, we get the R-modules corresponding to the following four R-linear actions (=
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representations) of () on R : the trivial one (sending every element of () to 1),
pr2:—1— 1 i— -1 j+— —1(k+—1)
pr:—1r—1 i+— -1, j+—1(k— —1)
pr:—l— 1 i+—1, j— —1(k+— —1).

These are pairwise nonisomorphic, so we finally see that g R is the direct sum of the five
simple R-modules described above, with multiplicities 1. In particular, R is semisimple.

(4). We have seen in problem |VII.1.7(1) that every simple R-module is of the form R/I for I
a maximal left ideal of 2. As R is semisimple, this implies that every simple R-module is
isomorphic to a simple submodule of R. We already gave a list of those in question (2).

(5). We know from problem [VIL1.6/that H @z C ~ M,(C). So question (3) implies that
Rc=R®prC~C xCxCxCx M(C).

All these factors are simple and semisimple C-algebras. In particular, R¢ is semisimple.
As in (4), the simple Rc-modules are all isomorphic to simple submodules of Rc. The
first four are the four 1-dimensional simple modules of R with scalars extended to C (they
are simple because they’re one-dimensional C-vector spaces). The last simple R-module
is H, and H®z C ~ M,(C) is not a simple Rc-module, but is the direct sum of two simple
submodules, both isomorphic to C? with the usual action of M,(C) (and the action of R¢
via the surjective map R¢ — Ms(C)).

O

VII.1.9 A simple ring that is not semisimple
The goal of this problem is to construct simple rings that are not matrix rings over division rings
(and hence not semisimple).

Let R be aring. A derivation of R is an additive map 0 : R — R such that, for every a,b € R,
d(ab) = ad(b) + 6(a)b.

(1). If ¢ € R, show that the map d. : R — R, a — ca — ac is a derivation. Such a derivation
is called inner.

Let 0 be a derivation of R. A J-ideal of R is an ideal I of R such that §(/) C I. We say that
R is 0-simple if R # 0 and its only d-ideals are 0 and R.

The differential polynomial ring R[z; §] is the R-module R[z] with the multiplication given by
"™ = 2" and xa = ax + d(a), fora € R.

(2). Show that R[x;d] is indeed a ring.
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3).

4.
(5).

(6).
(7).

If § = 0. with ¢ € R, show that the map R[t| — R[z;d], t — = — ¢, is an isomorphism
of rings.

If 0 is inner or R is not d-simple, show that R|x; 0] is not simple.

Conversely, we want to show that if ¢ is not inner and R is a J-simple (Q-algebra, then
R]z; §] is simple. So assume that R is a §-simple Q-algebra, and that R[x;d] contains a
nonzero ideal J # R[z;d].

(a) Let n be the minimum degree for the nonzero elements of J. (If f € R[x; 0], write

itas ) k>0 a,x”, and define the degree of f to be the biggest non-negative integer 7
such that a, # 0.)

Show that n > 0 and that J contains an element g of the form 2" + Ez;é apz®. (Hint
: Use J to cook up a d-ideal of R.)

(b) Show that ¢ is inner. (Hint : calculate ga — ag, fora € R.)

If R # 0, show that R is not left Artinian.

Find a (Q-algebra R and a non-inner derivation ¢ on R such that R is d-simple.

Solution.

(1).

2).

3).
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The map d. is obviously additive. Let a, b € R. Then

dc(ab) = c(ab) — (ab)c = (ca)b — (ac)b + (ac)b — (ab)c = d.(a)b + ad.(D).

We have to check that, for every a,b € R, 1 = z, x(ab) = (xa)band z(a+b) = xa + xb.

As z1 = x + 0(1), we want to show that (1) = 0. But
(1) =6(1-1)=1-6(1)+(1)-1=25(1), doindeed 6(1) = 0.
We have

z(ab) = (ab)x + 0(ab) = (ab)x + ad(b) + 6(a)b
(xa)b = (ax 4+ 6(a))b = a(bx + 4(b)) + 6(a)b.
These are equal because (ab) = ad(b) + 6(a)b.
Finally,

z(a+b) = (a+b)zd(a+0b) = ax + d(a) + bx + §(b) = za + xb.

To see that this map, that we’ll call ¢, is well-defined, we have to show that z —c commutes
with every element of R[z; d]. It suffices to show that it commutes with elements of R and
with z. So let a € R. We have :

(x — ¢)a=za — ca = ax + .(a) — ca = ax + ca — ac — ca = ax — ac = a(x — ¢)



.

4).
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and

2 2

z(z—c) =1 —xc=12— (cx + d.(c)) = 2* —cx = x(x — ¢).

Let’s define a R-module map ¢ : R[x;0] — RI[t] by ¥(z") = (t + ¢)™, for every n > 0.
This is clearly the inverse of ¢ as a R-module map, so ¢ is an isomorphism (and ¢ is a
map of rings).

If ¢ is inner, then R[z; ] ~ R|[t|, which is never simple (if R = 0, then R[t] = 0;if R # 0,
then (¢) is a nonzero proper ideal of R[t]).

If R is not §-simple, let I # 0, R be a §-ideal of R, and let .J be the R-submodule of R[z; ]
whose elements are the ) ., a,z" with a, € I for every n. Obviously, J # 0, R[x; d].

We want to show that .J is an ideal of R[x; ). For this, it suffices to show that x.J C J. Let
f=2 ns0@nx" € J. Then

xf = Z(Q:an)x” = Z(anx”H + d(ay)z™).

n>0 n>0
This is in J because (1) C I.

(a) First we show that, for every g € Rx;d], deg(zg — gz) < deg(g). It is enough to
show it for g of the form ax™ with a € R, and then we have

rg — gr = (va)z™ — az" ™ = 6(a)a™.

Next we show that, for every n > 0 and b € R, deg(z"b — bz"™) < n — 1. We reason
by induction on n. The result is obvious for n = 0, so let’s assume that n > 1 and
that know the result for n — 1. Then

"b—bax" = 2" (xb) —ba" = 2" (bw+6(b)) —ba" = (" o—ba" Nz +2" 15 (b)

is of degree < max(n — 1,1 + deg(z"'b — bx"™1), and this is < n — 1 by the
induction hypothesis.

This implies in particular that, for every ¢ € Rlx;0] and b € R,
deg(gb — bg) < deg(g).

Let I C R be the union of {0} and of the set of all leading coefficients of elements
of J of degree n. It is clearly a left ideal of R. Let a € I, choose f, g € R[z; ] such
that f = az™ + g, deg(g) <n—1land f € J. Then forevery b € R, fb € J, and we
have

fb=ax"b+ gb= (ab)z™ + a(x"b — bz"™) + gb

with deg(a(z™b—bx™)+gb) < n—1,soab € I. So I is aright ideal of R. Moreover,
xf — fx € J, and we have

vf — fr = (ra)x" + xg — az"™ — gz = 6(a)a" + xg — gz.
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As deg(xg—gx) <n—1,wehave j(a) € I. So I is ad-ideal of R. As R is -simple
and [ # 0, we have 1 € I, so J contains an element g of the form z" + ka apzh.
AsJ #r,n>0.

(b) Let’s first show, by induction on n, that, for every n > 1 and every a € R,
z"a = ax™ + nd(a)x™ " + h, with deg(h) < n — 2. This is clear for n = 1, so
assume that n > 2 and that the result is known for n — 1. Then

"a = (2" 'a) = x(ax" ' 4+ (n — 1)§(a)z™ 2 + h),
with deg(h) < n — 3 (by the induction hypothesis). So
z"a = az” + nd(a)z" ' + (n — 1)6*(a)z"? + xh,

and we have deg((n — 1)6%(a)x™ 2 + zh) < n — 2.

We have seen above that deg(ga — ag) < deg(g) for every a € R. By definition of
n, this implies that ga — ag = 0 for every a € R. Write g = 2" + ba" ! + h, with
deg(h) < n — 2. Then

ga—ag = x"a—ax™+bx" ta —abz™ ' + ha — ah
nd(a)z" '+ hy + (ba — ab)z" ' + hy + ha — ah,

with deg(hy) < n—2, deg(hs) < n—2and deg(ha—ah) < n—2. Sond(a) = ba—ab.
As R is a (Q-algebra, this implies that 6 = d,,-15, S0 J is inner.

(6). The sequence of ideals (x) D (2%) D (2*) D ... does not stabilize.

(7). Let’s take R = Q(t) and § the derivation with respect to t. Then R is J-simple because it
is simple, because it is a field.

W

VII.1.10 Central simple algebras and the Brauer group

If Risaringand S C R, the centralizer of S in R is
Zr(S)={a € RNz € S, ax = za}.

If S = R, we write Zg(R) = Z(R) and we call it the center of R.

In this problem, k& will always be a field. We say that a k-algebra A is central if Z(A) = k,
and we say that A is finite is dim;(A) < oc.

(1). Let GG be a finite group.
(a) When is k|G| central (over k) ?
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(b) When is k[G] simple ?

(2). If R 1s a left Artinian simple ring and M is a finitely generated R-module, show that
Endg(M) is a simple ring. If moreover R is a finite k-algebra, show that Endz (M) is also
a finite k-algebra.

(3). If A and B are k-algebras, we make the tensor product A ®; B a ring by setting
(a @ b)(d @ V) = (ad’) ® (bV') and extending this by distributivity. Then A ®j B is
also a k-algebra. (Remark : It is NOT true that every element of A ®;, B is of the form
a ® b. You have been warned.)

(a) Let A and A’ be k-algbras, and let B C A and B’ C A’ be subalgebras. Show that

Zasyar (B @y B') = Zs(B) @k Zar(B').

(b) If A and B are k-algebras and n is a positive integer, construct an isomorphism

Mo(A®, B) S M,(A) @ B.

(c) Let A and B be k-algebras.

(i). If D is a central division k-algebra, show that we have a bijection between the
set of ideals of D ®;. B and the set of ideals of B given by sending an ideal [ of
D®, Bto{be B|1®bec I} andanideal Jof BtoD® J.

(ii). If A is a finite central simple k-algebra and B is simple, show that A ®; B is
simple.

(iii). Given an example where A is simple but not central, B is simple and A ®;, B is
not simple.

(4). Let A be a finite central simple k-algebra.
(a) If K/k is an extension of fields, show that A®,, K is a finite central simple K -algebra.
(b) If k is algebraically closed, show that A is isomorphic to some M, (k).
(c) Show that dimy(A) is the square of an integer. (Without using question (5).)

(5). Let A be a finite central simple k-algebra, let B be a simple k-subalgebra of A, and write
C = Z4(B).

(a) Show that C'is a simple k-algebra. (Hint : Let M be the unique simple A-module,
identify C' to the ring of endomorphisms of M that are linear for the action of some
ring to be determined.)

(c) If B is central, show that the multiplication map B ®; C' — A (that sends b ® c to bc)
is a k-algebra isomorphism.
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(d) Let K C K C A be a maximal commutative subfield of A, and suppose that A is a
division algebra. Show that Z4(K) = K and dimy(A) = dim(K)>2.

(a) Let A be a finite central simple k-algebra. Show that the map
A Rk AP — Endk(A)
a®ad — (x+— azd)
(exended by distributivity) is an isomorphism of k-algebras.

(b) Let A be a finite central division k-algebra. If £ C K C A is a maximal commutative
subfield, show that A ®; K ~ M, (K), where n = dimy(K). (Use the previous
question, (5)(d) and (3)(a).)

(c) Let A and A’ be finite central simple k-algebra. Show that the following are equiva-
lent :

(i). There exists integers m, m’ > 1 such that M,,(A) ~ M, (A") (as k-algebras).

(ii). There exists a k-division algebra D and integers n,n’ > 1 such that A ~ M, (D)
and A’ ~ M, (D).

If those conditions are satisfied, we say that A and A’ are similar and write A ~ A’.
This is obviously an equivalence relation on the set of isomorphism classes of finite
central simple k-algebras, and we write Br(A) for the quotient of this set by ~.

(d) If A, A', B, B’ are finite central simple k-algebras such that A ~ A’ and B ~ B/,
show that A ®; B and A’ ®; B’ are similar finite central simple k-algebras.

(e) Put the operation on Br(k) induced by the tensor product over & (this makes sense by
the preceding question). Show that this makes Br(k) into a commutative group (the
Brauer group of k).

(f) Calculate Br(k) for k algebraically closed.

(2) Iftell you that Br(R) = 7Z /27, can you give me a list of all finite R-division algebras
?

Reduced trace :
Let £ be a field and A be a finite central simple k-algebra.

(a) Letp : A — A be a an automorphism of k-algebras. Show that there exists ©z € A*
such that p(a) = raz™! for every a € A.

Let 0 : £ — €2 be a morphism of k into an algebraically closed field 2. By (6)(b), there
exists a positive integer n such that A ®@; 2 ~ M, (2).

(b) Fix an isomorphism A ®; Q0 ~ M, (f2), and consider the morphism 7" : A — Q
obtained by composing A - A ®; Q, a —> a® 1, and A ®; Q ~ M, () - Q,
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where Tr is the trace map. Show that this morphism 7' is independent of the choice
of the isomorphism A ®j, Q@ ~ M, ().

Assume that char(k) = 0. Show that we have 7" = o o Tr4, where Try : A — kisa
k-linear central morphism (ie such that Tr 4 (ab) = Tr4(ba), for every a, b € A). This
morphism Tr, is called the reduced trace of A. (Hint : If a € A, compare T (a) and
the trace of the k-linear endomorphism of A given by left multiplication by a.)

Only if G = {1} ! We have seen in class that the element )
and this is in k if and only if G is trivial.

gec 9 1s central in k[G],

Again, only if G = {1}. Indeed, the augmentation ideal of k[G] is a proper two-sided
ideal, and is only 0 when G' = {1}.

(2). We have R ~ M, (D), with n > 1 and D a division ring, and V' := D" is the only simple
R-module up to isomorphism. As R is semisimple, M is a direct sum of copies of V', and
as M is finitely generated, this direct sum if finite. So we may assume that M/ = V™ for
some m > 0. Then

(3).

Endg(M) ~ M, (Endg(V)) = M,, (D).

If R is finite over k, so is D, so M and Endg (M) are finite-dimensional k-vector spaces.

(a)

(b)

Remember that, if V and V" are k-vector spaces and the families (¢;)ic; and (€)jer
are bases of V' and V', then (e; ® €)(;jyerxr is a basis of V @ V'. In partic-
ular, if = € V ®; V’, there is unique family (x;);c; of elements of V’ such that
T =) e € @I

Let’s write C' = Z4(B), C" = Z4(B') and C" = Z 4, (B ®; B’). We obviously
have C' @, C' C C". So we have to show that C” C C ®; C". For this, choose a
basis (e;);er of A as a k-vector space. Let v € C”, and write x = .., €; ® x; with
x; € V (uniquely determined by x by the remark above). For every b € B’, we have
z(1®b) = (1® b)z, hence

el
hence bx; —x;b = 0 forevery i € I, so all the z; are in C' and x € A®, C". Similarly,

choosing a basis (€]);c; of the k-vector space C' and writing x = > ., y; ® €; with
y; € A, we can show that z € C' ®;, C".

We define ¢ : M,(A) ®; B — M,(A ®; B) by sending (a;;) ® b to (a;; ® b) and
extending this by linearity. As a map of abelian groups (or left A-modules), ¢ is
simply the obvious isomorphism

AP @, B 5 (A®y, B)®.
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But we should not forget to check that ¢ is a morphism of algebras. This is actually
a straightforward check that follows directly from the definitions.

(¢) ().

(11).

(iii).

We prove that the two maps defined above are inverses of each other.

Let I be an ideal of D ®; B, and let J = {b € B|]1 ® b € J}. This is clearly and
ideal of B, and we want to prove that [ = D®yJ. The inclusion I D D®y.J is ob-
vious. Suppose that I # D ®y, J. Choose a basis (b;);c4 of B as a k-vector space
and a subset A” C A such that (b;);ca_as is a basis of J. If z € D ®;, B, write
Z = ca ® by with the a; in D, and set n(z) := |[{i € Ala; # 0}|. Choose
z € I — D ® J such that n(z) is minimal (for z varying among elements of
I-D®yJ). Foreveryi € A—A’, a;Qb; € DRy J C 1,80 z2—a;®b; € J—DRyJ.
By minimality of n(z), a; = 0. So z = > _,_,, a; ® b;. Letiy,. .., i, be the ele-
ments ¢ of A’ such that a; # 0. Multiplying z by ai_ll on the left, we may assume
that a;, = 1. If a;, € k for every s, then z = 1 ® (Zgzl a;lbis), but then
S a;'b;, € J (by definition of .J), contradiction. So there exists s such that
a;, ¢ k, and without loss of generality we may assume that s = 2. As the center
of D is k, we can choose a € ID such that aa;, — a;,a # 0. Then
Zi=(a®1)z—2(a®1) = Z(aais —a;,a)@b;, €1
s=2

and n(z’) < n(z), so, by the minimality of n(z), 2’ € D®y, J. This is impossible
because aa;, — a;,a # 0, so we have reached a contradiction.

For the other direction, let J be an ideal of B, let I = D ®; J, and let
J' = {b e B|1®b € I}. Obviously J C J’, so we have to show that J’ C J. Let
V' C J' be a k-subspace such that J' = J & V. By the remark at the beginning
of the solution of (a), we have D ®; J' = (D ®; J) ® (D ®; V). So,ifb € V,
1®bcannotbein I =D ®; J unlessb = 0. So V = 0.

We have A ~ M, (D), with D a division k-algebra and n > 1. If we embed
D into M, (D) using  — xI, (where I, is the identity matrix), then this is a
k-algebra map and it sends Z(ID) to Z(M,,(ID)). As A is central, so is D. By (i),
the set of ideals of D ®;, B is in bijection with the set of ideals of B; as B is
simple, D ®j, B is also simple. We write D ®; B ~ M,,(ID’), with m > 1 and
D’ a division k-algebra. By (b),

A®y B~ M,(D® B) ~ M,(M,,(D")) = M,,, (D),
so A ®; B is simple.
k=R, A= B =C.ByPS15(d), C®g C ~ C x Cisnot a simple R-algebra.

(a) The K-algebra A ®; K is obviously finite. By (3)(a), we have

Z(A@k K) = Z(A) R Z(K) =k®, K=K,

so A ®; K is a central K-algebra. By 2(c)(ii) (or 2(c)(i)), A ®; K is simple.
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We know that A ~ M, (D), with n > 1 and D a finite division k-algebra. If & is
algebraically closed, we have D = £ by problem |VII.1.3

Let K be an algebraically closed field containing k. By (a), A ®; K is a finite
central simple K -algebra, so dimg(A ®, K) is a square by (b). But we have

Write A = M, (D), with D a division k-algebra. Then M := D", with the usual
action of M, (ID), is (up to isomorphism) the only simple A-module. We have seen in
class that M also has a structure of right D-module, and that A = Endp(M). Now
C' is the subset of elements of u € Endp (M) such that, for every b € Band z € M,
u(bx) = bu(z) (this follows from the definition of the isomorphism A = Endp(M)).

We see the right D-module structure on M as a left D°?-module structure commuting
with the action of A. This makes M into a left A ®; D°?-module, and C' becomes
the set of B ®; D linear endomorphisms of M. We have seen in the proof of
(3)(c)(ii) that D is a central k-algebra (because A is central). So D is also central.
By (3)(c)(ii) again, this implies that B ®; D is simple. As M is obviously finitely
generated over B®;ID (because dimy M < o0), we can use question (2) to conclude
that C' = End pg, per (M) is a simple k-algebra.

We use the notation of the proof of (a), and we write a = dimy A,
b = dimpyB and ¢ = dim,C. Let BB = B ®; D°. We have seen
that B’ is simple, so B' = M, (D), for some division k-algebra D'. Let
M’ = (D)™ be its unique simple module. Then, as a B’-module, M is iso-
morphic to some (M’)", and we have C ~ M, (Endg(M')) ~ M, (D'P).
Note also that » = dimy M/dimy M’ = ndimg(D)/(mdimg(D’')) and
dimy, B = (dimy, B)(dim, D) = m? dim; I'. So

be = br?dimy (D)2
n?(dimy, D)?
= bdimp(D')————
i )mQ(dimk D)2
an(dimk D)2
dlmk B’
= n?dim; D = a.

Letu : B ®; C' — A be the multiplication map. This is clearly a map of k-algebras.
By (3)(c)(ii), B ®;, C'is simple, so u is injective (otherwise it would be 0, and this is
not true). By (b), dimy (B ®; C') = dimy(A) and this is finite, so u is surjective.

Let A = Zk(A). It’s a simple k-algebra by (a). As K is commutative, X' C A/,
and in fact K C Z(A’) by definition of A, so A’ is simple K-algebra. Note that,
if v € A — {0}, then z=! € A’ : indeed, for every y € K, we have 1y = yuz,
hence yz~=! = 7 'y. So A’ is a K-division algebra. Let v+ € A" — {0}. Then K|[z]
(the K -subalgebra of A’ generated by x) is commutative, and it’s also a field by the
usual proof. (If y € A’ — {0}, then the elements 1,y,y?, ... are linearly dependent
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(a)

(b)

(c)

(d)

over K because dimyg A" < oo, so we have a relation a,y" + -+ 4+ a1y + a9 = 0
with a,, # 0. As A’ is a division algebra, after factoring out a power of y, we may
assume that ay # 0, and then after divising by ay we may assume that ag = 1. Then
y ' = —(a,y" '+ -+ agy + a1) € K[z].) By the maximality of K, we have

K|z] = K forevery x € A" — {0}, which means that Zx(A4) = A’ = K.
Now the fact that dimy, A = (dimy, K)? follows from (b).

Let’s call this map . First we check that it’s a morphism of rings (it’s clear that it’s
k-linear) : If a;,as € A and @}, al, € A, then for every x € A,

(a1 @ ay)(az ® a3))(7) = p((ara) ® (a501))(x) = arazrasdy

and
play ® ah) o play ® ay)(x) = p(ar ® ay)(asray) = arasrasal,
SO
o((a1 ® a})(aa ® ay)) = p(a1 ® a}) o p(az @ ay).
By @3)(b)(i), A ®; A 1is simple, so ¢ 1is injective. Moreover,

dimy,(Endg(A)) = (dimy(A))? = dimg (A ®j, A%), so ¢ is bijective.

By the previous question, we have an isomorphism of k-algebras
¢ A®y A’ = Endy(A) sending a ® o’ to the map x — aza’. As K is commuta-
tive, K = K°P, so we also see K as a subfield of A°?, and we have Z40» (K) = K by
(5)(d). By 3)(a), A ®y K = Za(k) ® Zaor(K) = Zag, a00(k @ K). Using ¢, this
identifies A ®; K with the subalgebra A’ of k-linear endomorphisms u of A such
that u(zb) = u(x)b for every € A and b € K. This is a K -algebra, where b € K
acts by sending u € A’ to the morphism & — u(zb) = u(z)b. It follows from the
definition of ¢ that it induces an isomorphism of K-algebras A @, K ~ A’. Now
seeing A as a K -vector space by maknig K act by left multiplication, we see that
A’ is isomorphic to My(K), with d = dimyg A = dimy A/ dimy, K = dimy K (by
(5)(d) again).

As M, (M, (R)) ~ My, (R) for any ring R and any integers n, m, it’s clear that
(ii) implies (i). Let’s show that (i) implies (ii). Let m,m’ > 1 be integers such that
M, (A) ~ M, (A"). Write A = M, (D) and A" = M,,(D'), with D, D’ division
k-algebras and n,n’ > 1. Then

We have seem in class that this implies that D ~ D’ as k-algebras.

Let m, m’ > 1 be integers such that M, (B) ~ M, (B’). Then, by (3)(b),
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SO
A®, B~ AR, B.

We see similarly that A @, B’ ~ A’ ® B'.

As the tensor product is associative and commutative (up to isomorphism), the oper-
ation we put on Br(k) is associative and commutative. The class of the k-algebra k
is clearly an identity element for this operation. By (a), for every finite central simple
k-algebra,

A Rk AP ~ Endk(A) ~ MdimkA(k> ~ ]{?7

which means that the class of A in Bry(A) has an inverse, given by the class of A°.
So Br(k) is a commutative group.

If k is algebraically closed, the only finite k-division algebra is k by problem |[VII.1.3|
so every finite central simple k-algebra is similar to &, and Br(k) = {1}.

We already know two nonisomorphic finite central division R-algebras, R and H (see
problem for H). If Br(R) = Z/27Z, this means that they are the only finite
central division R-algebra. We still have to find the finite non-central division R-
algebras. Let D be a division R-algebra such that Z (D) contains R strictly. Then
Z (D) is a field, so it’s a finite extension of R not equal to R, so Z(D) = Cand Dis a
finite division C-algebra. As C is algebraically closed, D = C.

The first A ®; D-module structure is given by taking (a®@u) -y m = au(m) = u(am),
ifa € A,u € Dand m € M. The second A ®; D-module structure is given by taking
(a®@u)-om = p(a)u(m) =u(p(a)m),ifa € A,u € Dand m € M. By (3)(c)(ii),
A ®;. D is a simple k-algebra, so it has a unique simple module up to isomorphism.
As the two A ®;, D-module structures on M make it a simple module, there exists an
automorphism v : M — M such that ¢((a @ u) -1 m) = (a ® u) -3 Y(m), for every
a € A,u € Dand m € M. As the factor D acts in the same way for both structures,
1 is in particular a D-linear automorphism of M. But we know that Endp (M) = A,
so there exists z € A* such that ¢(m) = xm for every m € M. We see that
zam = p(a)xm, for every a € A and every m € M. As M is a faithful A-module,
this implies that p(a)z = xa for every a € A, hence p(a) = raz ™.

By (a), if we have two isomorphisms u; : A ®, Q — M,(Q) and
uy : A ®, Q = M,(Q), then there exists ¢ € GL,(Q) such that
us(x) = guy(x)g~t for every v € A @ Q. In particular, for every a € A,
Tr(us(a ® 1)) = Tr(guy(a @ 1)g™1) = Tr(uy(a @ 1)).

We identify £ to its image by o and stop writing o. Then we just have to show that
the image of Tr 4 is contained in k.

Let a € A, and let m, : A — A be left multiplication by a. This is a k-linear
endomorphism of A, so its Tr(m,) is an element of k. This trace is also equal to the
trace of the Q)-linear endomorphism of A ®j, Q2 ~ M,,(Q2) given by left multiplication
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by a ® 1. We know that, as a left M, (Q2)-module, M, (£2) is isomorphic to (Q")%"
(with the usual action of M, (€2) on Q"), so we finally get Tr(m,) = nT(a). As
char(k) = 0, this implies that T'(a) € k.

O

VIL.1.11 Irreducible representations of p-groups in characteristic p

Let G be a finite group and p a prime number. We say that G is a p-group if |G| is a power of p.
If G is a nontrivial p-group, then its center Z () is nontrivial. ﬂ

(D.

(2).

Suppose that the only irreducible representation of G on a finite-dimensional F,-vector
space is the trivial representation (i.e. I, with every g € G acting as identity). Show that
G is a p-group. (Use the left regular F[G]-module F[G].)

Conversely, if k is an algebraically closed field of characteristic p, GG is a p-group and V'
is an irreducible representation of GG on a finite-dimensional k-vector space, show that V'
is the trivial representation. (Hint : Look at the subspace of vectors that are invariant by
every element of Z(G).)

Solution.

(1).

).

Let V = F,[G], seen as a left F,[G]-module. This gives a group morphism
p : G — GL(V), which is obviously injective. Choose a Jordan-Holder series
V=VW>V DDV, =0. Then every V;/V;;, is a simple FP[G]-module, hence
equal to the trivial representation of 7, and so n = dimg (F,[G]) = |G|. Choose a basis
(e1,...,e,) of V as a IF,-vector space such that, for every i € {1,...,n}, (e1,...,e;) is

a basis of V,,_;. This gives an isomorphism GL(V) ~ GL,(F,), and the composition of
this with p sends G injectively to the group U(F,) of upper triangular matrices in GL,,(IF,)

with ones on the diagonal. For every integer r > 1, let U(F,r) = U(F,) N G Ly (Fyr).
Then U(F,) = U,>, U(F,). As G is finite, its image by p is contained in U(F,-) for
r big enough. So there exists r such that G is isomorphic to a subgroup of U(F,-). But

\U(F,-)| = (p")""~1)/2 is a power of p, so the order of G is also a power of p.

We show the result by induction on the order of G. Suppose that G is abelian (this is the
case, for example, if |G| = p). Let V' be an irreducible representation of V. By Schur’s
lemma (and because & is algebraically closed), Endy (V') = k. But, as G is abelian, k[G]
is commutative, so the action of any element of £[G] on V' is in Endy(V), so there exists
a k-algebra map u : k[G] — k such that, for every x € k[G] and v € V, zv = u(x)v. In
particular, every k-subspace of V' is a subrepresentation; as V' is irreductible, dim V' = 1.

4See your favorite algebra textbook. Mine is Perrin’s book [23].
SWe could replace F), by a an arbitrary field of characteristic p in this question, and the result would stay true.
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Giving u is the same as giving a morphism of groups p : G — k™. But the only element
of k* that has order a power of p is 1 (because t*" — 1 = (¢t — 1)?" in k[t]), so p is trivial,
so G acts trivially on V.

Now assume that G is not abelian, and that we know the result for every p-group of order
< |G]. Let Z be the center of G, it’s a nontrivial abelian p-group, so the induction hy-
pothesis applies to it. Let V' be an irreducible representation of . We denote by VZ the
k-subspace of v € V such that gv = v forevery g € Z. If g € G and v € VZ, then for
every h € Z,

h(gv) = (hg)v = (gh)v = g(hv) = gv,

so gv € VZ. This show that VZ is actually a subrepresentation of V.

LetV =1, D>V, D--- DV, =0be alJordan-Holder series for V' seen as a k[Z]-module.
Then V,,_; is a simple k[Z]-module, so it’s the trivial representation of Z by the induction
hypothesis. This means that V,,_; C VZ, and so VZ # 0. As V is irreducible, VZ = V.
So the action of G on V factors GG/Z, and we can see V' as an irreducible representation
of G/Z. By the induction hypothesis, this is the trivial representation of G/Z, and so V' is
the trivial representation of G.

O

VII.1.12 Another description of induction

Let R be aring, G be a finite group and H be a subgroup of G. Choose a system of representatives
g1,---,g-of G/H. Let M be a R[H|-module, write

I={f:G— MVhe HVYgeG, flhg)=hf(g)}

We make G acton I by (g f)(z) = f(zg)if f € [and x,g € G.

Show that the map I — Ind$ M, f — S7_ g ® f(g;"), is an isomorphism of R[G]-
modules, and that it is independent of the choice of ¢y, ..., gs.

Solution. Let’s call this map u. We first check that u is R|G|-linear. As u is obviously R-linear,

we just need to show that it is compatible with the actions of GG on its source and target. So let
f € Iand g € G. Then we have

g-u(f) =9 g flg")
=1
and

wg )= 0@ e =D 025"

ier
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Note that g;',...,g-! is a system of representatives of the quotient H\G, and so is
gi'g,...,9-'g. So we have a (unique) permutation ¢ € &, and (unique) elements
hi,...,h, € H such that g; 'g = hig;(li) for every i. This gives

r

u(g- f) = Zgi ® f(higg(li)) = Z(gihi) ® f(g;(li))

i=1

(using the properties of f and the fact that the tensor product is over R[H]). As g;h; = g9, for
every i, we finally get

u(g- f) = gzga(i)f(g;(li)) =g -u(f).
=1

Now we check that u is an isomorphism, by defining an inverse v : Indfl M — I. Remember
from class that, as a right R[H]-module, R[G] is free with basis (g1,...,g,). So, as an abelian

group,
Indf; M = R[G] @pym M ~ @D g:R[H] ®ryn M ~ P M.

=1 i=1

Using this isomorphism, we’ll define v as a morphism M"™ — [. If (my,...,m,) € M", we send
it to the sum f; + - -- + f,. € I, where, for every ¢, f; : G — M is the function defined by

hm; ifz=hg *withhe H
file) = { 9 .

0 otherwise

As the definition of f; is R-linear in m;, we see easily that v is indeed R-linear. We have to
show that it is the inverse of w.

Let f € I. Then u(f) = >._, g ® f(g9;"), which corresponds to the element
(flgr D), ..., f(gh) of M™. So vu(f) is the sum f; + - - - + f., where, for every i,

Fi(x) = hf(g;') = f(hg;') ifx = hg; withh € H
=90 otherwise :

As G = Hz‘:v Hgi_l, we have indeed f = f1 + -+ f,.

Now let z € Indg M, writex =37, g; ®m,; with (my,...,m,) € M", and write f = v(z).
Then

u(f):Zgz‘@f(g;l):Zgi@mi:x.

To finish, we have to show that the morphism « is independent of the choice of g1, ..., g,. So
let ¢/, ..., . be another system of representatives of G/H, and v’ : I — Ind$ M be the map
that we get by using the g;. Up to changing the order of the g, (which obviously does not affect
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u’), we may assume that there are hy, ..., h, € H such that g} = g;h; for every i. Then, for every
fel,

u(f) = Zg{- ®flg ") = Zgihi ® f(hi'g ") = Zgihi ®h ' fg7") = u(f)

(as the tensor product is over R[H).

Vil.1.13 Representation ring of Z/p"Z in characteristic p

Take G = Z/p"Z and k of characteristic p. Show that P, (G) is the free abelian group generated
by [k[G]] and calculate the map Py(G) — Ry (G). [| (Remember that Py (G) and Ry (G) were
introduced in definition of chapter I.)

Solution. We first show that a finitely generated k[G]-module is projective if and only if it is free.
This will obviously imply that P, (G) is the free abelian group generated by [k[G]].

We already know that a free k[G]-module is projective. Conversely, let M be a projective
k[G]-module of finite type. Note that k[G] ~ R := k[T]/(T"" — 1), so we can see M as a finitely
generated k[T]-module. Using the structure theorem for finitely generated modules over PIDs,
we see that, as a k[T]-module, M is a direct sum of k[T|* and of modules of the type k[T']/(f™),
where the f are irreducible polynomials. As M is actually a k[T]/(T?" — 1)-module, we must
have s = 0, and all the f™ that appear divide 7" — 1. As char(k) = p, T?" —1 = (T — 1)*" in
k[T, so the only f that can appear in the decomposition above is 7' — 1, and we see that M is
a direct sum of k[T']/(T?" — 1)-modules isomorphic to k[T]/((T — 1)™), with 1 < m < p". If
m = p", k[T]/((T — 1)™) = R ~ k[G], so we just have to show that k[T]/((T" — 1)™) is not a
projective R-module if 1 < m < p". Fix m suchthat1 < m < p"andlet M = k[T]/((T—1)™),
then we have an obvious surjective R-module map v : R — M (sending 7' to '), and its kernel
M’ := (T — 1)P"~™R is isomorphic to k[T|/(TP" =™ — 1). If M were projective, we would have
R = M @ M’ as R-modules. But the element (7' — 1)™®(®"=mm) acts as 0 on M and M’ and
not on R, so this is not possible and M cannot be projective.

Now we have to calculate the map Py(G) — Ri(G). As Px(G) is the free group on [k[G]],
P;(G) ~ Z and we just have to calculate the image of this generator in R;(G). We have seen in
problem 7 of PS3 that the only simple k[G]|-module is 1, so Rix(G) ~ Z. Also, all the Jordan-
Holder factors of k[G] are isomorphic to 1, and there are dimy, k[G] = |G| = p" of them. Finally,
the map P(G) — Rx(G) is isomorphic to the map Z — Z, a — p’a.

O

This will be generalized to all p-groups in proposition [[I1.8.1{of chapter III.
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VIl.1.14 Basic properties of induction

Let R be aring and G a finite group.

(1). If K C H C G are subgroups and V' is a R[K|-module, show that

Ind% (Ind# V) ~ Ind%. V.

(2). If H' C H C G are subgroups such that A’ is normal in G, and if W is a R[H|-module on
which H' acts trivially (so that we can also view W as a R[H/H'|-module), show that

Ind% W ~ Ind%gl, W.

(3). Let G; and G5 be two finite groups, and let G = G; X G,. If R is a commutative ring,
H, C G, and Hy, C G, are subgroups, and V; (resp. V5) is a R[H;]-module (resp. a
R[H,]-module), show that

Ind X5 (Vi @r V2) = (Indiy Vi) @ (Indii V2).

Solution.

(1). We have
Ind$(Indjf V') = R[G] @g (R[H] @pix) V) ~ RG] @pi V ~ Ind V.

(If you’re unfamiliar with that property of tensor products : the isomorphism in the middle
is given by a ® (b ® v) — (ab) ® v, its inverse by ¢ ® v — ¢ ® (1 ® v). Note that, in
the left hand side, a ® (b ® v) = (ab) ® (1 ® v).)

(2). We have a R[G]-linear map
u: Ind§ W = R[G] @ W — RIG/H') @piaymy W = Indy)) i, W

given by the obvious map R[G] — R|G/H'|. Let gi,...,g, be a system of repre-
sentatives of G/H. Then g} = g1H',...,g. = g.H' is a system of representa-
tives of (G/H')/(H/H'). So we have isomorphisms of R-modules " — Ind% W,
(Wi .. wp) —> > g @w;, and W — Indgégl, W, (wr,...,w.) — Y.r_, g @ w;.
By these isomorphisms, u corresponds to the identity of W/". So w is an isomorphism.

(3). First we note that the map R[G1] ®r R[G2] — R[G1 X G3], a®b — ab, is a ring isomor-
phism. (Indeed, it is obviously a map of rings and it sends the basis (g1 ® 92) (g, g0)cG1 x G2
of R[G1] ®r R[G5] to the basis ((g1, 92))(g1,92)cc1xG» Of R[G1 X G5]. We have a similar
isomorphism R[H,| ®p R[Hs] ~ R[H; x Hy).
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So we get :
Indf 5% (Vi ®r Va) ~ (R[G1] ®r R[Ga]) @rimerrims) (Vi ®r Va).

We get a map of this into (Ind% Vi) ®g (Ind% V5) by sending (a1 ® az) ® (v; ® vy) to
(a1 ® v1) ® (ag ® v9). (This is well-defined because it’s additive in every variable, and if
b; € R[H;| fori = 1,2, then ((a1®az)(b1®bs))®(v1®v9) and (a;®as)R((b1®by)(v1®v3))
are sent to the same element, ie ((a1b1) ®@v1)®((azbe) @va) = (a1 ®(b1v1))®(aa® (bavy)).)
This is an isomorphism, because it has an inverse, given by sending (a; ® v1) ® (az ® v9)
to (a1 ® ag) ® (v1 ® vy). (Again, this is well-defined, and the verification is similar.)

O
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VIl.2.1 Representation rings and field extensions

In this problem, whenever k is a field and G is a group, we assume that all £[G]-modules are
finite-dimensional over k.

Let GG be a group, and let K /k be an extension of fields.
(1). If V and W are k[G]-modules, show that the obvious map
Homg(V, W) @ K — Homg(V @, K, W @ K)

(sending u ® x to xu if x € K and u € Homyg(V,W)) is an isomorphism.
(2). If G is finite and char(k) does not divide |G|, show that the map Rx(G) — Rk (G) is
injective.[]

(3). If G is finite and k is algebraically closed of characteristic prime to |G|, show that the map
R (G) — Rk(G) is bijective. [f

Solution.

(1). We know that Homeg (V, W) = Homy (V, W)¢ and
Homg(V ®), K,W ®; K) = Homg(V ® K,W ®; K)°. (See remark [[.1.1.9 of
chapter II.) Notice that the map Hom,(V, W) ®p K — Homg(V @, K, W ®; K),
u — u ® 1, is an isomorphism. (Choosing a basis (e;);c; of V over k identifies

"The result is still true in any characteristic for a separable algebraic extension, for example by theorem 5.17 of
[20]. But what happens in general ?

8The result is still true without the assumption on the characteristic of k, as we can see by using the characteristic
zero case and corollary of chapter III.
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2).

3).

202

Homy,(V, W) with [[.., W. But (e; ® 1), is a basis of V' ®;, K over K and gives an
identification Homg (V®y, W @, K) =~ [[,;(W ®; K), and then the map above becomes
the product over [ of the identity maps W @) K = W ®;, K.) So we just have to prove
the following fact :

If V is a k[G]-module, then the map V¢ @5, K — (V ®; K)%, x — z ® 1, is an isomor-
phism. This map is obviously injective, so we have to show that it is surjective. Let (o) e
be a basis of K as a k-vector space. Let v € (V @ K)%, and write v = Zjej V; ®
with v; € V for every j. Then, forevery g € G, gv = ). ;(gvj) ® a; = v ;v; @,
which implies that gv; = v; for every j € J. So all the v; are in VY, and v € V¢ ©;, K.
(This is very similar to the proof of (3)(a) in problem [VIL.1.10])

Note that the hypothesis ensures that all the modules over k[G] and K[G] are semisimple.

We know that Ry (G) is the free abelian group on the [W], W € Si(G). So proving
that the map u : Rx(G) — Rk (G) is injective is equivalent to proving that the family
(u([W]))wes,(c) is linearly independent in Ry (G). For every W € Si.(G), let S(W) be
the set of V' € Sk (G) such that V' is isomorphic to a K [G]-submodule of W ®j, K.

Now we have to prove that, if W and W’ are non-isomorphic simple k[G]-modules,
then S(W) N S(W') = o, that is, W ®; K and W’ ®; K have no simple fac-
tors in common. As W ®;, K and W' ®, K are semisimple, this is the same
as saying that Homg(W ®; K, W' @, K) = 0. But we know from (a) that
Homg (W @y K, W' @y K) = Homg(W,W') @ K = 0.

By theorem [[I.1.3.1]of chapter II, we know that the free abelian groups Ry, (G) and R (G)
have the same rank. (Indeed, the rank R (G) is equal to dimy €'(G, k), and that of R (G)
is equal to dimg ¢ (G, K). As €(G,k) ®, K = € (G, K), these two dimensions are
equal.) As the [W] for W € Si(G) (resp. W € Sk(G)) form a basis of Ri(G) (resp.
Rk (G)), this means that |S,(G)| = |Sk(G)|. So if we can show that W ®;, K is irreducible
for every W € Si(G), this will imply that the map Rix(G) — Rk (G) sends a basis of
Ri(G) to a basis of Rk (G), hence is an isomorphism.

So let W be a simple k[G]-module. By (1) and Schur’s lemma,

Endg(W @) K) = Endg(W) @, K = k®, K = K. If W ®, K were not irre-

ducible, we could write W ®;, K = V| & V, with Vj, V5 # 0, and then the K[G]-linear

endomorphisms (1d0V1 8 and (8 . dO ) would generate a dimension 2 /K -subspace of
Vo

Endg (W ®4 K), which would contradict the calculation above. So W ®y, K is irreducible.
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VIl.2.2 Some character tables

Let GG be a finite group, and let C' be a set of representatives of the set of conjugacy classes in G.
Then giving a central function in G — £ is the same as giving a function C' — k. The character
table of (5 is a table showing the values of the characters of the irreducible representations of GG
(over k) at every element of C'. For example, the character table of Gy ~ {£1} (over Q) is

Find representatives for the sets of conjugacy classes and write the character tables in the
following situations :

(D). G=63,k=0Q;
(). G = {*1,+i,+j, £k}, k = R;
(3). G = {£1, +i, +j, £k}, k = C.

Solution.

(1). G =63, k =Q : We use the decomposition in cycles to determine the conjugacy classes
in G,, : Every element of G,, is a unique way a product c; . .. c, where the ¢; are cycles
with pairwise disjoint supports (note that then the ¢; commute), and two elements c¢; . . . ¢,
and ¢] ... ¢, written in this way are conjugate if and only (i) 7 = s and (ii) up to reordering
the ¢, the cycles ¢; and ¢ have the same length for every i € {1,...,r}.

In particular, we have three conjugacy classes in G : the conjugacy class of 1, the conjugacy
class of transpositions (a representative is (12)) and the conjugacy class of 3-cycles (a
representative is (123)).

We have seen in class that the irreducible representations of &3 over QQ are 1, sgn and
the space V' = {(z1, 79, 23) € Q3|21 + 22 + 23 = 0} (with &3 acting by permuting the

coordinates).
So the character table is
‘ 1 sgn V
1 1 1 2
(12) |1 =1 0
(123) |1 1 -1

(2). G = {£1,+i,+j,+k}, k = R : We see easily that the conjugacy classes in G are the
following : {1}, {—1}, {£i}, {£j}, {£k}. We have seen that the irreducible represen-
tations of G over R are 1, €1, €5, €3 and H (where H has the obvious action of G by left
multiplication, and the others are the 1-dimensional representations defined in class (see

203



VII Exercises

also the character table for their values)). So the character table is :

1 &1 E9 €3 H
111 1 1 1 4
—-1]1 1 1 1 —4
111 -1 =1 0
il -1 1 =1 o0
k{1 -1 1 -1 0

(3). G = {#£1,+i,+j,+k}, k = C: The only change is that the irreducible representation H
of G over R splits over C as V & V, with V" a simple C[G]-module (e HRr C~V & V
as C[G]-module). So we get the following character table :

1 €1 9 €3 %4
1 (1 1 1 1 2

~1/1 1 1 1 =2
i1 1 -1 -1 0
il -1 1 -1 o0
El1 -1 1 -1 0

VII.2.3 Calculating representation rings

(1). Let n be a positive integer, and let x,, be the group of nth roots of 1 in k. Assume that £ is
algebraically closed. Show that, as a Z-algebra, Ri(Z/nZ) is isomorphic to Z[i,)].

(2). Let G = {#£1,+i,47j, £k}. The theorem quoted at the beginning says that R¢(G) is a
subring of (G, C) ~ C°. But do we have Rc(G) ~ Z° as aring ? (Hint : Look for
idempotents.)

Solution.

(1). Write n = mp", where p = char(k) and p fm (if char(k) = 9, we take n = m). Then p,
is a cyclic group of order m. Let (,, be a generator of y,,. The irreducible representations of
Z/nZ over k are the ¢, . . ., £,,_1, Where ¢; : Z/nZ — k* is the morphism of groups that
sends 1to ¢'. Foreveryi € {0,...,m—1},letc; = [;] € Ri(Z/nZ). Then (cy, . .., Cn1)
is a basis of Ry(Z/nZ) as a Z-module. Also, for every i,j, c;c; = [g; ® ¢;], and
g, ®e;: Z/nZ — k* sends 1 to (1™, So the Z-linear isomorphism Ry, (Z/nZ) — Z[u,)
that sends ¢; to ¢!, pour tout ¢ € {0,...,n — 1} is a map of rings.

(2). With the notation of problem 4, we write ¢, = [¢,,] € R¢(G) forr € {1,2,3},and d = [V].
Then (1, ¢y, ¢o, c3,d) is a basis of the Z-module R¢(G). Using the character table of prob-
lem 4 (remember that the character of a tensor product is the product of the characters),
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we see that ¢ = ¢3 = ¢2 = 1, c1cy = €3, CaC3 = €1, C3¢1 = g, ¢1d = cod = c3d = d and
d®=1+c1+cy+cs.

Now let = be an element of R¢(G), write * = a + [ic1 + [ace + PBscs + vd, with
a, 81, 32, 83,7 € Z, and suppose that 22 = z. By the multplication table we established
above, the coefficient of 1 in 22 is a® + 8% + 57 + 32 + % As x = 22, this is equal to a,
which is only possible if « = 1 and #; = B = B3 = v = 0. So 1 is the only idempotent
of R¢(G), and we cannot have R¢(G) ~ Z° as a ring.

0

VIl.2.4 Representations of products

Let G; and G, be two finite groups, and let G = G; x (5. Let k be an algebraically closed field
of characteristic 0.

(1). Let Vi (resp. V%) be an irreducible representation of GGy (resp. G3) (over k). Show that
Vi ®; V4 is an irreducible representation of G.

(2). If V1, V/ (resp. Vs, Vi) are irreducible representations of G (resp. (5), show that the
following are equivalent :

(a) the representations V| @, V5 and V/ ®;, V3 of G are isomorphic;
(b) Vi and V] are isomorphic and V5 and V; are isomorphic.

(3). Show that every irreducible representation of G is of the form V; ®;. V5, with V; (resp. V%)
an irreducible representation of G; (resp. G2). (There are several ways to do this.)

(4). Is (1) still true if £ is not algebraically closed ? (Hint : problem |VIIl.1.6(4).)

Solution.
(1). We have seen in class that the character of V := Vi ®; V5 is the map
(91, 92) = xv3(91)Xv,(g2)- So we have :
V,Via = S valome) = (Vi Vida, (Ve V)
Y G — ’Gl % G2| XVl gl XV2 92 - 1, 1 G1 2, V2 Gz'

(91,92)€G1xG2

As these three brackets are non-negative integers, we deduce that (V,V)s = 1 (i.e. V' is
irreducible) if and only if (Vi, V})q, = (Va, Va)g, = 1 (i.e. both V; and V5 are irreducible).

(2). It’s obvious that (b) implies (a), so let’s show that (a) implies (b). Assuming (a), let’s
show for example that V; and V] are isomorphic (the case of V5 and V; is similar). Let
d = dimy V5 and d’ = dimy, V3. Then, for every g € Gy,

dxvi(9) = xw (9)x1.(1) = xviewe(9,1) = xvie,vz(9: 1) = xvy (9)xvg (1) = d'xvi ().
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(3).

.

So xv; and xy; are proportional. As V; and V| are irreducible, this is only possible if
Vi~ V.

By the two previous questions, we have a map Si(G1) X Sp(G2) — Sk(G1 X G3), and it’s
injective. We want to show that this map is bijective, and for this we can for example show
that its source and target have the same cardinality.

Let X (G) (resp. X (G2), resp. X (G x (3)) be the set of conjugacy classes in G (resp.
G, resp. GG1 X (G5). We have an obvious surjective map u : G1 X Gy — X(Gp x Ga),
and two elements (g1,62),(¢},95) € Gi1 x Gy are conjugate in G; x Go if and
only g; and g are conjugate in G; for ¢ = 1,2. So wu induces a bijection
X(Gy) x X(Gy) = X(G1 x G). As |Sk(G)| = X(G) for G € {G1,Gs, Gy x Gy},
this proves that |S(G1) x Sk(G2)| = |Sk(G1 x G2)|.

Here is another way to prove the conclusion of (3). We identify (G; and G, with the
subgroups G; x {1} and {1} x G5 of G. Let V an irreducible representation of G. Let
V=W&---&W,, be the decomposition of V' in isotypic components as a representation
of G;. Then every element of (G5 stabilizes all the W;. (A useful trick : if g € G, then g
centralizes (G, so the endomorphism of V' given the action of g is a G;-equivariant isomor-
phism, and it is clear from the definition of isotypic components that such an isomorphism
must respect them.) So the W; are k[G]-representations of V. As V' is irreducible, we have
V = W), that is, there is a simple k[G;]-module V; and r; > 1 such that V ~ V,*"* as
representations of ;. Similarly, as a representation of G, V is isomorphic to a V,>",
with V, a simple k[Gs]-module. Let i = 1,2. In the decomposition of k[G;] as a prod-
uct of simple k-algebras, let M,, (k) be the factor corresponding to V;; then the action of
k[G;] on V factors through its quotient M,,, (k). So the action of k£[G] on V factors through
A = M, (k) ® M,,(k) ~ M,,,,(k). But this k-algebra is simple, so it has a unique
simple module up to isomorphism. As V; ®; V5 and V' are simple A-modules, we deduce
that they must isomorphic as A-modules, and hence as k[G]-modules.

No. Take k = R, G; = G5 = {£1,+i}, and V; = V, = C with the obvious action. We
have seen in problem 4) that there is a R-linear isomorphism V; Qg V5 S CaC,
(z,y) — xy @ xy. If we use this to transport the action of G to C @ C, we see that each
summand is stable by G, so the representation V| ®;, V5 is not irreducible.

O

VII.2.5 Character of small symmetric and exterior powers

Let G be a group, k be a field of characteristic not diving 6 and V' be a representation of GG on a
finite-dimensional k-vector space.

For every n > 0, S™V and A"V be the representations of G on the nth symmetric and exterior
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powers of Vﬂ Show that, for every g € G,

Xs2v(g) =

YARV(g) = x(9)* = x(g*))

2
Xsav(9) = 9]+ 3X(922jx(g) +2x(¢%)
and
war(g) = X9 = 3x(g9x(9) +2x(¢")

6

Solution. We may assume that k& is algebraically closed. Denote the representation by
p: G — GL(V). Let ¢ € G, and choose a basis (eq,...,e,) of V in which the matrix of
p(g) is upper triangular with diagonal entries A1, . .., \,. Then the image in S*V (resp. A?V) of
the family (e; ® e; + €; ® €;)1<i<j<n (resp. (e; @ e; — €; ® €;)1<i<j<n) Of TV is a basis. In this
basis and using the lexicographic order on {1, ...,n}?, S?p(g) (resp. A?p(g)) is upper triangular
with diagonal entries (M)A} )1<i<j<n (T€sp. (AjAj)1<i<j<n). SO

Xs2v (9 Z Aidj = (Z)‘> +Z)‘? :%(XV(9)2+XV(92))a

1<i<j<n

and

Xev(g) = D A (Z Ai ) - Z X = %(Xv(g)2 —xv(9%))-

1<i<j<n

Similarly, the image in S®V (resp. A*V) of the family (3~ . €1y ®Ciy 5y @Ci 5 ) 1<in i <is<in
(resp. (Zaesg sgn(a)eig(l) ® €5,y D Ei 3y V1<iy <in<is<n) Of T3V is a basis. In this basis and using
the lexicographic order on {1,...,n}?, S3p(g) (resp. A%p(g)) is upper triangular with diagonal
entries (Ai; Aip Aig )1<iy <ip<ig<n (T€SP. (Aiy iy Nig )1<iy <in<ig<n)-

Note that
1 = 2 3
| Z XA diy = ( )\i> +3 ) AN +2Z/\
1<1<12<i3<n =1 1<4,5<n
and
1 . 2 3
DO (in) L3y e +22>\ |
1<i1<i2<iz<n i=1 1<i,j<n

9Symmetric powers are defined in problem [VII.6.7}, and exterior powers in section[VI.9.1{of chapter VI.
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SO

and

xssv(9) = é(x(g)?’ +3x(9%)x(9) +2x(g°))

Xnsv(g) = é(x(g)?’ —3x(9°)x(9) + 2x(4°)).

VII.2.6 Using Mackey'’s irreducibility criterion (representations of

GLy(F,), part 1)

Let IF be a finite field, let G = G L(IF), and consider the subgroup B of upper triangular matrices
in G. Let k be an algebraically closed field of characteristic 0 and wy,ws : F* — kX two
morphisms of groups. We consider the representation p : B — k™ given by

(6 7) =@

(I). When is Indg p irreducible ? (Give a condition on w; and w.)

(2). Calculate the character of Indg p.

Solution.

(1). First we need a system of representatives for G/B. I claim that the matrix g. := (1 O)
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force Fand w := <(1) é) form such a system. Indeed, an easy calculation show that

geB = {(ﬁ {g) € GLy(F)|x #0and z = cx}

wB = {(2 i’) € GLQ(F)}.

Obviously, G L (IF) is the disjoint union of these subsets.

forc € IF, and

To see whether Indg p is irreducible, we use Mackey’s irreducibility criterion. First note
that p is irreducible.

Letc € F — {0} (if c =0, g. € B). Then, for every z = (8 Z) € B, we have

1 a — be b
Jet9e = \ela— (be+d)) be+d)-
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Bmchgc—lz{(g a_bbc),aeIFX, be]F},

and for an element x of B N g.Bg. ' written as above, we have p(z) = w;(a)wz(a — be)
and p(g;'rg.) = wi(a — bc)wy(a). These two representations of B N g.B N g, ! are 1-
dimensional, so they have a simple factor in common if and only if they are isomorphic,
and this is equivalent to w; = wo.

Also, wBw™! is the set of lower triangular matrices, so B N wBw~" is the set of diagonal
matrices, and, if + = (8 2), then p(ﬂf) = CU1(CL)W2(b) and p(w‘lxw) = CUQ(CL)OJl(b).

Again, these two representations of B N wBw~! have a simple factor in common if and
only if they are isomorphic, and this is equivalent to w; = wo.

Finally, Mackey’s irreducibility criterion shows that Indg p 1s irreducible if and only
w1 # wa.

Let  be the character of Ind$ p, and let X = {g., ¢ € F}U{w}. According to the formula
for the character of an induced representation, for every x € G,

x@) = > plg'zg).

geX, g lzgeB

Also, we know that x(z) depends only on the conjugacy class of z. We have three types
of conjugacy classes in G Ly(F) :

(1) If x is diagonalizable over FF, then it’s conjugate to a diagonal matrix (8 2) , with
a,b € F* (duh).

(i) If x is not diagonalizable over I but is diagonalizable over an algebraic closure of
IF, then the eigenvalues of z are in the unique degree 2 extension ' of IF. This [’ is
generated by the square root of an element v € F* — (F*)?, and z is conjugated to a

matrix of the form ( ¢ 2) ,witha € Fand b € F* (if b = 0, we are in case (1)).

ub

(i11) If = is not diagonalizable over any extension of [, then it is conjugated to a matrix of

the form (a 1) , with a € F*.
0 a
In case (i), we have w'zw € B and plw'zw) = ws(a)w;(b), and
a 0

-1 o . . _ : -1 _
g "xg. = cla—b) b) € Bifand only ¢ = 0 or a = b, with p(g. 'xg.) = wi(a)wa(D)

in both cases. So

| wi(@)wa(b) + wae(a)wi(b) ifa#b
x(x) = { (1+ [Far(@)wn(@)  ifa=b
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. 1 fa ub [ a+bc b
In case (ii), w'zw = (b a) ¢ B,and g, 'xg. = (b(u—c2) 0 be ¢ B, so

x(z) = 0.

In case (iii), w™'zw € B, and g_ 'zg. = (a_—i;zc " i c) is in B if and only ¢ = 0, and in

that case p(g.'zg.) = wi(a)ws(a). So

VII.2.7 Rationality problems

In this problem, £ is a field of characteristic 0 and G is a finite group. Let £ C {2 be an extension
of k. Remember that we have a commutative square of injective maps

Ri(G) —— Rq(G)

| |

(G, k) —=C(G,Q)

(By corollary [lI.1.2.9| of chapter 2 and problem [VII.2.1])
We will use this to identify Ri(G) (resp. Ro(G)) with its image in €' (G, k) (resp. €(G,)).

We say that a representation V' of G over €2 is realizable over k if there exists a k[G]-module
W and a Q[G]-linear isomorphism W ®;, Q ~ V.

(1). If V is a Q[G]-module, show that V' is realizable over k if and only if x1 € Rx(G), and
that in that case, any two k[G]-modules W, W’ such that W ®;, Q ~ V and W' @, Q ~V
are isomorphic (over k[G]).

Now suppose that €2 is algebraically closed, and write R(G) = Rq(G). (We have seen in class
that R (G) is independent of the choice of the algebraically closed extension € of &, hence the
notation.) Let R} (G) be the space of elements x € R(G) that take their values in k£ (when seen
as central functions on ). We obviously have R;(G) C R} (G), and we want to investigate the
difference between the two.

Let k[G] = Ay x - -+ x A, be the decomposition of k[G] into simple k-algebras. For every i,
write A; = M, (D;) with ; a division algebra and n; > 1, let V; = D" be the unique simple
A;-module, K; = Z(I);) (a finite extension of k) and m; = \/dimg, (D;) (this is an integer by
problem [VIL1.10(4), and it’s called the Schur index of the simple k[G]-module V;). We also set
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Xi = Xv; € €(G, k) and denote by ¢; € € (G, K;) the function that takes g € G to the reduced
trace of its image in A; (see problem [VII.1.10(7)). Finally, let 3; be the set of k-linear field
morphisms K; — (2.

2).
A3).
G

4).

(6).

(7).

Show that every |¥;| = [K; : k.
Show that (x1,. .., X,) is a basis of Rx(G).

Ifi € {1,...,r}and 0 € %;, we write A;, = A; R, (2, where we use the morphism
o : K; — Q to form the tensor product. (Note that A; is naturally a K;-algebra.) Show
that this is a simple -algebra of dimension n?m?, where m; = /dimg, D; (an integer by
(4) of problem [VIL.1.10), and that we have

Forevery i € {1,...,r} and o € ¥;, let W;,, be the unique simple A; ,-module and let
;- be its character.

Show that v; , = o 01);, that every irreducible representation of G’ over (2 is isomorphic to

a unique W, ,, and that y; = m; ZUEZZ' ;o foreveryi € {1,...,r}.

Let x € R(G). By (d), we can write y = >\, dezi @i oVi o, With a; , € Z. Show that
X € R}(G) if and only if, forevery i € {1,...,r} and every 0,7 € ¥;, a;» = G; .

Show that (m;'xi,...,m 'x,) is a basis of R,(G). (In particular, the quotient
R (G)/Ri(G) is finite of order m; ...m,, and R;(G) = R} (G) if and only if all the
ID; are commutative.)

Solution.

(1).

If vy € Ri(G), then we have y = ZWGSk(G) nw Xw, with the nyy in Z. If W and W’ are
in Sy.(G), then Homy (W, W) ®;, @ = Homge) (W @5, Q, W' @, Q) (by (1) of problem
[VIL.2.1), which is zero unless W ~ W’. So if W 2 W', the Q[G]-modules W @y, §2 and
W’ @y, 2 have no simple factor in common. For every W € Si(G), let Sy be the set of
M € Sq(G) that are simple factors of W ®; Q and write [xw] = >,/cq,, PwmXy in
Rq(G), with the nyy, 5, non-negative integers (and at least one of them nonzero).

As the Sy, are pairwise disjoint in Sq(G), there are no cancellations in the expression

Xv = Z nw Z nw,MXM,

WeSk(G) MeSw

so all the ny are nonnegative integers. Hence we can form the k[G]-module
V= @Wesk(G) Womw  We have xy = xvv = Xvigu 0V =~ V' ®;, Q, so Vis
defined over k.
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2).

3).

).

(5).

212

Let W, W' be two k[G]-modules such that W ®; Q@ ~ W’ ®; Q ~ V. Then
XW = Xwerd = XWwe. = Xw, o W ~ W’

By the primitive element theorem, there exists z € K such that K; = k[x]. Let f € k[T
be the minimal polynomial of x over k. Then K; ~ k[T]/(f), so f is irreducible,
deg(f) = [K; : k], and ¢ — o(x) is a bijection between ¥; and the set of roots of f
in Q.

We have seen in class that the classes of the simple k[G]-modules form a basis of the
Z-module R (G). So there is nothing to do.

The 2-algebra A; , is simple by problem|[VILT.T0[3)(c)(ii). (We can apply this because K
is the center of A;, as K; = Z(ID;) and A; = M,,,(D;), and

dimg(4;,) = dimg,(A;) = nf dimg, (D).

Fix 7. By the primitive element theorem, there is a + € K; such that K; = k[z]. Let
f € K[T] be the minimal polynomial of x, then we have an isomorphism k[T]/(f) = K;
givenby T' — z. The set of roots of f in Qis {o(z), 0 € ¥;}, and we get an isomorphism

K; @1 Q =~ k[T/(f) @ Q = QTI/(f) ~ Q™
by sendinga @ b € K; @ 2to (6(a)b),ex,. This gives an isomorphism
A @ Qo A @, (K0, Q) = [ Aie
oeY;

and we finally get

Q[G] ~ (H yar 2~ [ ] Aie-

i=1 =1 o€d};

By the previous question, the irreducible representations of GG over (2 are exactly the simple
A, ,-modules, for i € {1,...,r} and 0 € X,. There is exactly one for each i and o as
above, anit’s W, .

Foreveryiand o € ¥;,let V; , =V, ®g, (2, where we use o : K; — (2 to form the tensor
product. Then as above, we get an isomorphism

Vigr 0~ ] Vio,
gEY;

and the factor A; , of A; ®; (2 acts on V; ®y, 2 through V; ,. The unique simple A; ,-module
if of dimension n;m; over €2, and dimg(V;,) = dimg, V; = n;m? (because we know that
V; ~ D), s0 Vi o ~ W™, Finally, we get

Xvi= ) Xvi, =i Y i

oEY; 0E€Y;



VII.2 Chapter II exercises

It remains to calculate the ¢;,. Fix i € {1,...,r} and 0 € ¥;. Let a € A;. Then by
definition of the reduced trace, o(¢;(a)) is the trace of a ® 1 € A;,, where the trace is
defined by identifying A; , with the matrix algebra M,,.,,,. (€2). In other words, it’s the trace
of a ® 1 on the unique simple A; ,-module W, ,, that is, ¢; ,(a).

(6). For every g € GG, we have

- Z Z aiﬂg(wi(g))

i=1 oex;

We know that x(g) € k if and only if, for every 7 € Gal(2/k), 7(x(k)) = x (k). For such
a 7, we have

=3 aiom(0@il9) = DY ai-1.0(i(g)),

i=1 o€¥; i=1 o€X;

because a;, € Z (so 7(a;,) = a;,) and right multiplication by 7 (and 7~ 1) preserves
Y;. To finish the proof, we just have to note that, for every 0,0’ € ¥;, there exists
7 € Gal(2/k) such that o = o’

(7). By (3) and (6), a basis of R}, ((7) is given by the elements v, 9., fori € {1,...,7}.
By (5), those are equal to the m; ' ;.

VI.2.8 Hecke algebra

Let £ be an algebraically closed field of characteristic 0.

Let H C G be finite groups, and let x : H — k™ be a morphism of groups (i.e. a 1-
dimensional representation of H over k).

Let % be the space of functions f : G — k such that, for every h,h’ € H and g € G,
f(hgh') = x(hh') f(g). The convolution of two functions f; and f, of S is the function f; x f3
defined by :

(f1 Zfl ) fa(z™g).

JCEG

Using Frobenius reciprocity (theorem of chapter I) and problem | construct an
isomorphism (of k-vector spaces) Endyg (Ind 7 X) —> ¢, and show that it sends the multipli-

cation of Endy)(Ind$; y) to the convolution on 2. |

101 particular, the convolution of two functions of .77 is still in .77, and the convolution makes .7 into a k-algebra.
Both these facts can also easily be checked directly.

213



VII Exercises

Solution. Let & = Endk[g}(lndg k, ). Frobenius reciprocity gives an isomorphism of k-vector
spaces ¢ : & = Homyy(ky, Res% Ind$ &, ), and problem |VIIL.1.12| gives an isomorphism of
k[G]-modules Ind$, = .%, where

F ={f:G—klVhe H, g€G, flhg)=x(h)f(g)},

with the action of G given by (¢gf)(z) = f(xg) for any g,z € G and f € .%. Putting these two
results together, we get an injective k-linear map ¢ : & — %, u — @(u)(1). (This map is
injective because ¢(u) € Homy) (ky, Res% Ind% k, ) is k-linear, hence uniquely determined by
the image of 1.) Note that 77 C .% (as k-vector spaces).

I claim that the image of ¢ is . Indeed, let u € &. Then ¢(u) is H-linear, so, if f = ¢ (u),
then for every h € H,

hf = h(p(u)(1)) = @(u)(h- 1) = p(u)(x(h)) = x(h)e(u)(1) = x(h)f,

and hence for every g € G,

(hf)(g) = fgh) = x(h)f(g).
= (u) is indeed in . Conversely, let f € J#, and define a k-linear map
— Res% Ind k, by setting u(1) = f. Then for every h € H, for every g € G,

u(h-1)(g) = (x(h)u(1))(9) = x(h) f(9) = f(gh) = (hf)(g) = (hu(1))(g),
so that wu is actually k[H]-linear. We obviously have i(u) = f.

So f
u:k,

Finally, we have to check that ¢) sends the composition on & to the convolution on 7. Let
uy,us € &, and let fi = ¥(uy), fo = ¥ (ug). First we identify ¢ (ujus). Remember that we have
an injective map of k[H]-modules

ky = k[H] @k by — k]G] @y by = Res Ind§ &y,
and that ¢ is given by restriction to &k, C Res$ Ind% ky. So p(ujus) is the composition

u ResSu
by 2% Res@ Ind$ &y, 5" Res$ IndS, k.

Next we identify the endomorphism of .% corresponding to u;. Remember that the morphism
x(h)v ifx=hg, he H
0 otherwise

direction, if (g;)ics is a system of representatives of G'/H, then the morphism .% — Ind% k,

sends f to > ,c;9: ® f(g;'). (This is from problem [VIL1.12) So the endomorphism of .#
corresponding to u; sends [ € .% to

a : Ind% k, — .F sends g ®wv to the function z — { . In the other

auy (Zgi ® f(g{1)> =a (Z g (1 f(gf))) ~a (ng ® so(ul)(f(gfl))>

icl icl icl
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=Y g ) =D g ) gif)-

el el

We get ¢ (ujus) by applying this endomorphism to f5. So

U1U2 Z f2 97, ngl

el

and, for every x € G,

Ylurug)(x) =Y folg; ") filwg:) = Zﬁ z9) f2(g

i€l gEG

On the other hand, for every x € G,

(f1 il Zfl ) f2((g) ).

g'eG

Making the change of variables ¢’ = xg, we see that these two sums are equal.

VII.2.9 Multiplicity-free modules

We say that a k[G]-module V' is multiplicity-free if the multiplicity of every simple k[G]-module
inVisatmost1 (i.e. V = W; & ---d W,, where the IW; are pairwise non-isomorphic simple
k[G]-modules).

Show that V' is multiplicity-free if and only if Endyg)(V') is commutative.

Solution. Write V = @y g, () W ™). Then

Endye(V) = [ Maw
WESk )

and this is commutative if and only n(w) < 1 for every W € Si.(G).
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VII.2.10 Hecke algebra and multiplicities

We use the notation of problem |VIL.2.8| For every g € G, we write H, = H N gHg ' and
X! Hy — k™, h— x(g7'hg). Let o : G — G be a bijection such that :

- a(gh) = a(h)a(g), Vh, g € G;
- a(H)=H,and x o oqg = X;
/

- forevery g € G, if Hompy, (x|n,, x?) # 0, then there exists g’ € HgH such that a(g') = ¢'.
We define a k-linear automorphism « of ¢ by sending f to a(f) = f o a.

(1). Show that « does indeed any f in 5 to an element of ., and that
a(fi* f2) = alfe) xalf1), Vi, f2 € A.

(2). Show that « is the identity map on .7Z. (Hint : Can you find a basis of .77 ?7)

(3). Show that Ind$, y is multiplicity-free.

Solution. We first note that a(1) = «(1?) = «(1)?, so a(1) = 1. Consequently, for every g € G,

1L=a(l) =a(gg™") = alg)alg),
so that a(g™!) = a(g) ™t
(1). The first part follows easily from the first two conditions on «.
Let x € G. Then

Gy # 2)(0) = (fu * f) () = ﬁ S fi(9) falg~ ().

geG

On the other hand,

@(f2) * a(f) (@) = ﬁZfz(a(g))fl(a(g_lx))

geG

= 1 2 hlelo) fila()ato) )

geG

- I_;H > A ) ax) = alfi * f2) (@)

g'eG

(using the change of variables ¢ = a(z)a(g)™).

this due to somebody ?
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(2). For every g € G, let e, be the characteristic function of HgH. Note that this function
depends only on the class of g in H\G/H, and that >,/ €, = 1 (the constant
function 1 on G). If f € JZ, then f = deH\G/H feg, and fe, € S for every g. To
show that a(f) = f, it suffices to show that a(fe,) = fe, for every g € G. In other
words, we may assume that f is supported on some double class HgH, with g € GG. By
the first two conditions on «, a(HgH) = Ha(g)H, so a(f) is supported on the double
class Ha(g)H. There are two possibilities :

(a) If there exist h, i € H such that hgh' = g, this means that H, = HNgHg™' # {1}.

If f(g) # 0, then x(hh') = 1 (because f(g) = f(hgh') = x(hh')f(g)). so
x?(h) = x((W)~*) = x(h), so Hompy, (xn,, x?) # 0. By the third assumption on «,
there exists ¢’ € HgH such that a(g') = ¢’. We have a(f)(¢') = f(a(d)) = f(d)-
As a(f) and f are both in 7 and supported on H ¢’ H, this implies that a(f) = f.

(b) Otherwise, H, = {1}, so Homp, (x|#,, x?) = k # 0, so there exists g’ € HgH such
that a(g’) = ¢’. As in the first case, this implies that a(f) = f.

(3). By (1)and (2), fi*f, = fi*fiforevery fi, fo € 7. By problem|VIL.2.8, Endyg (Ind% x)
is commutative. By problem [VII.2.9| this implies that Indg X 1s multiplicity-free.

O

VIl.2.11 Characters of a finite field

Let I, be a finite field. We write @q for the set of group morphisms ¢ : (F,, +) — k™. Lety # 1
be an element of F,. Show that the map

F, — @q
a +— (z+— YP(ax))
is a bijection.

Solution. Let’s call this map u. First we show that u is injective. Let a,b € [F, such that
u(a) = u(b). Then, for every z € F,, ¥((a — b)z) = (ax)(bx)™" = 1. As F, is a field, if
a—b # 0, we get that ¢)(y) = 1 for every y € F,, which contradicts the fact that {» # 1. So
a—b=0,iea =0>.

Now note that the group F, is commutative, so all its irreducible representations over k are of
dimension 1, so @q is actually Sy, (F,). Also, the conjugacy classes in [F, are singletons (again us-
ing the commutativity of the additive group F,), so there are |F,| of them, and we get |@q| = |F,|.
Asthemap u : F, — @q 1s injective, it is automatically bijective.

O
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Vil.2.12 Representations of GLy(F,), part 2

Let F, be a finite field, let G = G Ly(F,),let N = ((1] T) C G. We identify N with the additive
group F, by sending x € F, to ((1) T) For every ¢ € @q — {1} (see problem |[VIL.2.11)), we

write Vy, = Ind§ +.

(1).

Show that, if 1, ¢’ € F, — {1}, then V, ~ V..

This representation Vy, is called the Gelfand-Graev representation of GLy(F,).

We fix ¢ € F, — {1}.

(2).

3).
4).
).
(6).
(7).

Show that V,, is multiplicity-free. (Hint : o (‘Z b) _ (d b)_ |

d c a
Calculate |G/, find all the conjugacy classes in GG and their cardinalities.
Calculate the character of V.
Show that V,, >~ (Vj,)*.
Calculate the number of simple components of V.

Let TV be a simple k[G]-module. Assume that ¢ > 2. Show that the following are equiva-
lent :

(@) (W,Vy)e # 0 (ie W is a simple component of V;);
(b) (1), Res§ W)n # 0;
(c) forevery ¢’ € @q — {1}, (¢, Res§ W)y # 0;
(d) dimg (W) > 2.
(You can admit the following useful facts : (1) The commutator subgroup of G is S L4 (F,).

(2) The group SLy(IF,) is generated by N and by N’ := (i 8) )

(If ¢ = 2, then GLo(F,) = SLy(F,) ~ &3, and the useful fact is not true anymore.)

Solution.

(1). By problem |VIL.2.11] there exists a unique a € I, such that ¢)'(x) = v (az) for every

218

v € Fp. Asy/ # 1, a # 0. Lett = (8 (1)) € G. Then, if n = ((1) f) € N,

1 ax
0 1
u(g ®@z) = (gt) ® x, forevery g € G and x € k,. Then:

we have tnt™! = ), so that ¢'(n) = (tnt™'). We define u : V;, — V, by
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- u is well-defined : Let n € N, g € G, v € ky. We have to show that
u((gn) ® x) = u(g ® (nz)). But

u((gn)®z) = (gnt)@z = ((gt)(t"'nt)) @z = (gt)@(Y'(t"'nt)z) = P(n)((9t)®2)
(using that t~'nt € N), and

ulg © (nx)) = u(P(n)(g © x)) = ¥(n)((9t) @ x).

- w is obviously k[G]-linear.

- u is an isomorphism, because it has an inverse v given by v(g ® z) = (gt ') @ x
(The proof that v is well-defined is similar to the proof that u is well-defined.)

(2). Let’s use the hint and apply problem |[VII.2.10, with o given by « (Z 2) = (i 2)

). Then w = w™!

01
10
and a(g) = wglw for every g € G, so the first condition is also clear. Obviously the
third condition for ¢ € GG depends only on the double class NgN, so we start by finding

representatives for these double classes. Let T = <* 0) IfG = <a O> € T, then an

The second condition of problem |[VIL.2.10|is clear. Let w = (

0 0 b
easy calculation gives

NgNz{(i ?i) €G|z:0,x:aandt:b}

and

NwgN = {(i ZZ) EG|z:aandy—t_1xz:b}.

= (E NtN) N (E Nth> :

Lett = (O b) € T'. Consider the double class NtN. We have tNt~! = N, so N, = N,

and " is given by

(6 D)= (6 ) = (6 )

so Homy, (1, 1) # 0 if and only ¢ = ¢!, if and only if a='b = 1, ie @ = b. In that case,
we have «(t) = t.
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Now consider the double class NwtN. We have wtN (wt)™' = wNw™! = (i 0), SO

Ny = {1}, so HOmet(XINwt’Xt> = k # 0. On the other hand, wt = <COL b)’ 50
a(wt) = wt.

(3). The cardinality of G is the number of bases in F, ie (¢° — 1)(¢° — ¢). We already found
representatives of the conjugacy classes in the solution of (2) of problem [VII.2.6] they are

a 0O
(@) t = (0 b )
a # b, then Zo(T) = T, so |G/Za(t)| = q(q + 1). If a = b, then Z5(t) = G, so
G/ Za(t)] = 1.

a,b € Fy. The corresponding class has cardinality |G//Zg(t)]. If

(b) g = (Sb 2) . where u is a fixed element of F;* — (F;)* and a, b € FF, are such that

a? — ub® # 0 and b # 0. Then we easily see that
a’ b/ . ! 1/ N2 /\2
Za(g) = ub o , witha', b € F st (a/)* —u(b') #0;,

s0 | Za(g)l = ¢* — Land |G/ Zc(g)| = ¢* — ¢.

a 1 Ty
c)n = (O a)’ a € Fy. Then Zg(n) = {(O x),x,yelﬁ‘q, x%()}, SO
1 Ze(n)] = q(g — 1) and |G/ Zg(n)| = ¢* — 1.
(4). We use the formula for the character of an induced representation. The only conju-

gacy classes that intersect N are the ones with representatives (é (1)) and (é D So

xv, (9) = 0if g is not conjugate to one of these two matrices. Also,

w (5 1)) = dimetvs) = 16781 = @ - vt - v,

Finally, if n = <(1) D, then xv, (n) = ﬁ D gcC, gng-1eN x(gng™'). We see easily that

gng~' € N if and only if g € B, where B = (* :) If g = (“ b) € B, then

0 0 d
1 ad™?
gng~t = (0 1 > So

v (n) = > Ylad ) =(g-1) ) W) =1-q,

a,deF; beF, z€Fy
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because

S @) =14+ Y (@) = —1+ (1, 1)s, = 1

z€Fy z€lF,
(as vy # 1).
Note that this calculation gives another proof of the result of (1).

(5). It is enough to show that xy, = Xv;- But xy: (9) = xv, (g7 "), for every g € G. Let
1 —1
0 1
Yy, (n™') = 9y, (n). By (4), this gives the desired result.

n be as in the solution of (d). As n~! = < ) is in the conjugacy class of n,

(6). I Vy = Dyyes, ) W™, then (Vy,, Vo = Yives, () Miv- BY (2), Vyy is multiplicity-
free,s0 ) ;¢ SH(G) n¥ is the number of simple components of V;,. So we have to calculate
(Viy, Vi) By definition and using (3), (4) and (5), (Vy, Vi) is equal to

1 2 1 2 2 20 2
= 2 Xv(9)” = ¢ —1g-1)+1-9)7(¢ —1)) =q(¢g—1).

(7). By Frobenius reciprocity, (W,Vy)e = (¢, Resy W)y = dimy, Homyy (¢, Res ).
This gives the equivalence of (a) and (b).

Using Frobenius reciprocity as above and (1), we get the fact that (a) implies (c). As (c)
obviously implies (b), it also implies (a), so (a) and (c) are equivalent.

Suppose that (W, V)¢ = 0. Then, using (1) and the fact that (a) implies (b), we get
(¢, Res§ W)y = 0 for every ¢/ € @q — {1}. So N acts trivially on . Let N’ be as in
the useful admitted fact, the N’ = wNw~! with w as in the solution of (2), so N’ also acts
trivially on W. As SL(F,) is generated by N and N’, SLy(IF,) acts trivially on W, so
the action of G' on W factors through G'//SLy(F,) — F; (the isomorphism being given by
the determinant). As IF; is abelian and W is irreducible, dim; W = 1. This show that (d)
implies (a).

Suppose that dimy (1) = 1. Then the action of G on W is given by a morphism of groups
G — k*, so it factors through the abelianization of G, which is G/S L4 (F,) by the useful
fact. As N C SLy(IF,), this show that IV acts trivially on IV, so (b) is false. This show that
(b) implies (d).

O

VIl.2.13 Representations of GL,(F,), part 3

Let F, be a finite field, G = GL4(F,), B be the subgroup of upper triangular matrices in G, N
be the subgroup of unipotent upper triangular matrices in GG (ie elements of B with both diagonal
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entries equal to 1), T be the subgroup of diagonal matrices in G.

If wy, wo are morphisms F* — C*, we used them in problem|VII.2.6|to define a representation

I(wi1,ws) of G (that was denoted by Ind% p there). We saw that I(w;,w,) is irreducible if and
only if wy # ws.

(1). Show that I(1,1) = 1§St, with St an irreducible representation of GG. (This representation
St is called the Steinberg representation.)

(2). Calculate the character of St.

(3). For every morphism of groups w : Fy — C*, show that
I(w,w) = (wodet) ® ((wodet) ® St).

(4). We say that an irreducible representation V of G is cuspidal if V™ = {0}. Show that V'
is cuspidal if and only if it is not a simple constituent of one of the /(w;,ws). (Simple
constituents of the I(wq,ws) are called principal series representations.)

(5). Find the number of isomorphism classes of cuspidal representations of G.

(6). Suppose that ¢ > 2. Let V' be a cuspidal representation of G. Show that dim¢ (V) = g — 1.
(Hint : for every nontrivial morphism ¢ : N — C*, show that (1, Res% Vin=1)

Solution.
(1). Let V =1I(1,1). We have
1
(V,V)e = (1,Res§ V) p = Bl > xvlg).
geB
We have calculated xy in problem [VIL.2.6| If g = (8 2) with b # 0, then xy(g) = 1,
and there (¢ —1)? such elements in B. If g = (8 2) ,then xv/(g) = 14 ¢, and there ¢ — 1
such elements in B. If g = 8 with a # ¢, then xy(g) = 2, and there (¢ — 1)(¢ — 2)q
such elements in B. Also, |B| = (¢ — 1)%q. So finally
1
V-Vle = g0 - D+ (a+1(g—1)+2(a—1)(g—2)a) =2,
and this implies that V" has two irreducible components. As
Homeg(V, 1) = Homp(1,1) = C,
one of these components is 1. So V' = 1 & St, with St an irreducible representation of G.
(2). Wehave xs; = x7(1,1)—1. So xst(g) = 1if g has two distinct eigenvalues in 'y, xs¢(g) = ¢
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.
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VII.2 Chapter II exercises

Let xy = wdet : G — C. Then
X®(x®@St)=x®I(1,1) =ndG(xp @ 1) = I(w,w).
For wy,ws : F ; — C*, we use the same notation w; ® ws to denote the map B — C,

0
representations they define.

a b . i .
( c> — wi(a)ws(c), and its restriction to 7. We also use the same notation for the

I claim that, for every C[B]-module W, the inclusion
Homyp(w; ® wy, W) = Homp(w; ® wy, W) € Homp(w; ® wy, W)

is an equality. Indeed, NV acts trivially on w; ® ws, so every element of Homp(w; ® wy, W)
has image contained in W%,

Now let’s apply this to a representation V' of G. For every wi, w, : F — C*, we have
Homg (I (wy,ws), V) = Homp(w; ® wy, ResG V') = Homyp(wy @ wy, (Res§ V)V).

If V' is cuspidal, then this is 0 for any w; and ws, so V' cannot be a simple constituent of a
I(w1,ws). If V is not cuspidal, then the representation (Res% V)™ of T is not trivial, so it
contains some w; ® ws, and then we have a nonzero morphism /(wy,ws) — V. As V is
irreducible, this morphism is surjective, so V' is a simple constituent of I (wy, ws).

First let’s calculate the number of isomorphism classes of irreducible representations of
(. This is the same as the number of conjugacy classes in G. We have ¢ — 1 elements in
the center of G, ¢ — 1 conjugacy classes of non-diagonalizable elements, (¢ — 1)(q¢ —2)/2
conjugacy classes of elements that have distinct eigenvalues in F,,, and (¢*—¢) /2 conjugacy
classes of elements that have eigenvalues in F 2 —IF,,. So this gives (¢—1)(g+1) conjugacy
classes in total.

Now let’s count isomorphism classes of non-cuspidal irreducible representations. If
wy,wsy : FiY — C* are distinct, then [(wy, ws) is irreducible. Moreover, the calculation
of the character of I(wy,w,) in (2) of problem shows that I (w;,ws) ~ I(w},w})
if and only if (wy,wy) = (W), wh) or (wh,w)). So we get (¢ — 1)(q — 2)/2 irreducible
representations this way. For every w : F* — C*, we also get the representations w o det
and (w o det) ® St, hence 2(q — 1) representations in total. So the number of isomorphism
classes of cuspidal irreducible representations is

(q—=D(g+1)—(g—1)(¢g—2)/2-2(¢—1) =q(qg—1)/2.

By (7) of problem [VII.2.12] for every nontrivial morphism ) : N — C*,

(, Res§ V) = (Ind§ v, V)e = 1.
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As VNV = 0, Res$ V is a sum of nontrivial irreducible representations of N. As N is
commutative, all these representations are of dimension 1. By the calculation above, every
nontrivial dimension 1 representation of /N appears in Res% V' with multiplicity 1. So
dimgV =|N|-1=¢—1.

[l

Vil.2.14 Representations of GLy(F,), part 4

We use the notation of problem [VIL.2.13| Fix an element u € F — (F)?, and let

E= {(jb 2) abe Fq} C My(F,).

Ifg= (5[) 2) 1s an element of E, we set

_ a —b
g_(—ub a)EE
and N(g) = a®* —ub®* € F,. Wealsoset S = ENG.

(1). Show that E is a commutative subring of M,(IF,), that it is isomorphic to F 2, and that this
identifies S with IF;Q.

(2). Show that the map £ — FE, g — g, is a morphism of rings and that N : § — Fx is a
morphism of groups.

(3). Fix a nontrivial group morphism ¢ : F, — C*. If f : E — C is a function, we define
another function f : £ — C by

fl@)=—q ) fy)u(Tr(zy)).
yeE
Show that f(z) = f(—x).
(4). We say that an element u of G is unipotent if u — 1 € M,(F,) is nilpotent.

Let A be a maximal commutative subgroup of G, and suppose 1 is the only unipotent
element of A. Show that there exists ¢ € G such that A = gT'g ' or A = gSg~ L.

(We will use the group S' to construct the cuspidal representations of GG in the next problem.)

Solution.
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Note that, if ¢ is even, then IF; = (IF‘qX )2. So the problem is empty in this case, and so we
may assume that g is odd.

The set E is clearly stable by addition and substraction. If g = <z?b Z and
/ / , , , ,

;o (ab S aa’ +ubb!  ab +a'b '

g - (ub/ CL/)’ then qg = gg = (u(ab’—i—a’b) aa’+ubb’ € FE and, if

det(g) = N(g) #0,then g~ = N(g)~'g € E.

So E is a commutative subring of M»(FF,) and its set of invertible elements is S. Note also
that £ has ¢? elements.

Letg = (jb 2) be non-invertible. Then a® = ub®. As u is not a square in F, this is only

possible if a = b = 0, ie ¢ = 0. So E is a field with ¢? elements, and hence is isomorphic
to F,2. We have already seen that S = £,

The map N : S — F; is a morphism of groups because it is the restriction to S of
the determinant on GLy(IF,). Showing that g —— 7 is a morphism of rings is an easy
calculation. (We can also notice that, by (1), this morphism identifies to the action of the
nontrivial element of Gal(F,2/FF,) on F2.)

-~
~

Let F'= f. Letx € E. Then
=~ JWU(T@y) =2 > F)(Tr(m)(Te(@y)).
yek y,2€E
As Tr(g) = Tr(g) forevery g € E, Tr(Ty) = Tr(2y) = Tr(yz) forevery y € E. As ¢ is

a morphism of groups from £ to C,

r)=q7 Y ()Y e(Tr(mx + 2))).

z€E yeE

If z is fixed, then y — ¥(Tr(y(z + 2))) if a morphism of groups £ — C, trivial if and
only if x + 2 = 0. So

_ ] 0 ifr4+z2z#0
S ot on={ b e li7)
yeE
Finally, we get F'(z) = f(—z).
Suppose that A contains an element x that is not diagonalizable (over Fq). Then, after

replacing A by a conjugate, we may assume that z = <((l) clz) , with @ € Fy. Then, for
every r € Z,
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1 —a?
0 1
every element of A is diagonalizable.

so 97! = € A — {1} is idempotent, which contradicts the hypothesis. So

If every element of A has eigenvalues in I, then there exists g € G such that A C gTg~".
By maximality of A, A = gTg .

Otherwise, there exists h € G'Ly(F,2) such that, for every x € A, h~txh is diagonal in
GLy(F,2). Fix a square root o of v in Fp2. Let x € A. As x € GLy(F,), the diagonal
entries of h~'zh are of the form a, + ab, and a, — ab,. Let S’ be the set of elements of
G Ly(F2) that are diagonal with diagonal entries equal to a+ab and a—ab, with a, b € F;
note that |S’| < ¢* — 1. Then h~'Ah C 5. Similarly, there exists i’ € G Ly(F;2) such that
WSKW™' c S As|S| = ¢*> —1 > |5'|, we have S" = W'Sh'~', so A C (hh')S(hh')~".
We are not done because we don’t know that hh' € G Lo(F,). If we could find g € G such
that A C gSg~, then we could conclude by maximality of A that A = gS¢g~'. Note that
A is isomorphic to a subgroup of S ~ IF;Q, so A is cyclic. Let x be a generator of A. We
just need to find g € G such that g~'zg € S, and then we’ll have g~ 'Ag C S. But z has
eigenvalues of the form a + ab and a — ab, with a,b € [F, so it cnojugate in GLy(IF,) to

the element ( ¢ b> of S, and we are done.
ub a

VI.2.15 Representations of GL,(F,), part 5

This is a continuation of problems [VIL.2.13|and [VII.2.14] and we use the notation of these prob-
lems. We also suppose that ¢ is odd, and we fix a nontrivial group morphism ¢ : F, — C*.

(D.

Q).

226

Let x : S — C be a morphism of groups. We let

#(x)={f: E—C|f(yz) = x(y) " f(z) Yo,y € E satistying N(y) = 1}.
Calculate dimc¢ 7 ().

Forevery a € F; and ¢ € F, let

and

n(c) = (é f) |

Let H = SLy(FF,) C G, and let H' be the group generated by elements t,, a € F, n,,
c € F,, and s, subject to the following relations :

ta1 tag - talazu ncln02 - nC1+627



3).

.

(5).

(6).

VII.2 Chapter II exercises

—1
tancta = Ng2c,
Stas =T_g-1,

and, if ¢ #£ 0,

SMeS = t_o—1M_ ST _(—1.

Show that there is a morphism ¢ : H' — H that sends ¢, to t(a), n. to n(c) and s to w,
and that it is an isomorphism.

(Hint : Write By = BN H, Ny = NNH, T = Ty. When you're trying to con-
struct an inverse of p, show first that H = By U BgywBpy, and that By = Ty Ny and

Show that there exists a unique representation p of H on # (x) such that, for every
feW(x)andzx € E:

o Ifac F;,

o Ifcc I,

o (p(w)f)(x) = f(z).
(Remember that ]?is defined in problem |VIL.2.14(3).)
This is (a particular case of) the Weil representation.

About checking the last relation : No, you don’t need to know how to calculate Gauss sums.
It’s easier than it seems. Look more closely at that sum, and remember the properties of
N : ' — FF, that you (hopefully) proved in (1). (For example, that this map is surjective.)

Show that there is a unique extension of p to a morphism of groups p : G — GL(# (x))
(ie a representation of G on # ()) such that, for every a € F*, every f € # (x) and

r € F,
(o (5 1) 1) @ =xorsie),

where b is any element of .S such that N (b) = a.

Suppose that y is not trivial on the subgroup Ker(V) of S. Show that # () is cuspidal
and irreducible.

Show that every cuspidal irreducible representation of G is of the form # (), for x satis-
fying the condition of (5).

(Hint : Calculate the character of W (x) on (8 611) €G.)
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Solution.

(1).

2).

228

Let £' = Ker(N : EX — Fy) be the set of norm 1 elements of E. Let’s calculate
the cardinality of E! for later usage. Things will be easier if we write an isomorphism
F, = E more explicitely (see problem [VIL.2.14(1) for the existence of such an isomor-
phism). Let o € F 2 be a square root of u. Then F . = F,[a], so every element of £ can
be written in a unique way as a + ab, with a,b € [F,. We defineamap ¢ : F . — E by
;b 2 . Then this is obviously a bijection that preserves 0, 1 and addition.
It’s also compatible with multiplication by the explicit calculation of the product of two
elements of F in the solution of (1) of problem |VII.2.14. Now note that a?? = u? = u, so
a? is also a square root of u; as a? # « (otherwise o would be in IF,;), we have o = —a.
So, for every a + ab € Fp,

q

atab) =

(a+ ab)? = a? + a?b? = a — ab.

In other words, for every ¢ € E, g = g% and N(g) = ¢?'. As E is a field,
this means that E', the set of zeros of the polynomial 2?1 — 1 in E, has at most
q + 1 elements. If we know about separable polynomials, it’s obvious that the poly-
nomial z9"! — 1 is separable and hence |E'| = ¢ + 1. Otherwise, we observe that
[EY = [EX[IN(E*)|™h > (¢* = 1)/(¢g — 1) = ¢+ 1 and so |E'| = ¢+ 1. (Also,
we proved that N : E* — [F¢ is surjective.)

An element f € #(x) is totally determined by its values on a set of representatives of
E/E'. Let (z;);cr be a set of representatives of E*/E?'; then (0,z;,7 € I) is a set of

representatives of E/E'. For every i € I, there exists a unique function f; € # (x) such
that f;(e;) = 1 and f;(e;) = 0if j # i; it’s given by

filz) = { X<%)

1 ifr =vye;, ye B!

otherwise.

If x;z2 = 1, then the function f, that sends 0 to 1 and every element of £ to 0 is also
an element of %/ (x). If x ;1 # 1, then, for every f € #'(x), f(0) = 0 (indeed, choose

y € E' — {1} such that x(y) # 1, and note that f(0) = f(y0) = x(y) "' £(0)).
Finally, we see that if x|z = 1, then the family (fo, fi, i € I) is a basis of #(x), so

dime #/(x) = 1+ |EX /B =1+ (¢ = 1)/(¢ + 1) = ¢.
If g1 # 1, then the family ( f;);c; is a basis of #/(x), so

dime #/(x) = |[E*/E'| =q - 1.

To show that ¢ exists, we just have that the images of the generators satisfy the relations
in H, which is an easy calculation.
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To show that ¢ is an isomorphism, we construct its inverse ¢. Define v : H — H' by

(e )~ e

We have 1o = id g/, because this is true on the generators on H’. And an easy calculation
shows that ¢ o 1) = idy. So ¢ is bijective. As it is a morphism of groups by construction,
it’s an isomorphism of groups.

By (2), we can instead check that there is a unique morphism of groups
P+ H — GL(# (x)) (which will be p o ¢) that is given by the formulas above on the
genetaors t,, n. and s. That is, we just have to check that the images of these generators in
W (x) satisfy the relations defining H'.

Let’s write 7, = p'(ta), N. = p'(N.), S = p/(s). Let f € #(x) and x € E. The, if
al,aQEFq and ci, ¢y € Iy,

(Toy Top f) () = (Ta, [)(ar) = f(aras) = (Taya, f)(2)

and

(Ney Ney f)(2) = (N (2)cr) (Ney f) () = (N(@)er ) (N(2)e2) f(2) = (Neyyer ) (),

which gives the first two relations.

For every a € Fy and ¢ € F,, noting by T ' — T,1 by the first relation and that
N(ax) = a*x by definition of N, we have

(TNT, f)(@) = (NeTo-1 f)(az) = (N (az)e) (To-1 f)(ax) = »(N(2)a’c) f (@),
which is equal to (N,2.f)(z). This gives the third relation.

For every a € F, we have

=—¢ "> f)e(Tr@@y) = —¢ " Y fla 'y )(Tr(@y) = (T f)(x)
yer y' el
(using the fact that @t = aT and the change of variables ' = ay). Also, problem

VI1.2.14(3) implies that & = T__ h for everyh € W (x). So

ST,Sf=ST.f = STyry =Tyr [ = Ty |,
and this gives the fourth relation.

Finally, let ¢ € qu. Then

(SN_c—i f)(@) = —q ") (¢ ) () (Tr(Ty)),

yeE
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230

SO
(T_ct N_oSN_c1 f)(x) = (= cN( - ))(SN —1f)( - )
—q (="' N(2)) Y (—c — ¢ Te(zy)) £ (y)
— ¢ Y (e (N(z) + N(y) + Te(Ty)) f(y)
= ¢ ") ("N +y)f(y).
On the other hand, N
(NSf)(x) = Y(eN(x)) f(2),
(SNSF) (@) = —g ') (N (y)(Te(@y)) f(y)
= ¢77 ) P(eN(y) + Tr(@y) + Te(y2)) f(2).

Noting that
cN(y)+Tr(Ty) + Tr(gz) = cN(y) + Tr(y(x + 2)) = cN(y+c Hz+2)) —c ' N(z+2),

we get
(SNSF)(x) =g ) (= "N(z+2))f(2) D_w(eN(y + ¢z + 2))).

Foreveryt € E, let

e,t) =Y ¢(eN(y+c't)).

yerR

Then doing the change of variables y' = y + ¢ 't, we see that X(c,t) = X(c,0). Also,
we have shown in (1) that N : E* — F is surjective, so there exists d € E* such that
N(d) = ¢, and we have

0) =Y (cN(y)) = Y (N (1,0).

Finalement, let’s calculate > := 3(1,0). Remember that we showed in (1) that
N : E* — F7 is surjective and that its kernel E* has cardinality ¢ + 1. So we get

S =Y o(N(y) =) +[E' Y ¢(a) =1+ (¢+1)(-1) = —q,
yek a€lFy
because, as ¢ : F, — C* is a nontrivial character,

S wla) =1+ Y w) = -

a€Fy beFy
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Coming back to the calculation of SN.S f, we get

(SNeSF)(w) =q 2D (= 'N(z+2)f(2)(=q) = ¢ " > _ (¢ ' N(z+2))f(2),

z€E zeE

which is indeed equal to (7.1 N_.SN_.-1 f)(z), and so the fifth relation is also proved.

First, note that if f € #(x), + € E and b,/ € FE are two elements such that
N(b)=N(') € F ', thenb'b~" € E,

X f V) = x(®) (O )bx) = x(B)x (b)) f(br) = x(b)f (bx).
So the formula given in the statement of (4) does not depend on the choice of b.

a 0
0 1

generated by [ and the '(a), a € F, which gives the uniqueness of the extension of p to
G.

If a € F, let T}, be the linear automorphism of % (x) defined in the statement of (4). We
define p : G — W' (x) by taking p(g) = Ty, (' (det(g)” 1)g). (This is the only possible
choice.) We have to check that this is a morphlsm of groups. If g1, g2 € G, and if we set
a; = det(gz) and hz = t/(ai)_lgi, then

For every a € F, write t'(a) = ) Then, if g € G, t'(det(g)"!)g € H, so G is

9192 = t'(ar) bt (ag)hy = t'(araz) (' (az) "' hat' (az))he

and t'(az) "'hit'(a2). As we know that p|p is a morphism of groups, we need to check two
things :
T.T =T

a1 az aiaz

and
p(t'(az) ™ hat'(az)) = T, . p(h1)T,,.

For the first equality, choose by, by € E such that N (by) = a1, N(bs) = as. Let f € #/(x)
and z € E. Then

(15, T2, 1) (@) = x(b1)(T5, £) (brx) = X (b1b2) f (brba) = (1,4, f) ().

For the second equality, take @ € [F; and h € H. We want to show that
T' i p(WT. = p(t'(a*))ht'(a)). As T, = T.”', it’s enough to check this equality
for h one of the generators of H given in (b). Fix b € E such that N(b) = a, and fix
fe#(x)andz € E.

Suppose that h = t(a;), with a; € F. Then t'(a)”'ht'(a) = h, and

(Top(WTof)(x) = x(b) (Lo, Tof) (b~ 2) = x (b~ NTaf) (@b x) = flarz),
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(5).

(6).

232

50T Ty, T.f =T, f.

ai1—a

Suppose that h = n(c), with ¢ € F,. Then ¢'(a')ht'(a) = n(a"'c). On the other hand,
(T!_ N.T, f)(x) is equal to

X(b) N0 ) = x(0) " (eN (b ) (Tof) (b~ x) = p(ca™ "N (x)) f (),

sowedogetT! N1, f = Ny-1.f.
Finally, suppose that & = w. Then

0 a!

e —1 / _ _ —1

t'(a " )ht'(a) = <—a 0 ) =t(a " )h.

We need to calculate the Fourier transform of the function x — f(bx). It sends x to

—q 12]" by)Y(Tr(Ty)) -1 Z F@Hw(Te(zby)) = A(l_fla:).

yekE y'er
So (ST, f)(x) = x(b)f(b " x), and

(To STof) (@) = f(b~' @) = fa™ ) = (T8 f)(x).

This finishes the proof.

First we calculate % (x)". Let f € # (x) such that N(c)f = f for every ¢ € F,. Then, if
x € E,¢Y(cN(z))f(xz) = f(x) for every ¢ € F,. This implies that f(x) = 0 if x # 0. As
Y # 1, we know that f(0) = 0 (see the proof of (a), but this is pretty easy). So f = 0.
So we have shown that % (x)" = 0.

This implies that every irreducible component V' of #/ () also satisfies V7, ie is irre-
ducible cuspidal. But we have seen in problem [VIL.2.13(6) that every irreducible cuspidal
representation of GG has dimension ¢ — 1, and we have seen in (a) that % () has dimension
q — 1 (because x|z # 1), so # (x) cannot have more than one irreducible component,
which means that it is irreducible cuspidal.

We have seen in problem [VII.2.13(5) that there are ¢(¢ — 1)/2 classes of irreducible cuspi-
dal representations of GG. Let’s count the number N of morphisms of groups x : £ — C*
that are trivial on E'. As EX/E! = [F; is commutative of order g —1 (see (1)), the number
of  that are trivial on E! is equal to the number of group morphisms Fy — C*, which
is ¢ — 1. Also, as £ is commutative, the number of morphism of groups £* — C* is
|E*| =¢?>—1.So, finally, N =¢*—1—(¢—1) = q(qg — 1).

Obviously, some of the # () are going to be isomorphic. The easiest way to see whether
two representations are isomorphic is to compare their characters. We don’t want to do the
full calculation, but we’re basically forced to.
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Let’s first calculate the value of Xy () on the matrix g := (8 i) € (. This matrix is
equal to t'(a®)t(a  )n(a™?t), so,if f € # (x)and x € E,

(p(9)f)(@) = x(a)p(a™ N (x))f(z).

Now assume that x|z # 1, and remember the basis (f;);c; constructed in the proof of
(a). As N : EX — FX is constant on the orbits of E!, the calculation above show that

p(9)fi = x(a)ip(a™' N(z;)). So we get

xro(9) =Y x(@)d(a ' N(z)) = x(a) Y wla'z)=x(a) Y vl w).

iel z€E/EL z€Fy

As  is non-trivial,

dowlata) = Y @) =1+ Y (@) = -1

z€Fy 2/ €Fy x'€Fy
So finally
X (ol9) = —x(a)
, . a b . »
Let’s also calculate xy(,) on the matrix g = b a) with a € F,, b € FS and

a® — ub® # 0, using the proofs of (b) and (d) to decompose this as a product of matri-
ces whose images by p we know. It’s an awful calculation, and should give

Xr0(9) = —(x(2) + x(2)) = —(x(2) + x(27)),
where z = a+ab e E.

As E ~ F 2, the group E* is cyclic. Let’s choose a generator ¢ of £*. Now let x, X’ be two
morphisms of groups E* — C* that are non-trivial on E' and such that # (x) ~ # (x’).
Then X () = X#(y). and by the calculation above x(z) + x(277") = x/(z) + x/(z9) for
every z € E*. Writing £ = x(¢) and &’ = x/((), this translates to
§ ) ="+ ()"

for every n € Z, and is equivalent to the condition {&, {7} = {¢’, £}, Also, the condition
X|zt # 1 (tesp. x|z # 1) is equivalent €171 £ 1, 4e & # &9 (resp. & # £'7), because E! is
the subgroup {x € E*|z7"! = 1} of E*, hence is generated by (?~!. Finally, we see that,
it W (x) ~ #(X'), then either { = £’, which means that x = X/, or ¢’ = £9, which means
that X" = x?. This implies that there are at least N/2 = ¢(q — 1)/2 distinct # (). As the

total number of irreducible cuspidal representations of G is ¢(¢ — 1)/2, there are exactly
q(q — 1)/2 distinct # (x), and every irreducible cuspidal representation is of that form.

0
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VIl.2.16 Induction and characters
Let k be a field of characteristic 0, and let & : H — G be a morphism of finite groups. For every
f € C(H, k), define a function Ind$, f : G — k by
1
fl9) = > f(h).

| | (s,h)EGxH|s~1gs=a(h)

Show that, for every representation 1/ on a finite-dimensional k-vector space, we have

Xtag v = Indf xv-

Solution. We may assume that £ is algebraically closed.

Write f = xy. First note that, if « is injective, the definition of Indg is the same as in
definition [II.3.1.1] of chapter II. Also, for every g € a(H),

(™ £)0) = 3 f<h>:'“|(]ﬁ)' S i),

(s,h)ea(H)xH|s~1gs=a(h) heH|g=a(h)
so, for every g € G,
a(H 1 |a(H)|
(i 5 @) =7 > g 2L ) =i N9

s€G|s~1gsea(H) heH|s~1gs=a(h)

Using this, the transitivity of induction and theorem |II.3.1.2 of chapter II, we are reduced to the
case where G = a(H).

In this case, by lemma [[.5.2.5{ and proposition [[.5.5.3| of chapter I, Indfl V = VEKerl@) Now
we have to generalize lemmas|II.1.2.3|and[II.1.2.4{of chapter II. Write &' = Ker(«). We want to

show that, for every g € G,
1
Xve(9) = 7=
"2

hea=1(g

xv (h).
)

Let V = @yycg, () W™ be the decomposition into irreducibles of Resit V. Fix g € G, pick
ho € H such that g = a(ho) and write ¢ = > hor = 32, ,-1(,) I € k[H]. Then, for every
x € K, x¢c = cx = z. In particular, ¢ centralizes k[K| C k[H], and so, by Schur’s lemma,

it stabilizes every summand W™ in V and acts on W™ by a ny, X ny, matrix Ay, with
coefficients in Endyx) (W) = k.

Fix W € Si(K), write py for the map K — Endy (W) and n = ny. Let Ay,..., A, be the
diagonal coefficients of Ay,. Then, using the fact that cx = ¢ for every x € K, we see as in the
proof of lemmaI.1.2.3|of chapter I that, for every i € {1,...,n} and every z € K,
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So,if W £ 1, we must have \y = --- = )\, = 0.
Also, if W = 1, then the action of ¢ on the summand W®™w = VK ig equal to that of | K|g.
Finally, this shows that
w@ = 3 k) = Kxvx(9),
hea=1(g)

which is the result we wanted to prove.

VII.3 Chapter lll exercises

VIL.3.1 Discrete valuation rings

A discrete valuation ring is a commutative principal ideal domain A such that A has a unique
nonzero prime ideal p. Let 7 be a generator of p; we call w a uniformizer of A. The quotient
k = A/ is called the residue field of A. We denote by K the fraction field of A.

(1). Show that k£ is indeed a field.

(2). Show that, for every x € K*, there exists n € Z and u € A* uniquely determined such
that x = un", and that n does not depend on the choice of the uniformizer 7.

If z = un™ as in (2), we write n = v(x) and we say that n is the valuation of x. We also set
v(0) = oo.

(3). Show that :
(a) v: K* — Z 1is surjective.
(b) Forevery z,y € K, v(zy) = v(z) + v(y) and v(x + y) > inf(v(z), v(y)).
(c) A={z € K|v(z) >0} and p = {x € K|v(z) > 1}.
(With the convention that, for every n € Z, oon = oo and oo > n.)

(4). Let k be a field and k[[T']] be the ring of formal series over k. Show that k[[T]] is a discrete
valuation ring.

(5). Show that Z,) is a discrete valuation ring. (Remember that Z, is the localization of Z
at the prime ideal (p), that is, the subring of QQ generated by Z and the 1/n, for every
nez—(p))

Solution.
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(1). As A is a domain, 0 is also a prime ideal of A. So A has exactly two prime ideals and
cannot be a field. As maximal ideals are prime, the only maximal ideal of A is @, and so

k= A/pis afield.

(2). As A is a principal ideal domain, it is a unique factorization domain. The only irreducible
element of A is 7w (up to multiplying by an invertible element), so every element a of
A — {0} can be written as a = urn", with u € A* and n > 0 uniquely determined by a.
Also, n is the unique nonnegative integer such that a € " — " (in other words, the
biggest nonnegative integer such that a € "), so it does not depend on the choice of p.
Write n = v(a). Clearly, if a,b € A — {0}, then v(ab) = v(a) + v(b).

As every element of K* is of the form ab™! for a,b € A — {0}, and as v sends multiplica-
tion in A to addition in Z, these results extend to elements of K *.

(3). (a) Foreveryn € Z, v(p™) = n. So v is surjective.

(b) The first property is clear. For the second property, we may assume that z,y € A
(using the first property), and that they both nonzero (otherwise the conclusion is ob-
vious). Letn = v(z) and m = v(y). Then x+y € ™™™ sov(x+y) > inf(n, m).
(Here we use the fact that, for a € A — {0}, v(a) is the biggest nonnegative integer n
such that a € p".)

(c) Obviously, for every a € A, v(a) > 0. Now let x € K* such that v(x) > 0, and
write 7 = ab™!, with a,b € A — {0}, Let n = v(a), m = v(b). Then a = ur™ and
b = vr™, with u,v € A*. Soz = wv~'7n"~™ € A. The second equality follows
from the characterization of v we gave in (b).

(4). Either you know that k[[T]] is a principal ideal domain, and then it’s easy because it’s also
local with maximal ideal (7"), so its unique irreducible element (up to invertibles) is 7.
Or you don’t, and then the easiest way is to use problem with the valuation v on
Frac(k[[T]]) = k((T)) given by taking the order of f € k((T)) at 0.

(5). We know that Z[p~!] is a principal ideal domain, because it is a localization of the principal
ideal domain Z. Prime ideals of Z[p~!] are prime ideals of Z that are contained in (p), so
only 0 and (p) are left.

O

VII.3.2 Discrete valuation fields

Let K be a field and v : K* — 7Z be a surjective group morphism such that
v(x +y) > inf(v(x),v(y)) for every x,y € K* such that z +y # 0. (We say that (K, v)
(or simply K) is a discrete valuation field.) Show that A := {0} U {z € K*|v(x) > 0} isa
discrete valuation ring (see problem for the definition of a discrete valuation ring). (The
ring A is called is the valuation ring of K.)
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Solution. First, A is obviously a domain, because it’s a subring of a field.

We claim that A* = {z € Klv(xz) = 0}. Indeed, if a € A, then a and a™! are in A, so
v(a) > 0and v(a™!) = —v(a) > 0, hence v(a) = 0. Conversely, let a € K such that v(a) = 0.
Then v(a) > 0 and v(a™!) = —v(a) > 0,soboth a and ' are in A, so a € A*.

Choose m € K such that v(m) = 1. We have 7 € A by definition of A. Let’s show that, for
every a € A—{0}, there exists u € A* andn > 0, uniquely determined by «a, such that a = un".
First, if a = un”, then v(a) = v(u)+nv(7w) = n, and u = aw~", so u and n are determined by a.
Also, for every a € A — {0}, we have n := v(a) > 0 and u := an™™ € A* (because v(u) = 0),
which gives the existence of u and n.

Now we show that A is a principal ideal domain whose only nonzero prime ideal if (7). Let
I be a nonzero ideal of A. If a is any nonzero element of  and n = v(a), then @ = un™ with
u € AX, so n" inl. Let ny be the smallest nonnegative integer such that 7™ € [. (This exists
because every nonempty subset of Z~( has a smallest element.) Let’s show that I = (7). As
7™ € I, we obviously have I O (7). Conversely, let a € I, let n = v(a). Then we see as
before that 7" € I, so n > ng by definition of ng, so ar~™ € A (because its valuation is > 0),
so a € (7). Finally, we show that I is prime if and only if ny = 1. if ng > 1, then I is not
prime because 7w € [ and 7"° € I. Conversely, assume that ng = 1, and let a,b € A such that
ab € I. If ab =0, then a = 0 or b = 0 because A is domain, soa € [ orb € I. If ab # 0, then
v(ab) =v(a) + v(b) > 1,s0v(a) > lorwv(b) > Imhencea € [ orb € I.

O

VIl.3.3 Completion of a discrete valuation ring

Let A be a discrete valuation ring with maximal ideal m. (See problem [VIL.3.1]) The completion
of Ais

A= l&n(A/m") ={(z,) € H A/m"Vn >0, z, = x,11 mod m"}.

n n>0

We define a map A — A by sending z € A to the family (z + m") >0 € [[,,50 4/m™.

n>0

(1). Show that the map A — Ais injective. (We use it to identify A to a subring of A If
A = A, we say that A is complete.)

(2). Show that Alis a discrete valuation ring with maximal ideal m:= mzzl;and that the obvious
map A/m™ — A/m" is an isomorphism for every n. (In particular, A is complete.)

(3). We consider the following three topologies on A

(a) The topology induced by the product topology on ano A/m", where we put the
discrete topology on each A/m™. (This is the topology on [, ., A/m™ generated by
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the open sets [, Xy, where X;,, C A/m" for every n and X,, = A/m" for all but
a finite number of n’s.)

(b) The topology generated by the open sets = + m™, for x € Aand n > 0.

(c) The topology given by the distance function d(z,y) = c'®~¥), where c is a real
number such that 0 < ¢ < land v : A — Z>o U {oo} is the valuation of A. (With
the convention that ¢ = (.)

Show that these three topologies are equal (in particular, the last one does not depend on ¢),
that Ais a complete metric space and that, if & is finite, then A is Hausdorff and compact.

4). Letk = A/m = A A/ be the residual field of A. Let f € A[t] be a polynomial such that
its image f in k[t] is nonzero, and let T be a simple root of fin k. Show that there exists a
root x of f in A such that z mod m = 7.
This statement is called Hensel’s lemma.

(5). Give an example of a non-complete dicrete valuation ring where (4) fails.

Solution.

(1). The kernel of the map A — Ais ngO m”, so we have to show that this intersection is 0.
Let v be the valuation of A. If » € ﬂnZO m™, then v(z) > n forevery n > 0, so v(x) = oo,
sox = 0.

(2). First we extend v to A Letz = (r,) € A. We choose elements y, of A lift-
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ing the z, € A/m™. For every n,k > 0, we have y,.x = ¥y, modulo m", so
V(Ypn+x) > inf(v(y,),n) and v(y,) > inf(v(ynek),n). If y, € m™ for every n > 0,
then z = 0, and we take v(z) = oo. Otherwise, let n be the smallest nonnegative integer
such that y,, & m". Then, for every n > ng, we have ng > v(yn,) > inf(ng, v(ys)),
$O0 U(Yn) < U(Yny) < mo, and v(y,) > inf(n,v(yn,)) = v(yn,). Finally, we get
v(Yn) = v(yn,) for every n > ng, and we set v(x) = v(yn,). Note that v(y,) = v(x) for
n > v(z). (Indeed, let NV be big enough so that v(yy) = v(z). Then, for v(z) < n < N,
Yo = yy mod m", son > v(yny) > inf(v(y,),n) and v(y,) < v(x) < n, but then
v(y,) > inf(v(yy),n) = v(z).) Note also that v, € m" (ie z, = 0) for n < v(x).
(Indeed, let n < v(x). Then v(y,) > inf(n,v(x)) = n, so y, € m".)

If v € Ais the image of an element a of A, and we choose (,,) in AN representing x (ie
x = (z, +m")), then x, = a modulo m" for every n. If n > max(v(x),v(a)) and n is
big enough that v(x) = v(x,), this implies that v(a) = v(z,) = v(z). So v does indeed
extend the valuation on A.

It is clear from the definition that, for every z,y € A, v(zy) = v(z) + v(y) and
v(x +y) > inf(v(x),v(y)). (If z and y are representend by families (z,) and (y,) in
AN just take n big enough so that v(z) = v(x,) and v(y) = v(y,).) Also, the only
element with valuation oo is 0. In particular, A is a domain (if z,y € A — {0}, then
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v(zy) = v(x) + v(y) # oo, so zy # 0). Let K be the fraction field of A. Using that v
sends products to sums, we can extend v to a morphism of groups v : K* — Z satisfying
the conditions of problem 2 (the surjectivity comes from the fact that A is a dicrete valu-
ation ring, hence v(A — {0}) = Z>o C v(K)). So K is a discrete valuation field, and to

finish we just have to show that A — {0} = v™!(Z>().

Obviously, v sends A — {0} to Zso. Conversely, let x € K* such that v(z) > 0. We
write z = ab~!, with a,b € A and N := v(a) > M := v(b). Write a = (a,, + m™) and
b = (b, +m™), with (a,,), (b,) € AYN. We choose the a,, and b,, such that, if a,, € m™ (resp.
b, € m™), then v(a,) = n (resp. v(b,) = n). This does not affect the classes a,, + m"
and b,, + m™. We want to show that b,, divides a,, in A for every n > 0, which obviously
implies that zy~! € A. If n > N, then v(z,) = N and v(Y,) = M < N,soz,y,' € A
(as A itself is a discrete valuation ring). If M < n < N, then v(b,,) = M and v(a,) = n,
so a,b,' € A. Ifn < M, then v(a,) = v(b,) = n, so a,b,* € A.

This finishes the proof that A is a discrete valuation ring. Its unique maximal ideal is
I := {0} Uv Y(Zs1), let’s show that I = m. First, it follows easily from the definition
of v on A that I is the set of @ = (a,) in A such that a; = 0 (in A/m). This contains
the image of m in A, so I contains 7. Conversely, let 2 € I — {0}, let n = v(x). We
choose an element a of valuation a in m. Then v(za=') =n—1> 0,s0 za~! € A, so
r=a(za™') € m.

Finally, we have m™ = {0} Uv~(Z>,), so

" = {(a = (an) € Ala; = 0in A/m’ for 0 < i < n}.

So
A/ = {(zg, ..., 1) € HA/mi\Vi <n-—1, z;+m' =2, +m'}.
=0
For a family (z, ..., x,) as above, x,, determines all the ;. So the map A/m" — A /m"

sending a to the family (a + m®)y<;<, (which is the obvious map) is an isomorphism of
rings.

Let’s call these three topologies .73, 7 and 75. Let U := [ [, ., X, be a generating set for
7, as above, ie X,, C A/m™ and X,, = A/m™ for all but a finite number of n’s. Choose
N > 0 such that X,, = A/m" for every n > N. Then U + " = U, so U is a union
of classes of A /m™, so there exists a family (z;);c; of elements of A such that U is the
disjoint union of the x; + M. To show that U is open in .7, and .7, it suffices to show
that a set of the form z 4+ m” is. For .7, such a set if open by definition. For .73, such a
set if open because it’s the open ball of radius ¢ ~! centered at z. (That is, y € = + m® if
and only if v(x —y) > N if and only if v(z —y) > N — 1.)

We alredy showed that every generating open for .7 if open for .73. To finish the proof, we
have to show that an open ball for .73 is open for .77. Let x € A and ¢ € R+, and let U be
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then open ball of radius r and center z. Write = = (z,,), ¥, € A/m™. Then U = x + m®
where N is biggest integer such that ¢ < 7,50 U = [],5 Xp, with X, = {z,} ifn < N
and X,, = A/m™ifn > N.

Note that, using the second description of the topology of ﬁ’ we see that the map v on
A — {0} is locally constant.

We now show that A is complete. Let (x,,),>0 be a Cauchy sequence in A. This means
that for every A € R, there exists N € Zx( such that v(z, — z,) > Aifn,p > N. We
want to show that (x,,) converges. As a Cauchy sequence converges if and only if some
(infinite) subsequence of it converges, we can always replace (z,) by a subsequence. In
particular, we may assume that either x,, = 0 for every n, or x,, # 0 for every n. In the first
case, the sequence (x,,) converges to 0. In the second case, using the fact that v is locally
constant on A — {0}, we may assume that all the x,, have the same valuation, say ng; after
diving all the x,, by the same element of A of valuation n,, we may assume that ny = 0.
By taking another subsequence of necessary, we may also assume that v(z, — x,) > n for
every p > n. For every n, we choose a family (;,,);>o in AN representing x,,. if p > n,
then for 0 < ¢ < n, z;, and z;, are equal modulo m", hence modulo mt. So, if x is the
element of A represented by (), then x = x,, modulo m™ for every n, and the sequence
(x,,) converges to .

If k is finite, then, for every n > 0, m™/m"™"! ~ k is finite, so A/m" is finite. The fact
that A is Hausdorff compact follows from Tychonoff’s theorem, because the finite discrete
sets A/m" are Hausdorff compact.

First note the following fact : Letn > 1. If z € A is such that f(z) € m™ and f'(x) ¢ m

(i.e. f'(x) € AX), then, setting h = —]{[/((?) and y = x + h, we have f(y) € m*" and
f'(y) € m. Indeed, we have h € m", so

f) = fe+h) € f@) +hf'(z) + B*A C f(z) + hf'(@) +m™ = m™,
and
f'(y) = f'(x+h) € f'(x) + hA C f(z) +m",
so f'(y) & m because otherwise f'(x) would be in m.

Now let’s prove Hensel’s lemma. We construct by induction on n > 0 a sequence (x,),,>0
of elements of A such that :

- Foreveryn >0, x, + m =7, f(x,) € m*" and f'(z,) & m.
- Foreveryn > 0, 2,41 — o, € m?".

For x4, we choose any lift of 7 in A. Then f(x,) € m because 7 is a root of f, and

f'(xo) & m because it’s a simple root. Suppose that we have constructed xo, . . ., x,, and
let’s construct x,,,1. Let h, = —Jan) o m?", and take z,.; = %, + h,. Then z,;

. . . ' (@n) .
satisfies all the desired conditions by the observation above.
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Now note that (z,,),>0 is a Cauchy sequence if we use the metric defined in question
(3). As A is complete for this metric, the sequence (x,,),>o has a limit, say z. We have
x + m = T (if we choose some n such that v(z — z,,) > 1, then x € x,, + m, sox = x,
mod m), and f(x) is the limit of the sequence (f(x,))n>0; as f(z,) € m*" for every n,
f(x,) — 0.

(5). Take A = Z[p~'], this is a discrete valuation ring with residue field Z/pZ. If p = 5, then
the polynomial f = ¢?+1 has a simple root in Z/pZ (because modulo 5, f = (t+2)(t+3)),
but it has no root in A, because A embeds in R.

O

VII.3.4 Witt vectors

NB : The goal of this exercise is to show that, for every algebraically closed (or even just perfect)

field k of characteristic p > 0, there exists a complete discrete valuation ring A with residue field
k and fraction field K of characteristic 0. To apply the results of the last sections of chapter III,
we also need to be able to construct a A such that K contains enough roots of 1, which doesn’t
follow immediately from this problem. (In addition to the results of this problem, we also need
to know that the integral closure of a complete discrete valuation ring in a finite extension of its
ring of fractions is still a complete discrete valution ring.)

Let p be a prime number. For every n > 0, we define a polynomial W,, € Z[X,,..., X,] by
WalXo, -, Xo) = D pXI
i=0

These are called the Witt polynomials.

If A is a commutative ring, define a map # : AN — AN by sending a = (ag, a,...) € AN to
(Wo(ao), Wi(ao, ar), Wa(aog, a, az), . .. ).

(1). We say that a commutative ring A is p-unramified if n is not a zero divisor in A for every
positive integer and there exists a ring endomorphism 7 of A such that, for every a € A,
7(a) — a? € pA.

(a) Show that Z is p-unramified.

(b) If A is p-unramified and [ is any set, show that the polynomial ring A[X;, 7 € I] is
p-unramified.

(2). Let A be a commutative ring. For every f in A[z], we define a sequence (f°™),>q
of elements of A[z] in the following way : f°©(z) = = and, for every n > 0,

foriD(z) = fo(f(x)).
Let h € Ax], and let f(x) = 2P + ph(z). Show that, for every a,b € Aandn > 0:
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3).

.

(5).
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(@ " —a™” e (b—a)A.

(b) If b — a € pA, then ¥ — a? € p(b— a)A.

(c) h(b) — h(a) € (b—a)A.

(d) Ifb — a € pA, then f°™(b) — f°™(a) € p"(b — a)A.

Let A be a p-unramified ring, and let 7 be a ring endormophism of A such that
7(z) — a7 € pA for every x € A. Show that # : AY — AN is injective, and that its
image is the set of (wg, w1, ...) € AY such that, for every n > 1, w, — 7(w,_1) € p"A.
(Hint : To show that every element in the image of W satisfies the stated condition, use (2)
with h = 0.)

Let & € Z[X,Y]. Show that there is a unique sequence of polynomials
on € Z[Xo, ..., X, Yo, ..., Y], n >0, such that, for every n > 0 :

Wn(¢O<X07 }/E))? R SOTL(X(b s JXn7 %7 s 7Yn)> = q)(Wn(X()u s 7XTL)7 WTL(%? s 7Yn))

(Hint : Use (3) for A = Z[Xo, Yo, X1, Y1, ...] and 7 defined by 7(X;) = X?, 7(Y;) = Y.
But don’t forget to check that p,, only depends on X, ..., X,.)

Applying (4) to the polynomial X + Y (resp. XY'), we get a sequence of polynomials
(Sp)so0 (resp. (P,)n>0). Let A be a commutative ring. We define two operations on AN by
the formulas

Q-'-l_): (So(ao,bo),...,Sn(ao,...,an,bo,...,bn),...)
Qé: (Po(&o,bo),...,Pn<a0,...,an,bo,...,bn),...)
fora = (ag,ay,...)and b = (bg, by, ...)in AN,
We write W (A) for the set AN with these two laws.

(a) Calculate Sy, 51, Py and P;.

(b) If p is invertible in A, show that # : AN — AN is bijective and sends these two laws
to the usual addition and multiplication (term by term) on A,

In particular, W (A) is a ring (isomorphic to the product ring AN.)

(c) Show that, for any commutative ring A, W (A) is a commutative ring with zero el-
ement (0,0,0,...) and unit element (1,0,0,...). (Hint: Find commutative rings
B C C such that B surjects to A and that (ii) applies to C'.)

This ring is called the ring of Witt vectors of A. (Remember the trick that we used in
this question, it will be useful again.)

(d) Show that the map W (A) — A that sends (ag, a1, ... ) to ag is a morphism of rings,
and that the map A — W (A), ag — [ao] = (ao, 0,0, ...) is multiplicative.
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(e) Suppose that p is not a zero divisor in A. Let a = (ap,as,...) € W(A), and let
b = (bo, b, ...) be the unique element of W (A) such that #'(b) = # (p - a). Show
that by € pA and that, for every n > 0, b,,1 — a? € pA.

(f) If p = 0in A, show that, for every a = (ag,as,...) € W(A),p-a=(0,al,dl,...).

(2) For every n > 0, let I, be the set of (ag,as,...) € W(A) such that a; = 0 for
0 < < n. Show that all the I,, are ideals of 1V (A), that two elements a = (a;) and
b = (b;) of W(A) are equal modulo 7, if and only if a; = b; for 0 < n — 1, and that
the map

W(A) = Um W (A)/L, == {(xn)nz0 € [ [ W(A)/LuYn, pi1 =2, mod I,}

n>0
sending x to the family (= + I,,),>0 is a ring isomorphism.

From now on, we take k to be a perfect ring of characteristic p. (“Of characteristic p”
means that p = 0 in £, and “perfect” means that that the map £ — k, x —— 2P (which
respects addition because p = 0 in k) is an automorphism of rings.

(h) Let I be the ideal of W (k) generated by p. Show that the map

W (k) = Um W (k)/I" := {(za)nz0 € [ [ W(R)/I"|Vn, py1 = 2, mod I"}
n n>0
that sends z to the family (z + I™),,>0 is a ring isomorphism.

(i) If k is a field, show that W (k) is a complete discrete valuation ring (see problem
VII.3.3) with residue field & and uniformizer p, and that the fraction field of W (k) is
a field of characteristic 0.

Solution.
(1). (a) Show that Z is p-unramified.
Take 7 = idy.

(b) As A is a subring and a quotient of A[X;,i € I], so any element of A that is a zero
divisor in A[X;,7 € I] is also a zero divisor in A. In particular, positive integers
cannot be zero divisors in A[X;,i € I].

If 7 : A — Ais aring automorphism such that 7(a) — a? € pA for every a € A,
extend 7 to A[X;,i € I] by setting 7(X;) = X7 for every i € I. This obviously
satisfies the condition.

2. @Ifn = 0 0 —a = 0 € (b - aA it n > 1,
b —a" = (b—a) 0 bl € (b—a)A.

243



VII Exercises

(b) We have

P =((b-a)+a)=(b—af+a +z (Z) (b - afa™*,

so b = (b — a)? 4+ a? modulo p(b — a) A, which implies the conclusion (as p(b — a)
divides (b — a)P).

(c) This follows directly from (a).

(d) We prove the result by induction on n. It’s obvious for n = 0. Let n > 0, and suppose
the result known for n. Write z = f°™(a), y = f°™(b). Then

Fo ) — (D) = fx) — fly) = 2 — y* + p(h(z) — h(y)).

By (¢), h(z)—h(y) € (x—y)A. By (d), 2P —yP € p(x—y)A. As (x—y) € p"(b—a)A
by the induction hypothesis, we see that f"+1(a) — f°"+(b) € p"*1(b — a)A.

(3). We show by induction on n > 0 that there exist polynomials Z,, € Z[p~!]|[Xy, ..., X,]
such that Z,,(Wy, ..., W,,) = X, and W,,(Z, ..., Z,) = X,.

We take Z, = X. Suppose that we have constructed 7, ..., Z,_1, for some n > 1. Note
that W, = p"X,, + W, (X¥, ..., X2 ). Let f = W,,_1(Z},...,Z"_,). Then

fWo,y oo , Whq) =W (XE, ..., XE ),
so, if Z, = p~"(X,, — f), then
X,=p "W, =W (XE,.... X )= Z,(Wo,...,W,).
On the other hand,

WolZoy ooy Zn) = 0" 2y + Wyt (Z5, ..., 20 ) =X — [+ [ = X,

Let A" = A[p~']. As pis not a zero divisor in A, the obvious map A — A’ is injective.
The family (Z,,),>0 defines a map (A")Y — (A")Y, that is an inverse of # by construction,
so ¥ . (AN — (AN is a bijection. As A injects in A’, # : AN — AN is injective.

Note that, to show the statements above, we only used that p is invertible in A’ and that
A — A’ is invertible. (Not that A is p-unramified.)

Let a = (ag,ay,...) € AY, and let (wp, wy,...) = # (a). We want to show that for, for
every n > 1, w, — 7(w,_1) € p"A. We apply (b)(iv) with h = 0, so f°*) = 27" for every
k>0.Ifa € A, then a? — 7(a) € pA, so

o —7(@" ) = V(@) - 2 V(7 (a)) € p"IpA = pr A,
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Applying (2)(c) with h = W,,_4, this gives

an1(a]8, s 7&p—1) - Wn71<7_(a0)7 ce 77—<an71)) S pnA

n

Finally,

Wy, — T(Wp—1) = plan + Wy_i(ap, ..., a ) — Wy_1(7(ag),...,7(an—1)) € p"A.

Letw = (wp,wy,...) € AN such that, for every n > 1, w, — 7(w,_,) € p"A. We want to
show that w is in the image of #/, by finding a = (ag, a1, ...) € A" such that # (a) = w.
We construct the a,, by induction on n. Take ag = wy. Let n > 1, and suppose that we
have found ay, . .., a,_1 € A suchthat W;(ao,...,a;) = w; for0 <i <n—1. We wan to
find a,, € A such that

Wy = Wn(CLOa - 7an> = pnan + Wn*1<a;87 v 7a’ﬁ—l)'

Applying (2)(c) to h = W,,_; as above, we get that, modulo p" A :

P

wy, — Whoa(ag, ... ab ) =w, — W,_1(7(ag),...,7(an-1)) = wy, — T(wp_1) =0,

n—1
so there exists a,, € A such that p™a,, = w, — W,,_1(af,...,ab_,).
Let A = Z[Xo, Yo, X1,Y1,...], and let 7 be the ring endomorphism of A that sends

X; (resp. Y;) to X7 (resp. Y/). By (1)(b), A is a p-ring. For every n > 0, let
w, = (W, (Xo, ..., X0), Wo(Yo,...,Y,)). Then w := (wp,wy,...) € AV, and find-
ing a sequence (¢, ),>0 of elements of Z[ X, X1, Y, Y1, .. .] satisfying the conditions of
the statement amounts to showing that w is in the image of # : AY — AN, Also, the
uniqueness of the sequence (i, )>,, follows from the injectivity of # : AN — AN, By (3),
we just need to show that w,, — 7(w,_1) € p"A for every n > 1. But w,, — 7(w,_1) is
equal to
O(W,(Xo, ..., Xpn), Wo(Yo, ..., Y)) = (W, (Y, ..., Y )W, . (YY,....,Y" )

As

Wi (Xo, ..o, Xp) = Wt (XE,..., XP_ ) =p"X,, € p"A,

an easy generalization of (2)(c) to polynomials with two indeterminates shows that
Wy, — T(wp—1) € P A.

It remains to show that, for every n > 0, ¢ is in Z[Xy,..., X,, Ys,...,Y,] (and
not just in the bigger ring A). In the proof of (3), we have constructed a fam-
ily of polynomials 7, € Z[p~'(Xy,...,X,) such that X, = Z,(W,,...,W,)
for every n > 0.  Applying this to the equation in the statement of (4)
gives ¢, = Zy(wg,...,wh), with w, = &(W;(Xy,...,X;), W;(Yo,...,Y:)). So
wy, € Zp~Y[Xo, .., X0, Yo, .., Y| VA =Z[Xo, ..., X, Y0,..., Y0l
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(a)

(b)

(©)

(d)

(e

We have Sp = Xy + Y, 51 = X; +Y1 + i(Xg +Yy — (Xo + Yo)P), Py = XoYp and
P = XgY1 + Y9 Xy + pXiYi.

If p is invertible in A, we showed in the beginning of the proof of (3) that
w . AN — AN is bijective. By the very definition of the polynomials S,
and P,, # sends the two laws on W (A) to the usual addition and multiplica-
tion on the product ring AY. So W/(A) is a commutative ring, with zero element
#~1(0,0,...) = (0,0,...) and unit element % ~'(1,1,...) = (1,0,0,...). (To
check that (1,0,...) is indeed the inverse image of (1,1,...) by #/, it suffices to
check that #/(1,0,...) = (1,1,...), which is obvious.)

Let B be the ring of polynomials Z[X,,a € A], and let v : B — A be the ring
morphism sending X, to a, for every a € A. We also set C' = B[p~!] and write
u : B — C for the inclusion. Then u and v induces maps BY — AN, BN — ON,
W) : W(B) - W(A) and W(u) : W(B) — W(C). The first two are maps of
rings, and the second two respect the two laws defined above (simply because v and
v are ring morphisms). As W (C') is a ring and the map W (u) : W(B) — W(C)
is injective, we see that the two laws on W (B) satisfy all the conditions imposed on
the addition and multiplication laws of commutative a ring, and that the zero and unit
elements are the ones given above. As W (v) : W(B) — W(A) is surjective, the two
laws on W ( A) also satisfy all the necessary conditions to make 17 (A) a commutative
ring, with the zero and unit elements described above.

The first statement follows from the formulas for Sy and P, given in (a).

For the second statement, choose v : B — A and u : B — C as in the proof of (c).
Then we have a commutative diagram

A - B “ C

(T

w(A) W(B) w(C)

W (v) W (w)

The vertical map on the ring is multiplicative, because its composition with the ring
isomorphism % : W(C) — CN is the map a — (a,a?,a””,...), which is multi-

plicative. As W (u) is an injective ring moprhism, [ ] : B — W(B) is also multi-
plicative. Asv : B — Aand W (v) : W(B) — W(A) are ring morphisms and v is
surjective, [ ] : A — W(A) is also multiplicative.

We show the statement by induction on n. Write A’ = A[p~!]. By the hypothesis

on A, the obvious map A — A’ is injective, and we use it to identify A to a subring
of A’. Let (w07 Wi, ... ) = W(ao, ai, ... ) Let Z(), Zl, SRS Z[pil][Xo,X — 1, .. ]
be the polynomials defined in the proof of (c). We have b,, = Z,(pwo, . .., pw,) for
every n > 0. Then Zy = Xy and Z; = p~ (X, — X}), so by = pag € pA and we
have in A’ :

b = p~ ' (p(df + par) — (pao)?) = ab + pa — p*~"ab,
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so by — afy € pA. Now let n > 1, and suppose that we know that b,, .1 — a?, € pA
for every m < n. Then

Znir =p " ( Xy = Wil Z,... Z8)),
so, in A’,
b1 =p " (Woia(ao, .., ang1) — Wa(bh, ... 00)) =
p~ D " g + Walag, - . b)) = Wa (b, ...
The right-hand side is equal to

b))

n

n—i+2

—(n n—+1 —(n i i n—i+1
Pany1 t+ay, —p ( +1)b€ —p H)Zp(bf — iy )
=1

By the induction hypothesis and (2)(b), this is equal to a? modulo pA.

As in the proof of (d), choose a surjective ring morphism v : B — A such that p
is not a zero divisor in B, and let W (v) : W(B) — W(A) be the induced map
of rings. Fix a = (ag,ay,...) € W(A), and choose ¢’ = (aj,a},...) € W(B)
such that W(v)(¢') = a. Letd = (b),b],...) = pa’. Then, by (v), b, € pB
and b, — a/,_,* € pB for every n > 1. Now if b = (v(bp),v(b}),...), then

b= W(v)(t') = pa, and we have by = 0 and b,, = a®_, for every n > 1.

For every n > 0, let J,, be the subset of the product ring AN made up of the a = (a;)
such that a; = 0 for 0 <7 < n — 1. Then J,, is obviously an ideal, and two elements
a = (a;) and b = (b;) of A" are equal modulo .J,, if and only if a; = b; for 0 < n — 1.

We apply the trick of (c). Choose a surjective ring morphism v : B — A and an
injective ring morphism v : B — C such that p is invertible in C. We write I,,(A),
I,,(B) and I,,(C) for the subsets of W (A), W(B) and W (C') defined above, and we
use the same convention for J,,. The map # : W(C) — CV is an isomorphism of
rings, and % (I,,(C)) = J,(C), so we get the fact that the [,(C) are ideals. The
second assertion in this case follows from the easy fact that, for every n > 0 and
every ag,...,0,_1,bp,...,b,_1 € C, a; = b; forevery 0 < i < n — 1 if and only
Wi(ag, ... ,an_1) = Wi(bo,...,b,_1) forevery 0 <i<n—1.

Now note that I,,(B) = v *(,(C)) and I,,(A) = v(I,(B)), so they are ideals. Fix
n > 0. Ifa = (a;) and b = (b;) are in W(A), W(B) or W(C), we write a ~ b to
indicate that a; = b; for 0 < i < n.

If a, b are in W (B), then a ~ b if and only if u(a) ~ u(b), and a = b modulo I,,(B)
if and only if u(a) = u(b) modulo I,,(C'). This gives the second assertion for B.

Assume that a,b € W(A). If a ~ b, then there exists a’/,t' € W(B) such that
v(d) = a,v(b') =band a’ ~ b'; then ¢’ = b’ modulo I,,(B), so a = b modulo I,,(A).
If on the other hand @ = b modulo 7,,(A), then there exists a’, b, ¢ € W (B) such that

247



VII Exercises

248

(h)

@

v(@) =a,v(t)) =b, ¢ € Kervanda' = b + ¢ modulo I,,(B); thend’ ~ b + ¢, so
a~b.

Finally, we prove the last assertion. Call ¢ the morphism A — 1&1” A/I,. Then
Kerp = (), 1, = 0, so ¢ is injective. Now we prove that ¢ is surjective. Let
T = (Tp)n>0 € Hm A/I,, and write x,, = (af},a},...). By what we just proved,
the condition z,, = x,4; modulo I, gives a] = a?“ for 0 < ¢ < n. Let
a = (ad,a$,a3,...) € W(A). Then a = x,, modulo I,, for every n > 0, so ¢(a) = z.
By (f), for every n > 0, I" is the set of (0,...,0,a’ ,a”",...), with n zeroes at the
beginning and ag, a1, -- € k. As k is perfect, I" is thus equal to the ideal [,, of (g),
and the assertion follows from (g).

If k is a field, then the ideal / = pW (k) of (h) is a maximal ideal. We want to show
that it’s the only maximal ideal, ie that every element of W (k) — I is invertible. By
(d), for every a € k — {0}, [ao] = (ao,0,0,...) is invertible (with inverse [a;']).
Now let a = (ag,aq,...) € W (k) such that ag # 0. Then, by (g) and (h), a = [ao]
modulo [, so there exists b € [ such that a = [ag](1 — b). For every n > 0, let
Tp =Y 0 ob" Asb" € I"ML 1z, = 1, modulo I"*! for every n, 0 (,)n>0 iS
an element of lim W (k)/I". By (h), there exists ¢ € W (k) such that ¢ = x,, modulo
I™ for every n > 0. Then, for every n > 0, (1 — b)c = (1 — b)x,, = 1 modulo ™.
By (h) again, (1 — l_))g = 1, s0 1 — b is invertible, hence so is a. (Note that, if we only
assume that k is a perfect ring of characteristic p, the same proof show that a = (a;)
is invertible in W (k) if and only if a is invertible in k.)

Using (f) and the fact that & is perfect, we get that, for every a € W (k) — {0}, there
exists a unique n > 0 and a unique b = (bg, b1, ...) € W(k) such that ¢ = p"b and
by # 0 (in k). By what we have just seen, b is invertible. We set v(a) = n. We also
set v(0) = oo.

Ifa,a’ € W(k) — {0}, let n = v(a) and n’ = v(d’'), and write @ = p"u, a’ = p"'u’
with u,u' € W(k)*. Then aa’ = p"*"'wu'. By (f), aa’ # 0 and v(aa’) = n + n'.
In particular, W (k) is a domain. Let K be its fraction field. We extend v to a map
K* — Z by setting v(zy™) = v(z) — v(y) if z,y € W(k). By what we just
proved, this makes sense and defines a group morphism. Note that v : K* — Z is
surjective, because v(p") = n, for every n € Z. Let x € K*, and write z = yz~",
with y, z € W(k) — {0}. If v(y) = n and v(z) = m, we have v(x) = n — m and
x = p" "u, with u € W(k)*. So x is in W (k) if and only if v(z) > 0. (Note that p
is not invertible in 1V (k), because it is in the maximal ideal.)

To finish the proof that W (k) is a discrete valuation ring, we have to show
that v(z + y) > inf(v(z),v(y)) for every x,y € K*. We may assume
that z,y € W(k) — {0}. Let n = wv(z) and m = v(y), and assume that
n > m (this is always true up to switching x and y.) Write + = p"u
and y = p"u with u,u/ € W(k)*. then z +y = p"(p" "u + ), so
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v +y) =m+o(@P*"u+u') > m =inf(v(x),v(y)).

By (h), W(k) is complete. It remains to show that the characteristic of K is 0. We
already know that char(K) # p, because p is invertible in K. If char(K) = ¢ > 0,
then p’ = p in K, which is not possible. So char(K) = 0.

l
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None yet, but see problem [VIL./.

VIL.5 Chapter V exercises

VII.5.1 Existence of the Haar measure on a compact group

Let GG be a Hausdorff locally compact topological group. By a measure on (G, we mean a measure
on the Borel o-algebra of G. A nonzero measure p on G is called a left Haar measure if, for
every measurable function f : G — Cand every g € G, [, f(x)du = [, f(gz)dp. In general,
left Haar measures always exist and they are unique up to scaling. Here we are only interested in
the case of compact groups.

We denote by ¢ the space of continuous functions with compact support G — C, equipped
with the compact-open topology. This is the topology generated by the sets { f € €|f(K) C U},
for K C G compact and U C C open.

Let € be the space of continuous linear maps 4 — C, equipped with the weak topology. Re-
member that the weak topology is the coarsest topology such that the maps €* — C, A — A(f),
are continuous for every f € €. So a base of opens is given by the sets

A el =)l <7 [ = An)(fu)| < 7alts
fOI‘)\l,...,/\n 6%*,f1,...,fn Gcﬁandrl,...,rn €R>0.

Now assume that GG is compact and either is metrizable, or has a countable basis for its topol-
ogy. This hypothesis is just here to guarantee the following fact (that you don’t have to prove)
: for every probability measure 1 on G, the linear form f — | o f(x)dp on € is continuous,
hence in *. So we identify the set &?(() of probability measures on G with a subset of ™.

(1). Show that the compact-open topology on % is the same as the topology of uniform con-
vergence, i.e. the topology induced by the norm || - ||, given by

[ flloo = sup |f ().
zeG
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Q).

(3).

4.

(5).

Let p be the representation of G' on ¢ defined by (p(g)f)(z) = f(g'z), for f € € and
x,g € G. Show that the map G x € — €, (g, f) — p(g)f is continuous (ie p is a
continuous representation of (7).

Show that the contragredient representation p* (defined as usual by p*(g)\ = Ao p(g~1),
if g € G and \ € €™) is also continuous.

Show that &(G) is a convex compact G-invariant subset of €*. (Hint : Tychonoff’s
theorem.)

Show that G has a left Haar measure. (Hint : An appropriate form of the Markov-Kakutani
fixed point theorem might help. For example theorem 5.11 of Rudin’s Functional analysis. )

Solution.

(D.

Let fo € ¥. We want to show that every open neighbourhood of f; in the compact-open
topology contains an open neighbourhood of f; in the topology of uniform convergence,
and vice versa.

For the first direction, we may assume that the open neighbourhood of f if of the form
X ={fe?|f(Ky) CU,...,f(Ky) CU,} where Ky, ..., K, C G are compact and
Uy, ..., U, C Care open. For every ¢ > 0, we write

Ve=Are?lf - follo <e}.

Let : € {1,...,m}. As fo(K;) C U,; is compact, there exists ; > 0 such that
{z € C|Fy € fo(K,), |z —y| < &} C Ui. [J Lete = min(ey,...,&). Then Vi C X,
Indeed, if f € V. andi € {1,...,m}, then for every x € K, |f(z) — fi(z)] < ¢, so
f(z) € U, by the choice of ¢.

Conversely, let € > 0 and let V. be defined as above. We have to show that V. contains an
open neighbourhood of f; in the compact-open topology. Let = ¢/2. For every = € G,
let

Ur = {y € Gl|fo(z) = foly)| < n} C Kz = {y € Gl|fo(x) — foly)| < n}.

Then U, is open and K, is compact. As G = |J,.,U, and G is compact,
there exist zy,...,2, € G such that G = |J_,U,, = U, K,,. For every
i€ {l,...,n}, writt K; = K,, and let U; = {a € C||fo(z;) — a|] < n}. Then

X ={fe?€Vie{l,. . ,n}, f(K;)CU} CV. Indeed, let f € X andletx € G.
Then there exists i € {1,...,n} such that € K, and we have

[f (@) = fo(@)] < [f(x) = fo(w)| + | fo(i) = fo(z)| <n+n=e.

12This is a standard compactness argument. For every x € fo(K;), choose €, > 0 such that B(z,&,) C U;, where
B(z,r) ={y € Cllz — y| < r}. Then fo(K;) C U,eso(x,) B(x:2/2), so there exists 21,...,x, € fo(K;)
such that fo(K;) € Uj_, B(2j,e4,/2). Thene; = g min(ey,, ..., &, ) will work.
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(2). Denote by i the map G x € — €. Let gy € G and f, € €. We want to prove that, for
every € > 0, there exists a neighbourhood W of gy in GG and n > 0 such that, if ¢ € W and

Ilf = folloo <7, then [|gf — gofollse < . Fixe > 0.

As G is compact, fy : G — C is uniformely continuous, so there exists two collections
Uy,...,U, and V1, ..., V, of open subsets of GG such that K; := U; C V, for every 1,
G = U, U---UU, and, for every ¢ and every z,y € V, |fo(z) — fo(y)] < &/2. Let
i € {1,...,n}. Forevery x € K;, choose j such that galx is in V; and open neighbour-
hoods U, of z in G and W, of go in G such that, forevery g € W, and y € U,, g 'y € V}.
As K; is compact, we can choose x4, ..., z,, such that K; C U,, U---UU,, . Then the
open neighbourhood W; := W,, N---NW, of gy has the property that, for every g € W,
and every r € Kj, there exists j € {1,...,n} such that both gy 'z and g~z are in V}.
Finally, let W = W, N---NW,. Let g € W and f € € such that || f — fo|l < /2.
We want to show that ||gf — gofol|eoc < €. Let z € G. Choose i € {1,...,n} such that
x € K;. Then there exists j € {1,...,n} such that g;'x, g~*z € V. Then

(9f —g0fo) (@) = flg~ @) = folgy 'x) = (f(g"2) — folg~ ")) + (folg 'x) — folgo '2)),

[(9f — gofo)(x)| <e/2+¢/2=¢.

(3). Letgo € G, \p € €*, f € € and r € R.,. We want to find a neighbourhood W of
go in G and a neighbourhood U of A in €* such that, for every ¢ € W and A € U,

[(gA = goro) ()| < 7. Let
IXoll = sup{[[Xo(f1)lloos f1 € €, || fillse = 1}

Then ||\o|| is finite because A is continuous, and [|[Ao(f1)]|cc < [|Aollllf1]leo for every

fLeF.

By (2) (or just the uniform continuity of f), there exists a neighbourhood W of g
in G such that, for every ¢ € W, |lg7'f — 95 flle < 7/(2(1 + || Xo]])). Let
U= {\ € €\ —X)(g'f)| < r/2}. Then U is a neighbourhood of )\, in €™*,
and we have, forevery g € W and A € U,

(A = 9020) ()] = Mg~ f) = (g™ N+ Polg™ F) = Xolge ' )] <7

(4). The set Z(@G) is obviously convex and G-invariant, the harder thing is proving that it is
compact.

We denote by B its unit ball of ¢ (for the norm || - ||). Let B, be the set of f € B such
that f(G) C Rso. Then B* generates % as a vector space[”| so the map ¢* — [] . C,

30bviously B generates €. If f € €, then f = f; + ifo, with f1, fo : G — R uniquely determined, and we have
fi,f2 € Bif f € B. Finally, if f € € has real values, then f = f* — f~ with f*(z) = sup(f(z),0) and
[~ (z) = —inf(f(z),0),and f*, f~ € B*if f € B.
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A — (A(f))sew, is injective, and we use it to identify €™ to a subspace of [[5 C. By
definition, the weak topology on %* is the topology induced by the product topology on

I1,C.

Let K = [[z[0,1] C [[zC. By Tychonoff’s theorem, K is compact. By the Riesz
representation theorem, ¢* N K is closed in K. Indeed, if (ay)scp+ is in the closure of
%* N K, then the map Bt — C, f — ay extends to a linear map ¥ — C. This linear
map is positive because the ay are in R, so it is of the form f — [ fdu, where 11 is a
regular Borel measure on (G, and hence it is a continuous (for the compact-open topology
on %), ie an element of & ™*.

So K N %* is compact, and this implies that Z?(G) is compact, because
2(G) = {\ € KN%*I\(1) = 1} (where 1 the constant function 1 on G) is closed
in KN&*.

We want to apply the Markov-Kakutani fixed point theorem in the form of theorem 5.11
of Rudin’s Functional analysis to the group G acting as above on the space €™*, and to the
invariant compact convex subset () of €*. First, note that &(G) is nonempty because
the linear functional f — f(1) is in &?(G) (that’s the Dirac measure at 1 € G).

Second, €* is locally convex because the sets {\ € €*||\(f1) < 7r1,..., [ A(fs)] < rs},
for f1,..., fs € € and ry,...,7s € Ry, form a basis of neighbourhoods of 0 in € and
they are convex.

Third, we have to check that the action of G on Z(G) (not €* !) is equicontinuous. This
means that, for every neighbourhood W of 0 in €™, there exists a neighbourhood V' of 0 in
¢* such that, for every py, us € &(G) such that g — s € V, we have g.(pu; — p2) € W
for every g € G.

It is obviously enough to prove this for a neighbourhood of 0 of the form
W ={Xe €*||\(f)| <r}, where f € € and r € R are fixed and || f|oc = 1.

As the action of G on % is continuous, the open  sets
U, = {9 € GlIl(g7'f — h'fllee < 7/3}, h € G, cover G. As G is
compact, we can find hy,...,h,, € G such that G = U:il Un,. Now let

V = {\ € €Vi € {1,...,m}, [A\(hj'f)| < r/3}. This is a neighbourhood of 0
in €*. Let py, o € Z(G) such that A := py — g € V. We want to prove that g\ € W for
every g € G. First notice that, as u; and p are probability measures, [A(f1)| < 2| /1~
for every fi € €. Let g € G. There exists i € {1,...,m} such that g € U,,, ie
lg™f = b fll < 7/3. Then

[GNDI= Mg Al < IMg T f = b Ol + MRl < 2r/3+7/3 =7,

soghe W.

Finally, the fixed point theorem gives an element y € () such that gu = p for every
g € G. But this is the same as saying that x is a left Haar measure.
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O

VIL.5.2 Haar measures are unique

Let G be a Hausdorff locally compact topological group. We denote by % (G, C) the space of
continuous functions with compact support from G to C. Remember (from remark of
chapter V) that a left Haar measure on G is a nonzero positive C-linear map A : € (G,C) — C
such that, if p is the measure on the o-algebra of Borel sets of GG corresponding to A, for every
continuous function f : G — Cand every g € G, [, f(x)du = [, f(gx)dp.

For simplicity, we will assume in this problem that the group G is a normal topological space.
This is the case for example if we assume that G is o-compact (i.e., GG is a countable union of
compact subsets).

Remember Urysohn’s lemma :

Theorem. If X is a normal topological space, then, for every closet subsets Y,Z C X such
thatY N Z = &, there exists a continuous function f : X — [0, 1] such that f(Y') = {0} and

f(Z) ={1}.

Let A\, A2 : € (G, C) — C be two left Haar measures on G, and let y, pi2 be the corresponding
measures on the o-algebra of Borel sets of G. We want to show that \; and )\, are equal up to a
real positive scalar.

(1). Show that it is enough to see that A1 (f)\2(g) = A1(g)A2(f) forevery f,g € €(G,C).

(2). Show that, for every non-empty open subset U C G, there exists ¢ € €' (G, C) taking only
non-negative values, supported in U, and such that A\;(¢)) = 1.

(3). Let A € ¥(G,C) be a finite subset and ¢ > 0. Find 0 # ¢. € ¥(G,C) taking non-
negative values and such that, for every f € A,

Ao(f) = M (f) /G (e (&) dpis () + O(e)

(where “O(g)” means “bounded by Ce¢, for C' € R> depending on A but not on £”).

(Hint : Find 1. by applying (2) to a well-chosen neighborhood of 1 in G. To show the
property of V., calculate [, [, f(xy)=(y) dui(y)dps(x) in two different ways.)

(4). Conclude.
Solution.

(1). Suppose that A\;(f)A2(g) = M(g)A2(f) forany f,g € €(G,C). Let A;, Ay C G be two
compact subsets such that p1(A;) > 0 and ps(Ay) > 0. (These exist because p; and
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o are regular) By Urysohn’s lemma, we can find g : G — [0, 1] continuous such that
gia,ua, = 1. Then \;i(g) € Ry fori = 1,2, and we have \; = :\\;8 Aa.

Let U C G be open nonempty. Then any compact subset of G can be covered by a
finite number of left translates of U, which all have volume equal to that of U for the
measure /1, (thanks to left invariance). As there exists compact subsets of G with nonzero
volume, u1(U) # 0. As p, is regular, there exists a compact subset K of U such that
p1(K) > 0. Then A\;(1x) > 0. By theorem 3.14 of Rudin’s book [25], there exsist a
function f; € € (U, Rxq) such that A\;(1x — f) < $Ai(1k), hence A (f) > 0. If we
extend f to G by taking f(z) = 0 for x ¢ U, this is still continuous. Now we just take
b= i f.

For every € > 0, choose a neighborhood U, of 1 in G such that, for every f € A, every
x € Gandeveryy € Uy, |f(x) — f(zy)| <e. Lety. : G — R be a continuous function
with compact support included in U, such that A\;(¢).) = 1. (Such a function exists by
(2).) We may assume that the supports of all the i), for 0 < € < 1, are contained in some
compact subset K of G.

Choose a compact subset K5 of GG containing the supports of all the elements of A, and let
K = K; U K1 K,. (Another compact subset of G.) Let f € A and € €]0, 1[. Then, for
every x € G,

/fxy% Jdjus (y |—|/ F () (y)dpas (y |<5/¢€ i (y) = ¢,
SO

| / /G Fley)be(y) din()dps(z) — Mol f)] < /K () < epn(K).

On the other hand, using the change of variables z = xy and the left invariance of ;, we

- //ffvy@/)e ) dpn(y)dpala /f /wex ) dpa()) dpu (2).

Using the left invariance of u, (and the change of variables 2/ = z~'x), we see that, for

every z € G,
/wex L) dpn (e /ws () dpax).

/ / Fay)e(y) dyos (9)dpa() = M () / be(e ) dpa (),
GJG G

which gives the result.

Let f,g € €(G,C), and take A = {f, g}. Then we have found in (3) a constant C' € R
and functions ¢. € € (G, R>¢), for every £ €]0, 1], such that

So

[Aa2(f) — >\1(f)/G¢g(x1)du2(:c)] < Ce
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and

Da(9) — M) /G ol VY dpua()| < Ce.

Note that any of these two relations implies that there exist constants 0 < A < B such that
A < [ (a7 )dps(x) < B for e small enough. In particular, we get

AM(f)Aa(g) = Xa(f)M(g) + O(e).

Making ¢ tend to 0, we get A1 (f)A2(g) = Aa(f)A1(g), as desired.

VIL.5.3 Unimodular groups

We use the notation and definitions of problem Let GG be a locally compact Hausdorff
topological group, let 1 be a left Haar measure on G. We also admit the fact that left Haar
measure on GG are unique up to mutliplication by a scalar (if G is a normal topological space, this

was proved in problem [VIL.5.2])
(1). Show that there exists a function c: G —> R>0 such that, for every ¢ € G and
fe%(G,0C), fG (xg)du(x fG

(2). Show that ¢ : G — (R, ><) is a continuous morphlsm of groups.

The function c is called the modular function of G, and we say that G is unimodular if
¢(G) =1 (i.e. if u is also a right Haar measure).

(3). If GG is compact, show that it is unimodular.
(4). Let f € €(G,C). Show that [, f(z7") du(z) = [, c(z)f(z)dp(z). E

(Hint Take  another  function g € ¢ (G,C) and calculate
Jo Jo 9(yz)e(x) "t fa™)du(z)du(y) in two different ways.)

(5). Let G be the topological group R., x R, with the multiplication given by
(a,b)(a’,0') = (ad’,ab’ 4 b). Find a left Haar measure on G. Is G unimodular ?

Solution.

(1). Let g € G. Then du(x) and du(xg=') are both left Haar measures on G, so, by prob-
lem [VIL.5.2] there exists c(g ) € R.o such that du(zg™t) = c( )du( ), i.e., for every

fE%G(C Jo fxg)du(z) = [, f(y)du(yg™) = c(g) [, f(

14Cette formule est-elle juste ?
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(2). By problem all left Haar measures on G are proportional, and so we would have
gotten the same function c in question (1) if we had used another left Haar measure on G
to define it. In particular, for all g1, g, € G,

c(grg2)du(x) = dp(z(g1g2) ") = dp(zgy 91 ") = elgr)dp(wgy ') = e(gr)e(g2)dp(z),

s0 ¢(g192) = ¢(g1)c(g2). Hence ¢ : G — (R.q, X) is a morphism of groups.

Now we show that ¢ is continuous. Let ¢ > 0. Choose f € %(G,Rx() such that
Jo f(x)du(x) = 1. Let U be a neighborhood of 1 in G such that, for every € G
(x) — f(zy)| < e, and let K be the support of f. Then, if g, ¢’ € G
are such that g'¢’ € U, we have

e(g")—e(9)] = (elg)—clg) /G f(@)dp()| = | /G f (g’ )dp(a)— /G f(xg)dp(z)| < ep(K).

(3). If G is compact, then ¢(G) is a compact subgroup of R. . The only compact subgroup of
R.gis {1}, so ¢(G) = {1}, i.e., G is unimodular.

(4). Let g € ¥(G,C). Then we have

/ / glyw)c(z) ™ Fa ) / ) / 9y dpu(y))dp(z).

By definition of ¢, ¢(x)™" [, g(yz)du(y) = [, 9(y ), and so

/G/Gg(y:c)c(x)‘lf(x‘l)du(a:)du(y) :/Gf(x‘l)du(m)Lg(y)dM(y)-

On the other, the left invariance of ;1 and the change of variables z = yx give

/ / glyw)e(z)~ fla)dp / / () F (= ) du(2)du(y).

Using the left invariance of y again and the change of variables t = 2z~ 'y, this becomes
equal to

/G g(2)dp() /G () f (1)dp(t).

Choosing a function g such that |, o 9(x)du(x) = 1, we get the result.

(5). Note that GG is isomorphic to the closed subgroup {( b) ,a € Rog,b € R} of

0 1
GL2(R). Let dx be the Lebesgue measure on R. Then it is very easy to check that
du(a,b) = %db is a left Haar measure on G. It’s not a right Haar measure, because

dp((a,b)(z,y)) = = 'du(a,b), so the modular function c of G is given by ¢(z,y) = .
U
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VII.5.4 Some examples of topological groups

Among the following closed subgroups of GL,,(C), which ones are connected ? Which ones are

compact ?
(1. GL,(C)
(2). SL,(C) := {A € M,(R)|det(A) = 1}
(3). GL,(R)
4). SL,(R) :={A € M,(R)|det(A) =1}

(5).

(6).
).
(3).
9).

(10).
an.

O(q) := {A € M,(R)|"AgA = q}, where ¢ € M, (R) is an invertible symmetric matrix
(corresponding to a non-degenerate quadratic form on R™)

Warning : I am not assuming that the quadratic form is positive definite. Feel free to use
the fact that any non-degenerate quadratic form on R" is equivalent to a form of the type
q(z1,...,@,) =27+ + 22—zl — -+ — a2 (the pair of integers (r,n — ) is called
the signature of the form).

SO(q) := {4 € O(q)| det(4) = 1}

O(n,C) :={A e M,(C)['AA=1I,}

SO(n,C) := {A € O(n,C)|det(A) =1}

U(q) .= {A € M,(C)|A*qA = ¢}, where ¢ € M,,(C) is an invertible Hermitian matrix
(corresponding to a non-degenerate Hermitian form on C")

Warning : I am not assuming that the Hermitian form is positive definite. Feel free to use
the fact that any non-degenerate Hermitian form on C" is equivalent to a form of the type
q(21, - 20) = |21+ -+ 22 = 2o | — - - - — |2a|? (the pair of integers (r,n — ) is
called the signature of the form).

SU(g) :={A € U(q)| det(A) = 1}

Sp(q,R) := {A € M,(R)|'AgA = q}, where g € M, (R) is an invertible skew-symmetric
matrix (corresponding to a symplectic form on R")

Hint : First, show that n has to be even and that you can take the matrix ¢ to be

J, = 0 I’(L)/ 2 ), where I, is the identity matrix in GL,/»(R). We write
—4in/2
Sp,(R) = Sp(J,,R) and denote by (.,.) the symplectic form on R" defined by J, (ie

(z,y) = "wJny).
Then there are (at least) three ways to proceed to prove that Sp,,(R) is connected :

(a) Argument by induction : Let Z = R™ — {0}. Consider the obvious action of Sp,,(R)
on R".
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(1).

(i1).

(iii).

Show that Sp,, (R) preserves Z and acts transitively on Z.
Show that the stabilizer in Sp,,(R) of (1,0,...,0) € Z is connected.

Show that Z is connected and conclude.

(b) Argument by Iwasawa decomposition : Let X' = Sp,(R) N O(n,R). Let L be the

set of R-vector subspaces V' of R™ such that dim V' = n/2 and that the restriction of
(.,.) to V is zero (such a subspace is called a maximal totally isotropic subspace, or
a Lagrangian subspace).

®.

(ii).

(iii).
(@1v).

).

Make Sp,,(R) act on L by (g, V) — ¢V (the image of V' by the linear transfor-
mation g). Show that this action is well defined, and that / acts transitively on
L.

M —N

N M

n/2 x n/2), with some condition on A/ and N, and that the map ¢ : K — U(n)

that sends < M —]\i[\f

Show that every matrix in K is of the form (blocks of size

) to M + i is an isomorphism.

Calculate the stabilizer P of V, = R"/2 @ 0 € L (in Sp,,(R)). Is P connected ?

Show that Sp,,(R) = KPP (ie, every element of Sp,(R) is the product of an
element of K and an element of P°), where P is the connected component of
the unit element in P.

Conclude.

(The fact that Sp,R) = K P is a particular case of the Iwasawa decomposition.)

(c) Argument by symplectic polar decomposition : Let K = Sp,, (R) N O(n,R) and let

S be the set of elements of Sp,,(R) that are symmetric positive definite.

(1.

(ii).
(iii).
@iv).
(12). Sp(q,C)

M —N
N M
n/2 x n/2), with some condition on M and N, and that the map ¢ : K — U(n)

M —N
that sends ( Y

Show that every matrix in K is of the form (blocks of size

> to M + ¢N is an isomorphism.

Show that S' is connected.

Show that every element g of Sp,,(R) can be written in a unique way as g = us,
withu € Kands € S.

Conclude.

:={A € M,(C)|"AqA = q}, where ¢ € M, (C) is an invertible skew-symmetric

matrix (corresponding to a symplectic form on C")

Hint : Try to adapt one of the methods for Sp(q, R).
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(13). Why am not adding SSp(¢, R) := {A € Sp(q, R)| det(A) = 1} and SSp(q, C) to the list ?

Solution.
(1). Let’s show that GL,(C) is connected and not compact.
By g € GL,(C). By Jordan reduction, there exists h € GL, (C) such that hgh™! = D+ N,

where
A 0
D = .
0 An
and
0 aq 0
N = ,
an—1
0 0

with A1,...,\, € C*and ay,...,a,_1 € {0,1}. Write \, = a,.¢", with a,, € Ry, and
0, € R. Ift € R, we set
)\r(t) — etlog(ozT)e'L'tGT7

A(t) 0
D= ,
0 An(t)
0 tCLl 0
N = ,
tan—l
0 0

and g(t) = h™*(D(t) + N(t))h. Then t —> g(t) is a continuous function from R to
GL,(C), g(t) € GL,(C) for every t € R, g(1) = g and g(0) = I,. So GL,(C) is
connected (and even path-connected). Note also that if g € SL,(C), then a1 ..., = 1
and 64 + --- + 0,, € 277Z. After modifying 6,, by an element of 27Z, we can assume that
01+ ---+ 6, = 0. Then, for every t € R,

det(g(t)) — etlog(al...an)eit(91+---+9n) — 1’

that is, g(¢) € SL,,(C). So the same proof shows that SL,,(C) is connected.

On the other hand, we have a continuous surjective function det : GL,,(C) — C*, and C*
is not compact, so GL,,(C) cannot be compact.
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Q).

3).

.

4).

We already saw in the proof of (1) that SL, (C) is connected. Let’s show that SL,,(C) is
not compact. For example, we can consider the set U of matrices of the form

with a € C (all the entries except the ones on the diagonal and the upper left-hand one
are zero). This is a closed subset (actually a subgroup) of SL,,(C), and it is homemorphic
(actually isomorphic as a topological group) to C, which is not compact. So SL,,(C) cannot
be compact.

The map det : GL,(R) — R* is continuous and surjective. As R* is neither connected
nor compact, GL,,(R) is neither connected nor compact.

Let’s show that SL,,(R) is connected and not compact.

We can prove that it is not compact just as in the case of SL,,(C) : if U is the closed subset
of SL,(C) defined in the proof of (2), then U N SL, (R) ~ R, which is not compact, so
SL,,(R) is not compact.

To prove that SL,,(R) is connected, we can for example use the fact that it is generated
by the transvections (a.k.a. shear transformations). Remember that, for any field K, a
transvection in M, (K) is a matrix of the form I,, + A, where rk(A) < 1. Such a matrix
is automatically in SL,,(K), and SL,(K) is generated by matrices of this form. [°] Now
let’s take g € SL,(R), and write g = (I, + A;) ... (I, + A,), where tk(A;) < 1 for every
i€{l,...,r}. Forevery t € R, let g(t) = (I, + tAy)...(I, + tA,). Thent — g(t) is
a continuous map from R to SL,, (R), and we have g(1) = g and ¢g(0) = I,,. So SL,,(R) is
connected.

Let (r,n — r) be the signature of q. Then there exists a matrix ¢ € GL,(R) such that
qg=" 91, n—rg, where I, ,,_, is the diagonal matrix whose first r diagonal entries equal to 1
and whose last n — r diagonal entries are equal to —1. If A € GL,(R), we see easily that
A € O(q)ifand only if gAg~" € O([,,,—). So the map A — gAg~' is a homemorphism
from O(q) to O(I,,,—,), and so we may assume that ¢ = [, ,_,.

Fix r € {0,...,n} and write G, for O(I,,—,). First we show that G, is not
connected. Consider the continuous map det : G, — R*. If A € G,, then
det(*Al,,,—A) = det(I,,,_,), so det(A)? = 1, so det(A) € {£1}. On the other hand,

_ (Inn O
(i 2)

isin G, and det(A) = —1. So det : G, — {1} is a surjective continuous map. As {+1}
is not connected, (G, cannot be connected.

Bref ?
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If1 <r < n—1,let’s show that G, is not compact. Consider the subset X of G, of
matrices of the form

a 0 0 b
0 0 0
00 . ol
c 0 0 d

where a, b, c¢,d € R and all the diagonal terms except for the first and last one are equal to
1. This is a closed subset, and an easy calculation shows that every element of X is of the

form
vi+t2 0 0 t
0 o0 0
0 0 ’

0
t 0 0 Vv1+41¢2

for a uniquely determined ¢ € R*. So X is homemorphic to R*. As it is closed in GG, and

R* is not compact, GG, cannot be compact.

If r =0, then I,,_, = —I,, so O(f,,—.) = O(I,). This group is usually denoted by
O(n). Let’s show that it is compact. Let A € M, (R), and let vy, ..., v, be the column
vectors of A. Then A € O(n) if and only of (vy,...,v,) is an orthonormal basis of R".
Let 5" = {v € R"|||v|| = 1}, this is the unit sphere in R” and it is compact (because it’s
closed and bounded). The set of orthonormal bases (v1, ..., v,) of R" is a closed subset
of (S™)™, so we get a homemorphism between O(n) and a closed subset of (S5™)", and this
implies that O(n) is compact.

As in (5), we may assume that ¢ = I,.,,_,, with0 <r <n—r. If r € {1,...,n—r}, then
the closed subset X of O(I,,,_,) constructed in (5) is actually contained in SO(I, ,,_,). As
X is homemorphic to R*, which is not compact, SO({, ,,_,) is not compact.

If r = 0 orr = n, then SO(/,,,—,) = SO(n) := {A € O(n)|det(A) = 1}. Thisis a
closed subgroup of the compact group O(n) (cf. (5)), so it is compact.

Now let’s show that SO(q) is connected for every non-degenerate g. First we note the
following two lemmas.

Lemma. Let q be any non-degenerate quadratic form on R", and let (vy,...,v,) be an
orthogonal family in R" such that q(v;) € {£1} foreveryi € {1,...,r}. Then (vy,...,v,)
can be extended to an orthogonal basis (vy, . . ., v,) of R™ such that q(v;) € {£1} for every
ie{l,...,n}

Proof. Denote by (.,.) the symmetric bilinear form corresponding to g. Let
W = Span(vy,...,v.). We prove the lemma by induction on n — dimW = n — r.
If n = r, we're done, so let’s assume that 7 < n. Then W+ # {0}, and g is a
non-degenerate quadratic form, so there exists v,,; € W+ such that q(vr41) # 0. After
multiplying v, by a scalar, we may assume that ¢(v,,.;) = £1. Now we just have to
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apply the induction hypothesis to (vy, ..., vp41).

[]

Lemma. Let X and Y be topological spaces, and let m : X — Y be a continuous surjec-
tive map. Suppose that :

(a) Foreveryy €Y, m~(y) is path-connected.

(b) For everyy €Y, there exists an open neighborhood U of y in Y and a continuous
map s : U — X such that m o s = idy.

Then X is path-connected if and only if Y is path-connected.

Proof. If X is path-connected, then Y is obviously path-connected.

Conversely, assume that Y is path-connected. Let z1, 25 € X, and write y; = 7(x7),
yo = m(xe). By (a), there exists a continuous map v : [0,1] — Y such that
7(0) = y; and (1) = yo. Using (c) and the compactness of ([0, 1]), we get a sequence
0=1y < ay...a, = 1, open subsets Uy, ..., U, and continuous maps s; : U; — X
such that 7 o s; = idy, and ([a;—1,a;]) C U, for every i € {1,...,n}. For every
i€ {l,...,n}, let & : [a;_1,a;] = X be s; 0 Y|4, ,,a,- This is a continuous path on
X connecting s;(y(a;_1)) and s;(y(a;)). Also, by condition (b), we can find a continuous
paths connecting =7 and s1(y(0)), z2 and s,,((1)), and s;(7y(a;)) and s;11(y(a;)) for every
i €{1,...,n— 1}. So we have connected z; and x» by a continuous path.

]

Now we come back to the problem. Let ¢ be a non-degenerate quadratic form on R”, we
want to show that SO(q) is path-connected, unless n = 2 and the signature of the form is
(1,1). We proceed by induction on n. If n = 1, then SO(q) = {1}.

Suppose that n = 2. If r = 2 or r = 0, then SO(q) ~ SO(2), so SO(q) is homeomorphic
to the unit circle in R?, and this is path-connected. If = n — r = 1, then an easy
calculation show that

sotr) = {(y 1) et~ =1)

so SO(1;1) has two connected components.

Assume that n > 3. After replacing ¢ by —g, we may assume that there exists a vy € R"”
such that g(vg) = 1. Let (.,.) be the bilinear symmetric form attached to ¢, and let
S = {v € V]q(v) = 1}. We consider the continous map 7 : SO(q) — S, A — Auwy.
We’ll show that SO(q) is path-connected by checking the conditions of the second lemma

- Let’s show that 7 is surjective. Let v; € S. By the first lemma, there exists orthono-
mal bases (w; = v, ..., w,) and (vy,...,v,) such that ¢(v;), g(w;) € {£1} for ev-
ery i. The number of 1’s and —1’s among (g(w1), ..., q(wy,)) and (¢(v1),...,q(vy))
must be the same (it’s the signature of ¢), and ¢(w;) = ¢(vy), so after changing the
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order of vy, . .., v, we may assume that ¢(v;) = q(w;) forevery i € {1,...,n}. This
means that the unique A € GL,(R) sending (wy, ..., w,) to (vy,...,v,) is in O(q).
After replacing w,, by —w,, (which changes the sign of det(A)), we may assume that
A € S0(q). So we have found A € SO(q) such that Avy = vy, i.e., T(A) = vy.

Let’s show that S is path-connected. We may assume that g is given by the matrix
Iy p—y. As I, and I,_,, give rise to isomorphic groups, we may assume that
r > n/2. Then

S:{(‘Th"'axn)ER”|$%—|—"'+$3—$2+1—---—x2:1}’

and the vectors e; := (1,0,...,0), —e; = (—1,0,...,0) are in S. Let’s show how
to connected every point of S to e; or —e;. Let p = (xy,...,2,). If z; = 1, then
344 a?—a2,, — - — a2 = 0. Consider the continuous map p : [0,1] — R"
sending t to p(t) := (1,txs,...,tx,). By the observation just made, p(t) € S for
every t, and we also have p(0) = e, p(1) = p, so we are done. Suppose that z; > 0
and z; # 1. Forevery t € [0, 1], set x1(t) = 1 —t + txy. Then, if ¢t > 0,1 — x1(t)? is
nonzero and has the same sign as 1—z?. Consider the continuous map p : [0, 1] — R

sending ¢ to
1-— Z’l 1-— £I§'1
(x

We check easily that p(t) € S for every t, and we have p(0) = ey, p(1) = p, so we
have connected p and e;. Similarly, if x; < 0, then we can connected pand —e;. To
finish the proof, we just need to find a continuous path on S between e; and —e;. As
n > 3, we have r > 2, so we can use the path p : [0, 1] — S sending ¢ to

(1—2t),/1—(1—=2t)2,0,...,0),

which makes sense because (1 — 2t)? < 1if0 <t < 1.

Let’s show that the fibers of 7 are path-connected. We may assume that ¢ = I, ,,_,,
that r > 1, and that r # 2 if n = 3 (if (r,n — ) = (2, 1), we just switch r and n — 7,
which doesn’t change the group up to isomorphism). Let e; = (1,0, ...,0), we have
e; € Sbecause r > 1. Let G’ = {A € SO(q)|Ae; = €1} (this is a closed subgroup
of SO(q)). Let v; € S. We have seen that 7 is surjective, so there exist g, h € SO(q)
such that v; = gvy and e; = hvg. Then

7 (v1) = {A € SO(q)|Avy = v, } = {A € SO(q)|Ah " 'e; = gh™tei} = gh™'G'h,

so it suffices to show that G’ is path-connected. But G’ is isomorphic to SO(1,—1 ),
so this follows from the induction hypothesis.

Let’s show condition (b) of the lemma, i.e. the fact that 7 admits a continuous section
locally on S. We may assume that ¢ = I, ,,_, with r > 1, so that e; := (1,0,...,0)
isin S. Let v; € S, let A € SO(q) such that Ae; = vy (this exists by the surjectivity
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of 7), and let vy, ..., v, be the columns of A. Then (vy,...,v,) is an orthogonal
basis (v1, ..., v,) of R", and we have ¢(v;) = £1 forevery ¢ € {1,...,n}. Suppose
that v € S, if v] is close enough to v; then (v}, vq,...,v,) is still a basis of R"
(because the determinant of the matrix with columns v}, v, ..., v, will be close to
det(A) # 0), and we want to apply the Gram-Schmidt process to this basis. Of
course, this is not always possible, because g is not definite. Let’s ignore this problem
for now. The Gram-Schmidt process gives an orthogonal basis (v}, v}, ..., v),) by the
inductive formula

1—1 <'U3-, vi>

!
VU, = UV; — V;
’ (v vty
]:1 J J
for 2 < ¢ < n. The elements v, ... v, if they make sense, vary continuousl
29 » ¥n
with v] and equal vy, . .., v, if v] = v;. So, for v] close enough to v;, we will have

(vi,v]) # 0 and then v} will make sense, and then (v5, v}) will be close to (v, vs),
hence nonzero, and then v} will make sense, etc. So there exists a neighborhood U of
vy in S such that the Gram-Schmidt process will work for v; € U, and will produce

an orthogonal basis (v, v}, ..., v]) with ¢(v}) # 0 for every i. After shrinking U, we

Y n

may also assume that, for v| € U, ¢(v;) and ¢(v}) have the same sign for every 4, and
so the matrix B(v}) with columns ﬁi)vi’ - ﬁvg isin O(q). Also, det(B(v})) is
a continuous function of v] and can only take the values 1 and —1, so, after shrinking
U, we may assume that det(B(v})) = 1 (i.e. B(v)) € SO(q)) for every v} € U.
We have B(v))e; = q(%i)v'l = v;. Choose g € SO(q) such that vy = ge; (this is
possible by the surjectivity of 7). Then v; = B(v})e; = B(v])guvo, so the fonction

s: U — SO(q), v} — B(v})g, is continuous and satisfies 7 o s = idy.

Note that all the non-degenerate quadratic forms on C" are equivalent, so all the associated
orthogonal groups are isomorphic to O(n, C). This is why we don’t vary the form as in

(5).

Just as in (5), we see that det : O(n,C) — {£1} is a surjective continuous map, so
O(n, C) is not connected.

If n = 1, then O(n,C) = {£1} is compact. Suppose that n > 2, and choose
r € {1,...,n — 1}. Then the quadratic forms on C" given by I,, and I, ,,_, are equiv-
alent, so O(n, C) is isomorphic to

G:={Aec M,(C)* p ,A=1T, .}
But the closed subset G N M,,(R) of G is clearly equal to O(Z,,,_,), and we have seen in

(5) that this is not compact, so O(n, C) is not compact.

If n = 1, then SO(n,C) = {1} is compact and connected. If n > 2, we show that
SO(n, C) is not compact as in (7) (this time using the fact, proved in (6), that SO(Z,,,—,)
is not compact for 1 <r < n —1).
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Let’s show that SO(n, C) is always connected. We use the same method as in (6). First
note the following lemma, analogous to the first lemma of (6) :

Lemma. Let q be any non-degenerate quadratic form on C", and let (vy,...,v,) be an
orthonormal family in C" Then (vy,...,v,) can be extended to an orthonormal basis

(v1,...,0,) of C™

The proof is exactly the same as in (6), the only difference being that, if v € C™ is such
that g(v) # 0, then we can always find a A € C such that g(Av) = 1. So we can normalize
any orthogonal basis to make it an orthonormal basis, as long as the basis vectors are not
in the set {v € C"|q(v) = 0}.

Now let’s prove that SO(n, C) is connected by induction on n. We know the case n = 1,
so suppose that n > 2. Let

S={(z1,...,2) €ECM|22 4+ 22 =1},

let e; = (1,0,...,0), and define a continuous map 7 : SO(n,C) — S by w(A) = Ae;.
We want to check the conditions of the second lemma of (6). The proofs are similar but
simpler.

- Let’s show that 7 is surjective. If v; € S, the lemma says that it is possible to
complete it to an orthonomal basis (vy, . .., v,) of C". If A is the matrix with columns
V1,. .., Uy, then A € SO(n,C) and w(A) = v;.

- Let’s show that S is path-connected. Let (z1,...,z,) € S. Choose a con-
tinuous function t —— z(¢) from [0,1] to C such that, for every ¢ € [0,1],
z1(t)? = (1 —3) + 222 Then 1 — 2,(t)® = t3(1 — 22) = (a3 -+ + 22), s0
the continuous path p : [0, 1] — C™, t — (x(¢), txs,. .., tz,), has image in S, and
it connects (x1,...,x,) and (1,0,...,0).

- Let’s show that the fibers of 7 are path-connected. As in (6), using the surjectivity of
7, we see that all the fibers are homemorphic to 771 (e;) ~ SO(n — 1, C), so we can
apply the induction hypothesis.

- Let’s show that m admits a continuous section locally on S. Let v; € S. The
lemma gives an orthonomal basis (vy,...,v,) of C". Just as in (6), we can find
a neighborhood U of v; in S such that, if v{ € U, then (v}, va,...,v,) is still a
basis of C™ and applying the Gram-Schmidt process to it will make sense and pro-

duce an orthonomal basis (v}, ...,v] ). Denote by B(v|) the matrix with columns

r n

vy, ...,v,, then B(v})e; = v and, after shrinking U (again, just like in (6)), we

get B(v]) € SO(n,C) for every v; € U. Then the function s : U — SO(n,C),
v} — B(v}), is continuous and satisfies 7 o s = idy.

(9). This will be very similar to (5) and (6) (except that all the groups are connected here). First
suppose that ¢ = I, ,,_, with 1 < r < n — 1, and let’s show that neither SU(q) nor U(q)
are compact. As SU(q) is closed in U(q), it suffice to show that SU(q) is not compact.
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* 0 0 =
01 0 0
Consider the intersection of SU(q) with the closed subset X := | : | of
0 10
* 0 .0 %

M,,(C). An easy calculation show that an element A = (a;;) of X is in SU(g) if and only
we can find 7 € Ry and ¢, u € R such that a;; = V1 + 12, ay,, = re'™, a,; = re™™
and a,, = V1 +r2e7*. So X NSU(q) contains a copy of R, as a closed subset, hence it
cannot be compact, and neither can SU(q).

Suppose that ¢ = I, or ¢ = Iy, = —1,. Then U(q) (resp. SU(q)) is the usual unitary
(resp. special unitary) group in M, (C), which is denoted by U(n) (resp. SU(n)). Let’s
show that both U(n) and SU(n) are both compact. As SU(n) is a closed subgroup of U(n),
it suffices to show that U(n) is compact. Consider the homeomorphism M, (C) — (C™)"
sending a matrix to the list of its column vectors. Then the image of U(n) is a closed subset
of 5™, where S = {(z1,...,2,) € C"||z1|> + - -+ + |2,|*}. As S is compact (as a closed
and bounded subset of C"), U(n) is compact.

To show that SU(q) and U(g), we will use the same method as in (6). First note the
following lemma, which is proved exactly as th first lemma of (6) :

Lemma. Let q be any non-degenerate Hermitian form on C", and let (v1, . . . ,v,) be an or-
thogonal family in R™ such that q(v;) € U(1) := {z € C||z| = 1} foreveryi € {1,...,r}.
Then (vq,...,v,) can be extended to an orthogonal basis (vy,...,v,) of R" such that
q(v;) € U(1) foreveryi € {1,...,n}.

Now we come back to the case ¢ = I, ,,_,. We may assume that 7 > 1. Let’s show
that both SU(q) and U(q) are connected. We reason by induction on n. If n = 1, then
U(q) = U(1) is the unit circle in C and SU(q) = {1}, so both are connected. Assume that
n>2,andlet S ={z € C"|q(z) = 1} ande; = (1,0,...,0);asr > 1, e; € S. We have
a continuous map 7 : U(q) — S, A — Ae;; we denote by 7’ its restriction to SU(q).
Let’s check the conditions of the second lemma of (6).

- Let’s show that 7 and 7’ are surjective. It suffices to treat the case of 7’. If v; € S, the
above lemma says that it is possible to complete it to an orthogonal basis (vy, ..., v,)
of C" such that ¢(v;) € U(1) for every i € {2,...,n}. Let A be the matrix with
columns vy,...,v,. Then A € U(q), and in particular det(A) € U(1). Let A’
be the matrix with columns vy, ..., v, 1,det(A)v,. Then A’ is also in U(g), and
det(A’) = | det(A)|* = 1, s0 A’ € SU(q). By construction, we have 7/(A4’) = v;.

- Let’s show that S is path-connected. Let (zy,...,2,) € S. Write 2; = re? with
r € Rsgand § € R, and let A = |2|> + - + |z,]* — |z41|> — - -+ — |2n|?. Then
A € R, and A < 1 (because A = 1 — |2|*). Consider the function [0,1] — C,
t — 2z1(t) := V1 — M2e™. Note that 2, (1) = /|21 |2¢? = 2. Lety : [0,1] — C"
be defined by

Y(t) = (z1(t), tza(t), ..., tzu(1)).
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Then, for every ¢ € [0, 1],

g(v(1) = (1 =A%) + A =1,
ie, y(t) € S. Asy(0) = ey and y(1) = (21,...,2,), this shows that S is path-
connected.

- Let’s show that the fibers of 7 and 7’ are path-connected. As in (6), using the sur-
jectivity of m (resp. 7’), we see that all the fibers of 7 (resp. 7’) are homemorphic
to 7 (ey) =~ U(L_y1n_r) (resp. 7 '(e1) = SU(I,_1n_.)), 50 we can apply the
induction hypothesis.

- Let’s show that 7 and 7" admit continuous sections locally on S. It suffices to show
it for 7’ (because any section of 7’ will also give a section of 7.) Let v; € S. The
lemma gives an orthogonal basis (vy, ..., v,) of C" such that ¢(v;) € U(1) for ev-
ery i € {2,...,n}. Just as in (6), we can find a neighborhood U of v; in S such
that, if v € U, then (v}, v,...,v,) is still a basis of C" and applying the Gram-
Schmidt process to it will make sense and produce an orthonomal basis (v}, ..., v)).

’n

Denote by B(v]) the matrix with columns v},...,v), then B(v}) € U(g) and

) no

B(v))e; = v}. Let A(v]) be the matrix with columns vf, ..., v/, |, det(B(v]))v.,

then A(V/) € SU(q) and 7'(A(vy)) = v;. The function s : U — SU(q),
v] — Q(v]), is continuous and satisfies 7’ o s = idy.

The group SU(q) is always connected, and it is compact if and only if ¢ has signature (7, 0)
or (0,n). See (9) for proofs.

We start by proving a useful lemma.
Lemma VILS.1. Let K be a field, let V' be a finite-dimensional vector space, and let

(.,.) be a non-degenerate symplectic form on V. Let vy,...,v9. € V be such that

(v1,v2) = (v3,04) = -++ = (Vgp_1,09,) = 1, and (v;,v;) = 0if i = j or {i,j} is not

of the form {2m — 1,2m}.

Then :

(i) the family (vy, ..., vs,) is linearly independent;

(ii) if W = Span(vy,...,ve.), then V = W @ Wt (where
Wt ={veVNweW, (v,w)=0});

(iii) we can complete it to a basis (vq,...,vs,) satisfying a similar condition (i.e.
(v1,v9) = (V3,04) = -+ = (Vap_1,V2,) = 1, and (v;,v;) = 0if i = jor {i,j}

is not of the form {2m — 1,2m}).

In particular, we see that every finite-dimensional /K -vector space having a non-degenerate
symplectic form must be of even dimension.

Proof. Let show (i) Let A\,..., Ao, € K such that \jv; + -+ + A9, = 0. Let
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i€ {l,...,2r}. If ¢ is odd, then we have
0= <)\1U1 + - Aoy, Uz‘+1> = \;.
If 7 is even, then we have

0= <)\1U1 + 4 Ao Ugp, Uz‘—1> =\

Now we show (ii). Let W = Span(vy,...,vs.). As the form is non-degenerate,
dim(W) + dim(W+) = dim(V). Let’s show that W N W+ = {0}. Let
v o= MU+ o+ Ao, € WL If v € W, we see by looking at all the (v, v;) as
above that \; = --- = Xy, = 0. Finally, we getthat V. = W & W+,

Now let’s show (iii). We proceed by induction on dim V' —dim W. If dim V —dim W = 0,
then V' = W and we are done, so suppose that dim W < dim V. By (ii), we just need to
find a basis of W+ satisfying the conditions of the lemma (that is, we just need to treat the
case 7 = 0). Let vy, € WL — {0}. As the form is alternating, (vg, 41, Var41) = 0. As
the restriction of the form to W+ is non-degenerate (because V = W @ W+ and W and
W+ are orthogonal), there exists vy, o € W such that (vo,, 1, v2,42) # 0, and we may
assume after rescaling that (vo, 41, v9,12) = 1. Then we can apply the induction hypothesis
to (Ul, R ,U2r+2>.

O
Now we come back to the problem. By the lemma, n has to be even, say n = 2m,
and we can find a basis (vy,...,v,) of R" as in the lemma. Then, in the basis
(1,03, ..., Vom—1, Vam, - - -, U4, V2), the matrix of the symplectic form is .J,. As in (5),

this implies that Sp(¢, R) and Sp(J,,R) are isomorphic (as topological groups), so we
may assume that ¢ = J,,. We will also denote the group Sp(/,,, R) by Sp,,(R).

Let’s first show that Sp,(R) is not compact. Consider the the closed subset

* 0 ... 0 =%
0 1 0 0
X :=1: : | of M, (R). An easy calculation show that a matrix A = (a;;)
0 0 1
* 0 0 =

of M, (R) is in the closed subset Sp,,(R) N X of Sp, (R) if and only if (Z” Z”) is in
21 Q22
SLy(R). As SLy(R) is not compact, neither is Sp,,(R).

Now let’s show that Sp,,(R) is connected. We follow the hint, in fact we’ll follow all three
hints.

(a) The first method is similar to the method used in (6)-(10). We do an induction on n.
If n = 2, we saw above that Sp,,(R) = SLy(IR), and this is connected by (2). So let’s
suppose that n > 4.



VIL.5 Chapter V exercises

Let (., .) be the symplectic form on R™ with matrix .J,,. We consider the continuous
map 7 : Sp,(R) = Z, A — Ae; (where ¢; = (1,0,...,0)), and we try to check
the hypotheses of the second lemma of (6).

- Let’s show that 7 is surjective. If v; € Z, complete it to a basis
(v1,...,v9y,) of R™ as in the lemma above. Let A be the matrix with columns
V1, U3,y Vo1, U2m, - - -, U4, Vo. Then A € Sp,,(R) and 7(A) = v;.

- Asn > 2, Z is path-connected.

- Let’s show that the fibers of 7 are path-connected. As in (6), using the surjectiv-
ity of 7, we see that all the fibers of 7 are homemorphic to 7~!(e;). Let’s show
that 771 (e1) =~ Sp,,,_,(R) so that we can apply the induction hypothesis.

Let A € 7 '(ey), i.e. Ae; = e;. Let v = Ae,. Then v is orthogonal to

€, ...,en, and (e1,v) = 1. If we write v = A\je; + -+ + \,e,, this implies

easily that \y = --- = \,_; = 0 and )\, = 1, i.e. that v = e,. So the matrix
1 0 0

Ais of the form |0 B 0] with B € M,, »(R), and it is easy to see that
0 0 1

B is actually in Sp,,_,(R). Conversely, every matrix of this form is clearly in

7T_1(€1).

- Let’s show that 7 admits continuous sections locally on Z. Let v; € Z, and
complete it to a basis (vy, . . ., va,, ) of R*™ satisfying the condition of the lemma.
As in (6), the main point is to show that, if v} is close enough to vy, then we
can complete to a basis (v], ..., v}, ) satisfying the condition of the lemma that

depends continuously on v}. The inspiration is again the Gram-Schmidt process.
Let v] be close enough to v; so that (v}, ve) # 0. We set v = 1v2) g0 that

(v],vh) = 1. We set vy = —(vh,v3)v] — (v}, v3)vh + vs, so that ?02,211{5) =0
for i = 1,2. If v] is close enough to vy, then v} is close to vz and so we have
(v5,v4) # 0. We set v = —(vh, vg)v] — (v}, v4)Vy+ mm, so that (v, v}) =0
if i = 1,2 and (v}, v)) = 1. We continue the construction of v}, ..., v}  in the

same way : If we already have v}, ..., v}, then we set

r
vér-‘rl = U2p41 — Z(@és’ U2T+1>vés—l + <Ués—l7 /027"+1>Ués)
s=1
and

T

>U2r+2 - Z(<U;s? V2r42) Vg1 + (U1, Vari2) V).
s=1

1

/
U2r+2 = /
<U2r+1> Vor42

The second expression makes sense if v] is close enough to v;, because then

5,1 Will be close to va, 11 and so (v5, 1, Var42) Will be nonzero. Finally, we de-
/ . : / / / / !/ /

note by B(v}]) the matrix with columns v}, v}, ..., v5, 1,05, ..., vy, v5. Then
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B(v]) € Spy,,(R), m(B(v})) = v] and B(v}) depends continuously on vj. So
we are done.

(b) We use the notation of (b) of the problem. Remember that n is even by the lemma,
write n = 2m.

®.

(i1).

(iii).

The action is well-defined because Sp,,(R) preserves the form (., .), so the image
of a Lagrangian subspace is a Lagrangian subspace. Let (e,...,e,) be the
canonical basis of R”, and let V, = Span(eq, .. ., en/z). Then V) is a Lagrangian
subspace of R". To show that the action of K on L is transitive, we just need to
show that, for every V' € L, there exists g € K such that V' = gV}, (or, in other
words, such that the first n/2 columns of g generate V).

Let (vy,...,v,) be a basis of V' that is orthonormal for the usual scalar product
on R”, and consider the matrix with columns vy, ...,v,,. This is a 2m X m

g) ,with A, B € M,,(R). The condition that the

basis is orthonormal is equivalent to I, = ‘MM = 'AA + BB, and the fact
that V' is Lagrangian is equivalent to 0 = ‘M J,M = —'BA +'AB. By (ii) (or

A —-BY\. . :
B A)1smK. By the choice of A

matrix, and we write it M = (

by an easy calculation), the matrix g := (

and B, gV, = V.

Let g € K, write g = with A, B,C, D € M, »(R). Then‘gJ, g = J,

A B
C D
because g € Sp,,(R), so ¢'gJ,g = gJ.. As g'g = I,, (because g € O,(R)), we

get gJ, = J,g, which is equivalentto A = Dand B = —C. If g = (_AB lj) ,

then the conditions that g € O(n) and g € Sp,,(R) actually become equivalent to
each other, and they are both equivalent to the conditions that ‘tAA +'BB = I,

and'AB = 'BA. So K is the group of matrices (_AB i) satisfying these two
conditions on A and B.

: : A B
Now we consider the map ¢ : K — M, (C) sending

B A) to A —iB. For
A, B € M,(R), we have

(A—iB)*(A—iB) = ("A+i'B)(A—iB) = ("AA+'BB) +i('"BA - "AB).

This show that U(n) is exactly the image of ¢. As it is clear that ¢ is a homem-
orphism onto its image, it just remains to show that ¢ is a morphism of groups.
But this is a straightforward calculation.

First, a matrix M € M,(R) stabilizes V; if and only if it is of the form
M = (13 g) with A, B,D € M,,(R). Such a matrix is in Sp,,(R) if and
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only if YAD = I,, and “‘BD = *DB. Let Sym be the set of symmetric matri-
ces in M,,(R), it’s a R-vector of M,,(R) and in particular connected. The map

gl g > (D,'DB) induces a homeomorphism ¢ : P = GL,,(R) x Sym.
As GL,,(R) is not connected (see (3)), P is not connected.

First let’s calculate P°. 1 claim that GL,,(R)° (the connected component of
I, in GL,,(R)) is equal to GL,,(R)* = {¢g € GL,,(R)|det(g9) > 0}.
First, GL,,(R)™ is the inverse image by the continuous surjectif map
det : GL,,(R) — R* of a connected component of R*, so it is a union of con-
nected components of GL,,(R). So it is enough to show that GL,,(R)" is con-
nected. The maps GL,,(R)* — SL,,,(R) x Rsg, g — (det(g)~"/™g,det(g)),
and SL,,(R) x R.g — GL,,(R)*, (g, A\) — A/™g, are continuous and inverse
of each other, so GL,,(R)" is homeomorphic to SL,,(R) x R-q. As SL,,,(R) is
connected (see question (4)), GL,,(R)™ is connected.

Now, using the homemorphism ¢ of (iii), we get P* = ¢y~ (GL,,(R)* x Sym),
so P is the set of (61 g) in P such that det(D) > 0 (or equivalently
det(A) > 0).

We come back to the problem. Let g € Sp,(R). Then V' = gV} is a La-

grangian subspace of R"”, so, by (i), there exists h € K such that V' = hl[. We

get hVy = ¢V, i.e,, h™'g € P, which means that ¢ = hp with p € P. We

still need to show that we can choose p € P°. Let A be the diagonal matrix
1

in GL,,,(R), let ¢ = (161 S}) Then ¢> = I,,,g € KNP,
-1
and exactly one of p and gp is in P° (this is obvious on the description of P° we

obtained above). So either p € P and we’re done, or we write ¢ = (hq)(gp),
and we have hq € K and ¢qp € P°.

By (ii) (and question (9)), K is path-connected. By the calculation of P in (iv),
PY is path-connected. Let g € Sp,(R); by (iv), we can write ¢ = hp, with
h € K and p € P°. Choose continuous maps ¢t — p(t) (resp. t — h(t)) from
[0,1] to P° (resp. K) such that p(0) = h(0) = I,, and p(1) = p, h(1) = h. Then
t — h(t)p(t) is a continuous path on Sp,,(R) that connects /,, and g.

This is identical to (b)(ii).

Let
s={A¢€ Mn(R)|tA = Aand AJ + JA = 0}.

This is vector subspace of M,,(R), and in particular it is path-connected. We’ll
show that the matrix exponential sends s onto .S, which implies that .S is path-
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connected.

Let g € S. As g is symmetric positive definite, there exists h € O(n) and

A1 0
D = € M,(R), with A\y,..., A\, > 0, such that g = h™'Dh.
0 An
log Ay 0
Let £ = ,so that e = D and e 'E" = ¢. Also, h"*Eh
0 log A\,

is symmetric because F' is symmetric and h is orthogonal. On the other hand,
the function f : R — M, (R), t — e/ P Jeth'Eh _ J ig real analytic, and it
sends every t € Nto 0 (if € N, then e’ P = ¢* € Sp, (R)), so it is identically
0 by the identity theorem. []E] Also, we have

f(t) =h'ERf(t) + f()h ' Eh.

In particular, 0 = f'(0) = h*EhJ + Jh~'Eh,so h"'Eh € s.

Let’s show the uniqueness. Let g € Sp,,(R), suppose that g = us = u's’, with
u,u’' € K and s,s' € S. Then ‘gg = s* = (s')%. As s and s’ are symmetric
positive definite, s* = (s')? implies that s = s'|'/|and then we also get u = u/.

Let’s show existence. Let g € Sp,,(R). Then “gg is in S, so, by (ii), there exists
1
A € ssuchthatigg = e Let s = e2?, we have s € S. Let u = gs~'. Then

fuu = s Mggs™ = 5718?57 =1,

sou € Sp,(R)NO,(R) = K.

We know that K is path-connected by (i) and question (9), and we know that S is
path-connected by (ii). We conclude that Sp,,(R) is path-connected as in (b)(v).

(12). First, the lemma of (11) show that we just need to consider the case where ¢ = .J,,. We
write Sp,,(C) = Sp(J,,, C). As the closed subgroup Sp,,(R) = Sp,,(C)NM,,(R) of Sp,,(C)
is not compact (by (11)), Sp,,(C) cannot be compact. To show that Sp,,(C) is connected,
we can adapt any of the methods of (11), but the easiest is to use method (a) goes through
with almost no change. In methods (b) and (c), we have to use K = Sp,(C) N U(n),

16See corollary 1.2.6 of Krantz and Parks’s book [19].

7This is a standard exercise. Up to conjugating by an orthogonal matrix, we may assume that s’ is diagonal. Then
we want to show that s is also diagonal, which is enough because the eigenvalues of s have to be equal to
the eigenvalues of s’, as they’re both the square roots of the eigenvalues of s? = (s’)2. So we are reduced to
the following statement : Let s be a symmetric definite positive matrix such that s? is diagonal, then s is also

diagonal. Let A\1,..., A\, € Ry be the eigenvalues of s. As taking the square is an injective operation on R+,
we have A7 = A7 if and only if A\; = A, and so there exists a polynomial P € R[X] such that P(\}) = \; for
every i € {1,...,n}. As s is diagonalizable, P(s?) = s. But s? is diagonal, so P(s?) is also diagonal.
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which is isomorphic to the group of “unitary” matrices in M, /»(H), and to prove that this
is path-connected. (The rest of methods (b) and (c) adapts very easily, but the previous part
requires more work.)

0

VII.5.5 Representations of compact commutative groups

(1).

2).

If GG is an abelian compact Hausdorff topological group, show that every irreducible con-
tinuous finite-dimensional representation of G is of dimension 1.

Find all the continuous 1-dimensional representations of S := {z € C||z| = 1} and their
images in L*(S").

Solution.

(D.

Q).

It’s exactly the same proof as for finite groups. Let (V, p) be an irreducible continuous
representation of G. Then for every g € G, p(g) € Endg(V), so, by Schur’s lemma, there
exists x(g) € C* such that p(g) = x(g)idy. This show that every vector subspace of V' is
invariant by G. As V is irreducible, the only G-invariant subspaces of V' are 0 and V, so

For every n € Z, let x,, : S' — C* be the map z — 2™. This is a continuous morphism
of groups, hence a continuous 1-dimensional representation of S*. Its image in L?(S') is
also 1-dimensional, and it is generated by the function z — Tr(x,(z)"') = 2™

Now let’s show that every continuous 1-dimensional representation of S! is of the form ,,
(and hence, by (a), every continuous irreducible finite-dimensional representation of S%).
Let x : S' — C* be such a representation, ie a continuous morphism of groups.

Composing x with the map 7 : R — S, z — exp(2miz), we get a continuous morphism
of groups ¢ : R — C*. As 1) is continuous, ¢)(z) — 1 as x — 1. Hence we can find ¢ > 0
such that a := [ ¢(z)dx # 0. (Just choose ¢ > 0 such that 1/2 < ¢(z) for 0 < z < c.)
Now for every z € R,

/;+c¢(t)dt = /ch(x + t)dt = () /Oc@b(t)dt = a)(x),

because 1 is a morphism of groups. So we get

T+c
wle)=at [ ulae
This shows that 1) is derivable, and also that

V(2) =a (W(z +0) — (@) = P(x)a” (¥(c) = 1).
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So () = exp(azx) (with o = a~(¢(c) — 1), though we don’t care).

Now as 1) factors through 7 : R — § 1 we have exp(2ima) = 1, hence a € 7Z, and we get
X = Xa-

(We could also have used the fact that the functions y,,, n € Z, form a Hilbert basis of
L?(S') by the theory of Fourier series. So if S' has any 1-dimensional representation y

that were not of the Y, this x would have to be in L?(S*), nonzero and orthogonal to all
the x,, and that’s impossible.)

0

VII.5.6 Complex representations of profinite groups

(1).

2).

Let n be a positive integer. Put some norm ||.|| on M,,(C). (They are all equivalent, so you
can choose your favourite one.) Show that there exists € > 0 such that the only subgroup
of GL,,(C) contained in {g € GL,(C)||lg — 1|| < €} is {1}. (Hint : Start with the case
n = 1, and then don’t do an induction on n.)

We say that a topological group is profinite if

P=1mI/A:={(za) € [[T/ANA' C A, 2 = zaA},
A A

where we take the limit over all normal subgroups A of finite index of I', and if the topology
of I is induced by the topology of [ [, I'/A, where we put the discrete topology on each
I'/A. Examples of profinite groups are Z,, Z and the Galois group of a possibly infinite
Galois extension of fields.

(a) Show that a profinite group is compact Hausdorff.

(b) Suppose that I is a profinite group, and let (V, p) be a continuous finite-dimensional
representation of I" on a C-vector space. Show that Ker p is a subgroup of finite index
of I'.

Solution.

(D.

274

We do the case n = 1. Let G be a subgroup of C* such that, forevery g € G, |g—1] < 1/2.
First we show that G C S'. Indeed, if there is a ¢ € G such that |g| # 1, then either
lg|" — 0 asn — +oo, or |¢"| — 400 as n — +oo In both cases |¢g" — 1| eventu-
ally becomes bigger than 1/2, which is impossible. Now suppose that G = {1}, and let
g € G —{1}. Write g = exp(2mia), a € R. We may assume that 0 < o < 7/2 (if this
does not work for g, it will for g7'). There exists n € Zx; such that 7/2 < na < , and
then |¢" — 1| > 1/2, contradicting our hypothesis on G. So G = {1}.
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Now let n be any positive integer, and choose £ > 0 such that, if g € GL,(C) is such that
llg — 1|| < e, then for every eigenvalue X of g satisfies |\ — 1| < 1/2. Let G be a subgroup
of GL,,(C) such that ||g — 1|| < ¢ for every g € GL,(C).

Let g € G, and let A\, ..., )\, be its eigenvalues. For every k € Z, the eigenvalues of g*
are \¥ ... Ak By the first part, this forces all the ); to be equal to 1.

We have shown that all the eigenvalues of g are equal to 1, s0 g = 14+ N with N € M,,(C)
nilpotent. If N # 0, choose e € C" such that N(e) # 0 but N%(e) = 0. Then, for every
m € Zoi, ™€) = (1+ N)™(e) = e+ mN(e), 50 lg"(e) — e]| = m|| N(e)]| — +oc as
m — 400, which contradicts the hypothesis on GG. So the only element of G is 1.

Another way to see that every element of GG has to be semisimple is the following : Take
e small enough so that every g € M,,(C) with ||g — 1|| < ¢ is invertible, and consider the
closure G of G in M, (C). By the choice of ¢, this is also the closure of G in GL,(C),
hence it’s a subgroup of GL, (C). But it’s also a compact subset of M, (C) because it’s
closed and bounded. So G is a compact subgroup of GL,,(C). By theorem of
chapter V, there exists a Hermitian inner product on C" for which every element of G is
unitary. In other words, there exists g € GL,(C) such that G C gU(n)g~!. As every
element of U (n) is diagonalizable, so is every element of G.

(a) This follows from Tychonoff’s theorem, because finite sets with the discrete topology
are compact Hausdorff.

(b) After choosing a basis of V', we can see p as a continuous morphism of groups
G — GL,(C). Lete > Obeasin (1),and let U = {g € GL,(C)l|||lg — 1| < &}.
Then U is an open neighbourhood of 1 in GL,,(C), so p~!(U) is an open neighbourg-
hood of 1 in G. By the fact that I' = 1£f1 AT /A and the definition of the product
topology, this implies that p~!(U) contains a normal subgroup A of T of finite index.
In particular, p(A) is a subgroup of GL,,(C) contained in U. By (1), p(A) = 1, ie
A C Ker(p), so [I" : Ker(p)] < oc.

O

VIL.5.7 A unitary representation of G such that G — U(V) is not

continuous

Let G be a non-discrete compact group. Show that the morphism p : G — U(L?*(QG)), © — R, is
not continuous, where the topology on U(L?(G)) is the one induced by ||.||,,. (Note : you don’t
really need G to be compact for this, G locally compact would be enough, but non-discreteness
is of course necessary.)
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Solution. We will show that, for every  # 1 in G, we have ||id — R, ||y > \%m As G is not
discrete, we can find a sequence (z,),>o converging to 1 such that x,, # 1 for every n, so this
will imply the result.

Letz € G — {1}. We choose open subsets 1 € U C V in G such that U is compact and
contained in V', vol(V') < 2vol(U) et UNUx = @. By Urysohn’s lemma (see problem |VIL.5.2),
there exists a continuous function f : G — [0, 1] such that fig =1and fg_y = 0. We have

rummn—lgﬂmmw—[]ﬂmﬁwsvdw>smm@&

On the other hand,

I = RNy = [ 1£(0) = flan)Pdy > [ 11(6) = f(ga) Py = vol D).

So
lid — R H2 N |f — Ra(f )||%2(G) S VOI(U) :l
= 11226 ~ 2vol(U) 2

VII.5.8 A compact group with no faihful representation

Find a compact (Hausdorff) topological group that doesn’t have any faithful finite-dimensional
representation.

Solution. By problem [VIL5.6, any infinite profinite group will do. Take for example
= @n>1 Z/nZ, where the integers n are ordered by the divisibility relation and, if n|m,

the map Z/mZ — 7Z/nZ is the obvious projection.
0

VIL.5.9 Uniqueness of the inner product making an irreducible
representation unitary

Let G be a compact Hausdorff group, let V' be a finite-dimensional C-vector space and
p : G — GL(V) be a continuous representation of G on V. Assume that p is an irreducible
representation of G.

18 We could actually show with the same methods that | R, — id|,p, > 1.
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If (.,.); and (., .) are two Hermitian inner products making p a unitary representation, show
that there exists A € R-q such that (., .)o = A(.,.);.

Solution. Let S be the set of bi-additive forms V' x V' — C that are C-linear in the first variable
and C-antilinear in the second; that is, if f € S, then, for all v,v',w,w’ € V and \, u € C, we
have
f(/\v + pw + w,) = /\ﬂf(vv w) + )\f(’U, w,) + ﬁf(vl> w) + f(w’ w,)'

This is a finite-dimensional C-vector space in the obvious way, and we make G act on it by
:ifg € Gand f € S, then g.f is the form (v,w) — f(p(g) v, p(g) tw). It is easy
to see that this makes S a continuous representation of G, but this will also follow from the
next paragraph. Note also that dime S = (dime V)2, (If (ey, ..., ¢e,) is a C-basis of V, then
sending f € S to the matrix (f(e;,€e;))1<ij<n gives a R-linear isomorphism S = M,,(C), so
dime S = 5 dimg S = 1 dimg M, (C) = 3(2n?) = n?.)

Let ¢ : V. — V* be the map v — (w —— (w,v);). It is an isomorphisme of R-vector
spaces, and we have p(Av) = Mv forall A\ € C and v € V. Also, ¢ is G-equivariant, be-
cause (p(g)v,w); = (v,p(g) " w); for all v,w € V. Now write W = V ®¢ V*, and con-
sider the map ¢ : W* — S sending v : W — C to the form (v,w) —— u(v ® p(w)). 1
claim that this well-defined and a G-equivariant C-linear isomorphism. Indeed, it is straighfor-
ward to check that v is well-defined, C-linear and (G-equivariant; it is injective because the map
idy ® ¢ : V®cV — V ®&c V*is a R-linear isomorphism, hence in particular surjective; and it
is an isomorphism because its source and target have the same dimension, which is (dim¢ V)2,

So the representations of G on WW* and on S are isomorphic.

Now note that Hermitian inner products on V' are elements of .S, and that saying that a Her-
mitian inner product on V' makes p a unitary representations is equivalent to saying that the
corresponding element of S is in S¢ (by the definition of the action of G on S). So if we show
that dim¢ (S) = 1, we will be very close to solving the problem. Let’s use characters to calcu-
late dimc(SY). By decomposing S into irreducible representations and using corollary
of chapter V, we see (as in the proof of lemma lI.1.2.4] of chapter II) that

dlmc(SG)—/XS<g)dg

a
We can calculate the character of S using the G-equivariant isomorphism S ~ W*. Let g € G.
By propositions [[I.1.1.3|and[[T.1.1.11] of chapter II (which don’t require the group G to be finite),
we have

xw+(9) = xwlg™") = xv(g™xv-(97") = xv(g™ )xv(9)-
Moreover, as V' has a Hermitian inner product that makes p(g) unitary, all the eigenvalues of
p(g) are complex numbers of module 1, and so x (g7 !) = xv(g). Finally, we get
i

xs(9) = xw=(9) = [xu(9)
As V is irreducible, Schur orthogonality ( corollary of chapter V) gives

[ xstorda = [ xwio)Fdg = 1.
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So we have proved that dim¢(S%) = 1.

As (.,.); and (., .), are both nonzero elements of the 1-dimensional C-vector space S¢, there
exists A € C such that (.,.)o = A(.,.);. Taking v to be any nonzero element of V', we get

A:

<’U7’U>2 E R>0.

(v,v)1

OJ

VII.6 Chapter VI exercises

VII.6.1 Surjectivity of the exponential map

(1). Show that the exponential map exp : M, (C) — GL,(C) is surjective.

(2). Isexp : M, (R) — GL,(R) surjective ? If not, what is its image ?

(3). Let SO(n) = {A € M,(R)|!AA = I,and det(A) = 1} and
so(n) = {A € M,(R)|"A+ A = 0}. Show that exp(so(n)) = SO(n).

4). Let O(n) = {A € M,(R)['AA = I,}. Can you find a subspace E of M, (R) such that
exp(E) = 0O(n) ?

Solution.
(1). Let g € GL,(C). We write ¢ = su, with s diagonalizable, u unipotent and su = us

278

(this is the Chevalley-Jordan decomposition). The idea is to find “logarithms” of s and
separately, and to choose them so that they will also commute.

As s is diagonalizable, we have s = hdh™! with h € GL,(C) and d a diagonal matrix.
Call Ay, ..., \, the diagonal terms of d, and choose 1, ..., u, € C such that e = )\,
for every i (this is possible because the \; are nonzero). If \; = );, we can arrange that
;i = 5 so we may assume that there exists a polynomial P € C[X] such that P(\;) = p;
for every 7. Let D be the diagonal matrix with diagonal entries piy, . . . , ji,, let S = hDh ™1,
We have e = d, hence e® = hePh™ = s. Also, as P(d) = D, we also have P(s) = S,
and so S and u commute.

On the other hand, u is unipotent, so n := u — 1 is nilpotent. Let

N = Z(—n“%nr.

r>1

This sum is finite because 7 is nilpotent, and, by proposition [VI.3.4{of chapter VI, we have
eN = n. Also, N is by definition a polynomial in w, so it commutes with every matrix that

commutes with u, and in particular it commutes with .S.
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S+N _ _S_N

Finally, using the fact that S and N commute, we get e e’e’ = su = g.

(2). We know that exp is a continuous map and that M,,(R) is connected, so exp(M,(R)) is
also connected. As GL,,(R) is not connected (see (2) of [VIL.5.4), exp(M,,(R)) cannot be
equal to GL, (R).

Before calculating the image of exp, we prove two lemmas.
Lemma. Let A, B € M,(R), and suppose that there exists g € GL,(C) such that
gAg~t = B. Then there exists h € GL,,(R) such that hAh™' = B.

The lemma is actually true when we replace C/R by any field extension, but the proof that
we will give here only works for infinite fields. H

Solution. Let g € GL,(C) be such that gAg~' = B, write ¢ = X + 1Y with
X,Y € M,(R). Then we have XA + iYA = BX + iBY, hence, as A and B are
in M,(R), XA = BX and YA = YB. If we knew that X or Y is invertible, we
would be done, but this is not necessarily true. However, notice that, for every ¢t € C,
(X +tY)A = B(X +tY). Consider the function f : ¢ — det(X +¢Y). This is a degree
< n polynomial (with coefficients in R), and f(7) = det(g) # 0. So f is not the zero poly-
nomial, and so it cannot be identically 0 on R (because R is infinite), i.e. there exists A € R
such that f(\) # 0. Now let h = X + A\Y. We have h € M, (R), det(h) = f(A\) #0soh
is even in GL,,(R), and hA = Bh.

O

Before stating the second lemma, we introduce some notation. For A € M, (C), A € C
and r € N*, we set

w, \(A) = dim(Ker(A — AL,,)") — dim(Ker(A4 — \I,,)" ).

It is easy to check (using the Jordan normal) that w;, ,(A) is the number of Jordan blocks
of size > r in the Jordan normal form of A.

For A € C and » > 1, we also denote by J.(A\) € M,(C) the Jordan block

Al 0
-1
0 A

Lemma. Let A € M,,(C). Then A is similar to a matrix with real entries if and only if, for
every A € C and every r € N*, w, z(A) = w,5(A).

Of course, the condition is empty for A € R.

Solution. Suppose that w; »(A) = w,5(A) for every A € C and every r € N*, and let’s

9For the general case, see [28]], proposition X.1.3; there is also a generalization of the lemma in the exercises of
section X.1 of the same book.
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show that A is similar to a real matrix. We may assume that A is in Jordan normal form.
The condition says that, for every A € C and every € N*, if A has a Jordan block of the

form J,.(\), then it must also have a Jordan block of the form J,.(\). So it is enough to

show that every matrix of the form (JT é/\) 7 (()X))’ for A € C and r € N*, is similar to

a real matrix. But if B is the matrix of the previous sentence and P = (ZI; Z][T) , then a
straightforward calculation shows that P~'BP € My, (R).

Conversely, suppose that A is similar matrix, and let’s show that w,.(\) = w,(\) for every
A € Candr € N*. We may assume that M, (R). Let V = C’, seen as a R-vector
space, and let 7" be the element of End(V') given by A. We denote by o the R-linear
automorphism of V' given by applying complex conjugation to all the coordinates. Then
Too=oco0T,and (Midy) oo = oo (\idy) for every A. So

w, 5(A) = 5 dimg(Ker(o o (T'— Xidy )" o o)) — 3 dimg(Ker(o o (T — Xidy) oo ™)),

and this equal to w, ,(A) because o is an automorphism.

Let’s come back to the problem.

Let X be the set of ¢ € GL,(R) such that, for every A € R_g and r € N*, w,(\) is
even. We want to show that X = exp(M,(R)). First let’s see what happens when we
exponentiate Jordan blocks. Let A € C and r € N*. We have J,.(\) = A, + N, with
N € M,(R) a nilpotent matrix such that N"~! # 0. So e/ = ereVN = eI, + N'),
with N' = N + IN? + .- + ﬁN“l. The matrix N’ is nilpotent, and we have
N1 = N1 £ 0 (because N” = 0), so e’V is similar to J,(e*). Using the inter-
pretation of w, »(A) in terms of Jordan blocks in the Jordan normal form of A, this implies
immediately that, for every A € C and r € N*,

A
wya(e”) = Z wy. . (A).
peCler=X
In particular, if A is similar to a real matrix, then, for every A € Ry and r € N*, we have

wr,)\(eA) = Z wr,10g|)\\+i(2m+1)7T(A) = Z 2wr,log|)\|+i(2m+l)7r(A)7

meZ m2>0
so w,x(e?) and e? € X.

Conversely, let’s show that X C exp(M,(R)). Let ¢ € X. We may assume that ¢ is in
g1 0
Jordan normal form, so we have g = , with each g; of the form J,.(\) with

0 Jm
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() 0
A€ Rygor ( 0 JT(X)
the exponential of a real matrix, so we may assume that g is one of the g;.

) with A € C — R It suffices to show that each of the g; is

If g = J.(\) with A € Ry, then g = Al + N with N nilpotent, and so g = e with
A =1log(A) ¥,,5,(=1)""'-LN™ by proposition VL.3.4

Ifg = (JTé/\) 7 (()X)) with A € C — R>g, choose ;1 € C such that e# = X and let
A= J’“(()/“L ) 7 ?ﬁ)) . Note that e# = ¢, so, by what we have seen above, e is similar to
(‘]T’(())‘) 7 (()X)> = g. Also, by the second lemma, A is similar to a matrix B € M,,.(R).

Then e? and g are similar and they are both in M,,.(R), so, by the first lemma, there exists
h € GLy, (R) such that hePh~ = ¢. Finally, we get g = """ with hBh~' € M, (R).

Let’s show that exp(so(n)) C SO(n). Let A € so(n), then ‘A = —A, so A and 'A
commute, so (by proposition of chapter VI) e’ 4t4 = ¢"4e4 AstA+ A = 0 and
e = teA this gives I, = ¥ = tede?, ie, e € O(n). Also, det(e?) = €™ (again
by proposition of chapter VI). But 0 = Tr(*A + A) = 2Tr(A), so TrA = 0 and

det(e?) = 1. This shows that e € SO(n).

Conversely, let ¢ € SO(n), and let’s show that there exists A € so(n) such that e# = g.

g1 0
We can find A € O(n) such that hgh™ = , with each g; equal to either 1
0 Im
cosf sind S .
or to 0 € R. As conjugating by a matrix of O(n) preserves so(n), we

—sinf cosf)’

may assume that i = I,,, and it suffices to treat the case g = g;. If ¢ = 1, we can take
cosf sind ) 1o 1 4

A=0.1fg= . with § € R, then we have g = PhP~ with P = |
—sinf cosf i1

0 0

0 0 —u6

A € so(n).

No. If A is the diagonal matrix with diagonal entries —1,1,....1, then A € O(n)
and det(A) = —1. But, by proposition [VI1.3.2| of chapter VI, we know that, for every
B € M,(R), det(e®) = ™8 > (. So A cannot be the exponential of a real matrix.

i0
and h = <6 6—07;9>’ S0 g = edwith A= P ( ) P~1, and it is easy to check that

O
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VII.6.2 Kernel of the adjoint representation

Let G be a closed subgroup of GL,(C) and g be its Lie algebra. What is the kernel of the
continuous group morphism Ad : G — GL(g) ?

Solution. 1If ¢ € G, then Ad(g) is the differential (see theorem of chapter VI) of the
continuous group morphism Int(g) : G — G, h — ghg™'. Also, we know (see the remarks
below the theorem we just quoted) that Ad(g) determines Int(g)|co (this is just because exp(g)
contains a neighborhood of 1 in (), so Ad(g) = 0 if and only if Int(g)|go = idgo. So the kernel
of Ad is the centralizer of G in G. If G is connected, this is just the center of G, but in general
it could be bigger (for example if G is isomorphic to the direct product of a connected group and
a noncommutative finite group).

O

VII.6.3 Lie algebras of compact groups

(1). Let G a compact closed subgroup of GL,,(C) and g = Lie(G). Prove that there exists an
inner product (., ) on g such that, for every X,Y, Z € g,

([X,Y],Z) + (Y,[X, Z]) = 0.

(2). Show that s[,,(R) cannot be the Lie algebra of a compact closed subgroup of GL,,(C) if
n > 2.

Solution.

(1). Consider the continuous representation of G on g given by the map Ad : G — GL(g). As
G is compact, there exists (by theorem |V.3.1.6| of chapter Vﬂ an inner product (.,.) on g
that makes Ad a unitary representation. Let X, Y, Z € g. Then, for every ¢ € R, we have

<€tXY€_tX,Z> — <Y, e_tXZ€tX>.

Taking the derivative of this equality and evaluating at ¢ = 0 gives
([X,Y], Z) = (Y, [Z,W]), which is what we wanted.

(2). Suppose that sl,,(R) is the Lie algebra of a compact subgroup of GL,,(C), and choose an
inner product (., .) on sl,(R) satisfying the condition of (1). As n > 2, sl,,(R) contains
a copy of sly(R), so we can find E, F, H € sl,(R) such that [E, F| = H, [H,E] = 2E
and [H, F] = —2F. We have ([E, H], E) + (H, [E, E]) = 0, so (—2E, E) + (H,0) = 0,
hence (E, E') = 0, which contradicts the fact that (., .) is definite positive.

O

20This theorem applies to complex representations, but the exact same proof works for real representations.
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VII.6.4 Some Lie algebras, and the adjoint representation

In this problem, k£ is a commutative ring (with unit). If V is a k-module, we write
gl(V) = End,,(V). The Lie bracket [.,.] : gl(V))? — gl(V/) is defined by [X,Y] = XY — Y X.
A Lie subalgebra of gl(V) is a k-submodule g that is stable by [., .].

If V= k™, we also write gl,,(k) for gl(V).
(1). Let n be a positive integer, and let J € gl,,(k). Show that
sl (k) == {X € gl (k)| Tr(X) = 0}
and
o(J, k) == {X € gl (k)| XJ + JX' = 0}
are Lie subalgebras of gl (k).

(2). Let A be a k-algebra (not necessarily associative). A k-linear map § : A — A is called a
derivation if §(ab) = ad(b) + 6(a)b, for every a,b € A.

Show that Der(A) is a Lie subalgebra of gl(A).

(3). Let g be a Lie algebra, and consider the map ad : g — gl(g) sending X € g to the linear
endomorphism Y —— [X Y] of g. Show that ad is a morphism of Lie algebras, that
ad(g) C Der(g) and that ad(g) is an ideal of the Lie algebra Der(g).

Solution. The proofs of (1) and (2) are easy calculations. The fact that ad is a morphism of Lie
algebras and that ad(X) is a derivation for every X € g are both equivalent to the Jacobi identity
in a straightforward way. Let’s show that ad(g) is an ideal of Der(g). Let X € gand § € Der(g).
Then, for every Y € g,

[0, ad(X))(Y) = —ad(X)(0(Y)) + 6(ad(X)(Y)) = —[X, 6(Y)] + 6([X, Y]).

As 6 is a derivation, §([X,Y]) = [§(X),Y] + [X,0(Y)], so 6,ad(X)](Y) = [6(X),Y], and
finally [§,ad(X)] = ad(6(X)) € ad(g).

O

VII.6.5 Lie algebra of a linear algebraic group

Let k& be a commutative ring. Fix a positive integer n and a family of polynomials (P, )acs in
k[Xi;,1 <i,j < n]. We say that (P,).c; defines an algebraic group G over £k if, for every map
of commutative rings k — k', the set G(k’) of zeros of (P,)aecs in GL, (k') is a subgroup of
GL,(K"). (An element g = (z;;) of GL,, (k") is called a zero of (P,)aes if Py(x;;) = 0 for every
Q)
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Examples of such algebraic groups are GL,,, SL,,, O(n) and Sp,,,, where, for every &’ as above,

and

O(n, k/) ={g¢€ GLn(k:’)‘ggt = I,}

San(k/) = {9 € GL2n(k/)|gJ9t = [271}7

) 0o I,
w1thJ—(_1n 0 )

Let k[e] = k @ ke, with the multiplication given by 2 = 0. Then the Lie algebra of G is by
definition

(.
).

3).

.

g={X egl,(k)|,+cX € G(k[e])}.

Show that g is indeed a Lie subalgebra of gl,, (k).

If G = GL, (resp. SL,, O(n), Spy,), show that g = gl (k) (resp. sl,(k),
on(k) = 0(1,, k), 5Py, (k) :=0o(J, k)).

Suppose that k is a field, and let A be a k-algebra. @ Let G be a linear algebraic group
over k, defined by a family of polynomials (P, )acs in k[X;;,1 < 7,5 < n|. We denote
by G 4 the linear algebraic group over A defined by the same polynomials, now seen as
polynomials with coefficients in A.

Show that the map G(k[e]) — G(A[e]) induces an isomorphism of A-Lie algebras

Suppose that £ = C, and let G be a linear algebraic group over k, defined by a family of
polynomials (P, )aer in k[X;;,1 < 4,5 < n|. Show that G(C) is a closed subgroup of
GL,(C), and that we have Lie(G(C)) C Lie G| (The first Lie algebra is the one defined
in question (1), and the second Lie algebra is the one defined in definition[VL.4.T|of chapter
VL)

Solution.

(1).

There are three things to check : that g is stable by multiplication by elements of &, that
it’s stable by addition and that it’s stable by the bracket.

Let XY € gand )\ € k.

First, we have a (unique) k-algebra map u : k[e] — k[e] that sends € to Ae. It in-
duces a map u, : G(k[e]) — G(k[e]). As X € g, [, + X € G(k[¢]), and we have
u (I, +eX) =1, +e(AX). So AX € g.

2'We actually only need the fact that A is a flat k-algebra, which happens to be automatic if & is a field.
22This is actually an equality, but I couldn’t figure out an elementary proof.
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Second, as G(k[¢]) is a subgroup of GL,,(k[¢]) and I,,+c X, I,+cY € G(k[e]), the product
(In+eX)I,+eY)=1,+e(X +Y)isalsoin G(k[¢]). So X + Y € g.

Finally, we consider k' = kle|®yk[e] = k[e1, €3], where g1 = e®1 and g5 = 1®e. We have
maps u, ug, u : kle] — k' defined by ui(e) = €1, ug(e) = €9, and u(e) = €169 = e ® €.
These give maps uy., ug., us : GL,(k[e]) — GL,(K'). We have g1 = wuy. (L, + £X),
go = Ui (I, +€Y) € G(K'). Using the fact that (I, + ¢X)~' = (I,, — £X) (and similarly
for I,, + €Y), we see that

019297 g5 " = I, +e169[ X, Y] = u. (I, + [ X, Y]) € G(K).

But because u is injective, an element g of G L, (k[e|) is in G(k[e]) if and only if u.(g) is
in G(K'). So I,, + ¢[X, Y] € G(k[e]), and [ X, Y] € g.

The result is clear for GL,,.

Let’s calculate Lie(SL,,) (where Lie(G) means “the Lie algebra of G”). Let X € gl (k),
and let xx € kl[t] be its characteristic polynomial (yx(t) = det(1 — ¢.X)). Then

det(l, +eX) = xx(—¢) = 1 + Tr(X),
because £2 = (. So

I, +eX € SL,(k[e]) & det([,, +eX) =1 Tr(X) =0 < X € sl,(k).

For Lie(O(n)), note that (I, + eX)" = I,, + e X", so
(I, +eX)(I, + eX)' = I, + e(X + X").

So obviously I, + X € O(n)(k[e]) if and only if X + X' =0, ie X € so0,,(k).

The calculation for sp,, (k) is the same, mutatis mutandis.

If k is any commutative ring, f € k[t1,...,t,,]isapolynomialand a = (ay,...,r,) € k™,
denote by df (a) the k-linear map from k™ to k given by
e T) r=—(a1, ..., Q).
(xla y L ) ;SE Gtr(al a )
Then we have, for all x4, ...,x,, € k,

flay+exy, ... am +exy) = flar, ... a,) +edf (a)(x1,. .., Tn).

(This is easy to check for monomials, and f is a linear combination of monomials.)

Applying this to the family of polynomials (P, ).cs defining the algebraic group G, we get
that Lie G is, by definition, the intersection of the kernels of all the linear forms dP,(1)
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on M, (k). This is true without any assumption on k. Now, if A is a k-algebra, we always
have a natural map

(ﬂ Ker(dP,(1) : M, (k) — k:)) Qp A — (ﬂ Ker(dP,(1) : M,(A) — A)) :

a€el ael

i.e., amap (Lie G) ®; A — Lie G 4, but this map is not an isomorphism in general, because
taking the tensor product by A is not an exact operation. If for example k is a field,
there is no problem. More generally, if A is a flat k:—algebraF_g] then the above map is an
isomorphism.

(4). We know that G(C) is a subgroup of GL,,(C) (by definition of a linear algebraic group),
and it is closed because it is the set of zeros of a family of continuous functions from
GL,(C) to C (the functions given by the P,).

Let X € gl,(C) and « € I, and define ¢ : R — C by by c(t) = P,(¢"X). Then we have
d(0) = dP,(1)(X). If X € Lie G(C), then e!* € G for every t, so c is identically 0 and
¢ (0) = 0. This shows that

Lie G(C) C (1) Ker(dP.(1)).

ael

By the proof of (3), the right-hand side is Lie G.

VII.6.6 Group of automorphisms of a k-algebra

This problem uses the definitions of problems |VII.6.4(2) and

Let A be a k-algebra (not necessarily associative), and assume that A is free of finite type as
a k-module. For every map of commutative rings k& — &', let Aut(A)(k’) be the subgroup of
GL(A ® k') whose elements are &’-algebra automorphisms.

(1). Show that Aut(A) is an algebraic group over k, i.e., identify A to k™ (as a k-module)
by choosing a basis of A and show that there exists a family of polynomials in
k[Xi;,1 < i,j < n] that defines an algebraic group over &k and such that Aut(A)(k")
is the set of zeros of that family.

(2). Show that the Lie algebra of Aut(A) is Der(A).

Solution.

23Which meabs exactly that ®; A preserves exact sequences.
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Let (ey,...,e,) be a basis of A as a k-module, and write, for every i,j € {1,...,n},

n
€itj = E QijkCjs
k=1

with «;j;, € k. We also write 14 = Z?zl Bie;, where 1,4 is the unit of A and the f; are in
k.

Let k — k' be a map of commutative rings, and let g = (g;;) € GL(A) ~ GL,, (k") (using
the fixed basis). Then g is in Aut(A)(%’) if and only g sends 1,4 to 14 and preserves the
product of A. Because g is &’-linear, to check the second condition, we only need to check
that g(e;e;) = g(e;)g(e;), for every i, j. We have

gle) =Y gije;
j=1
and

g(1a) =D aigles) = Y aigije;.
=1

ij=1
So we see that g € Aut(A) (k') if and only if the following conditions are satisfied :
(A) Foreveryic€ {1,...,n},

o; = Za]‘gﬁ.
j=1
(B) Foreveryi,j, k € {1,...,n},

n n
E Giagjblabk = E Qijelek-
c=1

a,b=1

(These conditions are supposed to correspond to the conditions g(14) = 14 and
gle)g(e;) = gleie;).)
As (A) and (B) are obviously polynomial conditions in the entries of g, this gives the result.

We identify GL(A) and GL,, as above. Let X € gl (k). Then X € Lie(Aut(A)) if
and only if g := ids + ¢X € Aut(A)(k[e]), that is, if and only if g(14) = ¢g(14) and
g(ab) = g(a)g(b) for every a,b € A ®y, k[e].

The first condition is equivalent to X (14) = 0. For the second condition, we write
a = ay + €aq, b = by + by, with al,ag,bl,bg € A. Then g(a) = a1 + 6(@2 + X(al)),
g(b) = by +e(by + X(b1)) and ab = a1by + e(a1bs + azby). So

9(a)g(b) = arby + e(asby + X (a1)by + aiby + a1 X (by)
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and
g(ab) = ajas + e(arby + asby + X (a1by)).

So we have
9(a)g(b) = g(ab) < X(a1b1) = a1 X (b1) + X (a1)br.

From this, it’s now obvious that idy + ¢X € Aut(A)(k[e]) if and only X is a
derivation. (Notice we have §(14) = 14 for any derivation § : A — A, because

5(14) = 6(12) = 6(14) + 6(14).)
0

VII.6.7 Symmetric algebra and symmetric powers of a
representation

Let £ be a commutative ring.

Let V be a k-module and n € Zs,. Remember that we write 7"V or V®" for the n-fold
tensor product of V' by itself (over k); by convention, if n = 0, T°V = k. By definition of the
tensor product, for every other k-vector space W, Hom(T"V, W) is the space of multilinear
maps from V" to W.

Let I,, be the subspace of 7"V generated by all v; ® -+ ® v, — Vo(1) ® +*+ @ Vgy(n), fOr
vi,...,u, € Vando € &,. We set S™V = T"V/I,, and call it the nth symmetric power of V.
Ifn=0SV=k)

(1). Show that the multiplication 7"V ®@ T™V — TV defined in class sends 7"V ®y I,
and [, ®; T™V to I,1,,. So we get a k-algebra structure on S*V := Eano S™V. Show
that this k-algebra is commutative. (This is called the symmetric algebra of V.)

Now suppose that V' is a free k-module of finite rank and choose a basis (eq, ..., e4) of V.

(2). Find a basis of 7"V and calculate dimy(7"V).
(3). Find a basis of S™V.

Stop assuming that V' is free of finite rank.

(4). If W is another k-vector space, show that Homy (S™V, W) C Homy(T"V, W) is the sub-
space of symmetric multilinear maps from V" to V.

(5). Let g be a Lie algebra over k and u : g — gl(}/) be a representation of g on V. Consider
the induced representation of 7" V. Show that 7, is stable by g. (If we have representations
of g on V; and V5, the action of g on V} ®; V4 is given by X (v®@w) = (Xv)@uw+v®(Xw),
forevery X € g,v € Viandw € V%.)
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Hence we get a representation of g on S™V/, called the nth symmetric power of the represen-
tation (V, u).

Solution.

(1).

).

3).

G2

(5).

Letvy,..., v, wy,...,wy, € Vandleto € &,,. Define x{,...,2,1, € Vandt € &,
byz; =v;7(i) =iif 1 <i<n,andv,;; =wjand 7(n+j) =n+o(j)if 1 < j < m.
Then

V@ RUp (W1 R - - W~ W (1) Q- QWeg(m)) = T1®- - Lptm —Lr(1) & OLr(ntm)-
So the multiplication sends 7"V & [,,, to I, 11,
The case of I,,, ® T™V is similar.

An easy induction on n show that a basis of 7"V is given by the ¢;; ® ...e;,, for
(11, ... in) € {1,...,d}". So dim(T"V) = d".

I claim that a basis of S™V is given by the e}* ... e}, with ny,...,ng € Z>( such that
n+---+ng=n.

Indeed, this family is clearly generating by (2). (f 4,...,%, are any elements of
{1,...,d}, choose ¢ € X, such that i,y < -+ < ds4y. Then, in S"V,
€1...€i, =S, - Ci,, i the form e7" .. ceht))

Showing that this family is free is easier after we know the result of (d), so let’s assume
we do. Let (e],...,e5) € V* be the dual basis of (ey,...,eq). Letny,...,ng € Z>o such
thatn, +---+ng=n.Forl <r <dandn;+---+n, <i<n;+---+n,y1 — 1, let
fi = €. Define a multilinear map f : V" — k by

flor, .. 0,) = Z Hfi(vg(i)),

c€Y, =1
Then f is obviously symmetric, so it gives a map SV — k, that we will also denote by
f.-lfmy,...,mq € Z>oand my + - - - + my = n, we have

1 ifn, =m; Vi
mi mqg\ __ ¢ v
flef™ .. eg?) = { 0 otherwise.

This shows that the family given above is linearly independent.

Let f € Homg(7T"V,W). Then f factors through S"V if and only if, for every
Vi,...,0, € Vand o € Xy, f(v1,...,v) = f(Vsq1),--.,Vs(n)). This is the same as
saying that f is symmetric.

Ifv,...,v, € Vand X € g, then

n

X @ @)= 0n® Qv ® (X0)) @vip1 @+ D vy

=1
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SO X (V1 @+ ® Uy — Up(1) @+ * @ V() =

Z(Ul®' @Vi—1®(X ;) ®Vi 1@ + \®Un—Vo(1)®" * @V (i-1) (X Vo (i) ) Vo (141) " * *®Vg(n)) € In.
i=1

VII.6.8 Symmetric algebra and polynomial functions

We use the notation of problem |VII.6.7, and assume that £ is an infinite field.

Let V be a finite-dimensional k-vector space. We say that a map f : V — k is
polynomial if, for every basis eq,...,e, of V, there exists P € k[Xy,...,X,] such that
fAer + -+ Aen) = P(A, ..., \,) forevery Ay,..., A\, € k. We denote by k[V] the al-
gebra of polynomials functions from V' to k. Let V* = Hom(V, k).

Show that the map ¢ : T°V* — Map(V, k) that sends u; ® -+ ® u, € T"V* to the map
x +— ui(x)...u,(z) is well-defined, has image contained in k[V], and induces a k-algebra
isomorphism S*V* = k[V].

Solution. The map ¢ is well-defined, because the map (V*)" — Map(V, k) sending (uy, . .., uy,)
to  — uy(x) ... u,(x) is multilinear. For every u € V*, the element of Map(V/, k) is a polyno-
mial map. As the image of ¢ is the k-subalgebra generated by these elements, it is contained in
k[V]. As k[V], o factors through a map ¢ : S*V* — k[V].

Now let’s fix a basis (e, ..., e,), and let (e, ..., e} ) be the dual basis. By question (3) of
problem [VIL6.7] the elements (€)™ ... (e})™, with my,...,m, € N, form a basis of S*V*.
We denote by ¢/ : S*V* — k[X1,...,X,] sending each (e])™ ... (e})™ to X]"* ... X" this
is clearly an isomorphism of k-algebras. We denote by ev : k[X7,..., X,,] — k[V] the map
sending P € k[X1,...,X,] to the function \je; + --- + A\,e,) — P(Ag,..., A\,). Thisis a
morphism of k-algebra, and it is surjective by definition of k[V]. Also, we have ¢y = ev o ¢/,
because this two maps are k-algebra maps which are equal on the generators e, . .., e} of S*V™.
So we just have to show that ev is injective. (Note that we have not yet used the hypothesis on
the cardinality of k. Now it will become important.)

We want to prove the following fact : If P € Kk[X,...,X,] is nonzero, then there
exists Ay,..., A\, € k such that P(\y,...,\,) # 0. We do an induction on n. If
n = 1, this just follows from the fact that a nonzero polynomial has finitely many roots
(and that k is infinite). Suppose that n > 2. Let P € k[Xi,...,X,] — {0}, and write
P = P+ PX, + - + PyX% with Py,...,Py € k[X1,...,X,1] and P; # 0. By
the induction hypothesis, there exists Ai,...,\,_1 such that P;(\;,...,A\,_1) # 0. Then
Q =P\, A1)+ PO, o A1) X o+ Pa(Ar, - A1) X4 € K[X,,] is nonzero,
s0, by the first step of the induction, there exists \,, € k such that Q(\,) = P(\y,..., \,) # 0.

290



VII.6 Chapter VI exercises

O

VIl.6.9 Some representations of sl,(k)

By definition, the standard representation of g := sly(k) is the inclusion g C gl,(k). It’s a
representation of g on V' := k2. For every n > 0, we write W, ;1 = S™V and consider the
symmetric power representation g on this space.

01 0 0 1 0
(1). Show that the three elements e := (O 0), f= (1 O> and h = (O _1) form a
basis of g, and calculate their Lie brackets.
(2). Find a basis of W,,,; and write the action of e, f and A in that basis.
(3). Show that W, is an irreducible representation of g if char(k) = 0 or n < char(k).
(4). If char(k) > 0 and n = char(k), show that IV, is not irreducible.
(5). (*) What happens if n > char(k) ?
Solution.
(1). It’s obvious that (e, f, h) is a basis of g. We have [e, f| = h, [h,e] = 2e and [h, f] = —2f.
(2). Let (v1,v9) be the standard basis of k2. Then, by problem [VIL.6.7[3) a basis of W,,; is
(7, v g, ..., uh). We have ev; = 0, evy = v1, fuy = vy, fvo = 0, hvy = v; and
h’UQ = —Vs. So .
e(vivg™) = (n — iyoftoy ",
flopos™) = ivj oy~
h(vivy™) = (20 — n)vjvy .
(3). Let V' be a nonzero g-invariant subspace of 1, 1. We want to show that V' = W,,;,. Let
v eV —{0},and write v = Y7, avjvy~’, with a; € k and a;, # 0. Then
"0y = (n — ig)laovy.
By the assumption on char(k), (n — io)! is invertible in k, so vy € V. For every
i €{0,...,n}, floy =ilivy " Asil € kX, vl € V. So V = W, ;.
(4). Suppose that p = char(k) > 0. Then ev) = fov} = hv) = 0, so kv} is a nonzero

subrepresentation of 1,1, and W, is not irreducible.

0
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VIl.6.10 Representations of sl,(%) in characteristic 0

Suppose that k is algebraically closed and char(k) = 0, and let g = sly(k). Let (W, u) be a
representation of g on a k-vector space. We use the notation of problem [VII.6.9

(1). Forevery a € k,let W(a) C W'(a) be the a-eigenspace and the generalized a-eigenspace
of u(h) on W (that is, W’(a) = |, ~, Ker((u(h) — aidy)™)). Show that, for every a € k,
u(e) sends W (a) (resp. W'(a)) to W (a+2) (resp. W’(a+2)) and u(f) sends W (a) (resp.
W'(a)) to W(a — 2) (resp. W'(a — 2)).

(2). Let v € W be such that u(e)v = 0, and set v, = u(f)kv for every k
(explicit) polynomials P, (t) € Z[t] (for 0 < | < k) such that, if 0
u(e)vy, = P i(u(h))er_, and such that deg(P; ;) = I.

0. Find

>
<1<k

From now on, we assume that dim; W < coet W # 0.

(3). For every a € k, show that we have u(e)y (W'(a)) = u(f)N(W'(a)) = 0 for N big
enough.

(4). For every a € k, show that u(h) is diagonalizable on W’ (a) (so that W (a) = W’(a)), and
that a € ZZO if W(a) 7é 0.

(5). Find an eigenvector v of u(h) in W such that u(e)v = 0, and let a € Z> be the eigenvalue
of v. For every d > 0, let vy = u(f)%, and let V be the subspace of W generated by
(vo,v1,...). Show that V' is a subrepresentation of W, that it is of dimension a + 1, and
that it is isomorphic to the representation W, of problem [VIL.6.9]

In particular, the W, ; are (up to isomorphism) the only irreducible representations of g.

Solution.

(1). Let U be the universal enveloping algebra of g, and extend u to a k-algebra map
U — Endy(W). Note that, in U,

he = [h,e] + eh = 2e + eh = e(h + 2),

So, for every n € Z>,
(h—(a+2))"e = e(h— a)".

Applying u gives
(u(h) = (a+2)idy)"u(e) = u(e)(u(h) — a)idy)",

and hence
u(e) Ker(u(h) — aidy )" C Ker(u(h) — (a + 2)idy)".

This shows that u(e) sends W (a) to W (a — 2) and W'(a) to W (a — 2).
The proof for u(f) is similar, starting with the fact that of = f(h —2) in U.
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(2). We can take P, = 1.

Let’s construct the P, ; by induction on k. If k£ = 0, then u(e)vy = u(e)v = 0, so we can
take P; o = 0. Suppose that we know that P, ;, exists, with £ > 0. In U, we have

ef = (ef)f* = (le. fl + fe) f* = (h + fe) f*.

Also, we have seen in the proof of (1) that fh = (h + 2)f, so, for every P € Zlt],
FP(h) = P(h + 2)f. Similarly, eP(h) = P(h — 2)e. Hence

u(e)vpr = ule)u(f) v = (2u(h) + u(f)u(e))v.
Using the induction hypothesis gives
u(e)verr = 2u(h)vg + u(f) Prr(u(h)) v = (u(h) + Prg(u(h) +2))vk

(with the convention that v_; = 0). So we can take P ;11 =t + P (¢t +2). We see easily
that this gives P, ;(t) = k(t + k — 1), for every k£ > 1.

Now fix k and let’s construct I} ;, by induction on [. We gave already done the cases [ = 0
and [ = 1, so let’s assume that 1 <[ < k£ — 1 and that we have shown the existence of P .
We have

u(e) oy, = u(e) Py (u(h))vr— = Pri(u(h)=2)ule)vi— = Pip(u(h)=2)Pri—i(u(h))vi-ar1).
So we can take P11 ;(t) = Pt — 2) Py (2).
Unpacking the induction formula above gives
Pi(t) = Prg—is1(t) Prg—ig2(t —2) ... Prp—1(t —2(1 — 1)),
ie
Pirt)=k—-1)(k—=2)...(k=1+1)(t+k-Dt+Ek—1—-1)...(t+k—1—(—-1)).

This obviously has degree (.

(3). By (1), we know that u(e)¥W'(a) C W’(a — 2N) and u(f)"W'(a) C W'(a + 2N).
As dimy W < oo, the endomorphism u(h) of W has only finitely many eigenvalues, so
there are only finitely many b € k such that W/(b) # 0. Hence, if N is big enough,
W'(a —2N) =W'(a + 2N) = 0, which proves the claim.

(4). We reason by induction on the smallest i € Z~; such that W’(a + 2i) = 0.

If i = 1, then W’ (a + 2) = 0, so u(e)W’(a) = 0 by (1). By (3), there exists N > 0 such
that u(f)NW'(a) = 0. by (2), for every v € W'(a),

0 = u(e)Nu(f)Nv = Pyn(u(h))v.
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So the minimal polynomial of u(h) on W'(a) divides Py n(t). As Py n(t) has sim-
ple roots, u(h) is semisimple on W’ (a). As all roots of Py n(t) are 0,1,..., N — 1,
a€{0,...,N — 1}, and in particular a € Z.

Now assume that we know the result for © > 1 and let’s prove it for ¢ + 1. As
W'(a + 2 + 2i) = 0, we know by the induction hypothesis that u(h) is semisimple on
W'(a + 2). So, for every v € W'(a),

(a + 2)u(e)v = u(h)u(e)v = ule)(u(h) + 2)v,
ie u(e)(u(h) —a)v = 0.

(5). Choose a € Z such that W (a) # 0 and W (a + 2) = 0, and let v be any nonzero element
of W(a). Then u(e)v € W(a + 2), so u(e)v = 0. Let’s show that the resulting V' is a
subrepresentation of 1. First, V' is obvioously stable by u(e). Second, for every d € Z,
vg € W(a — 2d), so vy is an eigenvector of u(h). So V is stable by w(h). Finally, let
deZsp.lfd=0,ule) =0,Ifd > 1, by (2), u(e)vg = P a(u(h))vs_1 € kvg_y C V as
vq—1 is an eigenvector of u(h). So V is stable by u(e), u(f) and u(h).

Let d be the biggest integer such that vy # 0. Then dim; V' = d + 1, because (vy, . .., vq)
is a basis of V' (this family is generating, and it’s free because it’s made up of eigen-
vectors of u(h) with pairwise different eigenvalues). Also, u(f)* v = vgy; = 0, so
Pii1ar1(u(h))v =0, s0 ais aroot of Py4(t),soa € {0,...,d}. Suppose thata < d — 1.
Then v, # 0, and we have

w(€)vasrs = Prast (u(h))va = (a+ D) (u(h) + a)v, =0,

because v, € W(a — 2a) = W(—a). Applying (2) again, we see that, if N > 0 is such
that u(f)Y = 0, then

0 = u(e)Nu(f)Nvg = Pyn(u(h))vg = Pyn(—a)vg.

But the roots of Py y are 0,1,..., N — 1, so Py y(—a) # 0, which gives a contradiction.
Soa=d.
We now consider the map o : V — Wy sending v; € V to

did—1)...(d — i+ 1)v¥ i € Wy (Sorry about the awful notation.) Using the
fact that u(f)v; = viy1, w(h)v; = (d — 2i)v; and u(e)v; = i(d — (i — 1))v;_1 by (2) (with
the convention v_; = (), we see that this is an isomorphism of representations of g.

O

VIl.6.11 The Jacobson-Morozov theorem (for gl, (%))

We still assume that k is algebraically closed of characteristic 0. Let W be a finite-dimensional
k-vector space, and let N € Endy (1) be nilpotent. Show that there exists a unique semisimple
representation u : sly(k) — gl(WW) of sly(k) on W such that N = u(e).
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(Actually, all finite-dimensional representations of sly(k) are semisimple by corollary [VI.8.4
of chapter VI, so the semisimplicity hypothesis is not necessary.)

Solution. Let u : sly(k) — gl(WW) be a semisimple representation such that N = u(e), and let
W =V, @ --- @V, be the decomposition of W into irreducible subrepresentations of sly(k).
Let n; = dimy(V;). By problem [VIL6.10(5), V; ~ W, as a representation of sly(k), so u(e) is
a Jordan block of length n; — 1 (ie maximal length) on V;. In particular, W =V, & --- p V.. is
the decomposition of IV given by the Jordan normal form of /V, so it is determined by /N. The
representations of sly(k) on the V; are also uniquely determined, because sly(k) has a unique
irreducible representation of each dimension. This gives uniqueness.

Let’s prove the existence of u. Let W = V; @ - - - @ V,. be the unique decomposition of W such
that [V stabilizes all the V; and acts on each V; by a Jordan block. Fix ¢, let n; = dim V; — 1. Then
we can find a basis (o, . .., ,,) of V; such that Nv; = jv;;; for 0 < j <n; — 1, and Nv,, = 0.
Sending z; to v{”fj vg gives an isomorphism of vector spaces V; — W,,.,; that sends N to the
endormorphism of W,,.; induced by e. So we get an ismorphism of vector spaces between W
and the @;_, W, 41 that sends N to the endomorphism induces by e.

0

VII.6.12 Clebsch-Gordan decomposition

We use the notation of problem [VII.6.9] and assume moreover that & = C.

For every n € Z-(, we have defined an irreducible representation W, of sly(C). The
character of such a representation is defined in proposition of chapter VI.

(1). Calculate the character xw, ,, of W, .

(2). For n,m € Zs, write W,,1; ® Wy,41 as a direct sum of irreducible representations of
sly(C). (Hint : A finite-dimensional representation of sly(C) is uniquely determined by its
character. (Why ?))

Solution.
(1). Denote by t the space of diagonal matrices in s5(C), and let e € t* be the map sending

()0( —0X> to X. (Then the roots of sly(C) are 2e and —2e.) For every A € t*, denote

by c, the corresponding basis element in Z[t*]. By (2) of problem [VIL.6.9} the character of
Wn+1 is Z?:() C(2i—n)e = C—ne + C(—n+2)e +oo 4t C(n—2)e + Cre.
(2). By theorem [VI.10.3| of chapter VI, finite-dimensional representations of sly(C) are

uniquely determined by their character. The easiest way to figure out the decomposition
into irreducibles of W,, 1 ® W, is to calculate characters in a few examples and then to
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try to extrapolate.
The correct formula is : for any n,m € N,
Wn+l ® Wm—H = Wn+m+l S Wn+m—1 S Wn+m—3 DD M/\nfm|+1~

This is easily checked on characters.

VII.6.13 Dual representation

Show that, if V' is an irreducible representation of SU(2) on a finite-dimensional C-vector space,
then V' ~ V* as representations of SU(2).

Is the same true for irreducible representations of U(1) ? What about SU(3) ?

Solution. By theorem|VI.11.5|of chapter VI (and the remark following it), we know that the com-
plex irreducible finite-dimensional representations of SU(2) are the W,,,; = Sym"™ C?, where the
representation on C? is given by the inclusion SU(2) C GLy(C). Let T.. be the diagonal torus of

SU(2). Then, if t = (6\ /\01) € T., we have

XWn+l (t) = )\n + )\n72 + .-+ )\7”+2 + )\*’n

(see problem |VII.6.12). By proposition [[I.1.1.11] of chapter II, we have, for every ¢t € T,
XW;H(t) = Xw,: (t71) = xw,.. (). As the character of a finite-dimensional representation
determines the representation up to isomorphism (see theorem of chapter VI), we get
Wi = W,

The analogous statement is false for U(1) and SU(3). For example, let V' be the 1-dimensional
representation of U(1) given by the inclusion U(1) C C*. Then, for every A € U(1), xy(A) = A
and yy«(A) = AL 80 xy # xv-. Similarly, let W be the 3-dimensional representation of

A 000
SU(3) given by the inclusion SU(3) C GL3(C). Then, fort = | 0 Xy 0 | € SU(3),
0 0 X

xw(t) = A1+ Ao+ Az and xp- (1) = A\[' + A\ + A3l For example, if we take \; = Ay = i
and A3 = —1, then xw () = 20 — 1 # xw~(t) = —2i — 1.

0

VIl.6.14 Some representations of sl (k)

We want to generalize some of the results of problem
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By definition, the standard representation of g := sl,(k) is the inclusion g C gl,,(k). It’s
a representation of g on V := k". For every d > 0, we write W;; = S%V and consider the
symmetric power representation g on this space.

If k is a field of characteristic 0, show that all these representations are irreducible. What are
their highest weights ?

Solution. Let (e, ..., e,) be the standard basis of £". By problem [VII.6.7(3), we know that the
e edn ford,,...,d, € Nsuchthatd, + ---+ d, = d, form a basis of S?V.

If (dy,....dn),(d),....,d,) € N, we wrte (di,...,d,) = (d,...,d,) if
(This is just the Bruhat order.)

For 1 <i <mn — 1, we denote by X; the matrix in M, (k) defined by

(e ifj=it+l
Xiej = { 0 otherwise

(that is, X; is the elementary matrix often denoted by FE;;.;). Then X; € sl,(k) (because
TI'(XZ) = O) If dl, c. ,dn S N, then

Xi(eft ... eh) = ) d diy 14d; —~1+dit1 d dis =0
(el .. = . C ltdis d; ,
! " diprel ... ey e e el e otherwise.

Letd,,...,d, € N. Let
X = xdtotdies oy xd

where we take the produit in the universal enveloping algebra U of sl,,(C) (which also acts on
Was1). Then, forall d}, ..., d, € Nsuchthatd = d} + - - - + d}, we have

X(ed’l ed/”) o (dl)'(dl —|—d2)'(d1 ++dn_1)'€g lfd; :dl for everyi
S A N if (dy,....dy) 2 (d,,....d).

Now let’s prove that 1, is irreducible. Let V' be a nonzero subrepresentation of Wy, 1,
choose v € V' — {0}, write

(dl 7777 dn)
where the sum is on the (di,...,d,) € N" such that d; + --- + d,, = d, and choose
(dy,...,d,) maximal for the order < such that aq4, 4, # 0. By the calculation above, if

di+o -t : .
X = xgitde o xditd2 X then X is a nonzero multiple of e, so e € V.

Now letY; =X, for1 <i <n — 1. We have

- _ ) G+l ifj =1
Yie; = { 0 otherwise.
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Letd,,...,d, € Nbesuchthatd, +---+d, = d,andletY = Yfﬁle"*ﬁd” LYt

n—2

Then Ye? is a nonzero multiple of " . . . edn 50 eh edn € V. This shows that V = W, ;.

Finally, let’s find the weights of W, 4. It is clear that each eih ...ed is an eigenvector for
every the diagonal element diag(\, . .., \,) of sl,,(C), with eigenvalue di Ay + - - - + d, \,,. Let
t be the subspace of diagonal matrices in sl,,(C). We have just seen that the weights of W, are
the characters of t of the form diag(Ay, ..., A\,) —> di A\ + -+ + d N\, With dy, -+ - +d,, € N
and dy + - - - + d,, = d, and that they all have multiplicity 1. The maximal weight for the Bruhat
is the one corresponding to (dy,...,d,) = (d,0,...,0), i.e., diag(A1, ..., \,) — dAy, and the

corresponding highest weight vector is e?.

Note that, just as in the proof of proposition |[VI.9.2.2] of chapter VI, out strategy to show
the irreducibility of 1W,; was to show that every nonzero subrepresentation contains a highest
weight vector, and then that W, is generated (as a U (sl,(C))-module) by a highest weight
vector.

O

VII.6.15 A generating family for the universal enveloping algebra

Let g be a k-Lie algebra (where £ is a commutative ring), and let (¢, U(g)) be its universal en-
veloping algebra. We assume that g is finitely generated as a k—modul and choose a generating
family (X4,...,X,) of g.

Show that U (g) is generated as a k-module by the ¢(X;)™ ... «(X,)", for ny,...,n, > 0.

Solution. The first thing to do is to show that the subspace generated by the ¢«(X7)™ ... ¢(X, )"
is equal to the subalgebra generated by ¢(g).

We write Y; = «(X;) and U = Ug. For every n > 0, let U}, be the k-subspace of U gen-
erated by the Y| ... Y for ny,...,n, € Z>o such that ny + --- + n, < n, and U]/ be the
k-subspace of U generated by the ;. ...Y, , withry,... 1, € {1,...,r} and m < n. Ob-

Tm?*

viously, U], C U, . Let’s show by induction on n that U, = U,’. We have U| = Uj = k and
Ul =U! =k & (g), so take n > 2 and suppose that we know that U/ | = U/ _,. Let m > n
and r1,...,r, € {1,...,r}. We want to show that Y, ...Y, € U/. This follows from the

induction hypothesis if m < n, so we may assume n = m. For every i € {1,...,n — 1},
K"i}/n-u = [er )/Ti+l] + }/7‘14-1}/7‘1" sO

Y. Y =Y Y, Y, VY, .Y, modU' =U .

142 °
As G, is generated by the transpositions (7,7 + 1), 1 < i < n—1, we see that, forevery o € G,

!/
Y, ...V, = Yia(l) . Y;U(n) mod U, _;.

24This is not really necessary, we just don’t want to worry about the best way to order infinite sets.
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Y,

io(n)

But we can choose o such that i,y < -+ < 44(,), and then Yig(l) ..
Y, ..., eU.

LetU' =), -,U.. Wehave seen that U’ = ) _ U, that is, that U’ is the subalgebra of U
generated by ¢(g). We want to show that U’ = U. We use the universal property of the universal
enveloping algebra. As ¢ sends g to U’, there exists a unique k-algebra map ¢ : U — U’ such
that o = ¢. Let ¢ be the endomorphism of U that is the composition of ¢ : U — U’ and of the
inclusion U’ C U. Then ¢ o« = ¢, so, by the universal property of U, 1) = idy. This implies that
U =U.

will be in U),. So

O

VII.6.16 Universal enveloping algebra and differential operators
(and a proof of the Poincaré-Birkhoff-Witt theorem for
gl,, (k) if char(k) = 0)

In this problem, we assume that £ is a field of characteristic 0, we fix a positive integer n, and we
write G = GL,, seen as a linear algebraic as in problem [VIL.6.5] The goal of the problem is to
give a description of the universal enveloping algebra of Lie(G) = gl,,(k). (We could make this
work for any linear algebraic group if we assumed k algebraically closed, but we’ll stick to GL,,
for simplicity.)
Let
A=k[ti;,1<i,5 <n][]

We see A as an algebra of functions G/(k) = GL, (k) — k by sending f = P det” € A, with
P € klt;;,1 <i,j < n], to the function

f 9= (9i5) — Plgi;) det(g)".
Because £ is infinite, the function funiquely determines the rational fraction f (you can assume
this), so we will just identify them and write f(g) for f.
Now we will define some k-linear endomorphisms of A :
- Forany i,j € {1,...,n}, we have the endomorphism 8%_ that sends f to aat_i'
- If a € A, we write m, for the endomorphism of A that sends f to af.

-If ¢ € G(k), we write L, for the endomorphism of A that sends f to the function
x +— f(gx) on G(k). (It is very easy to check that this function is still in A.)

2This A is the k-algebra of regular functions on G, see problem |VIL.6.17)).
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Let D(G) be the subalgebra of End( ) (= the k-algebra of k-linear endomorphisms of A)
generated by the 57 for i, j € {1,...,n} and the m, for a € A. This is called the algebra
of (algebraic) d1fferent1al operators on G.

(1). Show that, for every element D of D(G), we can write

8k11+"'+knn

D =
Z Akyy,... knn (62511)’“1 . (8tnn)’“”n ’

..........

(2). Forevery d € N, let D4(G) be the subspace of D(G) of operators of the form

8k11+"'+knn

D = |
Z s (Ot11)f11 ... (Ot )nn

We call elements of D,;(G) differential operators of order < d.
Show that Dy(G)Dy(G) C Dgya(G) forall d,d’ € N.

(3). Let
Dine(G) = {D € D(G)|Vg € G(k), Lyo D = Do Ly}

We call elements of D;,,(G) invariant differential operators on G.

Show that D;,,(G) is a subalgebra of D(G) containing the unit element, and that the linear
transformation ¢ : D, (G) — A* := Homg(A, k) sending D to f —— D(f)(1) is
injective.

(4). Let k' be the k-algebra k & ke, with 2 (this is called the k-algebra of dual numbers), and
let g = Lie(G) = gl,,(k). If f € A, g € G(k) and X = (z;;) € gl, show that

X)
flg+e )+ ¢ Z x”(’)t

5). IfX €g,f € Aand g € G(k), set

Show that this makes sense, that X (f) € A (hence X € End(A)) and that X € Dy, (G).
(6). Show that Xisa derivatio of A forevery X € g.

%Hence D(G), with the filtration given by the D4(G), is a filtered k-algebra.

?7See problem |VIL6.4(2).
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(7). Show that the map X +— X from g to Dy (G) is a Lie algbera map (i.e. that it sends
[X,Y]to X oY —Y o X forall X,Y € g).

(8). Let (¢,Ug) be the universal enveloping algebra of g, and let o : Ug — D;,,(G) be the
unique k-algebra map such that a(¢(X)) = X for every X € g. Show that « is
injective.

More precisely, let (E;;); j)eq1,....n}2 be the canonical basis of g. We have seen in problem

.....

VIL6.15| that Ug is generated as a vector space by the products ¢(E;;)%! ... 1(E,,)%",
with dyq,...,d,, € Z>o, where we use the lexicographic order on {1,.. n}2 in the
products above. Show that the images of these elements by o, i.e. the E{!' .. Eg;;”, form
a linearly independent family in D(G).

Hint : Let’s denote by D_y4(G) the A-submodule of D(G) (freely) generated by the | [ . 5

i, 7ij

such that ;. dij = d. Show that D(G) = €D, D=a(G), m and denote by o4 the
projection D(G) — D_4(G). Then if we have a relation among the Efl“ ... Ednn apply

nn ’

© 0 0q to it (for a well-chosen value of d), and evaluate this on appropriate elements of A.
(9). Show that « is surjective.

Hint : Remember the filtration (U,g) of Ug defined in the solution of problem [VIL6.15)
compare it to the filtration (Dy4(G)) and look at what happens on the quotients of these
filtrations.

Note that question (8) implies that the family of generators ((Fy;)% ... u(E,,)%", with
dy1,...,dw, € Zsg, of Ug is actually a basis. This result is actually true for any Lie algebra
over a commutative ring £ that is free as a k-module, and is called the Poincaré-Birkhoff-Witt
theorem. P

Solution.

(1). First note that a — m,, is an injective k-algebra map from A to End(A). We use it to
identify A to a subalgebra of End(A). For every 4, j, write 9;; = 5~ € End(A). Note that

@jai/j/ = &vj/@ij, for cvery i, i/,j,j, € {1, e ,n}.
For every d € Zsy, let D, be the A-submodule of End(A) generated by the Sk ghnn

with £;; > 0 and Z” k;; < d, and let D) be the A-submodule generated by the
5i17jlmal5i27j2ma2...5ie7jemae, for i17j1,...,ie,je - {1,...,71}, ar,...,0e € A and
e < d. Iclaim that D; = D!. (This will prove the existence of the ay,, . ,, in the

question, because clearly D(G) = > ;- Dy.)

.....

Let’s prove the claim by induction on d. For d = 0, Dy = D = A. Choose d > 1,
and suppose the claim known for d — 1. Let e < d and i1, j1,...,%,J. € {1,...,n},

ZNote that the existence of the injective map X — X from g to Di,y (G) forces ¢ to be injective.
2Warning : this not make D(G) a graded algebra, because D—4(G)D—q (G) ¢ D—qyq (G) in general.
30See theorem 4.3 of chapter III of part I of Serre’s book [31]].
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2).

3).

.

ai,...,a. € A. We want to show that D := 0;, j, Mg, 0iy joMay - - - 05, j.Ma, € Dg. This
follows from the induction hypothesis if e < d, so we may assume e = d. By the product
rule, iy j,May = M5, ; (a) + Mabiy jy» 50 D € ADy g + Adyy j, Dy As Dy = Dy by
the induction hypothesis, this implies that D € D,.

1.J1

Now we prove the uniqueness of the ay,,
that the family (671 ... §Fnn),. |

.....

.....

D T akll ----- knnélil te 571%” - 07

where ay,,. . k., € A and both the sum has only a finite number of nonzero terms.
If the coefficients are not all 0, choose ki1,...,k,, € Zso such that ay,, ., # 0
= 0 if there exists (¢,j) € {1,...,n}* such that [;; > k;;. Let

.....

hence ay,, . x,, = 0, a contradiction.

,,,,,

Obviously, D4(G) is the subspace Dy defined in the answer of (1). We showed in (1) that
Dy = D). As the inclusion Dy Dy C Dy, 4 is obvious from the definition of the D},
this gives the result.

The unit element (which is id4) is obviously in D;,,(G), and it’s clear that D;,,(G) is a
k-subspace of D(G). Let D, D’ € D;,,(G). For every g € G(k),

Lyo(DoD'y=DoLsoD =(DoD'oLy,),
s0 D o D" € Dy, (G). This show that D;,, (G) is a subalgebra of D(G).

To show that ¢ is injective, let’s take D € Ker ¢ and try to show that D = 0. Take f € A
and try to calculate ' := D(f). Let g € G/(k). Then, because D is left invariant,

f'(9) = (Ly(f))(A) = (Lge D)(f)(1) = (DoLy)(f)(1) = D(Le(f))(1) = o(D)(Ly(f)).
As D € Ker g, this is equal to 0. So f'(g) = 0 for every g € G(k), and hence f' = 0F]]
We’ve showed that D(f) = 0 for every f € A, which means that D = 0.

By a stroke of luck (the fact that g = M, (K) is stable by left multiplication by G(k)),
we have g + ¢ X € G(k'), so it makes sense to apply f to it. (In general, you should use
g(1 + X)) instead, which is what we want for (5) anyway.)

Let f1, fo € A, and let f = f; f5. First we suppose that f; and f, satisfy the conclusion
and we show that f does. Indeed,

3Technically, we’ve proved that f’ = 0, but this implies f’ = 0 and we are explicitely allowed to use this fact.
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flg+eX) = filg+eX)fa(g +eX) =

(fl (9) +¢ Z xz‘,j@j(fl)(g)) <f2(9) +e Z xz‘,j5z‘j(fz)(9)>

The result then follows from the product rule and the fact that €2 = 0. Now assume that f,
and f satisfy the conclusion and that f, € A*, and we want to show that f; satisfies the
conclusion. We have

flg+eX) = +5qu ij =

Jilg +eX)falg +eX) = filg +eX) <f2(g) +e Z xi,jéij(f2)(g)>

Using the fact that f5(g) # 0 and that £? = 0, we get

filg+eX) = ( +6Z~rw ) (1—82%13 wf2><>>=

g)+e Z i (f2(9) "0 (F)(g) — f2(9)26i;(f2)(9)) =

g)+e Z ;30:(f)(9)

As the conclusion of (4) is clearly true for every degree 1 monomial ¢;; € A, it’s true
for every element of k[t;;] C A by the first calculation above, and in particular for the
powers of det. But then the second calculation show that this conclusion is also true for
the functions f(det)™4, for f € k[t;;] and d > 0, so we get it for every element of A.

By (4), we have

flg(1 + X)) —eZng ii()(9),

so the definition of X (f)(g) makes sense, and we get
X(f)lg) = Z(QX)ijém(f)(g)-

For every (i,7) € {1,...,n}, let a;; € A be the function that sends g € G/(k) to the (i, j)
entry of gX. (This is clearly a polynomial function of the entries of g, it’s even linear.)
Then the calculation above shows that X is equal to the differential operator ZZ  May;0ij.

(In particular, X sends A to A)
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(6).

).
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We still have to show that X is left invariant. Let g1, g, € G(k) and f € A. Then

R (L (F))(92) = ~(F(9102(1 + £X)) — F(9192)

3

and

=~ 1
(L, X (f))(g2) = X (f)(g192) = g(f(glgz(l +eX) = f(9192)).
So XL, =L, X.
In the proof of (5), we have written X as asum > i May, d;j, with the a;; in A. As each J;;
is a derivation of A (that’s the product rule), this easily implies that X is a derivation of A.
Let X,Y € g, and let Z = [X,Y]. We want to compare D := X oY — Y X and Z.

Let’s first show that D is a derivation. Let f;, fo € A. Then
D(fif2) = X(Y (f1)2) =Y (X(fif2)) = XY () ot 1Y (f2) =Y (X(F) ot 1 X(f2)) =

XY (fO) o + Y ()X (f2) + X ()Y (f2) + AX (Y (f2))
VX () fo = XY () = V()X(f) — AY (X () =
D(fl)fQ + le(f2)~

As both D and Z are derivations, they are determined by their action on the subspace of
linear functions in A. Indeed, as a difference of derivations is a derivation, it suffices to
show that, if 6 € End(A) is a derivation and 6(f) = 0 for every linear function f, then
d = 0. First, the condition and the Leibniz rule imply that §(f) = 0 for every f € k[t;;].
To finish the proof, we just have to show thatif f; € A, fo € A% and 6(f2) = d(f1f2) =0,
then 6(f1) = 0. But this follows from the fact §(f1) = f; '(5(f1f2) — f16(f2)). (Note the
similarity with the proof of (4).)

So let’s show that Z and D are equal on linear functions. Let f € k[t ;] be linear (ie
homogeneous of degree 1). Then applying the definition in (5) gives

X f(9) = f(gX),

hence

Y(X[)(g) = f(gXY).
Similary, o

XY [)(g) = flgY X),

(Df)(g) = flg(XY =Y X)) = Zf(g).



(8).
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First let’s note that, thanks to (1), if we denote by D_;(G) the A-submodule of D(G)
(freely) generated by the [, ; 5;3” such that ), . d;; = d, then D(G) = @ D=a(G).
Let’s denote by o, the projection D(G) — D_4(G), that is, the operator that returns the

order d part of a differential operator.

.....

n
Eij: E mth(Sir.
r=1

n . Fdnn form a linearly independent family in D(G). This will

nn

Let’s prove that the Ef

show that « is injective.

Consider a relation

where the vy, . 4, are in k and almost all of them are 0. Then we must have o4(D) = 0
forevery d € Zs. Let d be the biggest integer such that there exist a n-uple (dy1, . . . , dpy)
with d = > d;; and ay,, . 4,, # 0, and let’s calculate o,(D). This will be simpler than

D for two reasons. First, only the products [T, ; Efj"j with >, - d;; = d will contribute.

Second, thanks to the equality d;;m, = ms, jat mq0;; for every a € A, when we calculate
the image by o, of the products HZ i E;-i;j , we can pretend that the J,; commute with all
the operators of the form m,. Now we want to calculate o,(D)(f)(1) for f € A. The

evaluation at 1 introduces a third simplification : in the calculation of 04([ [, ; E;ij” )(f)(1),
all the m;,; (which we can move to the left by the second simplification) will go to 0 unless

1 = j,and to 1 if ¢ = j. Taking into account the formula for Eij above, we finally get

~di]’ di]'

Od(H Eij )(H(L) = (H 51']' )(1)
i,j ]
for every f € A, hence
dij
(D)MW = D Quarann | [05)(H).
d11+"'+dnn:d Z]

For every n?-uple (dy1,...,d,,) such that Z” d;; = d, applying the formula above to
f=1L,; tfj’ gives ag,,....d,, = 0. But this contradicts the choice of d.

Remember the filtration Uy of Ug defined in the solution of problem (we
use the basis (F;;) of g to defined it). The map X +— X clearly sends Uy

to Dy4(G) (because E;; € D;(G)), and in (8) we proved that this induces an in-
jection ag : Uy/Us1 — Dy(G)/D4_1(G) for every d > 0, with U_; = 0,
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D_1(G) = 0. (Because the map U; — Uy/Uys1 — Dy(G)/Dy—1(G) is the same as
Ug — Dg(G) 2% D_y4(G) ~ Dyg(G)/Dy_1(G).) Also by (8), the generating family of Ug
defined in problem is a basis (because its image in D(G) is free). So we get a
basis of U;/U,_; given by the images of the ((FEy1)% ... o(E,, )% for diy + -+ + dpn,
and we see that

dimg (Ua/Ug—1) = Ny = |{(di1, - ., dun) € ZZ|d11 + . . . dpp = d}.

For every d > 0, let P; C k[t;;] be the subspace of polynomials of degree < d and
wq : D4(G) — Hom(Py, k) be the map D — (f —— D(f)(1)). I claim that ¢q4
is injective on Dy(G) N Dy (G). Indeed, let D € Dy(G) N Dy (G). Reasoning as
in (3) and using that L,(P;) = P, for every g € G(k), we see that D(f) = 0 for
every f € P;. Write D = Z(du ..... dn) Qi H” 5?;‘, where ag,, 4, = 0 for
Zi’j d;; > d. Suppose D # 0, and choose (di1,...,dy,) such that aq,,  4,, # 0
and Z” d;; is maximal for this property. Applying D to H” tf;j € P, we get
gy, ,...dn, = 0, a contradiction. So we’ve proved the claim, and in particular we get that

To finish the proof that « : Ug — D;,,(G) is an isomorphism, it suffices to show that
aq: Ug/Us1 = (Dg(G) N Diny(G))/(Dg—1(G) N Diny (G)) is an isomorphism for every
d > 1. We prove this by induction on d. For d = 0, the result is obvious as the source and
target of oy are both k. Suppose that d > 1, and the result is known for d — 1. In particular,
we get dimk(Ud,l) = dimk(Dd,l(G) N Dinv(G))’ SO

dlmk((Dd(G) N Dinv(G))/(Dd—l(G) N Dan(G))) S dlmk(Pd) — dimk(Ud_l) = Nd.

As the source of oy is of dimension Ny and «y is injective, this shows that o is bijective.

O

VII.6.17 Regular functions on an algebraic group

We use the notation of problem

Let G C GL, be a linear algebraic group over k, given as the set of zeroes of a fam-
ily (P.)aer of polynomials. We set det = det((X;j)1<ij<n) € k[X;5,1 < 4,5 < n], and

R - k[Xl], 1 S Z7] S n][ﬁ]

The ring of regular functions on G is by definition the ring R = R/(P,,a € I). Itis a
k-algebra.

On the other hand, the set Ry, of regular functions from G to k is defined as follows : an
element of R, is the data, for every k-algebra A, of a map (of sets) f4 : G(A) — A such that,
for every map of k-algebras u : A — B, if we denote by G(u) : G(A) — G(B) the obvious
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map (given by applying u to the coordinates), then fp o G(u) = w o fy, or in other words, the
following diagram commutes :

(Note the similarity with the definition of morphisms of algebraic groups in the next problem.)

The set Ry, has an obvious structure of k-algebra : If (f4), (f’y) are two elements of R, and

A€k, weset (fa) + (fa) = (fa+ fa), (fa)(f4) = (fafy) and A(fa) = (Afa).

(1). If P € k[X;;,1 <i,j < nl, it defines for every k-algebra A a map G(A) — A by sending
g = (gij) to P(gij). Use this to get a map of k-algebras ¢ : Rz — R.

(2). Show that ¢ is an isomorphism. (Hint : If (fa) € Ry, find a preimage of (fa) by applying
[re to a well-chosen element of G(R¢).)

Solution.

(1). If P € k[X;;] and A is a k-algebra, let o(P)4 : G(A) — A be the map (g;;) —> P(gi;)-
Then P —— ¢(P),4 is a morphism of k-algebras k[X;;] — Maps(G(A), A) (where
the algebra structure on the right hand side is given by pointwise addition and multipli-
cation), and p(det) 4 send G(A) to A%, so P — @(P)a extends to a k-algebra map
R — Maps(G(A),A). This map sends all the P, to 0, so it defines a k-algebra map
Re — Maps(G(A), A), that we’ll still call f —— ¢(f)a. It’s now clear that the family
(p(f)a) (as A varies) defines an element of Ry, for every P € R, and that this is a map
of k-algebras ¢ : R — Ry,.

(2). Let’s try to construct an inverse ¢ : R;; — R¢ of ¢. Let gy be the element of (X;;)1<; j<n
of M, (k[X;;]). Then gy is not in GL,,(k[X};]) because its determinant det is not invert-
ible, but go is in GL,,(R), because in R, det is invertible (by construction of R). Of
course, ¢ has no reason to be its G(R), but its image ¢ in GL,(R¢) is in G(R¢), because
P,(g9) = P.(Xi;) = 01in Rg.

Now if f = (f4) be an element of R, we set ©(f) = fr.(g) € Rg. This is obviously a
morphism of k-algebras. Let’s show that 1) o ¢ = idpg,. This is almost tautological. Let
P € Rg, then ¥(p(P)) = P(X;;), thatis, ¢ (¢(P)) = P.

Let’s show that ¢ o ¢ = idg,. This is a bit less tautological but not very hard. Let
f = (fa) € R, and set P = ¢(f) and f' = ¢(P). Let A be a k-algebra, and let
h = (h;j) € G(A). Define a k-algebra map k[X;;] — A by sending X;; to h;;. Because
det(h) € A%, this map extends to a k-algebra map R — A. Because P, (h) = 0 for every
a € I, it further goes to quotient and defines a k-algebra map u : Rg — A. Now applying
the compatibility property of f, we see that u o fr, = fa o G(u). Applying this to the
element g € G(R) defined above and noting that G(u)(g) = h (by the very definition of
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u) gives
fa(h) = u(fre(9)) = u(P) = P(hy;) = fiy(h).

VII.6.18 Differentiating morphisms of algebraic groups

We use the notation of problem

Let k£ be a commutative ring, and let G C GL, and H C GL,, be two linear algebraic groups
over k. A morphism of algebraic groups p : G — H is the data, for every k-algebra A, of a
morphism of groups p4 : G(A) — H(A) such that, for every map of k-algebras u : A — B, if
we denote by G(u) : G(A) — G(B) and H(u) : H(A) — H(B) the obvious maps (given by
applying u to the coordinates), then pp o G(u) = H(u) o pa, or in other words, the following
diagram commutes :

G(A) L2~ H(A)
——> H(B)

PB

(1). If p: G — H is a morphism of algebraic groups, we define dp : Lie G — Lie H by

Ap(X) = Lp(1 +£X) — p(1).

Show that this is well-defined and a morphism of Lie algebras over k.

2. If k = Cand p : G — H is a morphism of algebraic groups over k, show
that pc : G(C) — H(C) is a continuous morphism of groups, and that the map
dp : LieG — Lie H defined in question (1) and the map dp¢ : Lie(G(C)) — Lie(H(C))
defined in theorem|[VI.5.2]of chapter VI agree on Lie(G(C)). (Note that the question makes
sense by (4) of problem |[VIL.6.5])

(3). If p: SL,, — H is a morphism of algebraic groups over a field £ of characteristic 0, show
that dp uniquely determines p.

Solution.

(1). Remember that the Lie algebra of GG is by definition the set of ¢ — [,,, where g is in the
kernel of the map G(kle]) — G(k) coming from the k-algebra map k[e] — k, e — 0. By

32We do not really need the first group to be SL,,, but we do need it to be connected, and I haven’t defined what this
means for algebraic groups.
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definition of a morphism of algebraic groups, we have a commutative diagram

G<T]) SN H(TD
G(k) H(k)

Pk

s0 pyle induces a map Ker(G(k[e]) — G(k)) — Ker(H(k[e]) — H(k)), i.e., a map
dp : Lie(G) — Lie(H). Let’s see that this map is given by the formula of the problem. Let
X € Lie(G). Then, by the definition of dp we just gave,

14 edp(X) = p(1 +eX),

which is exactly what we wanted to prove.

Now let’s show that dp is a morphism of k-Lie algebras. Let X;, X, € Lie(G) and X € k.
We’ll write p instead of py) in what follows. First, as p : G(k[e]) — H(k[e]) is a mor-
phism of groups, we have

1+ edp(X1 + Xo) = p(1 + (X1 4+ X)) = p(1+X1)(1 +eXa))
= (14 edp(X1))(1 +edp(X2)) = 1+ £(dp(X1) + dp(X2)),
ie., dp(X1 + Xs) = dp(X1) + dp(X3).

Let u : kle] — kle] be the k-algebra map sending ¢ to Ae. Then we have a commutative
diagram
G (k[e]) = H (k[e])

SO
L+edp(AXy) = p(1 4+ keXy) = poG(u)(14+eXy) = H(u) o p(1 +eXy)
— Hu)(1+ 2dp(X)) = 1+ eMdp(X)),
ie., dp(AX1) = Mp(X)).

Finally, we consider k' = k[e] ®y kle] = kle1,e2], Wwhere ey = e ®@ land g5 = 1 ® &.
We have maps wuy,us,u : k[g] — k' defined by ui(e) = €1, us(e) = ey, and
u(e) =169 = e®e. Let g; = G(u;)(1 +eX;) and h; = H(w;)(1 + edp(X3)), 1 = 1,2.
We have seen in the solution of problem [VIL6.5|that g1g297 'g5* = G(u)(1 + £[X1, X»])
and hihohy'hy ' = H(u)(1 + g[dp(X1), dp(X2)]). As pr o G(u) = H(u) o p, we get

H(u)(1 + edp([Xy, Xs])) = H(u)(p(1 + e[Xy, X5])) = H(u)(1 + [dp(X1), dp(X5))),
hence, thanks to the injectivity of u, dp([ X1, X3]|) = [dp(X1), dp(Xs)].
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Q).

3).

310

The fact that pc is a morphism of groups follows immediately from the definition of a
morphism of algebraic groups.

For every i,j € {1,...,m} and every commutative ring A, let ¢;; 4 : M,,(A) — A be
the function giving the (i, j)-th entry. Then the family (¢;; 4 © pa), for A varying over all
C-algebras, defines an element of Ry, in the notation of problem and so, by (2)
of that same problem, it comes from an element p;; of C[X,,1 < 7,5 < n][det™!]. In
other words, if g € G(C), all the entries of pc(g) are given by polynomials (independent
on g) in the entries of ¢ and in det(g). This implies that pc is continuous.

For every commutative ring k, every rational function f € k(t;,...,t,) and every
a = (ay,...,a,) € kP such that all the %(a) are defined, we set define a linear form
P

df (a) : kP — k by

NG,
df (a)(z1,...,xp) = sza—tf(al, Cey Qp).
s=1 s

This is similar to what we did in the solution of (3) of problem and, just as in this
solution, we see that, for every X € Lie G, we have

p(In +eX) = Ly + e(dpij(1)(X))1<ij<m-

So the map dp : Lie G — Lie H is given by dp(X) = (dp;;(1)(X))1<i j<m-
On the other hand, if X € Lie(G(C)), then

d d

dpc(X) = E/)C(etxﬂt:o = (%Pz‘j(et){)hzo)lsajwa

which gives the same result.

Without loss of generality, we may assume that H = GL,,. So let pq, po : SL, — GL,,
be two morphisms of algebraic groups over k such that dp; = dp,. We want to prove that

P1 = P2

We have seen in (2) that the entries of p; and p, are given by polynomials in the coordinates
of M, (k) and in det. Let &’ be the smallest subfield of k containing all the coefficients of
these polynomials, then % is of finite transcendence degree over QQ, so there exists an
injective (Q-algebra map k' — C. All the objects appearing in the problem (SL,,, GL,,, p1,
p2) are defined over £/, and the equality of the differentials also hold if we consider p; and
p2 as morphisms of algebraic groups over &’. (By the explicit formula for the differential in
(2), for example.) So we may assume that k is a subfield of C that is of finite transcendence
degree over QQ.

Let A be a k-algebra, let ¢ = (a;;) € SL,,(A). We want to prove that p; 4(g) = p2,4(9).
As g is also in SL, (A’), where A’ is the k-subalgebra of A generated by the a;;, we may
assume that A = A’. In the polynomial algebra B = k[t;;,1 < i,j < n|, consider the
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element D = det((t;;)1<i,j<n). Let B’ = BJt]/(t"*D —1). The k-algebra map map B — A
sending each t;; to a;; sends D to det(g) = 1, so we may extend ittoamap u : B’ — A
by sending t to 1. Let ¢ = (¢ 'i)1<ij<n € M,u(B’), then det(¢’) = t™"D = 1, so
g € SL,(B’). Also, the image of ¢’ by SL,,(u) : SL,(B’) — SL,(A) is g, so it suffices
to show that p; p/(¢') = p2.5/(¢'). Choose a family (z;;)1<; j<, Of elements of C that are
algebraically independent over k, and define a k-algebra map v : B’ — C by sending each
tij to z;;, and sending ¢ to a primitive nth root of det((z;;)1<; j<n). This is injective SO
it suffices to show that p; c(¢”) = pac(g”), where ¢” = SL,(v)(¢') € SL,(C). But we
know that p; ¢ = pa ¢ by (2) (Which says that dp; ¢ = dp c), remark|[VL.5.4]of chapter VI

and problem 2).
O

VIl.6.19 Semisimple representations of the Lie algebra gl,(C)

If g is a Lie algebra over a commutative ring k, the center of g is by definition
{X eg|VY €g, [X, V] =0}

(1). If k is a commutative ring, calculate the center 3 of gl,,(k). If n is invertible in k, show that
gl,,(n) =3 x sl,(k) as Lie algebras.

From now, we take £ = C, and we write g = gl,,(C).

(2). Give an example of a non semisimple-representation finite-dimensional representation of
g.

(3). If u: g — gl(V) is an irreducible finite-dimensional representation of g, show that us, (c)
is still irreducible and that u(3) is contained in the subalgebra & - idy C gl(V).

@). Let Al = {(a,...,a,) € C"a; — a;y1 € Zzoforl < i < n — 1}. We extend
the Bruhat order of definition of chapter VI to C" in the following way : if
(ay,...,ay), (b1,...,b,) € C", we say that (ay,...,a,) < (by,...,b,) if and only if
bi—a; € Zzo, (bl +b2) — (CL1 +CL2) S ZZO,. .. ,(bl +- - +bn71) — (CL1 +-- '+bn71> c ZZO’
andb1+---+bn:a1+---+an.

Show that, if (aq,...,a,) € A;, there exists b € C such that (a; +b,...,a, +0b) € Z",

and that A\ := (a; +0,...,a, +b) is in A+ (see definition [VI.11.2| of chapter VI) and
independent of the choice of b, and the map A\ — A just defined respects the Bruhat order.

(5). Construct a bijection A — W, between A; and isomorphism classes of irreducible rep-
resentations of g such that :

BBecause D is a linear combination of monomials where all the t;; have exponent at most 1, so it cannot be a rth
power in k(t;;,1 <4,j <n)ifr > 2.
3*Note that this a lift of the Bruhat order of definition|V1.14.4.1|of chapter VL.
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(a) Forevery \ € A;, the action of sl,,(C) on W, makes IV, the irreducible representa-
tion of sl,,(C) of highest weight \ as in theorem VI.11.5|of chapter VI.

.....

(c) Forall \, u € AT, we have

WA@W, =Wy, ® @ Wi

v=<Ap

(6). Give the irreducible representations of g corresponding to the elements (1,0, ...,0),
(1,1,0,...,0),..., (1,...,1) of A] and to the elements (1,0, ...,0), m € Zx.

. It X e A; NZ", show that 1, comes (by differentiation, as in theorem [V1.5.2|of chapter VI)
from a continuous representation of GL;(C) on W), and give a formula for the character
of this representation on diagonal matrices in GL4(C).

Solution.

(1). Let’s show that 3 = kI,. It is clear that every multiple of I, is central. Conversely, let
A = (a;j) € 3. Denote by E;;, 1 < i,j < n, the elementary matrices in M, (k) (£;; has
(i, 7)-th equal to 1, and all other entries equal to 0). Then, for all 7, j,

n

0 = [A, EZJ] = Z a;ﬁ-Ekj — Z aleil.
k=1

=1
This gives a;; = 0if i # j, and a;; = a;; foralli,j € {1,...,n},ie., A € kl,.

We have a k-linear map ¢ : 3 x sl,,(k) — gl,(k), (X,Y) — X + Y. Itis a morphism of
Lie algebras because, if X, X’ € 3, then [X,Y] = [X', Y] = 0 for every Y € g, (k), so,
for Y)Y’ € sl,(k), we get

[QO(X, Y)aSO(X/7Y/>] = [X +Y, X'+ Y/] = D/a Y/] - 90([X7 Xl]? [Ya Y/])

Also note that, if A = X + Y with Y € sl,(k) and X = =z, € 3, then
Tr(A) = Tr(X) + Te(Y) = Tr(X) = nz. So, if n is invertible in %, the morphism
Vgl (k) — 5 x sl,(k), A — (£Tr(A)L,, A — L Tr(A)I,), is an inverse of .

(2). By (1), we have g ~ C x s[,(C). So we can take any non-semisimple representation of C
and compose it with the first projection to get the desired representation of g. For example,

0 ay. . . .
the map v : a — 0 O) is a representation of the Lie algebra C on C2, but it is not
semisimple, because its only subrepresentations are 0, C x {0} and C2.

(3). Forevery X € 3, u(X) commutes with all the elements of u(g), so it is a g-equivariant map
from V to itself. As V' is an irreducible representation of g, i.e. a simple U(g)-module,
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5).

(6).
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its g-equivariant endomorphisms must form a division algebra by Schur’s lemma (theorem
1.1.4.1|of chapter I), but this division algebra is finite-dimensional over its subalgebra Cid
(because it’s a subspace of End¢(V)), hence equal to Cidy by problem [VIL.1.3(1).

As u(3) C Cidy, every subspace of V is invariant by 3. But g = 3 @ sl,(C), so g and
sl,(C) have the same invariant subspaces in V, i.e., only 0 and V.

Let A = (ai,...,a,) € Af. For ¢ € {l,...,n — 1}, we have
a; — a, = (a; — a;y1) + -+ + (@1 — a,) € Z, so we can take b = —ay,.
Also, (a; — b) — (aj41 — b) = a; — a1 € Zso for every ¢ € {1,...,n — 1}, so
X = (ay — ap,...,an — a,) mod (1,...,1) is indeed in A*. It is clear that the map

A\ — X respects the Bruhat order.

We still need to prove the following fact If b0 S C are
such that (ay + b,...,a, + b),(a; + V,...,a, + V) € Z", then
(@ +b,...;an +b) — (an +V,...0a, + V) € (1,...,1)Z, ie, b — b € Z. But
this is obvious, because b — V' = (a; — V') — (a1 — b).

By (1) and (3), every irreducible representation of g is of the form
X — aTr(X)u(X — ITr(X)), where @ € C is a C-linear map and u is an irre-
ducible representation of sl,,(C). Conversely, every representation of this form is clearly
irreducible.

Let A = (ai,...,a,) € Af, let A € A* be as in (4), and let W5 be the corresponding
irreducible representation of sl,(C). We set W), = Wy as C-vector space. We make
sl,(C) act on W), via its action on W, and 3 act on W, by %(Ch + -+ ap)Tr.

This construction satisfies conditions (1) and (2). To show that it satisfies (3) and
that it gives the desired bijection, by the description of irreducible representations of
g given above (and remark of chapter VI), it suffices to show that the map
¢ Af = Cx AT sending A = (ay,...,a,) to (X(ay + -+ + a,), A) is bijective and
sends the Bruhat order on A} to the order < on C x A™ given by : (a,\) < (a’, \') if and
onlya=a"and A < \.

The statement about the orders is an immediate consequence of the definitions. Let’s
show that ¢ is injective. Let A\ = (a1,...,a,), N = (aj,...,a,) € AJ such that
©(X\) = p(X). Then (by definition of the map A\ — \), there exists b € C such that
a; = a; +bforeveryi. Buta; +---+a, =a) +---+a,,s0b=0and A = \. Let’s
show that ¢ is surjective. Choose an element of A*, that we write A mod (1,...,1),
for some A = (ai,...,a,) € Z", and leta € C. Letb = a — +(a; + -+ + a,), and
W= (a1+b,...,an+b).Thenﬁ:Xand%(bl+---+bn) :b~|—%(a1~|—---+an) =aq,

50 (1) = (a, ).

For d € {1,...,n}, we writt @y = (1,...,1,0,...,0) € AJ. Let’s show that
——
d
W, = AIC", where g acts on C" in the obvious way (i.e. via the identification
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g= Mn((c))

We just need to check that the two representations agree on sl,,(C) and on C1,,. For s[,,(C)
and 1 < d < n — 1, this follows from condition (a) in (5). Let’s calculate the action of CI,,
on AYC" (and identify A"C"). Denote by (ey, ..., ¢e,) the canonical basis of C". Then, by
proposition of chapter VI, we have a basis of A?C" given by the e;, A -+ A ¢;,
with 1 < iy < --- < iy < n. Inparticular, A"C" is 1-dimensional, with basis e; A - - - Ae,,.
Let A = (aij) cg. Then,if 1 <4 < -+ <1g < n,

n
611/\ €Z'T71/\(A€Z'T>/\€1‘T+1/\'"/\€Z'd == E a,-mirel-l/\--J\eid.
r=1 =1

M&

Ale, N+ Neyy) =

If d = n, the action of A mutliplies the unique basis element by a11 + - -+ + @y, SO the
representation of g on A"C" is indeed the one given by Tr. On the other hand, for any d,
if A e CI, and a = ay;, then A acts as da = %Tr(A) on AYC™, which is what we wanted
to prove.

Let A\ = (m,0,...,0), with m € Zs, and let’s show that W, = S™C", where g acts on
C™ in the obvious way as before. By problem we already know that S™C" is
the irreducible representation of s, (C) with highest weight ), so we just need to check
that CI,, acts in the correct way, i.e. by ™Tr. Let (ei,...,e,) be the canonical basis of
C". By problem 3), a basis of S™C" is given by the elements e“f1 ...edn with
dy,...,dy, € Zspand d; + ...d, = m. If A = al,, then

n

Alefr .. edn) = Zadi(e‘fl ety = %Tr(%l)(e‘lZl e,

This gives the desired conclusion.

We use a strategy similar to the one in the proof of theorem of chapter VI to
construct the desired representation of GL,(C). First, a convention : Remember that
A™C" is the 1-dimensional representation of g given by Tr. For any a € C, we denote by
(A™C™)®* the 1-dimensional representation of g given by aTr.

Let A = (ay,...,a,) € A;ﬁZ”. Setd, = a,and d; = a; —a;;; forl < i <mn—1.
Then A = dyww; + - - - + d,@,, where the w; are as in (6). So, by condition (c) in (5), W),
is an irreducible subrepresentation of V' := @7 (A?C™)®* (this makes sense because
dy,...,d,—1 € Z>p) (it even has multiplicity 1 in V'). Now, note that the action of g on V'
comes from an action of GL,,(C). Indeed, this is true for the obvious action of g on C", so
it’s true for all the AYC™, so it’s also true for (A4“C*)®% if 1 < i < n — 1, because then
d; > 0. For the last factor, note that the action of GL,,(C) on A™C" is just multiplication
by the determinant (by definition of the determinant), so, as long as d,, € Z (which is true
by the hypothesis that A € Z"), we can talk about the representation det™ of GL,,(C),
whose corresponding representation of g is d,,Tr, i.e., (A"C")®?. So, we got an action of
GL,(C) on V whose differential is the action of g. But then, by remark of chapter
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VI, a subspace of V' is invariant under the action of g if and only if it is invariant it is
invariant under the action of GL,,(C). In particular, the subspace W, of V is invariant
under the action of GL,,(C), and it gives the desired representation of GL,,(C).

Come back for a moment to the case where A is just an element of A;. First we want to
find the character of IV, as a representation of g.

Let t = C” be the space of diagonal matrices in g, we identify its dual t* to C™ by using

*

the dual of the canonical basis, which we call (e}, ..., e*). First we define the ring where

e n

our calculations will take place (see definition [VI.14.4.2|of chapter VI) : For every A\ € t*,
let
Cr={pet|p= A}

We define A to be the set of formal sums » \etr @ACx, Where ay € Z, such that there exists
A, ..., A € tsuch that, if A & C\, U---UC),, then ay = 0. This contains the group
algebra Z[t*] (where we denote the basis element of Z[t*] corresponding to A by ¢, as in
the case of sl,,(C)). We define the multiplication on A by

O axen)D_baen) =D (D auby)ex.

et AEL* et p1+pe

It is easy to check that the sums defining the coefficients on the right-hand side are finite,
so this makes sense (and extends the multiplication on Z[t*]).

Let V' be a finite-dimensional representation of g. For A € t*, we set
V) ={veVVX et, X -v=AX)v}
(See definition of chapter VI.) The character of V' is

xv =Y _dim(V())ex € A.

Aet*

We set &+ = {ef —e¥,i < j} Ct and p = 3 4. . (These all lift the similar-named
objects of sections[VI.12.2] and [VI.13| of chapter VI, by the explicit formulas given there).
Also, make W := &, act on t* = C” in the usual way. Fix \ € A;, and let

Xa = Z sgn(0)Co(rtp)—p H (I+cg+cont+...)€EA

ceW acdt

Let’s show that this is character of W,. Write A = (Ay,..., ;) and x\ = Zuet* auCp,s
with a,, € Z. We want to show that a,, = dim (W, (u)), for every p € t*.

By definition of Xy, a, is 0 unless x is of the form o(A + p) — p — > o+ NaCx, With
o € Wand n, € Zs,. In particular, if u = (1,...,py) is such that @, # 0, then
ey =M A+ A
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By the construction of W, in (5), we know that CI,, acts on W, by multiplication by
At Ty So, for every 1 € t*, Wy (p) is also equal to

{fveMVX et X -v=p(X)v},

where t' = s[,,(C) N t, i.e., to the yy-weight space for Wy seen as a representation of
s[,,(C). The dimension of this weight space is given by the Weyl character formula, i.e.,
theorem [VI.13.2] of chapter VI. Using example of the same chapter, we see that,
for every 1/ € (¥')*, the coefficient of 1’ in the character of the representation of s[,,(C) on
W) is the sum of the a,, over all the extensions ;. of ;1 to a character of t*. But there is at
most one such extension y such that a,, # 0, because a,, # 0 implies that the sum of the
coefficients of y is equal to A\; + - - - + \,, by the observation above. So, for every p € t*
such that a,, # 0, we get that a,, is equal the coefficient of 1" = fi¢ in the character of the
representation of sl,(C) on W), i.e., to dim W) (/) = dim Wy ().

Now assume that A is also in Z". Then we have seen that there is a representation of
GL,(C) on W), inducing the representation of g. Let T" be the subgroup of diagonal ma-
trices in GL,,(C), we have T" = (C*)" and Lie(T) = t. If p = (p1,...,n) € Z",
we denote by e* the character of T' given by (z1,...,2,) — 2z ...zt Note that
d(e*) : Lie(T)) = t — C is just y, see as an element of t*. Let ;1 € t* such that a,, # 0.
Then i is of the form o(A 4+ p) — p — D co+ N, With 0 € W and n, € Z>, and in
particular ;o € Z", so e* makes sense. By remark of chapter VI, the weight space
W (p) is stable by the action of 7. As 7" is connected, the action of 7" on W) (p) is de-
termined by the action of t (see remark of chapter VI), and so it has to be given
by multiplication by the character e#. As W, = P et W (p), this implies that W), as a
representation of 7, is isomorphic to € et ayet, where “a,e’” means “the direct sum of
a,, copies of the 1-dimensional representation e*”.

Let D € C|xy,...,z,) be the polynomial defined by
D = H (i —xj) =2y 'ah ™ myy H (1 —a;'xy).
1<i<j<n 1<i<j<n

Let N, € C[xy,...,x,] be the polynomial defined by

n

Ny = Z sgn(o) H:L’il(;g”_’

ceG, i=1

Forevery = (1, ..., pun) € Z", write 2 = zi* .. .al. If 0 € W, we have
U()‘ + p) —P= (Aa—l(l) - 071(1) +1,... 7)\0—1(71) - Uﬁl(n) + n)a

hence
n

n
Ai+n—i __ Ag—1 ()=~ (i)+n _ (n—1_n—2 o(Ap)—p
| | T = | | T = (2} 2y " rp)T :
i=1 i=1
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So we get that
Ny Ypewsgn(o)z7H0—r
D H1§i<j§n(l - J/flxj) .

Using the formula for xyy, calculated above (and the explicit description of ®T), we finally

get that the trace of an element (zy, ..., z,) of (C*)" = T on W), is given by %

VII.6.20 Differential of a tensor product of representations

Let g is the Lie algebra of a closed subgroup G of GL,(C), let p; : G — GL(V}) and
p2 + G — GL(V,) be continuous finite-dimensional representations of G on complex vector
spaces, and let p3 : G — GL(V; ®c V) and p4 : G — GL(Homge(V7, V5)) be the tensor product
and Hom representations.

Show that, for every X € g,
and
dpa(X)(f) = dpa(X) o f — [ odpi(X)
if f € Home(V1, Va).

Solution. Letv : R — Vi, w: R — Vyand f : R — Homc(V4, V2) be three derivable functions.
We want to prove the following formulas :

(1) ® () = (1) @ w(t) +olt) @ /(1)

and
%(f(t)(v(t))) = /() (v(®) + f()(V'(1)).

The formulas of the problem will follows immediately from this and from the formula for the
differential of a representation in (i) of theorem of chapter VI.

Let ¢t € R. For the first formula, we want to calculate the Ilimit of
F(v(t+h) @w(t+h) —v(t) @w(t)) as h goes to 0. We write v(t + h) = v(t) + h'(t) + he(h)
and w(t + h) = w(t) + hw'(t) + hn(h), where e : R — V; and n) : R — V4 are functions that
tend to O as h — 0. Then
v(t+h)@w(t+h) = v(t)@w(t) +h(' () @w(t) Fv(t)@w' () +h2 (W' (1) @w' (t) +(h)n(h))

+hn(h)(v(t) + h'(t)) + he(h)(w(t) + hw'(t)),
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SO

lim
h—0

(v(t +h)@w(t+h) —ov(t) @ w(t)
h

For the second formula, write f(t + h) = f(t) + hf'(t) + hg(h), where g : R — Homg¢(V4, V2)
is a function that tends to 0 as h — 0. Then

Ft+m)((t+h) = fB) ) + A () () + FO) (1) + R (F ) (t) +(h))
+h%g(h)(e(h)) + R f'(t)(e(h)) + h(g(h) (v(t) + f(E)(e(h)),

—V'(t) @ w(t) —v(t) ® w’(t)) = 0.

SO

VIl.6.21 Casimir element

Show that the Casimir element of definition of chapter VI is in the center of the uni-
versal enveloping algebra of sl,,(C).

Solution. We use the notation of section of chapter VI. By section of the same
chapter, if the £;; are the elementary matrices in M,,(C), then the Casimir element is given by

n—1
c= %Z H? + > Ej;Ej;,
=1

i#]

where H; = E;; — Ej+1,+1 and all the products must be taken in the universal envelopping
algebra of sl,,(C) and not in M,,(C). It suffices to show that ¢ commutes with every element of
a basis of s[,(C).

Instead of doing a direct calculation, I’ll show you a particular instance of the general method
of proof. Consider the bilinear form B on sl,,(C) given by B(X,Y) = Tr(XY). This is a non-
degenerate form, and a positive multiple of what is called in general the Killing form. ﬁ] Let’s de-
note by (A;)1<i<n2—1 the basis (Hy, ..., H,_1, E;j,i # j) of sl,,(C), for some arbitrary order on
the set {(i,)|i # j}. Then the dual basis (Aj) for the form Bis (1Hy,...,3H, 1, Eji,i # j).
Note that the Casimir element is given by ¢ = Zﬁ]l Aj Az, and we want to show that it com-
mutes with every A;. The key observation is that, for all X,V Z € s[,(C), we have

B([X,Y],Z) + B(X,[Y, Z]).

3The Killing form is defined in general as the bilinear form (X,Y) — Tr((ad X)(ad Y)). In the case of sl,,(C),
it is relatively easy to check that Tr((ad X)(adY)) = 2nTr(XY).
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(This follows directly from the definition of B.) Leti € {1,...,n* — 1}. By the observation
above, the adjoint of ad A; is — ad A;, so, if we write

n2—1

[Ai, Aj] = Z Ciji Ak,

k=1

then

n?—1
[Ai A5] =) g A;
k=1
Using this and the fact that [X,YZ] = [X,Y]Z + Y[X, Z] forall X,Y, Z € U(sl,,(C)) (again
an easy calculation), we get

n?2—1 n2—1 n?—1n?-1
[Ai e = A AT =) (A AJJAT + A4AL A]) = D) (cijeArA] — cin A4 Ap),
j=1 j=1 j=1 k=1

and the last sum is clearly 0 (separate the two terms, switch j and k in the second one).

VII.7 Exercises involving several chapters

VII.7.1 The algebraic Peter-Weyl theorem (chapters V and VI)

In this problem, G = SU(n), g = sl,(C) and we also use the algebraic group SL,, (over C)
defined in problem We identify g to Lie(G) ®g C as in the proof of corollary
of chapter VI. So, by this corollary, we have a 1 — 1 correspondence between continuous finite-
dimensional representations of GG (over C) and finite-dimensional representations of g.

The Peter-Weyl theorem (theorem[V.5.2]of chapter V) gives an injective map with dense image

v 6 End(V,) - L*(G).

(p:VP)Eé

Remember that G is the set of isomorphism classes of continuous irreducible representations
of G on finite-dimensional C-vector spaces. If p : G — GL(V,) is such a representation and
u € End(V,), then ¢(u) is by definition the function g — Tr(p(g) " o u).

The goal of this problem is to describe the image of ¢.

We use the definitions of problem (morphisms of algebraic groups and their differ-
entials), and we also make the following definitions : A representation of SL,, is a morphism of
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algebraic groups (over C) p : SL,, — GL,,. We say that two representations p : SL,, — GL,, and

P SL, — GL,, are equivalent if m = m’ and there exists g € GL,,(C) such that p’ = gpg~

1

(i.e. for every C-algebra A, for every = € SL,(A), p/4(x) = gpa(x)g~'). We say that a repre-
sentation p : SL,, — GL,, is irreducible if the only C-subspaces of C™ stable by SL,, are 0 and
C™. (We say that a subspace V' of C™ is stable by SL,, if for every C-algebra A and for every
x € SL,(A), pa(x)(V ®@c A) C V ®c A). Finally, we denote by SL, the set of equivalence
classes of irreducible representations of SL,,.

(1).

2).

3).
.

(5).

(6).

If p : SL,, — GL,, is a representation, then the restriction of p¢ : SL,,(C) — GL,,(C) to
SU(n) C SL,(C) is a morphism of groups p.. : SU(n) — GL,,(C). Show that this induces
a bijection SL,, = G.

Remember the definition of the ring of regular functions Rgr, in problem [VII.6.17] If
f € RsgL,, then we get a “polynomial” map fc : SL,(C) — C, and we can restrict it to
G = SU(n) C SL,(C). Show that the resulting map 7 : Rgr,, — L?(G) is injective.

Show that r( Rgr,,, ) contains the image of ¢.

If f € Rgy,, show that there exist fi,..., f, hi,..., h, € Rsp, such that, for every C-
algebra A and every z,y € SL,(A),

flay) =Y filr)hi(y).
=1
(You may admit the (easy) fact that the ring of regular functions on SL, x SL, is
Rg1,,, ®c Rsy,.)

For every f € Rgy, , show that the subrepresentation of G' x G generated by r(f) in L*(G)
is finite-dimensional.

Show that r( Rg,,, ) is equal to the image of ¢.

In other words, the image of ¢ is the subalgebra of polynomials functions on SU(n). This is
also a general fact; for example, it will be true for all connected compact subgroups of GL,,(C),
with the appropriate changes.

Solution.

(1).

320

We have in problem that, if p : SL, — GL,, is a representation, then
pc : SL,(C) — GL,(C) is a continuous morphism of groups, whose differential
dpc : sl,(C) — gl (C) is equal to the differential dp defined algebraically, and that dp
(or dpc) uniquely determines p. Also, by corollary of chapter VI, dpc is uniquely
determined by its restriction to su(n), which is also equal to dp.. So the map p — p,
induces an injection from the set of morphisms of algebraic groups SL,, — GL,, to the set
of continuous morphisms of groups SU(n) — GL,,(C).

Let p : SL,, — GL,, be a morphism of algebraic groups, let p. : SU(n) — GL,,(C) be
the corresponding continuous morphism of groups. Obviously, if the subspace V' of C™ is
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stable by SL,,, it is stable by SU(n). Conversely, let V' be a subspace of C™, and suppose
that it is stable by SU(n). Then, by remark [VI.8.3|and corollary of chapter VI, V is
also stable by su(n), hence by sl(n), hence by SL,,(C). We want to show that it is stable
by SL,,. Let A be a C-algebra, let g € SL,,(A), and let z € V ®¢ A. As in the solution of
problem [VIL6.18|(3), we can find a subfield & of C of finite transcendence degree over Q
and a k-subspace Vj of £™ such that p makes sense as a morphism of algebraic groups over
kand V = V;®;C, and we can find morphisms of k-algebrasu : B — Aandv : B — C,
and elements ¢’ € SL,,(B) and 2’ € Vy® B’ such that g = SL,(u)(¢'), v = (idy, ®u)(z)
and v is injective. Let ¢” = SL,,(v)(¢') € SL,(C) and 2" = (idy, ®v)(2") € Vi ®,C = V.
Then pc(¢”)(2") € V, s0 ppi(x') € Vo @ B', and finally p4(g)(x) € Vo @ A =V ¢ A.

By the results proved in the above paragraph, p is irreducible if and only if p. is irre-
ducible. Also, the equivalence relations on both sides are given by conjugating by elements
of GL,,,(C). So we have shown that the construction p — p. induces an injective map

SL, — SU(n). It remains to show that this map is surjective, i.e., that every irreducible
representation of SU(n) (on a finite-dimensional C-vector space) comes from a represen-
tation of the algebraic group SL,,. For this, we use theorem [VI.I1.5]of chapter VI, and we
also use its notation. Let p. be an irreducible representation of SU(n). By this theorem, it
is givenby a A € A*. Writing A\ = dyww; + - - - + d,,_1@,_1 as in the proof of the theorem,
we can realize p. on some subspace W of the representation V := @', (A'C")®%. Now,
observe that the standard representation of SU(n) on C" (i.e. the one coming from the
inclusion SU(n) C GL,(C)) comes from a representation of SL,, (given by the inclusion
SL,, C GL,), as do its exterior powers and any tensor product of these (because the con-
struction of the exterior power representations, and of tensor products of representations,
make sense over any ring of coefficients), so the representation of SU(n) on V' comes from
a representation of SL,,. But we saw above that SU(n) and SL,, have the same invariant
subspaces in any representation, so I is also invariant by SL,,, hence gives a represen-
tation p of SL,, such that p. = pcjsum). We have already shown that this p has to be
irreducible, so we are done.

(2). The map r : Rsr,, — L*(G) is obviously a map of C-algebras, so we have to show that its
kernel is trivial. Let f € Rgy,, be such that f¢sy,) = 0. We want to show that f = 0. By
problem it suffices to show that, for every C-algebra A and every g € SL,(C),
f(g) = 0. Using the same trick as in the proof of (3) of problem we see that
it actually suffices to show that f(g) = 0 for every g € SL,(C). Let g € SL,(C). The
polar decomposition for matrices says that we can write g = su, with s Hermitian positive
definite and u € SU(n)f As s is Hermitian positive definite, there exists & € SU(n)
such that hsh* is diagonal with real positive eigenvalues Ay, ..., A,,. Let A be the diagonal

3These s and u are actually uniquely determined by g. Compare with problem 11)(0)(iii). If you've
never the polar decomposition, here is how to prove existence : The matrix g*g is Hermitian definite positive,
so it can be diagonalized in an orthogonal basis and has real positive eigenvalues, so we can find a Hermi-
tian definite positive matrix s (take it to be diagonalizable in the same basis as g*g) such that s> = g*g. As
det(s)? = | det(g)|* = 1 and det(s) € Rx, s is in SL,,(C). Now if u = gs~!, then u*u = s 1g*gs™! = 1 s0
u € U(n), and det(u) = det(g) det(s)™* = 1sou € SU(n).
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matrix with eigenvalues log A, ..., log A, then Tr(A) = logdet(s) = 0. Now consider
the function /' : C — C defined by h(t) = f(h*e'hu). This is well-defined, because
et € SL,(C) for every t € C. It is also a holomorphic function, because the matrix
exponential is defined by an absolutely convergent power series, and f is a polynomial
function. If ¢ € iR, then ¢ € SU(n), so h*e*hu € SU(n), so F(t) = 0 by the
hypothesis on f. By the identity theorem for holomorphic functions, F' is identically 0.
Now note that, if t = 1, then h*e!hu = su = g. So f(g) = 0.

(3). Remember that ¢ is the direct sum of the maps ¢, defined just before theorem of
chapter V. So we have to show that the image of r contains the image of all the ¢,. Let
p : SU(n) — GL(V,) be an irreducible representation. We choose an isomorphism
V, ~ C™. By (1) we have a morphism of algebraic groups p’ : SL, — GL,, such
that p = pgyy(,y- Now remember that ¢, is the function M,,(C) — L*(SU(n)) sending
u € M,,(C)to g — Tr(p(g)~' ou). If u € M,,(C), then, for every C-algebra A, the
function SL,,(A) — A, g — Tr(p/y(g)~! o u), makes sense, and this gives an element f
of Rgy,, such that r(f) = ¢,(u).

(4). Let f € Rgy,. We define a function F' € Rgy,, xsr, []in the following way : For ev-
ery C-algebra A, for every ¢g1,92 € SL,(A), F(g1,92) = f(g9192). Note that the map
Rsr, ®c Rsr,, — Rsr, xs1,, sends hq ® hy to the regular function given on SL,,(A) x SL,, (A

by (g1,92) — f1(g1) f2(g2), for any C-algebra A.

By the fact that we admittedﬁ we can write ' = Y fi ® h;, with
fisoooy fryh1, ..., hy € Rgp,. This immediately gives the conclusion.

(5). Let f € Rgy,. By (4), we can find element hy, ... h. Ay, ... ¢kl K] ... h! € Rg, such
that, for every C-algebra A and every z,y, z € SL,,(A),

f(zy2) Z hy ()R (y)h(2).

By definition of the action of G' X G on L?(G), the subrepresentation of G x G generated
by r(f) € L*(G) is the span of all the functions L,-1R,r(f) : G = C, g — f(a"'gy),
for z,y € G. By the formula above, this is contained in Span(r(h}),...,r(h.)), so it is
finite-dimensional.

(6). We have seen in the proof of theorem of chapter V that, if we make G act on L?*(G)
by the left regular action, then every finite-dimensional G-representation of L?(G) is con-
tained in Im(¢). So by (5), Im(r) C Im(¢). But we have seen in (4) that Im(¢) C Im(r),
so finally Im(z) = Im(r).

O

3Note that SL,, x SL,, is an algebraic subgroup of GLo, : just take the matrices in GLo,, that have two diagonal
blocks, both of determinant 1.
38 And that is very easy to prove using the description of regular functions as polynomials on the group, i.e., the first

description in problem [VIL.6.17

322



VII.7 Exercises involving several chapters

VII.7.2 Polarization

This is actually just a lemma for the next problem, problem [VIL.7.

Let V and W be finite-dimensional C-vector spaces and f : V¢ — W be a symmetric d-linear
form. If f(z,...,x) = 0 for every z € V, show that f = 0.

Hint : You can approach this problem in at least two ways. If you are good with algebraic
manipulations, you can find (and prove) the formula giving f from the function V. — W,
x — f(x,...,x). (This will actually work for modules over any ring where d! is invertible,
not just vector spaces over C). Or you could use representation theory : first prove that the dth
symmetric power of the standard representation of s[(V') is irreducible, then find a way to apply
this to the question.

Solution. Write D(z) = f(x,..., ).

Let’s take the first hint and suppose that V' and W are k-modules, where k is a commutative

ring. We will show that, for every x1,...,24 € V,
dif (xr,....xg)= Y. (=D)"¥D (Z x) .
@#£SC{l,...,d} €S

If d! is invertible in k, this clealry implies the result.

Let S C {1,...,d} be nonempty. Then

D(ZZE,) :‘ Z f(xilv'-'axid): Z N(ila-'-7id>f(xi17---;l‘id)a

€S 01y sidES 11<--<ig
i10rig€s

where
N(il,...,id) = |{(i0(1), .. ,ig(d)) S Zd,O' S Gd}l

Note that N (i1, ...,i4) only depends on iy, ... ,i4, noton S. So we get

> (—1)d|S|D<in): S DTS NGy i) 1),

o#SCc{1,...,d} €S o#SC{1,...,d} ;‘1§-j§éds
1] yeees %

which by the fact that N (i, ..., 4q) f(z;,, ..., x;,) doesn’t depend on S is equal to

> N(i,.ia) f(iy, ) > (—=1)2-181,

1<iy < <ig<d {i1,ia}CSCH1,....d}

Suppose that {iy,...,iq} € {1,...,d},andletT = {1,...,d} — {i1,...,iq}. Then
> )= () Y =) = - =0

{i1,yia}CSC{L,.d} s'cT
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So only the term with 4y = 1,...,7; = d survives in the sum above. Note also that
N(1,...,d) = d!. Finally, we get

Z dSD(Zx)—d'fxl,...,md),
d}

o£Sc{1,..., i€S

as desired.

Suppose that we wanted to apply the second hint. This time we take V' and W to be finite-
dimensional vector spaces over C. We may asumme that IV = C". By problem the
representation of sl,(C) on the symmetric power S¢(V) is irreducible for every d > 0. By
remarkof chapter VI, the representation of SU(n) on that same symmetric power (induced
by the standard representation on C") is also irreducible.

Let U be the subspace of S%(V) spanned by all the elements of the formz ® --- @ x, z € V.
This space is nonzero, and it is clearly stable by SU(n). As S¢(V/) is an irreducible representation
of SU(n), we get that U = S4(V).

The fact that f is symmetric says that f factors through a linear map S¢(V') — W, that we
will still call f. (See problem [VIL.6.7(4).) The hypothesis says that fi;; = 0. But we have just
seen that U = S%(V), so fjy = 0 implies that f = 0.

O

VII.7.3 Pseudo-characters (chapters | and Il)

Historical remarks : Pseudo-characters were first introduced by Wiles ([36]]) and Taylor ([33]) to
study the deformation rings of representations of absolute Galois groups of number fields. The
theory was then developed more systematically in papers of Nyssen ([22]) and Rouquier ([24]).
The original definition of pseudo-characters of degree d does not work well if d! is not invertible
in the coefficient ring. In his article [[7], Chenevier introduced a refinement of pseudo-characters,
called determinants, that have the expected properties in all characteristics.

The exposition here follows section 2 of Bellaiche’s notes [2], with some help from Dotsenko’s
notes [9]].

In this problem, k& is a commutative ring and R is a (not necessarily commutative) k-algebra.

A central function on R is a k-linear map f : R — k such that f(zy) = f(yx) for every
x,y € R. If f: R — k is a central function and r is a positive integer, we define a function
S.(f) : R®" — k in the following way : Forevery o € &,,leto = ¢; . .. ¢,, be its decomposition
into cycles with disjoint supports, write ¢; = (a;1 . . . G, ), and define f, : R®" — k by

fcr(xl ®Z‘,« Hf Lajy - - 'xami)‘
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Then S,.(f) is given by

Let d € Z>,. We say that a central function f : R — k is a pseudo-character of degree d
if S4(f) is not identically 0 and Sy, (f) = 0. (Pseudo-characters are also often called pseudo-
representations.)

The idea is that a pseudo-character of degree d looks like the character (i.e. the trace) of
a representation of R on a free k-module of dimension d. In this problem, we will make the
previous statement more precise.

VII.7.3.1 First properties and an example

(1). Show that the definition of S,.(f) above doesn’t depend on the choices and makes sense.
(2). Show that, for every r > 1, the r-linear map S,.(f) : R®" — k is symmetric.
(3). Show that S;(f) = f and that, for every r > 1,

Seii(f)(@1® - Q@apyq) =

r

f(@r)Sr ()1 @ ®@x,) — Zsr(f)(ld Q- QT ® (T%rs1) QTip1 ® -+ - @ ).

i=1

(4). Show that a pseudo-character of degree 1 is the same as a nonzero k-linear map that re-
spects multiplication.

(5). Suppose that k is local and that d! is invertible in k. If f : R — k is a pseudo-character
of degree d, show that f(1) = d. (Hint : Use the relation between S, (1, ..., x,,1) and
Sr(z1,...,x,) to calculate Sg1(1,...,1).)

(6). Suppose that R = M, (k) and that f : R — k is a k-linear central function, and let
d= f(1).
Show that r divides d (in k) and that f = %Tr.

(7). Let H be the R-algebra of quaternions (see problem [VIL.I.6). Consider the function
f : H — R given by f(a + bi + ¢j + dk) = 2a, for all a,b,c,d € R. Show that f is
a pseudo-character of degree 2, but that there is no representation v : H — M5(R) such
that f = Tr o w.

Solution.

(1). First, the formula giving f, is clearly linear in each x;, so it does define a function on
R®". We have to check that the definition of f, doesn’t depend on the choices. It doesn’t
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2).

3).

(CF

(5).

326

depend on the ordering we choose on the cycles because £ is commutative, and it doesn’t
depend on the way we write each cycles because f is a central function (so, for every
T1,...,x, € Randi e {1,....r}, f(z1...2) = f(mig1 ... 2pxr ... 29)).

Let 7 € G,. Then, for every 0 € G,, if 0 = c¢;...¢p 1s its decomposition of cycles

with disjoint supports and ¢; = (r;;...7;,,), the decomposition in cycles of o7~ ! is

tor b =dy...dy, withd; = (7(r;1),...,7(rij,)). So
fU'(xT(l) R ® a:T(T')) = fTO’T_l (331 R ® -Tr)-

As 0 — 7o 7 is an automorphism of &, that preserves sgn, we get that

Sr(N)(@r0) @ -+ @ 7)) = Sp ()01 @ - @ 7).

The first equality is obvious.
Letr > 1. Foreveryi € {1,...,r+ 1} letC;={oc € &, 11 |o(i) =r+1}. Ifi=r+1,

C,41 1s a subgroup that canonically identities to S,., and we have

S s oo @ @ t1) = flaea) Y sn(o)foley 9 @ )

oeCri1 ceG,

If 1 < i < r, then we have a bijection C; = &, sending o € C; to the element 7 of &,
defined by 7(j) = o(j) if j # i, and 7(i) = 0(i) = o(r+1). We have sgn(7) = —sgn(o),
and

fa(xl K- ® xr—i—l) = f'r(xl K- (xixr-i-l) Q& xr)‘

This proves the equality of the question.

Let f : R — k be a pseudo-character of degree 1. Then f is k-linear, and S;(f) = f # 0.
Also, for every x1, 22 € R,

So(f) (@1 @ x,) = f(22) f(21) — far132) = 0,
so f is multiplicative.

Conversely, a nonzero multiplicative k-linear map f : R — k is clearly a pseudo-character
of degree 1.

Ifr >1and z4,...,z, € R, then, by question (2),

Sz @ @x,@1)=(f(1) = r)Sp(f)x1 @+ @ x,).

So, by an easy induction, for every r > 1,



(6).
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As f is a pseudo-character of degree d, Sgi1(f) = 0, and so
FO(f(1)=1)...(f(1) =d) = 0, and there is a7 € {0, ...,d} such that f(1) — i is in
the maximal ideal of k. For every j € {0,...,d} — {i}, i — j is invertible in k (because d!
is invertible in k), so f(1) — 7 is not in the maximal ideal of k, and hence f(1) — j € k*.
This shows that actually f(1) —¢ = 0, i.e. f(1) = i. Now suppose that i # d, then
f(1) —d € k*, and, so, for every z1,...,x4 € R,

0=f(1)=d) 'Saa(N21 @+ @z ®1) = Sa(f) (21 @ -+ - @ xq),

contradicting the fact that Sy(f) # 0. Soi = d, i.e. f(1) = d.

Write £;; for the matrix that has (i, j)-entry equal to 1 and all its other entries equal to
0. Then EijEji = Eu and EjiEij = Ejj for every i,j, SO f(EH) = - = f(Edd) In
particular,

fQ) = f(BEn+-- -+ Ey) =rf(En),
so r divides d and f(Ey;) = 2.

On the other hand, if 7 # j, then E;; = E;E;j and E;;E; = 0,s0 f(E;;) = f(0) = 0. If
A= (aij) € M, (k),then A =57 . a;;E;j, sowe get

1,j=1

T

f(A) = Z ai; f(Eij) = f(En)(ar + -+ a,) = 4Tr(A).

,j=1

Remember from problem that we have an isomorphism of C-algebras
u : H®@g C = M,(C), and note that f is simply the function z — Re(Tr(u(z @ 1))).
Now the fact that f is a pseudo-character of degree 2 follows from the next part of the
problem.

Of course, it’s also possible to solve this question by a direct calculation.

VII.7.3.2 A character is a pseudo-character

Letu : R — My(k) be a k-algebra map (i.e. a representation of R on the k-module k¢, or a left
R-module structure on k).

The goal of this question is to show that the central map f := Trowu : R — k is a pseudo-
character of degree < d, and that its degree is exactly d if k is local and d! is invertible in k.

(1).
Q).

Show that we may assume that R = My(k) and v = id (and hence f = Tr).

Show that we may assume that k = C.
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3).

).
(5).
(6).

Let r be a positive integer. We make the group &, act on (C%)®" by permuting the factors
(e. o(v1 @+ Q) = Vy-1(1) ® *+* @ Vy1()). We make My(C) act on (C?)®" by the
usual tensor power action (i.e. z(v; ® -+ @ v,) = (vv1) ® - @ (7v,))’] Show that, for
every v € My(C),

Si(fo)(x @ @) = Y sgn(o)Tr(xo, (C)*),

where f : My(C) — C is the trace.

If 7 > d + 1, show that the endomorphism )~ sgn(o)o of (C?)®" is zero.

Finish the proof that f is a pseudo-character of degree < d.

If moreover £ is local and d! is invertible in k, show that the pseudo-character f is of degree
d.

Solution.

(1).

2).

As u is a map of k-algebras, we have S,.(Tr o u) = S,.(Tr) o u for every r > 1. So, if
we know that Tr is a pseudo-character of degree < d, this will imply immediately that f
is also a pseudo-character of degree < d. Suppose that £ is local and that d! is invertible
in k, and let d < d be the degree of f. By question (5) of the previous part, we have
d = f(1) =Tr(u(l)) = Tr(1l) = d. If ' # d, then d’ — d is invertible in k (because d! is),
which is impossible. So d’ = d.

Suppose that we know that Tr : M, (k) — k is a pseudo-character of degree d when k = C.

Now let k£ be any commutative ring, let r > 1, and let
AN = (ag)),...,A(T) = (ag.)) € My(k). Consider the polynomials ring
K o= 2Z[X)1 < s <l < ij < d,andlet BY = (X)) € MyK), for
1 < s < r. We have a morphism of rings ¢ : k¥’ — k sending each Xi(;) to agj-),
the corresponding morphism ¢ : My(k') — My(k) sends B® to A®). Choosing rd>
algebraically independent elements in C, we also get an injective morphism of rings
¥ k' — C, and we still use ¢ to denote the morphism My(k') — My(C). Because ¢ and

1) are morphisms of rings, we have

@(S,(Tr)(BYW, ..., BM)) = S, (Tr)(AD, ..., AM)

and

and

Y(S(Te)(BY,..., BY)) = S.(Tr) (p(BY),... . (BM)).
If r = d+ 1, this gives (Sy1(Tr)(BW, ..., B+))) = 0 by the hypothesis.
As 7 is injective, we get Sqpi(Tr)(BW,... B@+Y) = 0, and applying ¢ gives
Sap1(Tr) (AW ... A@HD) = 0. So Tr is a pseudo-character of degree < d.

3Note that we think of M;(C) as an associative algebra and not as a Lie algebra here, so the action of My(C) on
tensor powers of C? is given by the usual “diagonal” action.
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Suppose that k& is local and d! is invertible in &, and let ' < d be the degree of Tr. Then
d" = Tr(1) = d (by question (4) of the previous part), and thius gives d = d’ as in question
(1).

(3). Both sides of the equality that we are trying to prove are continuous in z, and they
don’t change if we replace = by gzrg™!, with ¢ € GL,(C). As diagonalizable matri-
ces are dense in M, (C), it suffices to prove the equality for = a diagonal matrix, say
x = diag(zq, ..., xq).

Let (ep,...,eq) be the canonical basis of C?. Then a basis of (C%)®" is given by
(€, ® -+ ® €, )1<iy....ir<d- Suppose that o is a r-cycle. Then

(xo)(es; ® - ®€;,) = To-13y) - - - To-13,)(€o-13) B+ ® €5-1(;,))5

and this 1s propotional to ¢;;, ® --- ® ¢;, if and only if 7y = - - - = 7,.. So
Tr(zo, (C4)®) Z x; = Tr(z

Now if o is any element of &,, let 0 = ¢;...¢, be its decomposition into cycles with
disjoint supports Iy,...,I, C {1,...,r}. Then we have (by the formula for the trace of a
tensor product of maps, see the proof of proposition in chapter II)

Tr(zo, (CH)®") HTr xe;, (CH®h

=1

By the previous calculation, this is equal to Hle Tr(z!5), which is exactly
(fo)o(z @ --- @ ).

(4). As before, let (ey,...,eq) be the canonical basis of C?. We get a basis of (C%)®" by
taking the ¢;, ® --- ® e;,, for all iy,...,4, € {1,...,d}. Soletiy,..., i, € {1,...,d}.
As r > d + 1, there exists s,t € {1,...,r} distinct such that iy = ;. Let 7 be the
transposition (st). Then we have &, = S U 75, for S a set of representatives of the
quotient {1, 7} \ &,.. Moreover, forevery o € G,, 7o(e1, ® - ®e;,) = 0(e;, @+ Re;,)
and sgn(7o) = —sgn(o). So

Z sgn(o)o(e;,®- - -®e;, ) = Z sgn(o)o(e;, ®- - -®e;. )+ Z sgn(to)ro(e;, ®- - -®e;.) = 0.

oeS, ogeS oc€eTS

(5). Let + > 1. We make My(C)" act on (CH®" in the following way
(21, ., 2) (1 @ - ®v,) = (x101) ® - - ® (x,v,). Then the map My(C)" — C,

(1, 2) — Sp(fo)(1 @ -+ @ ;) Z sgn(o)Tr((xy, ..., z,)o, (CH®7)

O'GCT
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is r-linear and symmetric (because both of its summands are; for the second summand,
this is proved as in question (2) of teh previous part). By question (3), this map is zero an
allthe z® - -- ® x, © € My(C). By problem [VIL7.2] it is therefore identically 0, i.e., for
all 21, ..., 2, € My(C),

S(fo)(m @ ®@z,) =Y sgn(o)Tr((z1,...,z,)0, (C)®").

O'EGT

By question (4), this show that Sy, (fo) = 0.

(6). We already accidentally proved this in the answer of question (2).

U
VII.7.3.3 Characteristic polynomial of a pseudo-character
In this question, we suppose that d! is invertible in k.
(1). (Newton’s identities) Show that there exists unique polynomials aq,...,a4-1 1n

Z[%][tl, ..., tq] such that, for every o, ..., a4 € C,

th b ag (51, ., st 4 ag(sy, ..., 8q) Fap(st, ..., 8q) = (E—ay) ... (t— ag),
where s, =af +---+ajforl <r <d.

If f: R — kis acentral function, we define the characteristic polynomial of f at z € R to be
the polynomial

P, ¢(t) = th b ag_q(s1, ..., st 4t ag(sy, ..., sa)t 4 ag(s, ..., s4) € k[t],
where s, = f(a") for 1 <r <d.

(2). If f =Trowuwithu : R — My(k) a k-algebra map, show that P, () is the characteristic
polynomial of u(x) for every = € R.

(3). Let f : R — k be a central function, and let z € R. We set

Qu(t) = Z sgn(o) f(zlel) ... f(alal)lel=1,

G€6d+1

where 0 = c¢; ... ¢ is the decomposition of ¢ into cycles with disjoint supports such that
d+1is in the support of ¢;, and |¢;| is the length of the cycle ¢; (and t° = 1 by convention).

Show that
Qu s (t) = (=1)%dIP, 4(t).
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Hint : It’s possible to prove this by direct computation. You can also use the following trick
to reduce to the case where R = My(k) and f = Tr. [] First, notice that (—1)4d!P, ;(t)
and ), ¢(t) are the evaluations at s, = f(z") of polynomials P and () in the indetermi-

nates ¢, sq, . . ., Sg. Then show that it’s enough to prove that the evaluations of P and () at

sr=0af+---+aj,1<r<d areequal forall a;,...,aq € C.

(4). If f : R — k is a central function, show that
Sart(F)(,... z,y) = (=1)"d f(Pog(2)y)
forall x,y € R.
If f: R — k is a central function, its kernel is defined by
Ker(f) ={z € R|Vy € R, f(zy) = 0}.
We say that f is faithful if Ker(f) = 0.

(5). Show that Ker(f) is a two-sided ideal of R for every central function f : R — k.

(6). (Cayley-Hamilton theorem) If f : R — k is a faithful pseudo-character of degree d, show

that P, (z) = 0 for every = € R.

Solution.
(1). We work in the polynomial ring Z[a,...,a4| (the a; are indeterminates) and see
S1,...,54 as elements of this ring. We also set sy = Zf 1 a = d. For every r > 0,

let

Z Hozi € Zlag, ..., a4

Sc{l,....d} ¢€S

|S|=r

These are the elementary symmetric polynomials. Note that 0y = 1 and o, = 0 for r > d.

We have . .
F@) =1Jt =) => (~1)ot*"
i=1 r=0
in Zlay, . .., ag)[t]. This gives
d d—1
Z (=1)"(d — 7)ot
i=1 t— r=0
In the ring of Laurent formal power series in % with coefficients in Z[ay, . . .
d d
@)

40But don’t forget to treat this case ! It is not totally trivial.

, ], we have
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2).

332

hence
d

710 = FO 0 = 3 S v e

By equating the coefficients of %! in the two expressions for f’(t), we get, for
0<k<d-1,

(_1)k(d - k)gk‘ = Z(_l)k_rak—rsr = (_1)kd0'k; + Z(—l)k_rak_rsr,

r=0

hence
k

koj = — Z(—l)k*”ak,rsr.

r=1

Using this and the fact that 0y = s1, an easy induction on k show that o}, € Z[][s1, .. ., 54]
forevery k € {1,...,d—1}. Moreover, applying this to d+ 1 instead of d and then setting
agr1 = 0, we also get dog = —Zle(—l)d_’"ad,rsr, hence o4 € Z[5][s1,...,54). In
particular, thanks to the formula Hle(t — ) = Zfzo(—l)%rtd*’“, we get the existence
of the polynomials ayg, ..., aq 1.

Let’s show the uniqueness of ag,...,a; 1. So suppose that we have another family
by, ...,bq—1 of polynomials satisfying the same properties. Then, for all a1,...,aq € C
and for0 <r <d -1,

ar(si(a, ... aq), ..., 8q(aq, ..., aq)) = be(s1(ag, ..., aq),...,8q4(aq,. .., aq)).

As C is infinite, two polynomials in Z[X1,...,X,] are equal if and only if they take
the same value on every (z1,...,x4) € C?. So it suffices to prove that, for every
(z1,...,7q) € C% there exists (ay,...,a4) € C¢suchthatz, = Y af for1 <r <d.
Define a family v, . .., yqs € C inductively by y; = z; and

k
kyk’ = - Z(_l)k_ryk—rxr
r=1

for 2 < k < d. Let aj,...,aq € C be the roots of the polynomials
4+ 320 (=1)yt* € C[t]. Then we have y, = o,(a, ..., aq) for 1 < r < d. Hence
the relation above between the ) and y; gives that z, = s,.(aq,...,qq) for 1 < r < d,
which is what we wanted.

It suffices to prove the following statement : For every A € My(k), if

s, = Tr(A") for 1 < r < d, then the characteristic polynomial of A is equal to
t4+ ag_1(s1,. -8t 4+ -+ ay(sy, ..., 8a)t + ao(sy, - -, 8q). (Then we apply this
to A = u(z), forx € R.)
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Write A = (a;;), and consider the ring &' = Z[X;;] and B = (X;;) € My(k').
We have a map of rings ¢ : k' — k sending each X;; to a;;, and p(B) = A. So
o(det(tly — B)) = det(tly; — A) and o(Tr(B")) = Tr(A") for every r > 0, and so it
suffices to prove the statement in the case & = &’ and A = B. Also, choosing d? al-
gebraically independent elements of C gives an injective map of rings &’ — C, and so
we may assume that & = C. Let ay,...,aq4 € C be the eignevalues of B, we have
Tr(B") = sp(a,...,qq) for 1 <r < dand

det(tly— B) = (t—aq)...(t — aaq),

so the desired equality follows directly from the definition of the polynomials ag, . .., aq_1.

Note that, if z,y € R, we have

f(Qx,f(%)y) = Z Sgn(a)f(x|cl‘) o f(x|cl,1\)f($\cl\—1y)’

€641

with 0 = ¢; ... ¢; as before. By definition of Sy (f), thisis equal to Sg41(f)(z, ..., z,y).
We will use this identity later in the solution of (3).

Consider the following polynomials in Z[s, . .., Sq, t] (here sq, ..., sq are seen as indeter-
minates) :
d—1
P=t"4+> ai(sy, ... st
i=0
and

= Z SgIl(O’)Sm‘ o S|Cl_1‘t|cl|71,

U€6d+1

where 0 = c¢; ... ¢ is the decomposition of ¢ into cycles with disjoint supports such that
d + 1 is in the support of ¢;. Let z € R. Then P, ¢(t) (resp. (), ¢(t)) is obtained by
evaluating P (resp. Q) at s, = f(z"), 1 < r < d. So, to prove the statement, we just
need to show that P = Q in Z[sy, . . ., 84, t]. As C is infinite, we just need to show that the
evaluations of P and () at every element (sy,. .., sy) of C? are equal. Let 51, ...,54 € C.
We have seen in the solution of question (1) that there exist ay,...,ay € C such that
s, = af +---+ajforl <r < d Let Ae My(C) be a matrix with eigenvalues
aig,...,0q Then Tr(A”) = af + -+ + o) forevery r > 0,80 P(s1,...,54,t) = Pam(t)
and Q(s1,...,54,t) = Pam(t). So to show that P = (), it suffices to show the statement
of question (3) in the case R = My(C), f = Tr.

Let’s suppose that R = My(C) and f = Tr. As both sides of the equality to prove are
continuous in x € My(C) and don’t change if we replace = by gzg~!, for g € GL,,(C), we
may assume that € M,(C) is a diagonalizable matrix with pairwise distinct eigenvalues.
Remember that we saw at the beginning that, for every y € M,(C),

Tr(Q:Jc,Tr(x)y) = Sd+1(TI'>(Z', REERP y)
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As Tr is a pseudo-character of degree < d by the previous part, this is equal to 0 for every
y € My(C), and so @, v(z) = 0. This means that the minimal polynomial of z divides
Q.1 As x has pairwise distinct eigenvalues, its minimal polynomial is its characteristic
polynomial, i.e. P, 1, (by question (2)). Now note that deg(Q, =) < d and that the degree

d part of (), 1y is given by
Z sgn(o)t?.

€S
o is a (d+1)—cycle

There are d! (d + 1)-cycles in &4, 1, and they all have signature (—1)¢, so the leading
term of Q, 1y is (—1)%d!t?. As P, 1 is monic of degree d and divides Q) 1, we finally get

Qx,Tr - <—1)dd‘Px’Tr
(4). We have seen at the beginning of the solution of question (3) that, for all z,y € R,

f(Qx,f(x)y) = Sd-‘rl(f)(x? ce ,I,y)-

But question (3) gives Q. f(z) = (—1)%d! P, s(z), so we get the desired equality immedi-
ately.

(5). Tt is clear on the definition that Ker(f) is a right ideal of R. Let’s show that it is also
a left ideal. This is also very easy. If x € Ker(f) and a € R, then, for every y € R,
f((az)y) = f(zrya) = 0 because f is a central function. So az € Ker(f).

(6). Let z € R. By question (4), we have

0=Sg1(f)z,...,z,y) = (-Udd!f(Px,f(I)y)

forevery y € R. Asd!is invertible in k, this implies that f(P, ;(x)y) = O forevery y € R,
i.e. that P, s(x) € Ker(f). As f is faithful, this gives P, ¢(z) = 0.

O

VII.7.3.4 Pseudo-characters over an algebraically closed field

In this question, we suppose that k is an algebraically closed field where d! is invertible and that
the k-algebra R is finite-dimensional. Let f : R — k be a pseudo-character of degree d. The
goal is to show that f is the trace of an actual representation.

(1). Show that we may assume that Ker(f) = 0.

From now on, we assume that f is faithful, i.e. that Ker(f) = 0. Remember that rad(R) is the
Jacobson radical of R.

#I'The conclusion is actually true without the hypothesis on R, but with a slightly more difficult proof. See corollary
4.4 of Rouquier’s paper [24]].
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Show that every element of rad(R) is nilpotent. (Hint : use the Cayley-Hamilton theorem
of the previous part.)

Show that rad(R) = 0. (Hint : Show that f(z) = 0 for every x € rad(R).)

Conclude.

Solution.

(D.

2).

3).

4.

We know that Ker(f) is an ideal of R by question (5) of the previous part. Let
7 : R — R/Ker(f) be the projection map. As fike(s) = 0, we can write f = for
with f : R/Ker(f) — k, and it is very easy to check that f is a pseudo-character of
degree d. Suppose that we have a k-algebra map u : R/ Ker(f) — My(k) such that
f=Tro%w. Thenu =uox: R — My(k)is a k-algebra map, and f = Tr o w.

Let x € rad(R). As f is faithful, the Cayley-Hamilton theorem (question (6) of the
previous part) gives P, s(z) = 0. The polynomial P, ((t) € k[t] is nonzero because its
leading term is 4, so we may write the equality P, ((z) = 0 as 2" (co+cia+- - -+cx®) = 0,
with 7 > 0 and ¢g, ¢cs € k*. As z € rad(R), ¢y + - - - + cs2® is invertible (by proposition
of chapter I), so we must have r > 1, and we get 2", which show that x is nilpotent.

First we note that, for every z € R, f(z?) = 0 implies that f(z) = 0. Indeed, we know

that
!

0=Sua(F) o) = > sen(o) [ ),

UEGd+1 =1

where 0 = c; ... ¢; is the decomposition of ¢ as a product of cycles with disjoint supports.
If f(x?) = 0, then the only surviving term in the sum above is that for o = 1, so we get
f(x)™ = 0in k. As k is a field, this gives f(z) = 0.

Now suppose that = € rad(R). By question (2), z is nilpotent, so there exists » > 0 such
that 22 = 0. In particular, we have f(z?") = 0, and we have just seen that this implies

that f(z) = f(a?) = - = f(@* ") = f(@¥) = 0.

As rad(R) is an ideal of R (by corollary of chapter I), the result of question (3)
implies that rad(R) C Ker(f). But f is faithful, so rad(R) = 0. As R is a finite-
dimensional k-vector space, it’s a left Artinian k-algebra, so, by theorem [[.2.T1| of chapter
L, it is semisimple. As k is algebraically closed, we get by remark [[.1.10.7] of chapter I an
isomorphism R ~ M, (k) x --- x M, (k), withny,..., n, > 1.

For every i € {1,...,r}, we denote by e; the unit element in M,,, (k) and by f; the restric-
tion of f to M,, (k). Then f; is a pseudo-character of degree d; < d, so by question (5)
of the first part, f(e;) = d;. By question (6) of the first part, f; = %Tr. Also, we have
l=e;+---+e.inR,sod = f(1) =d; +---+d, (Where the first equality follows again
from question (5) of the first part).

We want to show that all the quotient % are nonnegative integers. Fix i € {1,...,r}, and
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let e be the matrix Ey; € M,, (k). We have f(e) = £Tr(e) = %. Also, e* = e, so using

the equality of question (3) of the first part and reasorrbling as in the proof if question (5) of
that same part, we get that f(e)(f(e) —1)...(f(e) —d) = Sg1(f)(e®@---®e) = 0. As
k is a field, this shows that % = f(e) € {0,...,d}.

Now let w : R — My(k) be the map sending
x = (r1,...,2.) € My (k) x --+ x M, (k) = R to the d x d matrix with diago-
nal blocks (z1,...,21,...,2.,...,x,.), where each x; is repeated % times. This u is
obviously a morphism of k-alebras, and we have f = Tr o u. Indeed, iff v = (X1, ..., 2)

as before, thenx = 1 +--- 4+ z, in R, so

Fla) = Do flw) = 3" file) = 3 ETx(w) = Te(u(a).

VII.7.3.5 Characters and representations

In this question, we suppose that k is an algebraically closed field and that dim(R) < +oc.
(The most important example is when R is the group algebra of a finite group.) All the (left)
R-modules are assumed to be finite-dimensional over k. If M is a R-module, its character
Xum : R — k is by definition the composition of the structural map R — End, (M) and of the
trace End, (M) — k. By [VIL.7.3.2] this is a pseudo-character of degree < dimy, (M) if M # 0,
and it is actually of degree dimy (M) of (dimy(AM))! is invertible in .

Let M be a R-module. Because we assumed that dimy (/) is finite, M has a composition (=
Jordan-Hélder) series M = My D M; D --- D M, = 0. (See sections [.1.5] of of chapter
I.) The semisimplification of M is by definition the semisimple R-module

M*® = E]? M;_/M;.

By the Jordan-Holder theorem, it doesn’t depend on the choice of the composition series.

(1). Let V4, ..., V, be the (isomorphism classes of) simple R-modules. Show that the functions
Xvis- - -5 Xv, are linearly indepedent in the k-vector space of functions R — k.

(2). Let M and M’ be two R-modules such that dimg(M) < char(k) and
dimy(M’) < char(k). Show that M** ~ M'** if and only if xy = x -
Solution.

(1). As R is a finite-dimensional k-vector space, it is left Artinian, so R/ rad(R) is semisim-
ple by remark [.2.10] and theorem [[.2.T1] of chapter 1. By the Artin-Wedderburn theo-
rem (theorem [[.1.10.5 of chapter I), R/rad(R) ~ [[;_, End,(V;). Note that all the
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xv; factor through R/rad(R), and that they correspond to the maps Tr o pr;, where
pri : [ ;- Endg (Vi) — Endy(V;) is the ith projection.

Suppose that we have "' a;xy; = 0, with ay,...,a, € k. Leti € {1,...,7}. We
have a surjective map R — R/rad(R) ~ [[j_, Endy(V;) =~ [[;_, My, (k), where
n; = dimg(V}), and we choose an element z; € R lifting (0,...,0,¢;,0,...,0), where
e; is an element of M, (k) of trace 1 (for example the elementary matrix Fi;). Then
xv;(7;) = 1and xv, (2;) = 0if j # 4, so

0= (Z anvj) (x;) = a;.

J=1

If M*$ ~ M'*, then clearly y); = xu (even without the condition on the dimensions
of M and M’). Conversely, suppose that x»; = xar. Write M* ~ @;_ V"™ and
M'™ ~ @, V.:*™. Then we have > ;_ nixv; = >.i_, MiXv;» 80, by question (1),
n; —m; = 0in k forevery ¢ € {1,...,7r}. As dimy(M), dimy(M') < char(k), we have
n;, m; < char(k) for every ¢, and so the fact that n, = m; in k implies that n; = m, in Z.

O

VII.7.3.6 Universal pseudo-character

In this question, we take G to be a group (not necessarily finite) and we fix a positive integer d.

(1).

Q).

3).

Show that there exists a unique pair (A“", fu"v) where A“"" is a commutative ring and
feniv s Avniv[G] — AV s a pseudo-character of degree d, satisfying the following con-
dition : For every commutative ring A, for every pseudo-character f : A[G] — A of degree
< d, there exists a unique morphism of rings u : A“"” — A such that fig = uo fllg”'”.

Hint : The uniqueness should be easy. For the construction of A“"*, start with Z, then
for every list (g1, ...,¢,) of elements of G (r is variable) add an indeterminate (that is
supposed to be f“"(g; ... g,)), then add some relations to make this work.

(*) If G is a finitely generated group (i.e. generated by a finite subset), show that the ring
Avniv[1/d!] is a finitely generated Z[1/d!]-algebra (i.e. a quotient of a polynomial algebra
over Z[1/d!] with finitely many indeterminates).

Suppose that G is a finite group. Show that, for every algebraically closed field k& such
that d < char(k), taking the character induces a bijection between the set of isomorphism
classes of semisimple representations of GG on k-vector spaces of dimension < d and the

set of ring morphisms A" — k.

“2This stays true for infinite groups.
“In the language of algebraic geometry, Spec A" is a Z-scheme of finite type (if G is finitely generated) whose
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Solution.

(1). Let’s start with the uniqueness. Suppose that we have two pairs (A, f1) and (As, f2)
satisfying the condition. Then the universal property of (As, fa) (resp. (Ai, f1)) gives a
map u : Ay — Ay (resp. v : Ay — Ap) such that u o fo ¢ = fic (resp. vo fig = foq)
Then we (uv) o fii¢ = fiq, so, by the uniqueness condition in the statement of the
universal property for (A, f1), uv = id4,. Similary, vu = id a,.

Let’s show the existence. Consider the polynomial ring B’ = Z[X,, g € G|, and the ideal
I of B’ generated by the following elements :

- Xy — Xy, forevery g, h € G;

- for every g1,...,gar1 € G, the element }_ s sgn(o) ., Xga, | .ga,  » Where
0 = c1...cp is the decomposition of ¢ into cycles with disjoint supports, and we
have written ¢; = (a;1 ... iy, )

We take B = B’/I and denote by T' : B[G| — B the B-linear map sending every g € G
to X, mod I € B, and by 7 : B’ — B the quotient map.

Let’s show that the pair (B,7") has the universal property of the statement. Let A be a
commutative ring and f : A[G] — A be a pseudo-character of degree < d. We have a map
of rings v’ : B" — A sending X, = T'(g) to f(g) for every g € G, and v/(I) = 0 by the
very definition of a pseudo-character of degree < d. So we get a map of ringsu : B — A
such that u o Tj¢ = fig. Suppose that v : B — A is another map of rings such that
voTlig = fig.thenvom = u’ on every X, hence v o ™ = u/, hence v = w.

Finally, let’s show that 7' : B[G] — B is a pseudo-character of degree d. The B-linear
map B[G] ®p B|G] — B, x @ y — T'(xy) — T'(yx), is zero on all the elements of the
form g ® h, with g,h € G (by definition of B), so it is zero everywhere because these
elements generate B[G] ®p B[G]. In other words, 7 is a central function. Similarly, the
B-linear map Sy, T : B(G)®*! — B (the tensor product is again over B) is zero on
all the elements of the form g; ® - -+ ® g441 With g1, ..., 9411 € G, by definition of B.
As these elements generate B[G]®?*!, we see that Sy ;T = 0, and so T is a pseudo-
character of degree < d. To see that the degree of 7" is exactly d, consider the C-linear
map f : C[G] — C sending every element of G to d. This is the character of the trivial
representation of G on C% and hence, by it is a pseudo-character of degree d.
So we get a map of rings v : B — C such that fj¢ = u o Tjg. As u is a map of rings,
we have Sy(f)(g1 ® -+ ® ga) = w(Sa(T)(g1 @ --- ® gq)) forall g1,...,94 € G. As the
degree of f is d, Sy(f) is not identically 0; as the elements g; ® - - - ® g4 generate C[G]®7,
Sa(f) is nonzero on at least one of them, and then so is S;(7"), which shows that Sy(7’) is
not identically zero and hence that the degree of 7' is d.

Note that, by definition, B is generated as a Z-algebra by the T'(g), g € G.

k-points are naturally in bijection with isomorphism classes of dimension < d semi-simple representations of G
over k.
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Q).

(3). Write (A funiv) = (A, T). Let R<, be the set of isomorphism classes of semisimple
representations of G on k-vector spaces of dimension < d, and Hom,;,,,s(A, k) be te set
of ring maps A — k.

If p : k[G] — Endg(V) is a representation of G' on a k-vector space V' such that
dimy, V' < d, then Tr o p : k[G] — Fk is a pseudo-character of degree dim; V by|[VIL7.3.2]
so by the universal property of (A, T") there exists a unique © € Hom,;,,45(A, k) such that
u o Tjg = Tro pig. As Tr o p only depends on the isomorphism class of the semisimplifi-
cation of p, this gives a map ¢ : Ry — Homy,0(A, k).

Conversely, let u € Homy,,45(A, k). Then u o T : G — k extends to a k-linear map
f : k[G] — k, and we see as in the proof of (1) that this f is a pseudo-character of
degree d' < d. By there exists a representation p : k[G] — Endi(V), with
dimy, (V') = d, such that f = Tr o p. Replacing p by its semisimplification (see[VIL7.3.3)),
we may assume that p is semisimple. As dimy, (V') < d < char(k),[VIL7.3.5(2) says that
p (with the property that f = Tr o p) is unique up to semisimplification. This gives a map
Y Homyings(A, k) = R<q.

The fact that ¥ o ¢ = idg ., follows from VII.7.3.§F 2), and the fact that
po1 = idHomMngS( Ak follows from the remark, made in the proof of (1), that the ele-
ments 7'(g), g € G, generate A as a Z-algebra.

O

VIL.7.4 Schur-Weyl duality (chapters I, IV and VI)

In this problem, £ is a field.
(1). If A C A’ are two k-algebras, the centralizer of A in A’ is
Za(A)={z € AlVy € A, xy = yx}.
Let V' be a finite-dimensional k-vector space, let A be a subalgebra of Endy (1), and let
B = Zgna,(v)(A). Suppose that A is semisimple. Prove the following :
(a) B is semisimple.
(b) A= Zgpa,v)(B).

(c) If k is algebraically closed, then, as a representation of A ®; B, V is equal to
D,c; Vi ® Wi, where (V;)ier (resp. (W;)ier)) is a complete set of representatives
of isomorphism classes of irreducible representations of A (resp. B).

In particular, you get a bijection between the isomorphism classes of irreducible represen-
tations of A and B.
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(2). We now assume that char(k) is prime to n!. We fix a nonzero finite-dimensional k-vector
V" and a positive integer n. We denote by 7"V and S™V the nth tensor and symmetric
powers of V' (see problem |VIL.6.7). We make G,, act on 7™V by permuting the factors

(see problem [VIL.7.3.2(3)).

(a)

(b)

(©)

(d)

(e)

Show that the quotient map 7"V —  S™V induces an isomorphism
(T"V)S» 5 S"V. We use this to identify S™V to a subspace of 7"V in what
follows.

Show that S™V is generated as a k-vector space by elements of the form v", v € V.

(Compare with problem )

Let A be a finite-dimensional associative k-algebra with unit. Then 7" A is also an
associative k-algebra (we take (a1 ® - ®a,) (1 ®- - ®by,) = (a101) @ - - ® (a,by)),
and S™V is a subalgebra (no need to prove this, it follows immediately from (a)
anyway). For each a € A, let

1
Anfa)=~(a®1® ®1+18e@ 1+ +1@ - ®18a)

Show that, as a k-algebra, S™ A is generated by A, (A).

Now let g = gl(V), and make this act on 7"V as in problem [VIL6.7(5). Let Ug
be the universal enveloping algebra of g. Show that the image of Ug in End,(7"V)
is canonically identified with S™ Endg (V). (We see S™ End(V') as a subalgebra
of 7" Endg (V') as in (c), and make 7" Endy (V') act on 7"V in the obvious way :
(Pp1 ® - @p)(v1 ® - ®@uy) = p1(v1) ® -+ @ @u(v,). This gives an injec-
tion 7" Endg (V') < Endy(7™V'), which is actually an isomorphism for dimension
reasons.)

Let A (resp. B) be the image of k[S,,] (resp. Ug) in End,(7"V'). Show that A and
B are semisimple, and that they are each other’s centralizers in End(7"V').

From now on, we take kK = C and V = C%, so g = gl,(C).

®
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Let Irrg be the set of isomorphism classes of irreducible representations of g. We use
the notation of chapter IV for partitions of n and irreducible representations of G,,.
We also use the description of irreducible representations of g in problem [VIL.6.19(4)
(and the notation of this problem).

Show that there is a map

{partitions of n} — Irry U{0}
A = W,\

such that, as a representation of G,, X g,

T”V = @V,\ X WA,
A
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and that every W, comes by differentation (i.e. by the process of theorem of
chapter VI) from a continuous representation of GL4(C), that we’ll also denote by
W, and that is 0 or irreducible.

Remember that dim V' = d. Let A € k[xy,. .., z4] be the polynomial defined by
A= Z sgn(o) Ha:i_f)
ceBGy =1
Show that
1<i<j<d
Let A\ = (\,...,\,) be a partition of n with r < d. We define a polynomial

Dy € klxy,...,x4) by

d
D) = Z sgn(o) Hmﬁ%d_i,
i=1

ceS,

where we take \; = 0if i > r.

Let S, = %. Show that this is in k[z1, ..., x|, i.e. a polynomial and not just a
rational fraction. (Hint : use the fact that D) is antisymmetric in x1, . .., xg.)

Ta C GLy4(C) be the commutative subgroup of diagonal matrices.  If
GL4(C) — GL(W) is a continuous representation, remember that its character
GL4(C) — Cis defined by xw(g) = Tr(p(g)).

In the following questions, g = diag(aq, ..., as) will be an element of 7,; with diagonal
entries ay, . .., aq € C and o will be an element of G,,. For every | € Z>;, we denote by i,
the number of cycles of length [ in the decomposition of ¢ as a product of cycles with pair-
wise disjoint supports. Finally, we denote by II the set of partitions A = (A; > -+ > \,)
of n such that » < d.

Remember that we are using the notation of chapter I'V.

(i) Show that

Tr(go, T"V) = Y X (0)xw, (9)-
XeZ(n)

(G) Show that

Tr(go, T"V) = H P(ai,...,aq)",

>1

where, for every [ > 1, Py(z1,...,24) = 2} + -+ + 2} € k[zy, ..., z4).
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(k) Show that
H Pz, mq)" = ZXVA(U)SA<1’17 cey Ta).

>1 Aell

(Hint : Use the fact that the left-hand side is symmetric in x1, . .., Zq.)
() Show that W, = 0 if \ ¢ II, and that, for A € II,

Xy (9) = Salar; ..., aq).

(m) Show that, in the notation of problem [VII.6.19] if A € II, then W), is the irreducible
representation of g corresponding to (Ay, ..., A, 0,...,0) € Af. (This justifies the
notation W) a posteriori.)

Solution.

(1). Because A is semisimple, we can write V' = @,_,; V;"* as a A-module, where (V;);c;s is

342

ier Vi
the (finite) set of simple A-modules (up to isomor;hism) andn; > 0. Let A=1]],.; A; be
the corresponding decomposition of A into simple factors (see theorem [[.1.10.5]of chapter
D), that is, A acts on V; through the projection A — A;. As the map A — Endy(V) is
injective, all the n; are positive.

For every i € I, let D; = End4(V;). This is a division algbera by Schur’s lemma, and we
have B ~ [[,.; M,,(ID;), so B is semisimple. Let A" = Zgyq,(v)(B); clearly, A C A’. By
Schur’s lemma again, A" = Hie ; Ei, where Ej is the set of k-linear endomorphisms of V;
that commute with D; = End 4(V;). By the double centralizer property (theorem of
chapter I), the obvious map A; — E; is an isomorphism. So we get A = A'.

As B commutes with A, it preserves the isotypic components V" of V' as a A-module.
So to prove the rest of the last statement, we may assume that A = A; and V = V"
then B = M,,(ID;). As B commutes with A, it acts on Hom 4(V;, V') (through its action
onV,s0 (b- f)(x) = bf(x) forall b € B, f € Homa(V;,V) and = € V}), and, as a
B-module, Hom 4(V;, V') is isomorphic to D}, which is the unique simple B-module. So
it suffices to show that the k-linear map u : V; ®; Homy(V;, V) = V, 2 ® f +—— f(2), is
an isomorphism of A ®; B-module, where the A ®;, B action on the left hand side is given
by the A-action on the factor V; and the B-action on the factor Hom4(V;, V). Let’s check
that v is A ® B-linear. Leta € A,b € B,z € V; and f € Homu(V;, V). We have

u((a®@b)(z @ f)) = u((ax) @ (bf)) = (bf)(ax) = bf (ax) = baf(x) = abf(x),

where the last two inequalities come from the A-linearity of f and the fact that A and B
commute. Also, u is surjective because V' ~ V"* as a A-module. Finally, let’s show that u
is an isomorphism by computing dimensions. We use for the first time the hypothesis that
k is algebraically closed. Because of this hypothesis, we have A ~ M,(k), so V; ~ V4,
End4(V;) ~ k and Homy4 (V;, V') ~ End4(V;)™ ~ k™. This gives

dimy, V' = n; dimy V; = (dimg Homa(V;, V') (dimy V),
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hence the source and target of v have the same dimension.

2. (@

(b)

(c)

(d)

(e

Letp : T"V — S™V be the quotient map, and let 7 : 7"V — TV be the k-linear
map defined by

1
U1®"'®Un'—>mZd%@"'@%)-

ceG,

Then 7 is clearly a projection with image (77V)®". Also, the map V" — (T™)%"V,
(v1,...,0,) —> 7(v; ® -+ ® v,), is n-linear symmetric, so it induces a map
w: S™V — (T"V)®", and it is very easy to see that u is an inverse of D|(TV)Sn -

As in problem [VIL.7.2] we can do this two ways (at last if k£ = C):
(i). The first solution of problem [VIL.7.2| gives that, for all vy, ..., v, € V,

V] ..U = % Z (—1)"“S| (Z vi)
’ n}

i€S
in S™V, which immediately implies the result. This only uses the condition that
nl e k*.

(ii). If £ = C (the case of interest later), then S™V is an irreducible representation
of sI(V') by problem hence of a group isomorphic to SU(dim¢ V') by
remark of chapter VI, and the C-subspace generated by the v", v € V, is
nonzero and stable by the action of this group, hence equal to S™V'.

First, it is clear that A,(A) C (T"A)®", so the question makes sense. Let
ai,...,a, € A. Then, in S™V,
Ap(ay) ... Ay(ay) =aq...a,.

So the k-subalgebra of S™A generated by A, (A) contains all the elements of the
form a; ... a,, hence it is equal to S™A.

Let’s make the injective map S™Endg(V) — Endg(7"V) explicit : If
Uy ..Uy € Endg (V) and vy, ..., v, € V, then

1
(ur .. up)(V1 ® - ®vy) = ] D o) (v1) ® -+ @ gy (vn).

O'EGTL

Then the action of g on 7™V is given by the composition of the map
A, g — S"g = S"Endg(V) and of the map S" End, (V) — End,(7™V) that
we just wrote. So the image of Ug is the k-subalgebra generated by the image of A,,,
which by (c) is equal to S™ End (V).

We already saw that B = S™ End, (V). Hence B is a quotient of the semisimple
k-algebra T" End (V') ~ Endy(7™V'), and so it is semisimple.
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On the other hand, k[&,,] is semisimple because n! = | &,, | is invertible in &k (by
Maschke’s theorem, i.e. theorem_ of chapter I), so its quotient A is also semisim-
ple. Also, it is clear on the formula for the action of S™ End, (V') that this action
commutes with the action of A, so S™ End, (V') C Zys,)(End,(T"V)).

By (a), the centralizer of k[S,,] in Endy,(T"V) ~ T" End,(V), i.e. (T™ Endg(V))®",
is equal to S™ End, (V') = B. Finally, by question (1) (and the fact that A is semisim-
ple), A = Zgna,(rnv)(B) (and we recover the fact that B is semisimple).

We have seen (in theorem [V.3.3| of chapter IV) that we have a bijective map
P(n) := {partitions of n} — Sc(&,), A +— V.
Also, by question (1), we have an isomorphism of A ®¢ B-modules

™V~ P view,
AeZ(n)

where, for every A € Z(n), W) is either 0 (if the irreducible representation V) of
S, doesn’t appear in 7™V) or an irreducible representation of B, hence of Ug, hence
also of g. This gives the desired map. Note also that, if A\, x € &?(n) and such that
A # pand Wy, W, # 0, then Wy 22 W, (again by (1)).

Finally, the representation of g on 7"V clearly lifts to a representation of GL;(C)
(given by the formula g(v; @ -+ ® v,) = (gv1) ® - -+ @ (gu,), see remark [VL.5.6]
of chapter VI), and by remark of chapter VI so do all its g-subrepresentation,
hence so do the WW,. By the same remark, each nonzero W), is irreductible as a
representation of GL,4(C).

It is clear on the definition of A that it is the determinant of the matrix
(27 ) 1<ijea € My(k[z1,. .., 24)). This is a Vandermonde matrix with the order
. . . . d(d—1)/2 . .
of its columns reversed, so it determined is (—1)44—1/ [1i<icj<a(®j — ), which is

exactly the desired formula for A.

Make &4 act on k[z1,...,zq] by o(f(z1,...,24)) = f(Te@)s-- -, To@)), for every
o € 6gand f € k[zy,...,24. Then, for every 0 € &y, o(Dy) = sgn(o)D,.
(This is clear from the definition of D,.) In particular, if i,7 € {1,...,7} and

i # j, then o(Dy) = —DAif 0 = (ij), hence Dyj,—p;, = 0, so z; — z; di-
vides Dy in k[z1,...,x4). As the ring k[xy,..., 4] is a unique factorization do-
main, we deduce that [],.,_;.,(z; — x;) divides Dy in k[x1,...,2q]. But by (g),

A= H1§i<j§d(37i — 7).

(1) This just follows from (f).
(j) The calculation exactly the same as in question (3) of [VII.7.3.2]:

Let (1, ..., eq) be the canonical basis of V' = k%. Then a basis of 7"V is given by
(€, ® -+ ® e, )1<iy....in<d- Suppose that o is a n-cycle. Then

(go)(ey @ - ®ei,) = (Ag-13i1) - - - Ao1(i)) (€o-1(iy) @ ® €5-1(3,)),



k)

)

(m)
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and this is propotional to e;;, ® --- ® ¢; ifand only if iy = --- = 7,,. So

Tr(go, T"V) Z al = Py(ay,...,aq).

Now if ¢ is any element of G,,, let ¢ = c¢; . . . ¢, be its decomposition into cycles with
disjoint supports Iy, ..., I, C {1,...,n}. Then we have (by the formula for the trace
of a tensor product of maps, see the proof of proposition |II.1.1.3|in chapter II)

‘
Tr(go, T"V) = H Tr(ge;, VO,

i=1

By the previous calculation, this is equal to Hle Pr(a1,...,aq), which gives the
desired result.

By definition of the S, the formula we’re trying to prove is equivalent to

AHPl(xl,..., ”—ZXVA YDx(21, ..., xq).

>1 Aell

Note that, for every tau € &4, 7(D)) = sgn(r)Dy, 7(A) = sgn(r)A and
7(F,) = P,. So both sides of the equality above are antisymmetric in the z;, and so we
only need to show that the coefficients of all the monomials of the form z7* ... z}?
with n; > --- > ng coincide. Note that AJ[,-, P is homogeneous of degree
d(d—1)/2+4 5, lii = n+d(d—1)/2, and that each D) is homogeneous of degree

Z?Zl(d — i+ X)) =n+d(d—1)/2. So both sides are homogeneous of the same
degree. Letny > --- > ng > 0 be integers such thatny +---+ng =n+d(d—1)/2,
and write n; = d — ¢ + A\;. Then we have \;y > --- < Ay = ng > 0, and
M+ 4+ A =mn,50 X = (A\g,...,\q) € II. Also, by theorem [[V.4.3] of chap-
ter IV, the coefficient XV}lambda(U) of 7" ... x)* on the right hand side is equal to the
coefficient of z}" ... x* in A[],», P/*, which is the left hand side. This proves the

equality.

This follows from (i), (j), (k) and the fact that the fonctions xy, : &,, — C form a
linearly independent family (by corollary of chapter II).

We have seen that 17y, is an irreducible representation of GL,4(C) and g, and that its
character is given on 7,; C GL4(C) by the formula (a4, ..., aq) —> Sx(aq,. .., aq).
By the Weyl character formula (theorem of chapter VI), this is equal to the
character of the representation 1 with highest weight A of GL4(C) on 7. (See (6) of
problem[VIL.6.19]) So xw, = xw onTy. As xw and Xy, are both continuous and in-
variant by conjugation, and as the set of diagonalizable matrices in dense in GL4(C),
Xw = Xw,. Of course that should allow us to directly conclude that W ~ W, as
representations of GL4(C) (and hence of g), but technically we haven’t proved this
so we still need to do some work. What we can immediately conclude, however, is
that :
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- the characters of the representations of sl;(C) on W and W, are equal, so
W ~ W) as representations of s[;(C), and in particular dim¢c W = dim¢ Wy;

- the center C* of GL4(C), which acts by homotheties, i.e. via continuous group
morphisms 1,1y : C* — C*, on W and W), by Schur’s lemma, acts via the
same morphism on these two representations, i.e. 1y = 5 (indeed, for every

a € C*, xw(a) = (dimec W) (a) = xw, (a) = (dime Wy)a(a));

- as a consequence of the second point, W and W) are isomorphic as representa-
tions of CI; C g.

Putting the first and third points together, we see that W ~ W, as representations of
¢ (and hence also as representations of GL4(C)).

O
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R-linear map, character of a representation, [55]
R-module morphism, character table of a group, [203]
p-elementary group, [69 Clebsch-Gordon decomposition,
p-regular, coinduction,
p-singular element, [92] coinvariants,
p-unipotent, column subgroup, 06|
p-unramified ring, commutative Lie algebra, [[32]

) commutator bracket, [132]
action of a group on a module, [36| compact operator,

adjoint representation of a Lie algebra, [133]
algebraic differential operator,
algebraic Peter-Weyl theorem,
annihilator of a R-module,

annihilator of an element, [33]

Artin’s theorem, [68]

Artin-Wedderburn theorem,

Artinian R-module,

complete discrete valuation ring, 237
completely reducible module,
completely reducible representation, 36|
composition series,

continuous representation ring,
convolution product, [TT§]

cuspidal representation of GLy(IF,),[222

augmentation ideal, cyclic module,
augmentation map, 36| derivation, [T83] 263
Baker-Campbell-Hausdorff formula, [T43 d@‘ivatiop of a Lie al.gebr a,[133]
Brauer group of a field, d¥fferent1al polynomial ring,
Brauer’s theorem, direct sum of modules, [12]
Bruhat order, [T60 discrete valuation field, 236|
discrete valuation ring,
Casimir element, division ring, [T3]
Cauchy determinant, double centralizer property, 29|
Cauchy matrix, dual numbers,
central function, [55]
central simple k-algebra, [188 eigenvalue, [12§]
centralizer, equivalent Jordan-Holder (or composition)
character of a group (1-dimensional repre- series, [21]
sentation), equivariant map,
character of a Lie algebra representation, exact sequence of modules,
[168] exterior algebra of a module, [T55]
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exterior powers of a module, [I55]

faithful Lie algebra representation, [132]
faithful representation, 36|

finite length R-module, 21]

finitely generated module, [16]

Fitting’s lemma,

free algebra, [T 1]

free module, [T

fundamental weight, [160]

Gelfand-Graev representation of GLy(F,),
R18]

group algebra, [TT]

Haar measure, [[09]

Hecke algebra, 213

Hensel’s lemma, 238

highest weight, [T60} [164]

highest weight representation, [[64]
highest weight vector, [164]

Hilbert space, [112]

ideal, [T3]

ideal of a Lie algebra, [131]
idempotent, [33]

indecomposable module,
induction, 43}, [197]

injective module, [19]

inner derivation, [[85]

invariant differential operators,
invariants, 48] [56]

inverse, [13]

invertible, 13|

irreducible Lie algebra representation, [[32]
irreducible module,

irreducible representation, 36|
isotypic components, [24]

Iwasawa decomposition, [25§]

Jacobson radical, [33]

Jacobson semisimple, [33]
Jacobson-Morozov theorem,
Jordan-Holder constituents, 22]
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Jordan-Holder series, 20]

Kostka numbers, [[00]
Krull-Schmidt-Remark theorem,

left Artinian ring, [22]

left inverse, [13|

left invertible, [13]

left Noetherian ring, [22]

left regular R-module, [12]

left regular representation, [122]

length of a R-module, 2]

length of a Jordan-Holder (or composition)

series, 20|

Lie algebra, [I31]
Lie algebra of a closed subgroup of GL,,(C),

140
Lie algebra of a linear algebraic group, 264
Lie bracket, [131]
Lie subalgebra, [I31]
lifting of idempotents, [83]
linear algberaic group, 263]
local left Artinian ring, [7§]

Mackey’s formula, [63)]

Mackey’s irreducibility criterion,
Maschke’s theorem, 36]

matrix exponential, [137]

matrix logarithm, [I39)

modular function, 253]

module, [T]]

monomial representation, [74]
morphism of algberaic groups, 282
morphism of Lie algebras, [I31]
multiplicity of a simple module, [24]
multiplicity of a weight, 160} [162]
multiplicity-free, 215]

nil ideal, [83]

nilpotent ideal, 33

Noetherian R-module, 22]
noncommutative polynomial ring, [T1]

opposite ring, 29



order of a differential operator, [276|

orthogonal group,
orthogonal idempotents, [19] [83
orthogonality of characters, [59

partition of an integer, 93]
Peter-Weyl theorem, [124]
Poincaré-Birkhoff-Witt,
Poincaré-Birkhoff-Witt theorem, [164]
polar decomposition, 258

polarization, 287
polynomial function on a vector space, 269

positive roots, [163]
principal series of GLy(FF,), 222

profinite group, 260

projection formula, [53]

projective envelope (or cover), [83]
projective module, [17]
pseudo-character, 288

quaternions, [I81]
quotient module, [T2]

realizable over k (for a representation),
reduced trace, [190]

regular functions on an algebraic group, [283]
regular representation, 36|

representation of a group on a module, [36]
representation of a Lie algebra, [132]
representation ring, [43]

restriction, [43]

right inverse, [13]

right invertible, [[3]

right regular R-module, [12]

right regular representation, [122]

ring, [T1]

root system, [160]

row subgroup, 96]

Schur index, 21T]

Schur orthogonality, [59} [TT6]

Schur’s lemma, 20]

Schur-Weyl duality, [303]

semisimple Lie algebra representation, [[33]
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semisimple module, [I3]

semisimple representation, 36|

semisimple ring,

semisimplification, [300]

sign representation, [39]

simple module,

simple ring, [26]

simple roots, [163]

Specht modules,

special orthogonal group, 257

special unitary group, [142]

spectrum of an operator, 12§

standard representation, [I57} 269

Steinberg representation of GLo(F,), 222

submodule, [12]

subrepresentation, 36|

subrepresentation of a Lie algebra represen-
tation, [132]

sum of modules, [12]

symmetric algebra, 267]

symmetric powers,

symplectic group, 257]

tensor algebra of a module, [134]

tensor powers of a module, @

tensor product of two modules,
topological group, [109]

trivial representation, @

trivial representation of a Lie algebra, [I33]

unimodular group, 253

unitary group, [142] 257

unitary representation, 113
universal enveloping algebra, [I35]
Urysohn’s lemma, [253]

Verma module, [T66]

weight of a representation, [162]

weight space,

weights of a representation, [T60|

Weil representation,
Weyl denominator, [163]

Witt polynomials, 24T]
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Witt vectors, 242

Young diagram attached to a partition,

Young projector,
Young tableau corresponding to a partition,
6]

Zorn’s lemma, [14]
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